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Abstract

Monitoring applications play an increasingly important
role in many domains. They detect events in monitored sys-
tems and take actions such as invoke a program or notify
an administrator. Often administrators must then manu-
ally investigate events to figure out the source of a prob-
lem. Stream processing engines (SPEs) are general pur-
pose data management systems for monitoring applications.
They provide low-latency stream processing but have lim-
ited or no support for manual event investigation. In this
paper, we propose a new technique for an SPE to support
event investigation by automatically classifying events on
streams. Unlike previous stream clustering algorithms, our
approach takes into account complex user-defined contexts
for events. Our approach comprises three key components:
an event context data model, a distance measure for event
contexts, and an online clustering algorithm for event con-
texts. We evaluate our approach using synthetic data and
show that complex context information can improve online
event classification.

1. Introduction

Monitoring applications play an increasingly important
role in many domains including network management (e.g.,
network intrusion detection), computer system management
(e.g., clickstream analysis, system health monitoring), en-
terprise decision-making (e.g., near real-time sales track-
ing), and sensor-based environment monitoring (e.g., air
quality monitoring, car traffic monitoring). As a concrete
example, consider a pervasive computing system where a
building is instrumented with Radio Frequency IDentifica-
tion (RFID) readers. In this building, objects and people
carry RFID tags allowing the infrastructure to track their
movements [23]. Applications monitor streams of location
information produced by the RFID infrastructure to offer
a variety of services from personalized reminders (“You
forgot your wallet in room 340”) to sophisticated activity

tracking (“Your team members ran into each other and are
having an impromptu meeting”) [27].

Today, a relatively easy way to implement the above
monitoring applications is in the form of continuous queries
running in a stream processing engine (SPE) [1, 2, 8, 19,
25]. For example, an RFID reminder system that produces
an alert whenever a person is sighted away from their lap-
top, wallet, or other item can take the form of a two-operator
continuous query. First, a join operator correlates the loca-
tion of people with that of their belongings, then a filter op-
erator produces alerts when owners and objects appear far
apart from each other. With this approach, the SPE continu-
ously processes input streams from the monitored environ-
ment as per the query specification and the application only
needs to implement the logic that handles the output of the
query. An SPE can thus greatly reduce the effort involved
in implementing a monitoring application.

A stream processing query thus produces outputs when
interesting events, such as meetings between groups of
friends, occur. To further support monitoring applications,
an online stream clustering process (e.g., [12]) can auto-
matically group these events into distinct categories. For
example, it could automatically group lectures, department
meetings, and social events into three distinct clusters of
events. Similarly, the clustering process could categorize
network anomalies into link failures, denial-of-service at-
tacks, or false alarms. To perform such classifications, how-
ever, online stream clustering algorithms today rely only
on event attributes: events in streams take the form of re-
lational tuples whose attributes define a multidimensional
space used during clustering. A meeting event, for exam-
ple, could be characterized by the time, location, and num-
ber of attendees. Such event attributes, however, offer only
limited information to help in the clustering process, thus
circumscribing the quality of the resulting clusters.

In this paper, we present an approach that enhances the
online clustering and thus event classification capabilities
of an SPE. In our approach, users specify complex context
information for events. For example, in the RFID track-
ing application, the context information for a meeting event



could include not only the location and time of the meeting
but also the exact list of people attending the meeting and
the list of objects they brought with them. The system uses
this context information during online event clustering and
to classify each newly detected event by identifying its top-
k most similar clusters. Clearly, context information has
the potential to improve the accuracy of the clustering pro-
cess: e.g., knowing the list of people attending a meeting
could help the system distinguish impromptu group meet-
ings of similar-sized but different teams. Using such in-
formation, however, is challenging because event contexts
cannot simply be captured by extending the list of attributes
of an event.

More specifically, clustering events in a streaming man-
ner using their context information raises three important
challenges. First, we need a data model to represent event
contexts and a query language to specify them. Second, we
need a distance measure to compare event context instances.
Third, we need an online event context clustering algorithm
based on the new distance measure.

