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DEFINITION
Just like any other software system, a data stream management system (DSMS) can experience failures of its
different components. Failures are especially common in distributed DSMSs, where query operators are spread
across multiple processing nodes, i.e., independent processes typically running on different physical machines in
a local-area network (LAN) or in a wide-area network (WAN). Failures of processing nodes or failures in the
underlying communication network can cause continuous queries (CQ) in a DSMS to stall or produce erroneous
results. These failures can adversely affect critical client applications relying on these queries.
Traditionally, availability has been defined as the fraction of time that a system remains operational and properly
services requests. In DSMSs, however, availability often also incorporates end-to-end latencies as applications
need to quickly react to real-time events and thus can tolerate only small delays. A DSMS can handle failures
using a variety of techniques that offer different levels of availability depending on application needs.
All fault-tolerance methods rely on some form of replication, where the volatile state is stored in independent
locations to protect against failures. This article describes several such methods for DSMSs that offer different
trade-offs between availability and runtime overhead while maintaining consistency. For cases of network
partitions, it outlines techniques that avoid stalling the query at the cost of temporary inconsistency, thereby
providing the highest availability. This article focuses on failures within a DSMS and does not discuss failures of
the data sources or client applications.

HISTORICAL BACKGROUND
Recently, DSMSs have been developed to support critical applications that must quickly and continuously process
data as soon as it becomes available. Example applications include financial stream analysis and network intrusion
detection (see KEY APPLICATIONS for more). Fault-tolerance and high availability are important for these
applications because faults can lead to quantifiable losses. To support such applications, a DSMS must be equipped
with techniques to handle both node and network failures.
All basic techniques for coping with failures involve some kind of replication. Typically, a system replicates the
state of its computation onto independently failing nodes. It must then coordinate the replicas in order to recover
properly from failures. Fault-tolerance techniques are usually designed to tolerate up to a pre-defined number, k,
of simultaneous failures. Using such methods, the system is then said to be k-fault tolerant.
There are two general approaches for replication and coordination. Both approaches assume that the computation
can be modeled as a deterministic state-machine [4, 11]. This assumption implies that two non-faulty computations
that receive the same input in the same order will produce the same output in the same order. Hereafter, two
computations are called consistent if they generate the same output in the same order.
The first approach, known as the state-machine approach, replicates the computation on k + 1 ≥ 2 independent
nodes and coordinates the replicas by sending the same input in the same order to all [11]. The details of how



Figure 1: Active Replicas. The operators on replicas P1 and P2 are the producers. The operators on C1 and C2

are the consumers.

to deliver the same input define the various techniques. Later sections in this article describe variants that are
specific to DSMSs. The state-machine approach requires k + 1 times the resources of a single replica, but allows
for quick fail-over, so a failure causes little disruption to the output stream. This property is important for critical
monitoring tasks such as intrusion detection that require low-latency results at all times.
The second general approach is known as rollback recovery [4]. In this approach, a system periodically packages
the state of its computation into a checkpoint, and copies the checkpoint to an independent node or a non-
volatile location such as disk. Between checkpoints, the system logs the input to the computation. Since disks
have high latencies, existing fault-tolerance methods for DSMSs copy the checkpointed state to other nodes and
maintain logs in memory. Upon failure, the system reconstructs the state from the most recent checkpoint, and
replays the log to recover the exact pre-failure state of the computation. This approach has much lower runtime
overhead at the expense of higher recovery time. It is useful in situations where resources are limited, the state of
the computation is small, fault-tolerance is important, but rare moderate latencies are acceptable. An example
application is fabrication-line monitoring using a server cluster with limited resources.
In some cases, users are willing to tolerate temporary inconsistencies to maintain availability at all times. One
example is in the wide-area where network partitions are likely (e.g., large-scale network and system monitoring).
To maintain availability in face of network partitions, the system must move forward with the computation ignoring
the disconnected members. In this case, however, replicas that process different inputs will have inconsistent
states. There are two general approaches for recovering from such inconsistencies after the network partition
heals. One approach is to propagate all updates to all members and apply various rules for reconciling conflicting
updates [6, 9]. The other approach is to undo all changes performed during the partition and redo the correct
ones [6, 15].
This article presents how these general approaches can be adapted to distributed DSMSs. The main challenge is
to ensure that applications receive low-latency results during both normal processing and failures. To do so, the
methods presented leverage the structure of continuous queries (CQs) in DSMSs.
This article makes the following assumptions. A CQ is a connected directed-acyclic graph of query operators.
The operators can be distributed among many processing nodes with possibly multiple operators per node. A
processing node is the unit of failure. For simplicity of exposition, this article focuses on the case of k = 1 (i.e.,
two query replicas) although all shown techniques can handle any k. This article describes methods to tolerate
node crash failures and temporary network partitions. Roughly speaking, a node has crashed if it visibly halts or
simply becomes unresponsive [12]. A network partition splits nodes into two or more groups where nodes from
one group cannot communicate with nodes in another.

