
Expressing and Verifying Probabilistic Assertions

Adrian Sampson Pavel Panchekha
University of Washington

Todd Mytkowicz Kathryn S. McKinley
Microsoft Research

Dan Grossman Luis Ceze
University of Washington

Abstract
Traditional assertions express correctness properties that must hold
on every program execution. However, many applications have prob-
abilistic outcomes and consequently their correctness properties
are also probabilistic (e.g., they identify faces in images, consume
sensor data, or run on unreliable hardware). Traditional assertions
do not capture these correctness properties. This paper proposes
that programmers express probabilistic correctness properties with
probabilistic assertions and describes a new probabilistic evalu-
ation approach to efficiently verify these assertions. Probabilistic
assertions are Boolean expressions that express the probability that
a property will be true in a given execution rather than asserting
that the property must always be true. Given either specific inputs
or distributions on the input space, probabilistic evaluation verifies
probabilistic assertions by first performing distribution extraction to
represent the program as a Bayesian network. Probabilistic evalua-
tion then uses statistical properties to simplify this representation
to efficiently compute assertion probabilities directly or with sam-
pling. Our approach is a mix of both static and dynamic analysis:
distribution extraction statically builds and optimizes the Bayesian
network representation and sampling dynamically interprets this rep-
resentation. We implement our approach in a tool called MAYHAP
for C and C++ programs. We evaluate expressiveness, correctness,
and performance of MAYHAP on programs that use sensors, per-
form approximate computation, and obfuscate data for privacy. Our
case studies demonstrate that probabilistic assertions describe useful
correctness properties and that MAYHAP efficiently verifies them.

Categories and Subject Descriptors G.3 [Probability and Statis-
tics]: Statistical computing; D.2.5 [Software Engineering]: Testing
and Debugging—Symbolic execution

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

General Terms Languages, Reliability

Keywords Probabilistic programming, approximate computing,
data obfuscation, differential privacy, sensors, symbolic execution

1. Introduction
Traditional assertions express logical properties that help program-
mers design and reason about the correctness of their program. Veri-
fication tools guarantee that every execution will satisfy an assertion,
such as the absence of null dereferences or a legal value range for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI ’14, June 9–11 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594294

a variable. However, many applications produce or consume prob-
abilistic data, such as the relevance of a document to a search, the
distance to the nearest coffee shop, or the estimated arrival time of
the next bus. From smartphones with sensors to robots to machine
learning to big data to approximate computation, many applications
compute with probabilistic values.

Current assertion languages and verification tools are insuffi-
cient in this domain. Traditional assertions do not capture proba-
bilistic correctness because they demand that a property hold on
every execution. Recent work on inference in probabilistic program-
ming languages builds language abstractions to aid programmers
in describing machine learning models but does not deal with ver-
ification of probabilistic correctness properties [13, 22, 26, 28].
Sankaranarayanan et al. [33] address the verification of programs in
probabilistic programming languages through polyhedral volume
estimation, but this approach limits the domain to programs with
linear arithmetic over constrained probability distributions. In con-
trast, this paper builds on Bornholt et al.’s Uncertain〈T 〉 [3], which
defines a semantics for computing in mainstream languages over a
broader set of distributions with sampling functions but does not
verify programs.

This paper proposes probabilistic assertions (passerts), which
express probabilistic program properties, and probabilistic evalu-
ation, which verifies them. A passert statement is a probabilistic
logical statement over random variables. Probabilistic evaluation
extracts, optimizes, and evaluates the distribution specified in a
passert by combining techniques from static verification, symbolic
execution, and dynamic testing.

Probabilistic Assertions Programmers write passert e, p, cf to
check the probability that the Boolean expression e holds in a
given execution of the program is at least p with confidence cf.
The parameters p (defaults to 0.5) and cf (defaults to 95%) are
optional. Our analysis estimates the likelihood that e is true, bounds
any error in that estimate, and determines whether that estimate is
significantly different from p. For example, consider the following
function, which adds Gaussian noise to users’ true locations to
protect their privacy.
def obfuscate location(location):

noise = random.gauss(0,1)
d = distance(location, location + noise)
passert d < 10, 0.9, 95%
return location + noise

To ensure that obfuscation does not change a user’s true location too
much, the programmer asserts that the Euclidean distance between
the true and obfuscated location should be within 10 miles at least
90% of the time with 95% confidence. While occasional outliers are
acceptable, the programmer wants to ensure that the common case
is sufficiently accurate and therefore useful.

A traditional assertion—assert d < 10—does not express this
intent. Since the Gaussian distribution has a non-zero chance of
adding any amount of noise, some executions will make d greater
than 10. Since these infrequent outlier cases are possible, traditional
verification must conclude that the assertion does not hold.

def obfuscate_
location(location):
 noise =
random.gauss(0,1)
 d = distance(l,
 location + noise)
 passert d < 10, 0.9
 return location+noise

✓
✓probabilistic

program

Bayesian
network IR

simplified
network

samples verification

distribution
extraction optimization

exact
check

sampling hypothesis test

§5.2.1

§5.2.2 §5.2.2

§5.1
§3, §4

probabilistic or
concrete input

Figure 1. MAYHAP’s workflow to verify probabilistic assertions.

Probabilistic Evaluation Probabilistic evaluation verifies the
probabilistic logical statement over random variables expressed
by the passert. It first performs distribution extraction, which is
a symbolic execution that builds a Bayesian network, a directed,
acyclic graphical model. Nodes represent random variables from
the program and edges between nodes represent conditional depen-
dences between those random variables. This process defines a prob-
abilistic semantics in which all variables are distributions. Constants
(e.g., x = 3) are point-mass distributions. Random distributions,
both simple (uniform, Gaussian, etc.) and programmer-defined, are
represented symbolically. Other variables are defined in terms of
these basic distributions.

For example, let L, D, and N be the random variables corre-
sponding to the variables location, d, and noise in the above program.
The passert constrains the probability Pr[D < 10] given that L is a
point-mass distribution and that N is drawn from a Gaussian:

Pr[D < 10 | L = location, N ∼ N (0, 1)] > 0.9

This inequality constrains the probability of correctness for a
particular input location. Alternatively, programmers may express a
distribution over expected input locations by, for example, setting
the location variable to sample from a uniform distribution. The
passert then measures the likelihood that the obfuscation will yield
acceptable results for uniformly distributed input locations:

Pr[D < 10 | L ∼ U , N ∼ N (0, 1)] > 0.9

Our key insight is that, with this probabilistic semantics for
passerts, we can optimize the Bayesian network representation and
significantly improve the efficiency of verification. Using known
statistical properties, our optimizations produce a simplified but
equivalent Bayesian network. For example, we exploit identities of
common probability distributions and Chebyshev’s inequality. In
some cases, these simplifications are sufficient to facilitate direct
computation and verify the passert precisely. Otherwise, we sample
the simplified Bayesian network and perform a hypothesis test to
statistically verify the passert. We use acceptance sampling, a form
of hypothesis testing, to bound the chance of both false positives
and false negatives subject to a confidence level. Programmers can
adjust the confidence level to trade off between analysis time and
verification accuracy.

Evaluation We implement this approach in a tool called MAYHAP
that takes C and C++ programs with passerts as inputs. MAYHAP
emits either true, false, or unverifiable along with a confidence in-
terval on the assertion’s probability. Figure 1 gives an overview. We
implement the entire toolchain for MAYHAP in the LLVM compiler
infrastructure [18]. First, MAYHAP transforms a probabilistic C/C++
program into a Bayesian network that expresses the program’s prob-
abilistic semantics. For program inputs, developers provide con-
crete values or describe input distributions. MAYHAP optimizes
the Bayesian-network representation using statistical properties and
then either evaluates the network directly or performs sampling.

