
A Demonstration of Cascadia Through a Digital Diary
Application

Nodira Khoussainova, Evan Welbourne, Magdalena Balazinska, Gaetano Borriello,
Garrett Cole, Julie Letchner, Yang Li, Christopher Ré, Dan Suciu, Jordan Walke

Department of Computer Science and Engineering, University of Washington
Seattle, WA, USA

nodira, evan, magda, gaetano, gbc3, letchner, yangli, chrisre, suciu,
jwalke@cs.washington.edu

ABSTRACT
The Cascadia system provides RFID-based pervasive computing
applications with an infrastructure for specifying, extracting and
managing meaningful high-level events from raw RFID data. Cas-
cadia allows users to specify events of interest using a graphical
interface with an intuitive visual language. Cascadia also effec-
tively extracts these events from data in spite of the unreliability of
RFID technology and the inherent ambiguity in event extraction.

We demonstrate Cascadia’s technique through a digital diary ap-
plication in the form of a calendar. Cascadia automatically popu-
lates the calendar with meaningful events for the user. We use data
collected in a building-wide RFID deployment.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management Systems
; H.5.2 [Information Systems]: Information Interfaces and Pre-
sentation User Interfaces

General Terms
algorithms, design, experimental

Keywords
probabilistic event extraction, user interfaces, RFID

1. INTRODUCTION
Many mobile and pervasive applications rely on Radio Fre-

quency Identification (RFID) infrastructures to discover real world
events (e.g. Elise started a meeting with Bill at 1.06pm in room
435). RFID is an attractive technology for this purpose due to the
low cost of RFID tags [8], which allows applications to track large
numbers of objects and people. However, developing RFID appli-
cations is challenging for two main reasons. First, RFID technol-
ogy is unreliable. It often produces duplicate readings [5] or missed
readings [2, 5]. Second, events in the real world are inherently am-
biguous. For example, detecting Elise and Bill at the same location

Copyright is held by the author/owner(s).
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

Figure 1: A Meeting event specification in Scenic

can correspond to one of many events (e.g. a meeting, coffee, or
lunch event.)

We present a demonstration of Cascadia. Cascadia is a new in-
frastructure aimed at simplifying the development of user-centric
RFID applications. It is a system for specifying, detecting and
managing RFID events. The two key components of Cascadia are
Scenic and PEEX. Scenic [7], is a tool that allows developers and
even end users to graphically specify spatio-temporal event defini-
tions using an intuitive iconic language and storyboard metaphor.
Figure 1 illustrates an event specified in Scenic. Scenic translates
these graphical event definitions into PeexL, a SQL-like language
for defining high-level events. The Probabilistic Event EXtraction
system (PEEX) [6] is an RFID data management system that en-
ables applications to declaratively specify events in PeexL. It then
continuously and automatically extracts these events from RFID
data streams and stores them persistently to simplify their subse-
quent management. PEEX uses a probabilistic approach to event
extraction that allows it to effectively detect complex events in spite
of RFID data unreliability and ambiguity. Overall, Cascadia thus
provides an infrastructure for extracting and managing RFID events
and a graphical interface for specifying them.

There are several potential applications for Cascadia. IT support
teams can use Cascadia to track their equipment and detect events.
A support team can, for example, detect when someone moves a
projector from one conference room to another, a user returns a
laptop, or someone takes a video camera out of the building. Cas-
cadia can be used in hospitals to monitor patients. Cascadia can
also be used in social networking applications. An example of a
social networking application is one which provides a user’s social
network with an ambient awareness of that user’s status.

We demonstrate Cascadia using Digital Diary, an automatic-
calendar application. We choose this application for its simplic-
ity and more importantly for its transparency that can provide users
with a good understanding of the challenges of detecting real-world
events from RFID data. It can also help understand the details of

Figure 2: Screenshot of the digital diary application.

the Cascadia approach. In the demonstration, users specify events
in Scenic (e.g. entering rooms, meeting with other people, etc.)
Scenic generates the matching PeexL definitions and passes them
to PEEX. The latter runs these event definitions over real traces
obtained from a 150-antenna deployment in the CS Dept. at the
University of Washington [7]. Using a large set of real traces al-
lows the specification and detection of a larger set of interesting
events. The detected events automatically populate a Web calen-
dar built using the Google API [4]. Fig 2 shows an instance of the
automatically populated calendar.