SCIENTIFIC FUNDAMENTALS

Techniques for Handling Crash Failures
This section describes new fault-tolerance techniques devised by applying the general fault-tolerance methods to
continuous queries in DSMSs.
Active Replicas
Active replicas are an application of the state-machine approach in which query operators are replicated and run
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Figure 2: Passive Standby

on independently failing nodes. A simple variant of the active replicas approach uses the traditional process-pair
technique to coordinate the replicas. The process-pair technique runs two copies of the query and specifies one to
be the primary and the other to be the secondary. In this approach, the primary forwards all input, in the same
order, to the secondary and works in lock-step with the secondary [5].
A DSMS can rely on a looser synchronization between the replicas by taking advantage of the structure of CQ
dataflows. In a CQ dataflow, the operators obey a producer-consumer relationship. To provide high availability,
the system replicates both the producer and consumer as illustrated in Figure 1. In this model, there is no
notion of a primary or secondary. Instead, each producer logs its output and forwards the output to its current
consumer(s). Each consumer sends periodic acknowledgments to all producers to indicate that it has received
the input stream up-to a certain point. An acknowledgment indicates that the input need not be resent in case
of failure, so producers can truncate their output logs. Use of reliable, in-order network delivery (e.g., TCP)
or checkpoints allows optimizations where consumers send application-level acknowledgments to only a subset of
producers [7, 13].
The symmetric design of active replicas has some benefits. The normal-case behavior has few cases, so it is simple
to implement and verify. Additionally, with sufficient buffering, each pipeline can operate at its own pace, in
looser synchronization with the other.
The Flux [13] approach was the first to investigate this looser synchronization between replicated queries. Flux is
an opaque operator that can be interposed between any two operators in a CQ. Flux implements a simple variant
of this protocol and assists in recovery. The Borealis “Delay, Process, and Correct” (DPC) protocol [1, 2] also
uses the above coordination protocol, but differs from Flux in its recovery, as discussed later. The Flux and DPC
approaches both ensure strict consistency in the face of crash failures: no duplicate output is produced and no
output is lost.
Passive Replicas
There have been two applications of the rollback recovery approach to CQs [7, 8]. The first, called passive standby,
handles all types of operators. The second, called upstream backup, is optimized for more specific bounded-history
operators that frequently arise in CQs.
In the passive standby approach, a primary node periodically checkpoints its state and sends that checkpoint to a
backup. The state includes any data maintained by the operators and tuples stored in queues between operators.
In practice, sending the entire state at every checkpoint is not necessary. Instead, each primary periodically
performs only a delta-checkpoint as illustrated in Figure 2. During a delta-checkpoint, the primary updates
the backup by copying only the difference between its current state and the state at the time of the previous
checkpoint.
Because of these periodic checkpoints, a backup always has its primary’s state as of the last checkpoint. If the
primary fails, the backup recovers by restarting from that state and reprocessing all the input tuples that the
primary processed since the last checkpoint. To enable backups to reprocess such input tuples, all primaries
log their output tuples. If a downstream primary fails, each upstream primary re-sends its output tuples to the
downstream backup. In a CQ, because the output of an operator can be connected to more than one downstream
consumer operator, primaries discard logged output tuples only after all downstream backups have acknowledged
a checkpoint.
For many important CQ operators, the internal state often depends only on a small amount of recent input.
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Figure 3: Upstream Backup