In this paper, we present a new approach that addresses
all three challenges. We model event contexts in the form
of sets of relations (i.e., tables) and use standard stream pro-
cessing queries to specify them (Section 2).1 For exam-
ple, the context of a meeting event could include one rela-
tion listing meeting attendees, another listing all the items
brought to the meeting, and a third indicating simply the
location, time, and meeting duration. Our model is thus
simple yet flexible and powerful. To compare event con-
texts, we propose a new distance computation framework
called Context Distanced Measure (CDM). CDM is based
on the Earth Mover’s Distance [24] and compares event
contexts by taking both their values and structures into ac-
count (Section 3). Finally, we propose a new online cluster-
ing algorithm, MC-Stream, for event contexts (Section 4).
MC-Stream is based on CluStream [3] but is designed to
cluster complex events rather than tuples. We evaluate our
approach using synthetic RFID meeting event data and,
through these preliminary results, show that our approach
has the potential to significantly improve precision and re-
call when classifying new events on streams compared to
using only event attributes.

2. Events and Context

In an SPE, a query takes the form of a loop-free, directed
graph of operators each processing data arriving on its input
streams and producing data on its output stream. Data items
on streams are typically relational-style tuples: i.e., each
tuple in a stream has the same set of pre-defined attributes.

1We already introduced the concepts of an event and its context in our
previous work [6] and simply review their definitions in Section 2.

eid time duration location
1 3:20pm 10min Atrium
2 3:25pm 47min Room 303
3 4:05pm 23min Breakout

Figure 1: Example of meeting events: eid is the event identi-
fier; time and duration are the time and duration of the event;
location identifies where the event occurred in the building.

ASPECT 1: Participants
eid person type departed from

1 Alice Student Room 506
1 Bob Student Room 387

ASPECT 2: Objects

eid object id type owner
1 132 Laptop Alice
1 273 Mug Alice
1 920 Book Bob
1 946 Book Charlie

Figure 2: Sample context for a meeting event with eid = 1.
The context has two aspects. Each aspect is a relation.

In our model, an event is a tuple in a stream that takes the
form: (eid, time, a1, . . ., an), where eid is an
attribute that uniquely identifies the event, time is the time
when the event occurred, and a1, . . ., an are the value
attributes of the event. Our definition of an event is thus
broad. Almost any tuple in any stream can be considered an
event as long as it takes the form specified above. Figure 1
shows examples of “meeting events” from an RFID deploy-
ment. Each tuple in the table corresponds to one event.
Events are output by continuous queries running in an SPE
(we call these queries event-queries [6]). Events from Fig-
ure 1 could be produced, for example, by a trivial query
grouping RFID tag identifiers sighted by different readers
and producing an output every time a group of tags remains
within the vicinity of a reader for some period of time. More
sophisticated event queries are possible for RFID and other
applications [22, 27].

The attributes of an event describe its main properties
and suffice to uniquely identify the event. In our example,
the time, duration, and location suffice to distin-
guish between different meeting events in the building. Un-
derstanding an event, however, can require looking at sig-
nificantly more information surrounding the event. We call
this extra information the context of the event. For example,
when a meeting is detected, important information about
the meeting includes the identity and occupation of peo-
ple attending the meeting, the items they brought with them
(e.g., coffee mugs or laptops), and even the last few places
each person visited before the meeting. Such extra infor-
mation provides more details about the event (e.g., “Right
after class, Alice bumped into Bob who just came out of his
office to get some coffee” rather than “Two people briefly
passed each other in the hallway”). Unlike simple attributes
such as event times and locations, such complex context in-
formation often can not be represented as a single tuple.



To represent the context of an event, we organize its in-
formation into aspects. Each aspect is a subset of the event
context information and is represented as a standard relation
(or table). Figure 2 illustrates a sample context of a meeting
event. The context comprises two aspects: the participants
and objects present during the meeting. Such aspects de-
liver more information about the meeting than simply the
meeting time, duration, and location attributes.