To explain the internals of Cascadia, the demonstration also in-
cludes an animated view of how Scenic events are translated into
PeexL, how PEEX detects events as it processes the traces, and
how it calculates the appropriate probabilities. To help the user
understand the impact of various parameters on event extraction
(e.g. probabilistic vs. deterministic event extraction), the applica-
tion provides different calendars of events, one for each of different
system configurations.

2. CASCADIA SYSTEM OVERVIEW
In this section, we give a brief overview of Cascadia. First, we

present the system architecture in Figure 3. Next, we describe
PEEX and Scenic.

2.1 Overall Architecture
At the lowest level, Cascadia receives and stores raw RFID data

from a hierarchy of distributed Reader Gateway processes that
merge and forward streams of tag read events (TREs) from RFID
readers.

The TREs are processed with a particle filter [3] to populate the
AT relation with smoothed, probabilistic location events. The AT
relation has schema (time, tagID, locID, prob). Particle fil-
ters are a commonly used sampling-based inference technique. In
our case, we use a particle filte to infer a tag location (hidden state)
from TREs (observations). More precisely, we use the particle fil-
ter to infer the tag’s distribution over discrete locations (hallways,
rooms, etc).

The AT relation is then processed by PEEX (Probabilistic Event
EXtractor), which continuously extracts and stores higher-level
events.

Finally, Cascadia further simplifies the process of event specifi-
cation with Scenic, a user-level tool that assists non-experts in spec-
ifying common higher-level events. We further describe PEEX and
Scenic below.

2.2 PEEX
PEEX [6] is Cascadia ś event detection subsystem. PEEX sup-

ports probabilistic events represented as tuples and stored in rela-
tions named for each event type. The most basic event and thus re-
lation is AT. An example tuple is AT(101, 10, 23, 0.6), which
represents that at time 101, the tag with ID 10 was seen in location
23 with probability 0.6. Every tuple in the AT relation is an output
of the particle filter.

An example of a higher-level event is a MEETING event with
schema: MEETING(time, person1, person2, room, prob).
An example tuple is MEETING(103, ’Elise’, ’Bill’, 435,
0.4), which represents that at time 103, Elise and Bill have started
a meeting in room 435 with probability 0.4.

2.2.1 Event Definition Language
To build high-level events from primitive AT events, PEEX

uses, PeexL, a SQL-based event definition language. Event
specifications in PeexL have the form:

FORALL I1, I2, ..., In
[CTABLE C]
WHERE Condition
CREATE EVENT E
SET Assignments

The arguments to the FORALL clause, I1, . . ., In, correspond to
AT events, other composite events, or to regular database tables and
may optionally be preceded by a negation !. The CTABLE clause
specifies the confidence table, which helps in handling event ambi-
guity as we discuss in the following section. The confidence table
is optional, and in our current implementation, only the applica-
tion developer can specify it (i.e. , it cannot be specified through
Scenic). The WHERE clause is as in SQL with the addition of the
SEQ predicate which we adapt from [1, 9]. i.e. SEQ(I1, I2, . . .,
Im) states that I j.time ≤ I j+1.time for j ∈ {1, . . ., m}. One
can also specify that an argument in the SEQ operator LASTS for a
specified period of time. Finally, the CREATE EVENT and the SET
clauses define the name and the attributes of the new event.

As an example, the MEETING event from Figure 1 is written in
PeexL as shown in Figure 4

Intuitively, the event definition says that if we see Elise and Bill
together in the hallway outside the database lab (line 5,6) followed
by inside the lab (line 7,8), there is some probability that Elise and
Bill are having a meeting in the lab (line 13,14). The event def-
inition uses a helper table, LocId2Descr, to map location IDs to

Figure 3: Cascadia system architecture.

a description of the location. LocId2Descr has schema (locID,
descr). CMeeting is a confidence table which stores the proba-
bility that two people are having a meeting given that they enter the
same room. It has schema (person1, person2, room, prob).
Importantly, confidence tables allow the probabilities assigned to
an event to depend on the values used to trigger the event. For ex-
ample, whether two people have a meeting when entering the same
room can depend on who the two people are and which room they
are entering (lines 11,12). Perhaps the probability is higher if the
two people are both database students and are entering the database
lab. PEEX is able to populate confidence tables with probabilities
that are learned from historical data.