Examples of such operators include joins and aggregates with windows that span a short time-period or a small
number of tuples. For such operators, DSMSs can use the upstream backup method to avoid any checkpointing
overhead. In this approach, primaries log their output tuples, but backups remain idle as illustrated in Figure 3.
The primaries trim their logs based on notifications from operators 1-level (or more) downstream, indicating
that the states of consuming operators no longer depend on the logged input. To generate these notifications,
downstream operators determine, from their output, what logged input tuples can be safely discarded. If a
primary fails, an empty backup rebuilds the latest state of the primary using the logs kept at upstream primaries.
Failure Recovery
When a failure occurs, a DSMS must first detect and then recover from that failure. DSMSs detect failures
using timeouts and, in general, rely on standard group membership mechanisms to keep consistent track of nodes
entering and leaving the system [10, 14]. Recovery ensues after failure detection.
There are two parts to failure recovery. The first part involves masking the failure by using the remaining replica
to continue processing. For active replicas, this part is called fail-over. In both Flux and DPC, fail-over is
straightforward. Consumers and producers adjust their connections to receive input data from or send output
data to the remaining live copy of the failed node. To avoid stalls in the output stream, it is safe for active
replicas to proceed with fail-over without waiting for group membership consensus [1, 14]. For passive standby
and upstream backup, this first part also involves bringing the state of the backup to the pre-failure state of the
failed primary, as described earlier, before the backup starts sending data to downstream consumers.
The second part of recovery, called repair, allows the query to repair its failed pieces and regain its original level
of fault-tolerance. In upstream backup, the system regains its normal fault-tolerance level when the new replica
fills its output log with enough data to rebuild the states of downstream nodes.
For both active replicas and passive standby, repair can cause significant disruptions in the result stream depending
on the granularity of coordination in the query. For example, if a system uses active replica coordination only at
the input(s) and output(s) of a distributed query, the system must destroy the entire query affected by the failure,
stall the entire remaining query, checkpoint its state, copy that state onto independent nodes, and reintegrate the
new copy with the remaining query. The system must repair a query at a time because it has no control over
inflight data in the network between nodes in a query. If the query state is large, e.g. tens of gigabytes, repair can
take minutes, causing significant latencies in the result stream. Similarly, coarse coordination in Passive Standby
would cause the first checkpoint after recovery to stall processing for a long time.
To remedy this problem, most high-availability CQ schemes (e.g. Flux [13, 14], Borealis DPC [1, 2], Active
Standby [7], Passive Standby [7, 8]) coordinate and repair in smaller chunks: between nodes (containing groups
of operators), between operators, or even finer. Then, after failure, they can repair the lost pieces one at time,
allowing the remaining pieces to continue processing and reduce the impact of stalls. In the presence of k + 1 > 2
replicas, DSMSs can use the extra replicas to further smooth the impact of stalls during repair. Also with finer
coordination, DSMSs need to repair only the lost pieces, thereby reducing mean-time-to-recovery and improving
system reliability, i.e. mean-time-to-failure [13].
Trade-offs Among Crash failure Techniques
The above techniques provide different trade-offs between runtime overhead and recovery performance. Active
replicas provide quick fail-over because replicas are always “up-to-date”. With this approach, however, the runtime
overhead is directly proportional to the degree of replication. Passive standby provides a flexible trade-off between
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runtime overhead and recovery speed through the configurable checkpoint interval. As the checkpoint interval
decreases, the runtime computation and network overheads increase because the primaries copy more intermediate
changes to the backups. However, recovery speed improves because the backups are in general more up-to-date
when they take over. Finally, upstream backup incurs the lowest overhead because backups remain idle in the
absence of failures. For upstream backup, recovery time is proportional to the size of the upstream buffers. The
size of these buffers, in turn, depends on how much history is necessary to rebuild the state of downstream nodes.
Thus, upstream backup is practical in small history settings.