We implement case studies from three application domains:
sensors, data obfuscation, and approximate computing. We show
that passerts express their correctness properties and that MAYHAP
offers an average speedup of 24× over stress testing with rote
sampling. MAYHAP’s benefits over simple stress testing—repeated
execution of the original program—are threefold. First, statistical
simplifications to the Bayesian network representation reduce the
work required to compute each sample: for example, reducing the
sum of two Gaussian distributions into a single Gaussian halves
the necessary number of samples. Second, distribution extraction
has the effect of partially evaluating the probabilistic program to
slice away the non-probabilistic parts of the computation. Sampling
the resulting Bayesian network eliminates wasteful re-execution of
deterministic code. Third, our approach either directly evaluates
the passert or derives a number of samples sufficient for statistical
significance. It thereby provides statistical guarantees on the results
of sampling that blind stress testing does not guarantee.

Although programs that compute with probabilistic data are
already ubiquitous, abstractions and tools to help their developers
are lagging. By harnessing randomness, our approach introduces
new and effective abstractions for correctness, optimization, and
verification of probabilistic programs.

2. Programming Model
This section presents an intuitive view of programs as probabilistic
computations over random variables. For our purposes, a probabilis-
tic program is an ordinary imperative program that calls sampling
functions for probability distributions [16]. Consider this simple
program:

x = random.uniform(0,1)
w = 0.9
passert x < w, 0.90

This program samples from a uniform distribution, ranging from
0 to 1, assigns a concrete value to w, and then asserts that the
sample is less than 0.9 using the comparison x < w with 90%
probability. An invocation of random.uniform returns one sample
from the distribution. The language provides a library of sampling
functions for common distributions, such as uniform, Gaussian, and
Bernoulli distributions. Programmers may define sampling functions
for new distributions using arbitrary code.

Programmers write specifications of correctness in passerts. The
above passert is satisfied because the probability that a random
sample from U(0, 1) is less than 0.9 is exactly 90%.

To formalize this reasoning, we represent programs as Bayesian
networks. A Bayesian network is a directed, acyclic graphical model
wherein nodes represent random variables and edges represent
conditional dependence between those random variables.

< X < W

UX 0.9 W

Much like an expression tree, each node in the Bayesian network
corresponds to a value produced by the program. Unlike an expres-
sion tree, however, each node represents a distribution rather than
a single value. This network, for example, contains three random
variables (X , W , and X < W), one for each expression executed
in the program (random.uniform(0,1), 0.9, and x < w). The directed
edges represent how these random variables conditionally depend on
one another. For example, the node for the random variableX < W
has edges from two other nodes: X and W .

Because each variable is dependent only on its parents in a
Bayesian network, the probability distributions for each node are
defined locally. In our example, the distribution for the X < W
node, a Bernoulli random variable, is:

Pr[X < W |X ∼ U ,W = 0.9]

Computing the distribution for X < W requires only the distribu-
tions for its parents, X and W . In this case, both parents are leaves
in the Bayesian network: a uniform distribution and a point-mass
distribution.

One way to compute the distribution is to sample it. Sampling
the root node consists of generating a sample at each leaf and then
propagating the values through the graph. Since Bayesian networks
are acyclic, every node generates only a single value per sample and
the running time of each sample is bounded.

In this example, we can exploit the Bayesian network formula-
tion to simplify the graph and compute an exact solution without
sampling. By definition, when X is uniformly distributed, for any
constant c ∈ [0, 1], Pr[X < c] = c. Using this statistical knowl-
edge, we replace the tree in our example with a single node repre-
senting a Bernoulli distribution with probability 0.9.

The Bayesian network abstraction for probabilistic programs
yields two major advantages. First, it gives a probabilistic seman-
tics to programs and passert statements. Section 4 formalizes our
probabilistic semantics and proves that sampling the Bayesian rep-
resentation is equivalent to sampling the original program. Second,
we exploit probabilistic algebras and statistical properties of ran-
dom variables to optimize the verification process. In some cases,
we verify passerts without sampling. Section 5.1 introduces these
optimizations.

3. Distribution Extraction
Given a program with a passert e and either a concrete input or a
distribution over inputs, MAYHAP performs a probabilistic evalua-
tion by building and optimizing a Bayesian-network representation
of the statements required to evaluate the passert. This section de-
scribes distribution extraction, which is the first step in this process.
Distribution extraction produces a symbolic Bayesian network repre-
sentation that corresponds to the slice of the program contributing to
e. MAYHAP treats randomness as symbolic and deterministic com-
ponents as concrete. The process is similar to symbolic execution
and to lazy evaluation in functional languages.

Distributions as Symbolic Values MAYHAP performs a forward
pass over the program, concretely evaluating deterministic compu-
tations and introducing symbolic values—probability-distribution
expression trees—to represent probabilistic values. For example, the
following statement:

a = b + 2

computes a concretely when b is not probabilistic. If, prior to the
above statement, the program assigns b = 5, then we perform the
addition and set a = 7. However, if b = gaussian(), we add a node
to the Bayesian network, representing b symbolically as a Gaussian
distribution. We then create a sum node for a with two parents: b’s
Gaussian and 2’s constant (point mass) distribution.

As this mixed symbolic and concrete execution proceeds, it ea-
gerly evaluates any purely deterministic statements but builds a
Bayesian-network representation of the forward slice of any prob-
abilistic statements. This process embodies a symbolic execution
in which the symbolic values are probability distributions. Our ap-
proach differs from typical symbolic execution in how it handles
control flow (see below).

When the analysis reaches a statement passert e, MAYHAP
records the Bayesian network rooted at e. It then optimizes the net-
work and samples the resulting distribution. Compared to sampling

the entire program repeatedly, sampling the extracted distribution
can be more efficient even without optimizations since it eliminates
redundant, non-probabilistic computation.

Conditionals When conditionals and loops are based on purely
concrete values, distribution extraction proceeds down one side
of the control flow branch as usual. When conditions operate on
probabilistic variables, the analysis must capture the effect of both
branch directions.

To analyze the probability distribution of a conditional state-
ment, we produce conditional probabilities based on control-flow
divergence. For example, consider this simple program:
if a: b = c else: b = d

in which a is probabilistic. Even if both c and d are discrete,
the value of b is probabilistic since it depends on the value of a.
We can write the conditional probability distributions Pr[B] for b
conditioned on both possible values for a:

Pr[B | A = true] = Pr[C]

Pr[B | A = false] = Pr[D]

Instead, to simplify the representation of probabilities and to enable
more straightforward analysis, we marginalize the condition a to
produce an unconditional distribution for b. Using marginalization,
we write the unconditional distribution Pr[B] as:

Pr[B] =
∑
a

Pr[B | A = a] Pr[A = a]

= Pr[B | A = true] Pr[A = true]

+ Pr[B | A = false] Pr[A = false]

= Pr[C] · Pr[A = true]

+ Pr[D] · (1− Pr[A = true])

This expression computes the distribution for b as a function
of the distributions for a, c, and d. Intuitively, the probabilistic
evaluation rewrites the condition to read b = a ∗ c + (1 − a) ∗ d.
This algebraic representation enables some optimizations described
in Section 5.1.

Loops and External Code Loops with probabilistic conditions
can, in general, run for an unbounded number of iterations. Repre-
senting unbounded execution would induce cycles in our graphical
model and violate the acyclic definition of a Bayesian network. For
example, consider a loop that accumulates samples and exits when
the sum reaches a threshold:

v = 0.0
while v < 10.0:

v += random.uniform(−0.5, 1.0)

If the random sample is negative in every iteration, then the loop will
never exit. The probability of this divergence is small but non-zero.