To specify the context of an event, the user executes ad-
ditional continuous queries that join the event stream with
other streams. We call these queries context-queries to dis-
tinguish them from event-queries [6]. For each event, the
result of each context-query is a relation that describes one
aspect of the event context. Each aspect is thus a relation
and the set of all aspects forms the context of an event.

Although we define the notion of event and event con-
text using a concrete RFID application as example, these
concepts are generally applicable.

3. Context Distance Measure Framework

In order to cluster events into meaningful categories us-
ing their context information, we need an effective tech-
nique for comparing event contexts.

Comparing the contexts of two events requires compar-
ing two sets of relations. Because no existing measure is de-
signed for comparing such nested sets of multidimensional
objects, we cannot apply an existing measure directly. In
previous work [6], we proposed to flatten event contexts
and view them simply as documents containing bags of
words. This approach, however, was unsatisfactory because
it ignored the rich information captured by the structure of
event contexts. Instead, we thus define a distance evalu-
ation framework, CDM, that systematically computes the
distance between contexts taking their structure into ac-
count. CDM hierarchically evaluates the distance between
event contexts in a bottom-up manner. At each level, CDM
computes the distance between two entities by aggregating
distances of the entities at the lower level. Figure 3 illus-
trates the overall architecture of the CDM.
Distance between Attributes: At the lowest level, CDM
needs a way to compare individual attribute values in tuples.
By default, CDM employs commonly used metrics includ-
ing the Euclidean distance for numeric attributes (normal-
ized to fall in the range [0, 1]) and equality matches for cat-
egorical attributes. However, because CDM applies these
metrics as black boxes, more sophisticated measures could
also be used.
Distance between Tuples: CDM treats a tuple t with |t| at-
tributes as a |t|-dimensional vector and uses Euclidean dis-
tance to compute distances between tuples. This approach
is standard for comparing tuples in a database.
Distance between Aspects: An aspect is a set of tuples.

object id type owner object id type owner

Context Distance

•Euclidean distance

Aspect Distance

•Earth Mover’s Distance

Tuple Distance

•Euclidean distance

Attribute Distance

•Euclidean distance

•Type specific distance

person type departed

time duration location time duration location

person type departed

Context 1 Context 2

Figure 3: Distance computation between the contexts on the left
and right sides using CDM.

To compute the distance between two aspects, CDM could
employ one of many set similarity measures including Jac-
card’s coefficient or Hausdorff distance [30]. CDM uses
the Earth Mover’s Distance(EMD) [24]. EMD is a metric
originally introduced for content-based image retrieval and
successfully used in multimedia databases. EMD works as
follows: assuming that there is a mound of earth for each
tuple in one aspect and a hole in the ground for each tu-
ple in the other aspect, EMD computes the minimum total
amount of work to completely level the ground by filling
the holes with the mounds of earth. The distance is then the
average amount of work per unit of earth moved to perform
this leveling. Sizes of mounds of earth and depths of holes
represent tuple weights. By default, all tuples have the same
weight, equal to 1

cardinality of aspect . As an aspect distance
measure, EMD has two attractive properties. First, EMD
is a metric if all base distances are metric (which they are
in the default settings of CDM). This enables us to lever-
age standard clustering algorithms defined in metric space.
Second, EMD is more precise when comparing complex
objects than several alternatives: unlike Jaccard that only
considers exact matches between tuples, EMD takes the
actual distances between tuples into account. With EMD,
unlike with Hausdorff, all tuples contribute to the distance
computation. In Section 5, we compare the performance
of EMD as the aspect distance measure to these alternative
techniques in more detail.
Distance between Contexts: Finally, CDM aggregates all
distances among corresponding aspects by treating each as-
pect as a different dimension and computing again, the Eu-
clidean distance:

CDM(A,B) =
√∑

i

EMD(Ai, Bi)2

where Ai and Bi are ith aspects in event contexts A and
B. Although different ways of combining distances between
aspects into a context distance are possible, treating each
aspect as a different dimension is a natural technique.