Techniques for Handling Network Partitions
The previous techniques can mask crash failures and a limited set of network failures (by converting disconnected
nodes into crashed nodes), but cannot handle network partitions in which data sources, processing nodes, and
clients are split into groups that cannot communicate with each other.
In the presence of network partitions, a DSMS, like all distributed systems, has two choices. It can either
suspend processing to ensure consistency, or continue processing the remaining streams with best-effort results
to provide availability [3]. Existing work on fault-tolerance in distributed DSMSs has explored both options.
The Flux protocol [14], originally set in the local-area where network partitions are rare, favors consistency. The
Borealis’s DPC protocol, designed for wide-area monitoring applications where partitions are more frequent, favors
availability. During partitions, DPC generates best-effort result tuples which are labeled as tentative. Further,
DPC allows applications to specify a maximum tolerable latency for flexibly controlling the tradeoff between
consistency and availability [1, 2].
Once a network partition heals, a stalled CQ node can simply resume. A node that continued processing with
missing input, however, might be in a diverged state, i.e., a state different from that of a failure-free execution.
To reconcile a node’s diverged state, a DSMS can take two approaches. The system can revert the node to a
consistent, checkpointed state and replay the subsequent, complete input, or the system can undo and redo the
processing of all tuples since the network partition. To avoid stalling the output during reconciliation, a DSMS
must take care not to reconcile all replicas of a node simultaneously. Moreover, nodes must correct their previous
output tentative tuples to enable downstream nodes to correct their states, in turn, and to allow applications to
ultimately receive the correct and complete output. The Borealis DPC protocol supports these techniques [1, 2].

Optimizations
Flux: Integrating Fault Tolerance and Load Balancing
A large-scale cluster is a dynamic environment in which DSMSs face not only failures but also load imbalances
which reduce availability. In this setting, DSMSs typically split the state of operators into partitions and spread
them across a cluster for scalability. A single overloaded machine, in this setup, can severely slow down an
entire CQ. The Flux operator can be interposed between producer-consumer partitions to coordinate their
communication. To absorb short delays and imbalances, Flux allows out-of-order processing of partition input.
For long-term imbalances, it supports fine-grained, online partition state movement. The Flux operators interact
with a global controller that coordinates repair and rebalancing, and uses the same state movement mechanism
for both [14]. Integrating load balancing with fault tolerance allows a system to better utilize available resources
as nodes enter and leave the system. These features allow smooth hardware refresh and system growth, and are
essential for administering DSMSs in highly dynamic and heterogeneous environments.
Leveraging Replication for Availability and Performance in Wide-Area Networks
In previous active replicas approaches, a consumer replica receives the output stream of only one of many producer
replicas. In wide area networks, the connection to any single producer is likely to slow down or fail, thereby
disrupting the subsequent processing until fail-over completes. To avoid such disruptions, each consumer replica
in Hwang et al.’s method [8] merges streams from multiple producer replicas into a single duplicate-free stream.
This scheme allows each consumer, at any instant, to use the fastest of its replicated input streams. To further
reduce latency, they redesign operators to avoid blocking by processing input out-of-order when possible, while
ensuring that applications receive the same results as in the non-replicated, failure-free case. Moreover, their
scheme continually adjusts the replication level and placement of operator replicas to optimize global query
performance in a dynamically changing environment.
Passive Standby: Distributed Checkpointing and Parallel Recovery
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The basic passive standby approach has two drawbacks: it introduces extra latencies due to checkpoints and
has a slower recovery speed than active replicas. Hwang et. al.’s distributed checkpointing technique overcomes
both problems [8]. This approach groups nodes into logical clusters and backs up each node using the others in
the same cluster. Because different operators on a single node are checkpointed onto separate nodes, they can
be recovered in parallel. This approach dynamically assigns the backup node for each operator and schedules
checkpoints in a manner that maximizes the recovery speed. To reduce disruptions, this approach checkpoints a
few operators at a time. Such checkpoints also begin only at idle times.

KEY APPLICATIONS
There are a number of critical, online monitoring tasks that require 24x7 operation. For example, IT
administrators often want to monitor their networks for intrusions. Brokerage firms want to analyze quotes
from various exchanges in search for arbitrage opportunities. Phone companies want to process call-records for
correct billing. Web site owners want to analyze and monitor click-streams to improve targeted advertising and
to identify malicious users. These applications, and more, can benefit from fault-tolerant and highly available CQ
systems.

FUTURE DIRECTIONS
Key open problems in the area of fault-tolerance and high availability in DSMSs include handling Byzantine
failures, integrating different fault-tolerance mechanisms, and leveraging persistent storage. Techniques for
handling failures of data sources or dirty data produced by data sources (e.g., sensors) are also areas for future
work.

EXPERIMENTAL RESULTS
See [1, 2, 7, 8, 13, 14] for detailed evaluations of the different fault-tolerance algorithms.

DATA SETS

URL TO CODE
Borealis is available at: http://www.cs.brown.edu/research/borealis/public/
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