Prior work has dealt with probabilistic loops by restricting the
program to linear operators [33]. MAYHAP relaxes this assumption
by treating a loop as a black box that generates samples (i.e., the
loop may run for an unbounded but finite number of iterations),
similar to a known probability distribution such as random.uniform.
This representation avoids creating cycles. In particular, MAYHAP
represents a loop body with a summary node, where variables read
by the loop are edges into the node and variables written by the loop
are edges out of the node.

In practice, many loops in probabilistic programs have non-
probabilistic bounds. For example, we evaluated an image filter
(sobel) that loops over the pixel array and applies a probabilistic
convolution to each window. The nested loops resemble:
for x in 0..width:
for y in 0..height:

filter(image[x][y])

P ≡ S ; ; passert C

C ≡ E < E | E = E | C ∧ C | C ∨ C | ¬C
E ≡ E + E | E ∗ E | E ÷ E |R | V
S ≡ V := E | V ← D | S ; S | skip | if C S S |while C S

R ∈ R, V ∈ Variables, D ∈ Distributions

Figure 2. Syntax of PROBCORE.

While the computed pixel array contains probabilistic data, the
dimensions width and height are fixed for a particular image. MAY-
HAP extracts complete distributions from these common concrete-
bounded loops without black-box sampling.

MAYHAP uses a similar black-box mechanism when interfac-
ing with library code whose implementation is not available for
analysis—for example, when passing a probabilistic value to the
cos() function from the C standard library. This straightforward ap-
proach prevents statistical optimizations inside the library function
or loop body but lets MAYHAP analyze more programs.

Analyzing Loops with Probabilistic Path Pruning We propose
another way to analyze loops with probabilistic bounds by building
on the path pruning techniques used in traditional symbolic exe-
cution. Typically, path pruning works by proving that some paths
are infeasible. If the analysis determines that a path constraint is
unsatisfiable, it halts exploration of that path. Probabilistic evalua-
tion instead needs to discover when a given path is unlikely rather
than impossible, i.e., when the conditions that lead to following this
path at run time have a probability that falls below a threshold. We
propose tracking a path probability expression for each explored
path and periodically sampling these distributions to prune unlikely
paths. This extension handles general probabilistic control flow in
programs that are likely to terminate eventually. Intuitively, the more
iterations the loop executes, the less likely it is to execute another
iteration. Programs with a significant probability of running for-
ever before reaching a passert can still prevent the analysis from
terminating, but this behavior likely indicates a bug. We leave the
evaluation of this more precise analysis to future work.

4. Distribution Extraction Formalism
This section formalizes a simple probabilistic imperative language,
PROBCORE, and MAYHAP’s distribution extraction process. We de-
scribe PROBCORE’s syntax, a concrete semantics for nondetermin-
istic run-time execution, and a symbolic semantics for distribution
extraction. Executing a PROBCORE program under the symbolic
semantics produces a Bayesian network for a passert statement.
We prove this extracted distribution is equivalent to the original
program under the concrete semantics, demonstrating the soundness
of MAYHAP’s core analysis.

4.1 Core Language
PROBCORE is an imperative language with assignment, conditionals,
and loops. Programs use probabilistic behavior by sampling from
a distribution and storing the result, written v ← D. Without loss
of generality, a program is a sequence of statements followed by a
single passert, since we may verify a passert at any program point
by examining the program prefix leading up to the passert.

Figure 2 defines PROBCORE’s syntax for programs denoted P ,
which consist of conditionals C, expressions E, and statements S.
For example, we write the location obfuscator from earlier as:

locationX ← Longitude; locationY ← Latitude;
noiseX ← Gauss[0, 1]; noiseY ← Gauss[0, 1];
newX := locationX + noiseX; newY = locationY + noiseY;

dSquared := ((locationX − newX) ∗ (locationY − newY))
+ ((locationY − newY) ∗ (locationY − newY));;

passert dSquared < 100

We draw the Longitude and Latitude inputs from opaque distribu-
tions and noise from Gauss[0, 1]. The entirety of Gauss[0, 1] is an
opaque label; 0 and 1 are not expressions in our simple language.

4.2 Concrete Semantics
The concrete semantics for PROBCORE reflect a straightforward
execution in which each sampling statement V ← D draws a
new value. To represent distributions and sampling, we define
distributions as functions from a sufficiently large set of draws
S. The draws are similar to the seed of a pseudorandom number
generator: a sequence Σ of draws dictates the probabilistic behavior
of PROBCORE programs.

We define a large-step judgment (H, e) ⇓c v for expressions and
conditions and a small-step semantics (Σ, H, s) →c (Σ′, H ′, s′)
for statements. In the small-step semantics, the heap H consists
of the variable-value bindings (queried with H(v)) and Σ is the
sequence of draws (destructed with σ : Σ′). The result of executing
a program is a Boolean declaring whether or not the condition in the
passert was satisfied at the end of this particular execution.

The rules for most expressions and statements are standard. The
rules for addition and assignment are representative:

PLUS
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 + e2) ⇓c v1 + v2

ASSIGN
(H, e) ⇓c x

(Σ, H, v := e)→c (Σ, (v 7→ x) : H, skip)

The full semantics appear in this paper’s auxiliary material [31], but
we highlight the rule for sample statements here. The rule for the
sampling statement, V ← D, consumes a draw σ from the head of
the sequence Σ. It uses the draw to compute the sample, d(σ).

SAMPLE
Σ = σ : Σ′

(Σ, H, v ← d)→c (Σ′, (v 7→ d(σ)) : H, skip)

The result of an execution under the concrete semantics is the result
of the passert condition after evaluating the program body. We use
the standard definition of→∗c as the reflexive, transitive closure of
the small step judgment:

PASSERT
(Σ, H0, s)→∗c (Σ′, H ′, skip) (H ′, c) ⇓c b

(Σ, H0, s ; ; passert c) ⇓c b

4.3 Symbolic Semantics
While the concrete semantics above describe PROBCORE program
execution, the symbolic semantics in this section describe MAY-
HAP’s distribution extraction. Values in the symbolic semantics are
expression trees that represent Bayesian networks. The result of
a symbolic execution is the expression tree corresponding to the
passert condition, as opposed to a Boolean.

The language for expression trees includes conditions denoted
Co, real-valued expressions Eo, constants, and distributions:

Co ≡ Eo < Eo | Eo = Eo | Co ∧ Co | Co ∨ Co | ¬Co

Eo ≡ Eo + Eo | Eo ∗ Eo | Eo ÷ Eo |R | 〈D,Eo〉 | if Co Eo Eo

R ∈ R, D ∈ Distributions

Instead of the stream of draws Σ used in the concrete semantics,
the symbolic semantics tracks a stream offset and the distribution
D for every sample. Different branches of an if statement can

sample a different number of times, so the stream offset may
depend on a conditional; thus, the stream offset in 〈d, n〉 is an
expression in Eo and not a simple natural number. The symbolic
semantics does not evaluate distributions, so the draws themselves
are not required. Expression trees do not contain variables because
distribution extraction eliminates them.

The symbolic semantics again has big-step rules ⇓s for expres-
sions and conditions and small-step rules→s for statements. Instead
of real numbers, however, expressions evaluate to expression trees in
Eo and the heap H maps variables to expression trees. For example,
the rules for addition and assignment are:

PLUS
(H, e1) ⇓s {x1} (H, e2) ⇓s {x2}

(H, e1 + e2) ⇓s {x1 + x2}

ASSIGN
(H, e) ⇓s {x}

(n,H, v := e)→s (n, (v 7→ {x}) : H, skip)

The syntax {x} represents an expression in Eo, with the brackets
intended to suggest quotation or suspended evaluation.