In summary, CDM computes the distance between two
sets of relations in a bottom up fashion by aggregating dis-
tances at lower levels. CDM is also highly configurable be-
cause it permits domain specific distances at each level.

4. Online Event Clustering

Recently, data stream clustering has received signifi-
cant attention [12]. Clustering streams of event contexts
rather than streams of tuples, however, raises two new chal-
lenges. First, we need a medoid- or prototype-based algo-
rithm rather than a centroid- or grid-based one because it
is not clear how to define a meaningful centroid for a set
of relations. Second, computing the distance between two
contexts is an expensive operation (as we show later in Fig-
ure 12) and we need a technique that keeps the number of
such computations low.

To address these challenges, we propose a new online
event clustering algorithm, called MC-Stream. MC-Stream
is based on CluStream [3], an online clustering algorithm
that uses micro clusters. CluStream defines a micro clus-
ter as a set of items within predefined maximum distance
of each oter in feature space. The advantage of using mi-
cro clusters rather than a “batch” algorithm that accumu-
lates events and clusters them periodically [21] is that mi-
cro clusters always reflect the most recent trends and event
classification can be done directly as part of cluster mainte-
nance.

We first briefly describe the baseline algorithm, CluS-
tream, then elaborate MC-Stream.

4.1. CluStream

CluStream represents a micro cluster with a Cluster Fea-
ture Vector (CFV). For each attribute dimension, the CFV
maintains the sum and sum of squares of the attribute val-
ues for all tuples in the cluster. The CFV also maintains
the sum and sum of squares for the time attribute. In other
words, CFV captures simple statistics(mean and variance)
of the micro cluster in each feature dimension and time. Fi-
nally, the CFV includes the number of tuples in the micro
cluster.

CluStream works as follows: it first runs k-means over a
small batch of tuples to create an initial set of micro clusters,
much larger than the number of clusters in the data. Then,
every time a new tuples arrives, if the tuple falls within some
pre-defined distance from a micro cluster centroid, it adds
the tuple to the micro cluster. If not, the tuple serves to
create a new micro cluster. Offline, a user can request that
the system produce a smaller number of macro clusters.

2

13

A B

C

4D

Figure 4: MC-Stream in action. After the initial clustering, three
micro clusters (A, B, and C) are created. A new data item, 1,
is added to cluster C, and results in slight expanding the cluster
radius. When data item 2 arrives, it forms a new micro cluster D
and micro cluster B is evicted assuming that it is stale. Subsequent
data items 3 and 4 are added to D and A respectively. Note that
3 shrinks the boundary of D by replacing default radius of the
singleton micro cluster. Black colors show the final state of the
micro-clusters.

4.2. MC-Stream

MC-Stream is based on CluStream. To cluster contexts
rather than tuples, MC-Stream represents a micro cluster
MC using a Medoid-Radius-Time Vector (MRTV) that we
define as:

MRTV = (m, SR2, SR1, ST 2, ST 1, n)

where m is the medoid of the micro-cluster, MC. SR2

is the sum of squared CDM distances between m and
all other events in the cluster, i.e.,

∑
i∈MC CDM(m, i)2,

and SR1 is simply the sum of the CDM distances, i.e.,∑
i∈MC CDM(m, i). ST 2 and ST 1 are defined similarly

but on the timestamp attributes of events inMC. Like CluS-
tream, ST values are used to check the freshness of a micro
cluster. Finally, n is the number of events in MC. Thus,
an MRTV is analogous to the CFV of CluStream except it
captures statistics in terms of distance to the medoid rather
than statistics of all attributes.