2.2.2 PEEX Architecture
We have designed PEEX as a layer on top of a traditional

RDBMS (Microsoft SQL Server in our prototype). PEEX consists
of two major components: the Event Detector and the Confidence
Learner.

Event Detector. At a high level, the Event Detector leverages
the underlying RDBMS during event extraction. All events are
stored, in the RDBMS, as relations. When a primitive event ar-
rives from the particle filter, e.g. Bill is at antenna 10 with prob-
ability 0.3, a corresponding tuple is appended to the AT relation.
The Event Detector component periodically checks if any events
have occurred. The event detector performs this check by rewrit-
ing event definitions into standard SQL queries and then executing
these queries on the database. The result of these queries is a set
of tuples (that represent newly detected events) which are then in-
serted into their corresponding tables in the database.

There are six key parts to the transformation from PeexL to SQL.
(1) All SEQ(I1, I2,..) constructs are transformed into explicit
predicates on input event timestamps. (2) The LASTS predicate for
an argument in the SEQ (if there is one), is translated into a count
sub-query. For example, if one specifies that an underlying event
must last for 10 seconds, this is translated into SQL which spec-

1) FORALL AT S1, AT S2, AT S3, AT S4,
2) LocId2Descr L1, LocId2Descr L2
3) CTABLE CMeeting C
4) WHERE SEQ(AND(S1, S2), AND(S3, S4)) AND
5) S1.locID = L1.locID AND S2.locID = L1.locID AND
6) L1.descr = ’DB lab hallway’ AND
7) S3.locID = L2.locID AND S4.locID = L2.locID AND
8) L2.descr = ’DB lab’ AND
9) S1.tag=’Elise tag’ AND S2.tag=’Bill tag’ AND
10) S3.tag = S1.tag AND S4.tag = S2.tag AND
11) C.person1 = S1.tag AND C.person2 = S2.tag AND
12) C.room = L2.descr
13) CREATE EVENT EliseBobMeeting E
14) SET E.room = C.room

Figure 4: Meeting Event in PeexL

ifies that the event must occur once, then again ten seconds later,
and also at the eight distinct timesteps in between (thus the count
is 10). (3) All negations are re-written into outer-joins, which join
two relations but also include tuples without matches in the result.
(4) To avoid repeatedly detecting the same events on successive
runs, the Event Detector transforms event definitions into incre-
mental queries. These queries only retrieve combinations of low-
level events in which at least one has occurred in the most recent
δ window. (5) Additionally, the Event Detector inserts a predicate
stating that all the underlying events must occur within the larger
time window (∆ seconds). (6) Finally, the generated SQL includes
a calculation that computes the probability of the event as a func-
tion of the probabilities of the events on which it depends as well
as the appropriate probability from the corresponding confidence
table.

Confidence Learner. The inherent ambiguity in complex event
detection makes detecting events with certainty a difficult and
sometimes even impossible task. The ambiguity arises because a
combination of low-level tag reads may not correspond uniquely
to a single high-level event. e.g. if Elise and Bill are sighted in
the same room, they could be doing one of many activities such as
having a meeting, leaving for lunch or even just running into one
another. To handle the ambiguity, PEEX uses confidence tables to
capture the historical probability that different combinations of tag
sightings correspond to a high-level event

The Confidence Learner automatically populates the confidence
tables, from annotated historical data that includes input primitive
events and output composite events. Like the Event Detector, the
Confidence Learner uses SQL to populate the confidence tables.
The SQL is generated from the same event definition that is used
for event detection. We refer the reader to [6] for more details on
the confidence learner and PEEX.

2.3 Scenic
Defining events directly in PeexL is difficult for application de-

velopers and impossible for end users. For this reason, Scenic pro-
vides a simpler channel through which non-expert users can create
and submit new event definitions to PEEX.

Scenic presents an iconic visual language that represents event
primitives and entities as icons which can be dragged and dropped
onto a storyboard to specify a sequence of point events, or scenes.
Thus, to specify an event users just “tell the story” of the event,
scene by scene. Figure 5 shows the Scenic interface, which consists
of a toolbar, below which is a working area called the sequence
panel.