The rule for samples produces an expression tree that captures
the distribution and the current stream offset:

SAMPLE

(n,H, v ← d)→s (n+ 1, (v 7→ {〈d, n〉}) : H, skip)

Each sample statement increments the stream offset, uniquely
identifying a sample expression tree. This enumeration is crucial.
For example, enumerating samples distinguishes the statement
x ← d; y := x + x from a similar program using two samples:
x1 ← d; x2 ← d; y := x1 + x2. This approach to numbering
samples resembles naming in Wingate et al. [36].

The symbolic semantics must consider both sides of an if
statement. For each if statement, we need to merge updates from
both branches and form conditional expression trees for conflicting
updates. We introduce a function merge, which takes two heaps
resulting from two branches of an if along with the condition and
produces a new combined heap. Each variable that does not match
across the two input heaps becomes an {if c a b} expression tree in
the output heap. The definition of merge is straightforward and its
post-conditions are:

Ht(v) = a Hf (v) = b a 6= b

merge(Ht, Hf , {x})(v) = {if x a b}

Ht(v) = a Hf (v) = b a = b

merge(Ht, Hf , {x})(v) = a

Using the merge function, we write the rule for if statements:
IF

(H, c) ⇓s {x}
(H, bt)→∗s (Ht, skip) (H, bf)→∗s (Hf , skip)

(n,H, if c bt bf)→s (n, merge(Ht, Hf , {x}), skip)

Our symbolic semantics assumes terminating while loops. Sym-
bolic execution of potentially-unbounded loops is a well-known
problem and, accordingly, our formalism only handles loops with
non-probabilistic conditions. A simple but insufficient rule for while
is:

WHILE

(n,H,while c s)→ (n,H, if c (while c s))

This rule generates infinite expression trees and prevents the analysis
from terminating. We would like our analysis to exit a loop if
it can prove that the loop condition is false—specifically, when
the condition does not depend on any probability distributions. To

capture this property, we add the following rule:
WHILE0
(H, c) ⇓s {x} ∀Σ, (Σ, {x}) ⇓o false

(n,H,while c s)→ (n,H, skip)

Here, the judgment (Σ, {x}) ⇓o v denotes evaluation of the
expression tree {x} under the draw sequence Σ. This rule applies
when MAYHAP proves that an expression tree evaluates to false
independent of the random draws. In our implementation, MAYHAP
proves simple cases, when an expression tree contains no samples,
and uses black-box sampling otherwise. Section 3 describes a more
precise analysis that bounds path probabilities, but we leave its
formalization to future work.

We can now define the symbolic evaluation of programs:
PASSERT
(0, H0, s)→∗s (n,H ′, skip) (H ′, c) ⇓s {x}

(H0, s ; ; passert c) ⇓s {x}
To evaluate the resulting expression tree requires a sequence of
draws Σ but no heap. The full set of rules are in the auxiliary
material [31]; the rules for addition and sampling are representative:

PLUS
(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2

(Σ, e1 + e2) ⇓o v1 + v2

SAMPLE

(Σ, 〈d, k〉) ⇓o d(σk)

The purpose of this formalism is to show that using MAYHAP’s
distribution extraction and sampling the result is equivalent to
sampling the original program. We state this as a theorem for finite
expression trees.

Theorem 1. Let (0, H, p) ⇓s {x}, where x is a finite program.
Then (Σ, H0, p) ⇓c b if and only if (Σ, x) ⇓o b.

In other words, for any draw sequence Σ, a program and its
extracted distribution evaluate to the same output. Sampling the
two distributions—executing them many times with different values
for Σ—yields the same probability. Intuitively, the theorem is true
because the symbolic semantics correspond to lazy evaluation and
the output semantics ⇓e correspond to forcing of the resulting
symbolic expressions. Formally, the proof of this theorem proceeds
by a structural induction. Full details are in this paper’s auxiliary
material [31].

Future work can prove optimizations correct using the expression
tree representation. Since we have proven equivalence with the
original program representation, such correctness proofs can avoid
dealing with variables and control flow, which are eliminated during
distribution extraction.

5. The Rest of Probabilistic Evaluation:
Optimization and Evaluation

To verify a conditional in a passert, probabilistic evaluation ex-
tracts a symbolic representation of the conditional, optimizes this
representation, and evaluates the conditional. The previous sections
described the distribution extraction step and this section describes
our optimization and evaluation steps.

Optimizations simplify the Bayesian network by applying known
statistical properties to make verification more efficient. In restricted
cases, these optimizations simplify the Bayesian network to a closed-
form Bernoulli representing the condition in the passert and we thus
evaluate the passert exactly. In the general case, we use sampling
and hypothesis testing to verify it statistically.

5.1 Optimizing Bayesian Networks
This section enumerates the statistical properties that MAYHAP
applies to simplify distributions.

Closed-Form Operations on Known Distributions MAYHAP ex-
ploits closed-form algebraic operations on the common Gaus-
sian, uniform, and Bernoulli distributions. For example, if X ∼
N(µx, σ

2
x) and Y ∼ N(µy, σ

2
y) then X + Y ∼ N(µx + µy, σ

2
x +

σ2
y). Likewise, if X ∼ N(µx, σ

2
x) then X + 3 ∼ N(µx + 3, σ2

x).
MAYHAP optimizes closed form addition of Gaussians and scalar
shifts or scaling of Gaussians, uniforms, and Bernoullis. We note
there are many distributions and operations which we do not yet
encode (e.g., a sum of uniform distributions is an Irwin–Hall dis-
tribution). Expanding the framework to capture a larger catalog of
statistical properties is left to future work.

Inequalities Over Known Distributions MAYHAP uses the cumu-
lative distribution function (CDF) for known distributions to simplify
inequalities. The CDF for a real-valued random variable X is the
function FX such that FX(x) = Pr[X < x], which provides a
closed-form mechanism to evaluate whether a distribution is less
than a constant. For example, if X ∼ U(0, 1) and the program-
mer writes the inequality X < 0.9, we reduce the inequality to a
Bernoulli because FUniform(0.9) = Pr[X < 0.9] = 0.9.

Central Limit Theorem The sum of a large number of indepen-
dent random variables with finite variance tends to a Gaussian.
MAYHAP uses the Central Limit Theorem to reduce loops which
compute a reduction over random variables into a closed-form Gaus-
sian which samples from the body of the loop. This transformation
resembles the mean pattern exploited by Misailovic et al. [23]. It
is particularly effective on the sobel application used in our evalua-
tion, which averages the errors for each pixel in an array. MAYHAP
reduces this accumulation to a single Gaussian.

Expectation Propagation The prior optimizations all approxi-
mately preserve a program’s semantics: the transformed Bayesian
network is approximately equivalent to the original Bayesian net-
work. However, using statistical laws that apply to inequalities over
random variables, it suffices to instead compute only the expected
value and variance of a distribution. MAYHAP uses this insight to
further simplify Bayesian networks by exploiting (1) the linearity of
expected value and (2) statistical properties of inequality.

First, MAYHAP uses the linearity of expectation to produce
simpler distributions with the same expected value as the original
distribution. This is an important optimization because verifying a
passert amounts to calculating the expected value of its underlying
Bernoulli distribution. For example, the Bayesian network for
D + D, which computes two independent samples from D, is
not equivalent to the Bayesian network induced from 2 · D. So
an optimization resembling traditional strength reduction does not
compute the correct distribution. However, these two Bayesian
networks have the same expected value. Specifically, expectation
has the property E[A+B] = E[A] + E[B] for all distributions A
andB. When only the expected value is needed, MAYHAP optimizes
D + D to 2 · D. A similar property holds for variance when the
random variables are uncorrelated.