MC-Stream works very similarly to CluStream: MC-
Stream first runs k-medoid over a small batch of events
to an create initial set of micro clusters. Upon detecting
a new event, MC-Stream classifies it by linearly scanning
all micro-clusters and returning the k closest micro clus-
ters (MC-Stream does not use the offline macro cluster-
ing phase). The new event is then inserted into the clos-
est micro-cluster if it is within a predefined distance of the
cluster medoid. If it is beyond the limit, a new singleton
micro cluster is created (we use the same heuristic when
checking the distance against a singleton micro cluster) and



replaces the least recently updated micro cluster. This clus-
ter maintenance mechanism is different from CluStream,
which merges the two closest micro clusters to make room
for a new one when it can not find a sufficiently stale cluster
(i.e., a cluster not updated for a long time). Indeed, merg-
ing two MRTVes would require that the vector be either
recomputed from the raw events, which would be overly
expensive, or be approximated from the two existing vec-
tors, which would not yield tight clusters. We thus leave
this feature for future work. The radius threshold is set in
a similar way as in CluStream: we use a given parameter
t and multiply it by the standard deviation of the radius of
the micro cluster. Evicted micro clusters are migrated to
disk. We currently do not use these evicted micro clusters.
An interesting area of future work lies in exploiting these
old micro clusters to produce more accurate classification
results when requested by a user.

5. Evaluation

In this section, we first evaluate the benefits of using con-
text information and the performance of CDM for offline
event clustering. We then evaluate the precision and recall
of using MC-Stream to identify the top-k most likely cate-
gories for each newly detected event. Finally, we measure
the runtime performance of our approach.

To the best of our knowledge, there is no real data set
available that contains complex context information. We
thus use synthetic data. We assume the RFID application
used as our running example and generate a realistic set of
meeting events using our department’s academic calendar
for Spring quarter 2008. We describe events using event
templates where we specify event parameters(time, loca-
tion, participants, etc.) and the degree of randomness in
these parameters. From each template, we generate a set
of event instances. We generate two aspects for each event
context: Where (when and where the meeting was held)
and People (the set of participants and their occupations).
Meetings are either regular such as classes or seminars or
ad-hoc such as coffee breaks or project meetings. We use a
machine with a dual 2.66GHz quad core, 16GB RAM run-
ning 32bit Linux 2.6.23 kernel.

5.1. CDM Clustering Quality

The goal of our first set of experiments is to answer two
questions: (1) does context information improve clustering
quality compared with using only event attributes? (2) does
EMD outperform other standard measures as the distance
function for context aspects? All experiments in this section
focus on offline event clustering. We use the standard k-
medoid clustering algorithm because our online clustering
algorithm uses medoids as well.

We generate two data sets: one with 1000 regular meet-
ing events (65 distinct event types) and the other with 1000
ad-hoc meeting events (107 distinct event types). We clus-
ter each data set using k-medoids and the CDM. We com-
pare the performance when using either Jaccard similarity2,
Hausdorff distance, or the Earth Mover’s Distance (EMD)
to compare event aspects. We also compare the perfor-
mance when using only the Where, the People, or both
aspects at the same time and for different ratios between k,
the number of clusters created, and the true number of clus-
ters in the data (65 or 107). Figure 5 shows the results. The
figure shows both the average cluster purity(expected frac-
tion of major label in a cluster) [26] and the sum of square
error(sum of squared distance to cluster center).

As the figure shows, for ad-hoc meetings and EMD,
using the People aspect yields significantly higher av-
erage cluster purity than using only event attributes (i.e.,
Where aspect). Using both aspects also outperforms event
attributes alone, although it loses to using only People, the
better of the two aspects. Overall, however, using complex
context information such as the list of people attending a
meeting, significantly improves the clustering quality com-
pared to using only event attributes. The differences are less
significant for regular meetings because either aspect alone
characterizes regular meeting types quite accurately. For
the sum of square errors results, selecting the best rather
than combining aspects yields the lowest errors. Overall,
however, these preliminary results show that using contexts
to automatically classify events is a promising technique.