Scenic’s visual language consists of three basic constructs: (1)

Figure 5: A screenshot of Scenic showing scenes, actors, primitives
and a properties dialog for an actor.

Scenes represent point events in a sequence and are displayed as
white panels over the grey sequence panel. (2) Actors represent
five types of entities in an event each represented with a separate
icon: person, group of people, object, group of objects, and place.
(3) Primitives directly represent primitive events including with,
without, inside, outside, near, far, and lasts. Figure 1 illustrates the
specification of a meeting event in the database lab between Elise
and Bill.

From the graphical specifications, Scenic generates PeexL event
definitions. These definitions can then be submitted to PEEX or
can be embedded inside applications.

3. DEMONSTRATION CONTENT
We demonstrate a digital diary application that uses Cascadia to

detect higher level RFID events. This application allows a user
to specify events of interest using Scenic and then uses PEEX to
automatically populate the user’s calendar with extracted events.
Such a calendar serves as a digital diary that automatically records
the events that occurred during a user’s day. The user can then
examine these events.

The goal of the demonstration is twofold: (1) The demonstration
provides the user with an insight into how Cascadia works. (2) It
shows the challenges associated with extracting events from RFID
data and the impact of various PEEX parameters on the event ex-
traction process.

The input to our demonstration is a set of sensor reading traces
from ten volunteers and their objects moving through a building.
The traces are obtained from a real-world 150-antenna deployment
at the University of Washington [7]. Real-world traces enable the
demonstration to run over a larger data volume than a toy deploy-
ment. Additionally, real-world data has some unexpected insights.
For example, in the lab we can read laptop cords with approxi-
mately 90% accuracy, which drops to ≈ 10% in the real world.

The demonstration allows users to specify events with Scenic,
and watch as Cascadia automatically populates the diary with de-
tected events. If a user wishes to understand the techniques more
deeply, she is then able to examine the translation from Scenic into
PeexL and PeexL into SQL. Additionally, the user may also alter
the data traces. She may even adjust the parameters of PEEX to
effectively compare PEEX’s probabilistic technique to a determin-
istic one. By using real-world data and allowing the user to alter
input and compare techniques, the demonstration enables the user
to understand the performance of Cascadia in practice.

4. CONCLUSION
This demonstration showcases an application of and the inner

workings of our event extraction tool Cascadia. Cascadia is a sys-
tem that provides RFID-based computing applications with an in-
frastructure for specifying, extracting and managing meaningful

high-level events from raw RFID data.
In this demonstration, we allowed viewers to graphically specify

complex events using Scenic, and detect the specified events using
PEEX. We also allowed the users to view the translation of the
specification into PeexL (PEEX’s event language), and even view
the SQL used for extracting the events from raw data. Through this
demonstration, the viewer gains insights into the challenges and the
workings of event extraction from RFID data.

5. ACKNOWLEDGEMENTS
This work was partially supported by NSF Grants IIS-0627585,

IIS-0513877, IIS-0713576, and Gifts from Microsoft including a
gift under the SensorMap RFP.

6. REFERENCES
[1] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim.

Composite events for active databases: Semantics, contexts
and detection. In Proc. of the 20th VLDB Conf., Sept. 1994.

[2] C. Floerkemeier and M. Lampe. Issues with RFID usage in
ubiquitous computing applications. In Proc. of the 2nd
Pervasive Conf., Apr. 2004.

[3] Fox, D. et al. Bayesian filtering for location estimation. IEEE
Pervasive Computing, 2(3):24–33, July-September 2003.

[4] Google Inc. . Google code: Developer home.
http://code.google.com/, 2007.

[5] S. Jeffery, G. Alonso, M. J. Franklin, W. Hong, , and
J. Widom. Declarative support for sensor data cleaning. In
Proc. of the 4th Pervasive Conf., Mar. 2006.

[6] N. Khoussainova, M. Balazinska, and D. Suciu. Peex:
Extracting probabilistic events from rfid data. Technical
Report 2007-11-02, Department of Computer Science and
Engineering, University of Washington, 2007.

[7] The RFID Ecosystem.
http://rfid.cs.washington.edu/, 2007.

[8] RFID journal. http://www.rfidjournal.com, 2006.
[9] E. Wu, Y. Diao, and S. Rizvi. High-performance complex

event processing over streams. In Proc. of the 2006 SIGMOD
Conf., June 2006.