The reasoning extends to comparisons via Chebyshev’s inequal-
ity. Given the expectation µ and variance σ2 of a random variable,
Chebyshev’s inequality gives a bound on the probability that a sam-
ple of a random variable deviates by a given number of standard
deviations from its expected value. For example, for a program
with passert x >= 5, distribution extraction produces a Bayesian
network of the form X ≥ 5. Using the linearity of expectation, say
we statically compute that σ = 3 and µ = 1 for X . Chebyshev’s
inequality states:

Pr[|X − µ| ≥ kσ] ≤ 1

k2

We want to bound the probability that x ≥ 5. Since we have µ and
σ, we can rewrite this condition as:

x ≥ µ+ 2σ

x− µ ≥ 2σ

So the passert condition states that x deviates from its mean by at
least 2 standard deviations. Using k = 2 in Chebyshev’s inequality
gives the bound:

Pr[X ≥ 5] ≤ 1

22

We now have a bound on the probability (and hence the expectation)
of the inequality x >= 5.

5.2 Verification
This section describes how we use a simplified Bayesian network to
verify passerts using (1) exact (direct) evaluation or (2) sampling
and statistical hypothesis testing.

5.2.1 Direct Evaluation
In some cases, simplifications on the probability distribution are suf-
ficient to fully evaluate a passert. For example, MAYHAP simplifies
the sobel application in our evaluation to produce a distribution of
the form

∑
nD < c. The Central Limit Theorem optimization re-

places the sum with a Gaussian distribution, which then enables the
inequality computation to produce a simple Bernoulli distribution
with a known probability. When dealing with a single Bernoulli, no
sampling is necessary. MAYHAP reports the probability from the
simplified distribution.

5.2.2 Statistical Verification via Sampling
In the general case, optimizations do not completely collapse a
probability distribution. Instead, MAYHAP samples the resulting
distribution to estimate its probability.

MAYHAP uses acceptance sampling to bound any error in its
verification [37]. All passert statements are logical properties over
random variables and therefore Bernoulli random variables. Assume
Xi ∼ Bernoulli(p) is an independent sample of a passert where
p is the true probability of the passert, the value MAYHAP is
estimating. Let X = X1 + X2 + · · · + Xn be the sum of n
independent samples of the passert and let the empirical expected
value, E[X] = X = X/n, be an estimate of p.1 To bound error in
its estimate, MAYHAP computes Pr[X ∈ [p− ε, p+ ε]] ≥ 1−α. In
words, it tests whether there is at most an α chance that MAYHAP’s
estimate of p is wrong. Otherwise, MAYHAP’s estimate of p is
within ε of the truth. A programmer can control the likelihood of
a good estimate—or the confidence—by decreasing α. Likewise, a
programmer can control the accuracy of the estimate by decreasing
ε. Because MAYHAP uses sampling, it provides statistical guarantees
by testing whether its confidence interval for X includes p± ε. In
concert, these parameters let a programmer trade off false-positives
and false-negatives with sample size.

In particular, given α and ε, MAYHAP uses the two-sided
Chernoff bound to compute n, the minimum number of samples
required to satisfy a given level of confidence and accuracy [9]. The
two-sided Chernoff bound is an upper-bound on the probability that
an estimate, X , deviates from its true mean, p:

Pr
[
|X − p| ≥ εp

]
≤ 2e−

ε2

2+ε
np

The left-hand side of the equality is α by definition and the worst
case (the most samples required) occurs when p = 1. Solving for n
yields:

n ≥ 2 + ε

ε2
ln

2

α

1 This section uses X instead of E[X] for notational convenience.

0 0.5 1

X0

X1

X2

●

●

●

Estimate of p

Figure 3. Hypothesis tests for three different passert statements.

For example, at a confidence 95% and an accuracy of 3%:

n ≥ 2 + 0.03

0.032
ln

2

0.05

meaning that MAYHAP needs to take at least n = 8321 samples.
Note that this bound is an over-approximation of the true number of
samples required for a given level of confidence and accuracy—it
only relies on α and ε and ignores how good an estimate X is of p.
An extension, which we leave to future work, is to use Wald’s se-
quential sampling to iteratively compute Pr

[
X ∈ [p− ε, p+ ε]

]
≥

1−α after each sample [35]. Because this approach uses the current
estimate of X relative to p, it is often able to stop sampling well
before reaching our upper bound [38].

Statistical Guarantees The prior section describes how MAYHAP
turns a passert statement into a hypothesis test in order to bound
error in its estimate. If the property is sufficiently likely to hold,
MAYHAP verifies the passert as true. Likewise, if the passert is
verified as false, the programmer needs to iterate, either by changing
the program to meet the desired specification or by correctly
expressing the probabilistic property of the program.

For example, suppose MAYHAP estimates Pr[Xi ∈ [p− ε, p+
ε]] ≥ 1− α for three distinct, hypothetical passert statements (i.e.,
i ∈ [0, 1, 2]). We pictorially show these three estimates in Figure 3.
Each estimate shows Xi as a point and lines depict the confidence
region of that estimate. Because the confidence region of X0 is
below 0.5, MAYHAP verifies this assertion as false (i.e., the passert
rarely holds). Likewise, because X2 − ε ≥ 0.5, MAYHAP verifies
this assertion as true (i.e., the passert often holds).

However, at this confidence level and accuracy, MAYHAP is
unable to verify X1 as its confidence region and thus estimate
overlaps with 0.5 ± ε. Thus, MAYHAP labels this assertion as
unverifiable. To verify this assertion as true or false, the programmer
must increase either the confidence or accuracy (or both). In this
situation, MAYHAP initiates a dialog with the programmer for
guidance on how to proceed.

6. Implementation
We implemented MAYHAP using the LLVM compiler infrastruc-
ture [18]. MAYHAP compiles source programs written in C and C++
to the LLVM intermediate language, probabilistically evaluates the
resulting bitcode programs by extracting probability distributions,
optimizes the resulting distributions, and then evaluates the passert
distributions either exactly or with sampling.

Language and Interface To use MAYHAP, the programmer adds
a passert to her program and annotates certain functions as proba-
bility distributions or uses a provided library of common distribu-
tions. Both constructs are implemented as C macros provided by
a passert.h header: PASSERT(e) marks an expression that MAY-

HAP will evaluate and DISTRIBUTION marks functions that should
be treated as a symbolic probability distribution.

The programmer invokes MAYHAP and provides the source files
and command-line arguments for the execution along with optional
α and ε values that control confidence and accuracy. MAYHAP
reports a confidence interval on the output probability and the results
of the hypothesis test (true, false, or unverifiable).

Distribution Extraction The distribution extraction analysis is
implemented as an instrumented interpreter of LLVM bitcode
programs. MAYHAP maintains a symbolic heap and stack. Each
symbolic value is a pointer into an object graph representing a
Bayesian network. Nodes in the graph correspond to the expression
tree language of our formalism: they can be samples, arithmetic
operations, comparisons, constants, or conditionals.

The implementation conserves space by coalescing identical
expression trees. For example, consider the values e1 = {s1 + s2}
and e2 = {(s1 + s2) + s3} consisting of sums of samples. In a
naive implementation of probabilistic evaluation, these would be
independent trees that refer to a global set of samples at their leaves.
Instead, MAYHAP implements e2 as a sum node with two children,
one of which is the node for e1. In this sense, MAYHAP maintains
a global Bayesian network for the execution in which values are
pointers into the network.