In all cases, EMD outperforms Hausdorff distance be-
cause the latter does not capture detailed differences be-
tween aspects. For example, with the People aspect,
Hausdorff ends up with only one of three values: 0 (when
the two aspects are equal), 0.25 (when two aspects share
some people), and 1.0 (when two aspects share nothing).
Jaccard similarity performs best on the People aspect be-
cause the data in this aspect is categorical. Jaccard, how-
ever, does not handle numerical data well as shown in the
results for the Where aspect. Additionally, Jaccard similar-
ity yields worse sum of square errors in all cases. EMD is
thus the most flexible technique as it can handle both types
of data well and yields both high purity and low sum of
square error values.

5.2. MC-Stream Performance

In this section, we compare the performance of MC-
Stream to that of the original CluStream [3]. MC-stream
leverages both aspects in the event contexts, while CluS-
tream can only use the Where aspect. Because the goal of
our approach is to automatically classify events on streams,
we evaluate the techniques by measuring the precision and

2We subtract the similarity from 1 to get a distance.
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(a) Ad-hoc meetings (b) Regular meetings

Figure 5: Clustering quality when using k-medoid with different measures for comparing event aspects and for different ratios between
the number of clusters created and the real number of clusters in the data. Left column: ad-hoc meeting events such as coffee breaks. Right
column: regular meeting events, such as classes.

recall of their classifications. For both techniques, we use
the top-k closest micro-clusters as possible categories for
each newly detected event. For this experiment, we define a
3-level (concrete, semi-abstract, and abstract) hierarchy for
event categories as shown in Figure 6 (concrete instances
such as the “graduate data mining class” are omitted in the
figure). The precision at level l in the hierarchy is the frac-
tion of events in the top-k event clusters that belong to the
same level-l category as the newly detected event. The re-
call at level l is the ratio between the number of events in
the top-k micro clusters that are in the same level-l category
as the newly detected event and the total number of such
events in all micro-clusters. We vary l to observe how well
the algorithms handle events at different levels of abstrac-
tion.

We also vary the number of in-memory micro clusters
to evaluate the performance of the algorithm when the to-
tal amount of memory is smaller than the total number of
clusters in the data. Because we need a larger data set for
this experiment, we generate 13000 events (from 1446 dis-
tinct event types) at 100 events per timestep. The first 3000
events serve for the initial clustering. The timeout thresh-
old to drop old micro-clusters in CluStream is set to 25

Class

Colloquium

Project Coffee 

break

Undergrad Quiz

Graduate
Seminar

Undergrad Graduate

Undergrad
Graduate

Staff Guest

Social

TGIFBreakfast

Faculty 

meeting

Figure 6: Hierarchy of meeting events. Grey events are ad-hoc
events. Concrete event types were omitted in the figure.

timesteps and the maximum boundary threshold for each
cluster is set to 2 standard deviations for both techniques. In
theory, the two parameters may affect to precision and re-
call curves due to changes in the dynamics of micro cluster
maintanence. However, we observed that the results were
not sensitive to either parameter for this data set.

Figure 7 through 10 show the results. In the figures,
C and M denote CluStream and MC-Stream respectively.
The number that follows the letter represents the ratio of
in-memory micro clusters to the number of distinct event
types in the data set (e.g., M 2.0 indicates that twice as
many micro-clusters are in memory as there are distinct
event types).

Figure 7 shows the average precision with respect to top
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Figure 7: Average precision for concrete events w.r.t. number
of top K micro clusters. MC-Stream yields better precision than
CluStream.
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Figure 8: Average precision for semi-abstract events w.r.t. num-
ber of top K micro clusters. CluStream yields slightly better pre-
cision than MC-Stream.

k micro clusters using concrete events in the event hierar-
chy. With enough micro clusters, 70% of events in the top
micro cluster produced by MC-Stream are of the same type
as the newly detected event, while this number is only 30%
for CluStream. At higher levels of abstraction, however,
both techniques yield comparable performance as shown in
Figure 8 and 9.

Figure 10 shows that MC-Stream outperforms CluS-
tream even more significantly in terms of recall. By ex-
ploiting the extra People aspect, MC-Stream’s medoid al-
gorithm clusters the same type of events more closely than
CluStream’s centroid version. Recall for higher levels of
abstraction are very low because the total number of match-
ing abstract events vastly outnumbers that in the top-k micro
clusters.

In summary, our preliminary results show that taking
context information into account when clustering events on
streams can yield better precision and recall than solely us-
ing event attributes.

5.3. Cost of CDM evaluation

In this experiment, we examine whether we can run MC-
Stream at streaming speed. For this, we measure the cost of
CDM distance computations. Because the total evaluation
time of CDM is linear in the number of aspects in the event
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Figure 9: Average precision for abstract events w.r.t. num-
ber of top K micro clusters. CluStream yields slightly better
precision than MC-Stream.
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Figure 10: Average recall at concrete level w.r.t. number of top K
micro clusters. MC-Stream significantly outperforms CluStream.

context, we only evaluate the performance of EMD compu-
tation.

We use the EMD implementation by Rubner et. al com-
piled using GCC 4.1.2 with -O3 -march=pentium4 options.
All values in aspects are randomly generated floating point
numbers. We use Euclidean distance to compare tuples.

Figures 11 and 12 show the average time in milliseconds
from 200 aspect comparisons as we vary the number of at-
tributes and the number of rows in an aspect (standard de-
viations are within 2% of the averages). The results clearly
show that the number of rows affects the evaluation time
more than the number of attributes. However, using more
complex attribute distance measures could also impose a
high overhead. Both figures confirm that CDM evaluations
should be avoided or cached whenever possible; even in
the fastest scenario, we can run only a couple of thousands
evaluations per second. This means that MC-Stream could
be significantly slower than original CluStream which uses
standard distance metric between two vectors. Thus, we
have to organize micro clusters in a structured way to re-
duce the number of distance evaluations rather than simply
scan the whole list of micro clusters. We discuss this opti-
mization next.
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Figure 11: EMD evaluation time w.r.t. number of attributes when
the number of rows is 100. The evaluation time increases linearly
with the number of attributes in an aspect.
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Figure 12: EMD evaluation time w.r.t. number of rows when the
number of attributes is 8. The evaluation time increases approxi-
mately with the cube of the number of rows in an aspect.

6. Discussion

As shown in Section 5.3, CDM evaluations can be ex-
pensive: e.g., even with only 1ms per distance computation,
it takes 3s to compare a context against 3000 micro clus-
ters. Instead of linearly scanning all micro clusters, how-
ever, we can index micro clusters in a tree as in BIRCH [31]
or ClusterTree [29]. Such an index would save unnecessary
CDM evaluations. Figure 13 shows the number of CDM
computations (analytically derived) to reach a leaf node
in a tree with 10K or 1M micro clusters and for different
fanouts. Clearly, smaller fanouts save more computations
reducing them from millions to less than 100. However,
larger fanouts yield better data partitions since small num-
bers of clusters at intermediate nodes cause these clusters to
grow in size. Thus, with a smaller fanout, when retrieving
k closest clusters, we may end up scanning a more signifi-
cant portion of the tree due to huge overlaps at intermediate
nodes. Finding an optimal fanout and structure to minimize
the k closest clusters retrieval cost is an interesting area of
futre work.

The CDM evaluation cost grows with the cube of the
number of rows in an aspect. Thus, reducing the data com-
plexity of an aspect by filtering rows, reducing dimension-
ality, or applying summary techniques such as sketches can
boost performance and is thus interesting future work.
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Figure 13: Number of CDM evaluations to reach the leaf node in
a tree containing 10K or 1M micro clusters. The x-axis shows the
number of medoids in each node in the tree.

Finally, event contexts can be very complex with many
aspects. As we showed, in some cases, adding an extra as-
pect may actually hurt rather than improve performance. An
interesting problem is thus how to select the most significant
aspects to use in order to get good clustering performance
at a low cost.