Nodes in the Bayesian network can become unreachable when
heap values are overwritten and as stack frames are popped. MAY-
HAP reclaims memory in these cases by reference-counting all nodes
in the Bayesian network. The root set consists of stack and heap
values. Since Bayesian networks are acyclic, reference counting is
sufficient.

When operating on non-probabilistic values (e.g., when evalu-
ating 1 + 2), MAYHAP avoids constructing nodes in the Bayesian
network and instead maintains a concrete heap and stack. We use
the bitcode interpreter that ships with LLVM [20] to perform the
concrete operations. This process can be viewed as an optimization
on Bayesian networks for operations over point-mass distributions.

Conditionals Conditionals appear as branches in LLVM IR. MAY-
HAP analyzes conditionals by symbolically executing both sides
of the branch and merging the resulting heap updates. When the
analysis encounters a branch, it finds the immediate post-dominator
(ipdom) in the control-flow graph—intuitively, the join point—and
begins by taking the branch. In this phase, it buffers all heap writes
in a hash table. Then, when the ipdom is reached, control returns to
the branch and follows the not-taken direction. Writes in this phase
are not buffered. When the ipdom is reached the second time, the
buffered writes are merged into the heap using conditional nodes.
MAYHAP supports nested conditions using a scoped hash table.

Probabilistic Pointers MAYHAP adds limited support for sym-
bolic pointers for probabilistic array indexing. Programs can load
and store from arr[i] where i is probabilistic, which MAYHAP han-
dles with a probabilistic extension of the theory of arrays. Pointers
and array indices must be finite discrete distributions so we can
enumerate the set of locations to which a pointer p might refer,
i.e., those addresses where p’s distribution has non-zero probability.
Loading from a symbolic pointer p yields a distribution that reflects
the set of values at each such location, while storing to p updates
each location to compose its old and new value under a conditional
distribution.

Bayesian Network Optimizations MAYHAP performs statistical
optimizations as transformations on the Bayesian network represen-
tation as outlined in Section 5.1. The optimizations we implemented
fall into three broad categories, which we characterize empirically
in the next section.

The first category consists of arithmetic identities, including
binary operators on constants, comparisons with extremes (e.g.,

Time (seconds) Optimization Counts

Program Description and passert Baseline Analysis Sampling Arith Dist Op CLT

gpswalk Location sensing and velocity calculation
passert: Velocity is within normal walking speed

537.0 1.6 59.0 1914 0 1

salary Calculate average of concrete obfuscated salaries
passert: Obfuscated mean is close to true mean

150.0 2.5 < 0.1 3 1 1

salary-abs salary with abstract salaries drawn from a distribution
passert: As above

87.0 20.0 0.2 5003 1 1

kmeans Approximate clustering
passert: Total distance is within threshold

1.8 0.3 < 0.1 2149 300 0

sobel Approximate image filter
passert: Average pixel difference is small

37.0 2.8 < 0.1 7880 0 1

hotspot Approximate CMOS thermal simulation
passert: Temperature error is low

422.0 4.7 28.0 1 24064 1

inversek2j Approximate robotics control
passert: Computed angles are close to inputs

4.8 < 0.1 < 0.1 901 200 1

Table 1. Programs used in the evaluation. The passert for each application describes a probabilistic correctness property. The time columns
indicate the time taken by the baseline stress-testing strategy, MAYHAP’s analysis, and MAYHAP’s sampling step. The optimization counts
reflect the three categories of optimizations applied by MAYHAP: arithmetic identities (Arith), operations on known closed-form distributions
(Dist Op), and the Central Limit Theorem optimization (CLT).

C’s FLT MAX), and addition or multiplication with a constant zero.
These optimizations do not exploit the probabilistic properties of
the Bayesian network but compose with more sophisticated opti-
mizations and enhance the tool’s partial-evaluation effect. The next
category consists of operations on known probability distributions,
including the addition of two normal distributions, addition or mul-
tiplication with a scalar, comparison between distributions with
disjoint support, comparison between two uniform distributions, and
comparison with a scalar (i.e., CDF queries). These optimizations
exploit our probabilistic view of the program to apply well-known
statistical properties of common distributions. The final optimiza-
tion we evaluate is the Central Limit Theorem, which collapses a
summation of distributions into a single normal.

Some optimizations, such as basic arithmetic identities, are per-
formed opportunistically on-the-fly during analysis to reduce MAY-
HAP’s memory footprint. Others, such as the Central Limit Theorem
transformation, operate only on the complete graph. Internally, the
on-line optimizer also collapses deep trees of commutative arith-
metic operators into “fat” sum and product nodes with many chil-
dren. This rewriting helps the optimizer identify constants that can
be coalesced and inverse nodes that cancel each other out.

Verification via Direct Evaluation or Sampling As described in
Section 5.2, the prior optimizations often produce Bayesian net-
works that MAYHAP can directly evaluate. In other cases, MAY-
HAP must sample the optimized Bayesian network, in which case
MAYHAP generates LLVM bitcode that samples from the Bayesian
network. The tool then compiles the generated program to machine
code and executes it repeatedly to perform statistical verification.

7. Evaluation
This section describes our experience expressing passerts in a
variety of probabilistic programs and using MAYHAP to verify them.

7.1 Benchmarks
We evaluate passerts in five probabilistic programs from three
domains: sensors, differential privacy, and approximate computing.
Table 1 summarizes the set of programs and the passert statements
we added to each.

Programs that compute with noisy sensor data, such as GPS,
accelerometers, and video game motion sensors, behave probabilis-
tically [3, 26]. To demonstrate our approach on this class of ap-
plications, we implemented a common mobile-phone application:
estimating walking speed [3]. gpswalk processes a series of noisy
coordinate readings from a mobile phone and computes the walk-
ing speed after each reading. The GPS error follows a Rayleigh
distribution and is determined by the sensor’s uncertainty estimate.
As Bornholt et al. [3] note, this kind of sensing workload can pro-
duce wild results when an individual location reading is wrong. The
passert checks that the computed velocity is below a maximum
walking speed.

Differential privacy obfuscates personal data at the cost of
accuracy. To study how MAYHAP works on this class of application,
we implemented two benchmarks. salary reads a list of 5000 salaries
of Washington state public employees and computes their average.2

The program obfuscates each salary by adding a normal distribution
(σ2 = 3000) to simulate a situation where each employee is
unwilling to divulge their exact salary. The passert checks whether
the obfuscated average is within 25 dollars of the true average. We
also evaluate a version of the program, salary-abs, where the input
salaries are drawn from a uniform distribution instead of read from
a file. This variant highlights a scenario where specific inputs are
unavailable and we instead want to check a passert given a input
probability distribution.

The final class of applications is drawn from prior work on
approximate computing: kmeans, sobel, hotspot, and inversek2j
represent programs running on approximate hardware [7, 12, 25].
sobel implements the Sobel filter, an image convolution used in edge
detection. kmeans is a clustering algorithm. hotspot simulates ther-
mal activity on a microprocessor. inversek2j uses inverse kinematics
to compute a robotic arm’s joint angles given a target position. Both
kmeans and hotspot are drawn from the Rodinia 2.4 benchmark
suite [8] while sobel and inversek2j are approximate applications
from Esmaeilzadeh et al. [11]. In all cases, we add random calls that
simulate approximate arithmetic operations on inner computations.
The passert bounds the error of the program’s overall output. For
most benchmarks, the error is measured with respect to the output

2 Source: http://fiscal.wa.gov/

http://fiscal.wa.gov/

0.0

0.2

0.4

0.6

0.8

1.0

1.2

no
rm

al
iz

ed
 r

un
ni

ng
 ti

m
e

B N O B N O B N O B N O B N O B N O B N O

gpswalk salary salary−abs kmeans sobel hotspot inversek2j

analyze run

Figure 4. MAYHAP reduces testing time. We normalize to B: the
baseline stress-testing technique with 74147 samples. N is MAY-
HAP without optimizations and O is MAYHAP with optimizations,
divided into analysis and execution time. Times are averaged over 5
executions. We elide error bars as they are very small.

of a precise version of the computation, but in inversek2j, we use
the corresponding forward kinematics algorithm to check the result.