7. Related Work

There exists significant work on data stream manage-
ment systems [13]. These systems provide effective near
real-time event detection, but offer limited support for the
subsequent investigation of events. In previous work [6],
we proposed an overall system architecture for combining
live and historical stream data and for extracting similar past
events to newly detected ones. In this paper, we go further
and investigate detailed measures for comparing event con-
texts and clustering events using context information.

Similarity queries (e.g., [14, 30]) have been extensively
investigated in the database literature resulting in a multi-
tude of similarity measures. For example, metrics based on
the Cosine Similarity [5] are most appropriate for data ob-
jects comprising categorical values and have been success-
fully used in document searching and ranking of database
query results [4]. CDM currently focuses on numerical
attributes and uses only exact matches for categorical at-
tributes, but it could be extended with such more sophisti-
cated measures. Minkowsky Distance and Quadratic Dis-
tance are suitable to process numerical attributes in vector
metric space models. They are thus applicable to image and
multimedia similarity searching [30], but they can not di-
rectly be used to compare objects like database tuples with
both categorical and numerical attributes. Finally, as we
discussed above, there exist several measures for set com-
parisons (e.g., Jaccard’s coefficient, Hausdorff distance, and
EMD) but EMD has the most suitable combination of prop-
erties for our problem.

Clustering algorithms for static data have been exten-
sively researched in many domains [7, 15]. Traditional al-



gorithms are key to bootstrap MC-Stream by populating the
initial micro clusters. Since it is hard to define a mean for
a set of event contexts, MC-Stream uses a medoid and ra-
dius representation for its clusters. Thus, any medoid-based
clustering algorithm [16, 20] can be used for this step. If
CDM is configured with distance functions that are not met-
ric and is thus no longer a metric, relational clustering algo-
rithm [7, 10] can be used to get the initial clusters.

Multi-relational data clustering [17, 18, 28] is very rel-
evant to clustering event contexts because an event context
is a special case of multi-relational data with a star schema.
The RBDC [17, 18] algorithm hierarchically clusters multi-
relational data based on a similarity measure proposed in
RIBL [11]. CrossClus [28] clusters data stored in multi-
ple relational tables based on user hints and multi-relational
features. It also represents each cluster with a medoid. Both
algorithms can be used to cluster event contexts. How-
ever, they are not designed for data streams. When com-
puting similarity, CrossClus considers only one column in a
joined relation while RDBC and the CDM framework con-
sider entire columns. Both RIBL and the CDM framework
recursively compute similarity (or dissimilarity) measures.
However, they aggregate the measures of multiple tuples
differently. The relevant feature-search technique proposed
in CrossClus is orthogonal to our approach.

Data stream clustering algorithms have also extensively
been researched. CluStream [3] performs micro clustering
online and macro clustering offline upon user requests. Mi-
cro clusters are represented with a feature vector similar to
BIRCH. In this paper, we extended CluStream to handle a
complex data type such as an event context. Similarly, D-
Stream [9] combines grid and density based clustering but it
is unclear how it could be adapted to cluster event contexts.
STREAM [21] proposed a k-median data stream clustering
algorithm. This algorithm, however, does not offer signifi-
cant advantages over the micro clustering approach because
the clustering and classification processes are separated.

8. Conclusion

General-purpose stream processing engines are well-
suited for near real-time monitoring tasks, but have limited
support for the investigation of new events using histori-
cal data. Algorithms for automatically classifying events
on streams through clustering exist but use only event at-
tributes. In this paper, we described and evaluated the Con-
text Distance Measure (CDM) framework for computing
distances between events on streams using complex, user-
defined context information. We also proposed MC-Stream,
a new online clustering algorithm that efficiently groups
events on streams using CDM to take their contexts into
account. When extracting the top-k most similar clusters
for a newly detected event, we showed that using context

information and MC-Stream improves precision and recall
compared to using existing techniques based solely on event
attributes. Overall, supporting automatic classification and
forensic analysis of events in SPEs is an important task and
we view this work as an important step in this direction.
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