For both approximate and data privacy programs, we compare a
precise version of a function’s output with a perturbed version. In the
sensing workload, gpswalk, the data is intrinsically noisy, so there is
no “ground truth” to compare against. For the purposes of this eval-
uation, we manually extended the programs to compute both results.
A simple “desugaring” step could help perform this transformation
automatically by duplicating the code, remove randomization from
one copy, and return both results.

7.2 Performance
To evaluate MAYHAP’s performance benefits, we compare its total
running time against using a simple stress testing baseline. The
baseline checker adds a for loop around the entire probabilistic
program and counts the number of times the passert expression is
true. The time taken for a MAYHAP verification includes the time to
extract and optimize a probability distribution and to repeatedly
sample the result. We test all programs with a confidence of
α = 0.05 and an accuracy of ε = 0.01, which leads to 74147
samples. (Recall from Section 5.2.2 that the sample count depends
only on the α and ε parameters and so we sample all programs the
same number of times.) Table 1 lists the absolute running times and
Figure 4 visualizes the normalized performance. The timings are
averaged over 5 executions collected on a dual-core 2 GHz Intel Core
2 Duo with 4 GB of memory. On average, MAYHAP verification
takes 4.2% as long as the strawman checker, for a speedup of 24×.

For most benchmarks, MAYHAP’s time is almost exclusively
spent on distribution extraction and optimization, which means
optimizations are effective at producing a very small distribution
that can be sampled much more efficiently than the original program.
The exception is gpswalk, where the analysis executed in 1.6
seconds but sampling the resulting distribution took over a minute.
That program’s probability distribution consists of thousands of
independent Rayleigh distributions, each with a different parameter
as reported by the GPS sensor, so it cannot take advantage of
optimizations that exploit many samples from identical distributions.

Effect of Optimizations We evaluated a variant of MAYHAP with
optimizations disabled. This version simply performs distribution
extraction and samples the resulting distribution. The middle bars
labeled N in Figure 4 show the normalized running time of this
non-optimizing MAYHAP variant.

The effectiveness of the optimizations varies among the bench-
marks. On one extreme, optimizations reduce the execution time for
salary from 81 seconds to a fraction of a second. The unoptimized
Bayesian network for salary-abs is slightly less efficient than the
original program. The Central Limit Theorem optimization applies
to both and greatly reduces the amount of sampled computation. On
the other hand, simply evaluating the extracted distribution deliv-
ers a benefit for gpswalk, reducing 537.0 to 62 seconds and then
optimizations further reduce this time to just 59.0 seconds. In a
more extreme case, enabling optimizations adds to the analysis time
for hotspot but fails to reduce its sampling time. These programs
benefit from eliminating the deterministic computations involved in
timestamp parsing and distance calculation.

Confidence–Performance Trade-off Via the confidence and ac-
curacy parameters α and ε, MAYHAP provides rough estimates
quickly or more accurate evaluations using more samples. To evalu-
ate this trade-off, we lowered the parameter settings, α = 0.10 and
ε = 0.05, which leads to 2457 samples (about 3% compared to the
more accurate settings above). Even accounting for analysis time,
MAYHAP yields a harmonic mean 2.3× speedup over the baseline
in this relaxed configuration.

8. Related Work
Researchers have proposed several languages and tools to help
developers better reason about and describe real-world probabilistic
data, computation, and models [2, 3, 6, 13, 14, 22, 27, 28, 36].
This section compares prior efforts with our work. At a high level,
our approach lets programmers use traditional language features
(e.g., calls to C’s rand()) to express probabilistic semantics and a
simple construct to encode probabilistic correctness properties.

Semantics and Verification of Probabilistic Programs The prob-
ability monad captures a variable’s discrete probability distribu-
tion in functional programs [28]. Similarly, Uncertain〈T 〉 uses
the monadic technique of building up a computation tree and then
querying it and adds sampling and hypothesis testing to evaluate
conditionals [3]. We build on this work by extending it to the prob-
lem of verification, by applying symbolic execution to summarize
many program paths, and by adding the concept of optimization via
statistical properties.

Sankaranarayanan et al. [33] check assertions in programs that
produce probabilistic models using symbolic execution and polyhe-
dral volume estimation. The estimateProbability construct queries
the probability of an outcome, which resembles passert’s specifica-
tion of the correct outcome. That work’s polyhedral approach avoids
sampling but limits the technique in important ways: it works only
with distributions for which a cumulative distribution function is
available and programs that use only linear arithmetic over these
distributions. Our distribution extraction approach uses sampling to
generalize to a broader class of probabilistic programs.

Statistical model checking bounds verification error on problems
where state-space explosion makes exact numerical verification
intractable (see Legay and Delahaye’s survey [19]). Model check-
ing [10] provides formal guarantees, usually expressed in temporal
logic for finite state based models, often of hardware. For exam-
ple, the PRISM tool performs statistical verification of real-time
systems [17]. Our work borrows the idea of hypothesis testing to
bound error in verification [37, 38] and relies on efficient sampling
to avoid the need for exhaustive state space exploration.

Kozen [16] recognizes the need for semantics for programs that
use randomness during execution. That work provides two semantics
for a simple probabilistic language—one that models sampling and
one that computes on probability distributions directly—and proves
them equivalent. Similarly, we prove equivalence between sampling
an original program and sampling its extracted Bayesian network

representation. Kozen predates the coinage and popularization of
Bayesian networks, so the semantics in that work are very different
from the graphical-model approach presented here. Our Bayesian-
network representation enables statistical optimizations that make
passert verification efficient.

Probabilistic Programming The field of probabilistic program-
ming seeks to enable efficient construction and querying of statistical
models [2, 6, 13–15, 27, 36]. Experts write generative models as
programs and then inference algorithms answer questions about
the model’s parameters. The canonical probabilistic programming
example answers, “given that the grass is wet, was it due to rain or
the sprinkler?”

In contrast, we focus on traditional computation of outputs based
on user-specified inputs and do not incorporate conditioning (as in
Infer.NET’s constraints [22] and in Church’s query evidence [13]).
Our analysis instead supports general, potentially unanalyzable code
that produces arbitrary probability distributions. These differences
mean that our techniques apply to “probabilistic programming
languages” in the more traditional sense as defined by Kozen [16]:
typical imperative languages that include random calls.

Data Obfuscation for Privacy Recent work has focused on prov-
ing that obfuscated queries effectively obscure private data via differ-
ential privacy [1, 21, 24, 29, 30]. Probabilistic assertions, in contrast,
do not check privacy. They instead solve the complementary (and
less well-studied) problem of verifying the utility of private compu-
tations.

Approximate Computing Approximate computing techniques ex-
ploit the inherent resilience of many applications to execute them
more efficiently at the cost of occasional errors [5, 11, 32, 34]. A
central challenge in approximate computing is analyzing programs
to determine the impact of approximation on a computation’s overall
accuracy. Previous efforts have used static analysis to prove statis-
tical bounds on the difference between an original program and a
version that elides some operations [23, 39]. Rather than analyzing
probability distributions introduced by the program, this technique
assumes that inputs are selected randomly and analyzes specific
program patterns that involve them. In contrast, Rely [5] checks the
probability that nondeterministic operations with a binary chance of
failure compound to corrupt a computation’s output. Carbin et al. [4]
provide a system for proving properties that must hold even when
errors occur. Our technique improves on these prior approaches
by reasoning about the effects of full probability distributions on
approximate programs.

Other Forms of Randomness Randomized algorithms solve com-
putational problems probabilistically that are intractable to solve
deterministically. Analyzing a randomized algorithm amounts to
proving that its output satisfies a predicate with high probability,
which resembles the guarantees given by checking probabilistic
assertions, but is beyond our scope.

9. Conclusion
Programs use and compute with probabilistic data—be it big data or
sensors or machine learning. Probabilistic programs are ubiquitous,
yet we lack tools and analyses to help programmers understand their
meaning. This paper embraces randomness and demonstrates how
to represent arbitrary programs as a Bayesian network and thus give
them a well-defined, probabilistic semantics. Programmers then ex-
press properties of probabilistic variables in a passert. We introduce
probabilistic evaluation which extracts distributions from programs,
optimizes them with algebras over probability distributions, and
then verifies them directly or with hypothesis testing. Case studies
on three application domains show that probabilistic evaluation can

verify important correctness properties and that our approach is
orders of magnitude more efficient than stress testing.

By exposing approximate quality conditions, we create a formal-
ism for principled but approximate transformations. Akin to the way
that dataflow formalism created a rigorous and fertile foundation for
traditional compiler optimization of deterministic programs, this or
some other probabilistic formalism should prove fertile for compiler
optimization of probabilistic programs.

Acknowledgments
We would like to thank our anonymous reviewers for their invaluable
comments. Our thanks also to Tom Bergan, Colin Gordon, and James
Bornholt for feedback on earlier versions of this paper. This work
was supported in part by C-FAR, one of six centers of STARnet,
a Semiconductor Research Corporation program sponsored by
MARCO and DARPA. It was also supported by the Qualcomm
Innovation Fellowship and the Google PhD Fellowship.

References
[1] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella Béguelin. Probabilistic

relational reasoning for differential privacy. In POPL, 2012.
[2] S. Bhat, J. Borgström, A. D. Gordon, and C. Russo. Deriving probability

density functions from probabilistic functional programs. In TACAS.
Springer, 2013.

[3] J. Bornholt, T. Mytkowicz, and K. S. McKinley. Uncertain<T>: A
first-order type for uncertain data. In ASPLOS, 2014.

[4] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Proving accept-
ability properties of relaxed nondeterministic approximate programs.
In PLDI, 2012.

[5] M. Carbin, S. Misailovic, and M. Rinard. Verifying quantitative
reliability of programs that execute on unreliable hardware. In OOPSLA,
2013.

[6] A. T. Chaganty, A. V. Nori, and S. K. Rajamani. Efficiently sampling
probabilistic programs via program analysis. In AISTATS, 2013.

[7] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,
K. V. Palem, and B. Seshasayee. Ultra-efficient (embedded) SOC
architectures based on probabilistic CMOS (PCMOS) technology. In
DATE, 2006.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In IISWC, 2009.

[9] H. Chernoff. A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations. The Annals of Mathematical
Statistics, 23(4):493–507, 1952.

[10] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Workshop on
Logic of Programs, pages 52–71, 1982.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural
acceleration for general-purpose approximate programs. In MICRO,
2012.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. In ASPLOS, 2012.

[13] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: A language for generative models. In UAI, 2008.

[14] O. Kiselyov and C.-C. Shan. Embedded probabilistic programming. In
Working Conference on Domain-Specific Languages, 2009.

[15] D. Koller, D. McAllester, and A. Pfeffer. Effective Bayesian inference
for stochastic programs. In AAAI, 1997.

[16] D. Kozen. Semantics of probabilistic programs. In Symposium on
Foundations of Computer Science, pages 101–114, Oct 1979.

[17] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. CAV, pages 585–591, 2011.

[18] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. In CGO, 2004.

[19] A. Legay and B. Delahaye. Statistical model checking: A brief overview.
Quantitative Models: Expressiveness and Analysis, 2010.

[20] LLVM Project. LLVM interpreter, 2013. http://llvm.org/docs/
doxygen/html/classllvm_1_1Interpreter.html.

[21] F. D. McSherry. Privacy integrated queries: An extensible platform for
privacy-preserving data analysis. In SIGMOD, 2009.

[22] T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer.NET 2.5, 2012. Mi-
crosoft Research Cambridge. http://research.microsoft.com/
infernet.

[23] S. Misailovic, D. M. Roy, and M. C. Rinard. Probabilistically accurate
program transformations. In SAS, 2011.

[24] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. GUPT: Privacy
preserving data analysis made easy. In SIGMOD, 2012.

[25] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones. Scalable stochastic
processors. In DATE, 2010.

[26] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based
upon sampling functions. In POPL, 2005.

[27] A. Pfeffer. A general importance sampling algorithm for probabilistic
programs. Technical Report TR-12-07, Harvard University, 2007.
ftp://ftp.deas.harvard.edu/techreports/tr-12-07.pdf.

[28] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, 2002.

[29] J. Reed and B. C. Pierce. Distance makes the types grow stronger: A
calculus for differential privacy. In ICFP, 2010.

[30] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat:
Security and privacy for MapReduce. In NSDI, 2010.

[31] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Gross-
man, and L. Ceze. Probabilistic assertions: Extended semantics and
proof. ACM Digital Library auxiliary materials accompanying this
paper. http://dx.doi.org/10.1145/2594291.2594294.

[32] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general
low-power computation. In PLDI, 2011.

[33] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis
for probabilistic programs: Inferring whole program properties from
finitely many paths. In PLDI, 2013.

[34] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard.
Managing performance vs. accuracy trade-offs with loop perforation.
In FSE, 2011.

[35] A. Wald. Sequential tests of statistical hypotheses. The Annals of
Mathematical Statistics, 16(2):117–186, 1945.

[36] D. Wingate, A. Stuhlmüller, and N. D. Goodman. Lightweight im-
plementations of probabilistic programming languages via transforma-
tional compilation. In Artificial Intelligence and Statistics, 2011.

[37] H. Younes. Error control for probabilistic model checking. Verification,
Model Checking, and Abstract Interpretation, pages 142–156, 2006.

[38] H. L. Younes and R. G. Simmons. Statistical probabilistic model
checking with a focus on time-bounded properties. Information and
Computation, 204(9):1368 – 1409, 2006.

[39] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard. Randomized
accuracy-aware program transformations for efficient approximate
computations. In POPL, 2012.

http://llvm.org/docs/doxygen/html/classllvm_1_1Interpreter.html
http://llvm.org/docs/doxygen/html/classllvm_1_1Interpreter.html
http://research.microsoft.com/infernet
http://research.microsoft.com/infernet
ftp://ftp.deas.harvard.edu/techreports/tr-12-07.pdf
http://dx.doi.org/10.1145/2594291.2594294

	Introduction
	Programming Model
	Distribution Extraction
	Distribution Extraction Formalism
	Core Language
	Concrete Semantics
	Symbolic Semantics

	The Rest of Probabilistic Evaluation: Optimization and Evaluation
	Optimizing Bayesian Networks
	Verification
	Direct Evaluation
	Statistical Verification via Sampling

	Implementation
	Evaluation
	Benchmarks
	Performance

	Related Work
	Conclusion

