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Physical Access Control
for Captured RFID Data

R
adio frequency identification tech-
nology has become popular as an
effective, low-cost solution for tag-
ging and wireless identification.
Although early RFID deployments

focused primarily on industrial settings, successes
have led to a boom in more personal, pervasive
applications such as reminders1 and eldercare.2

RFID promises to enhance many everyday activ-
ities but also raises great challenges—in particu-
lar, with respect to security and privacy.

At the University of Washington, we’ve de-
ployed the RFID Ecosystem, a pervasive com-

puting system based on a build-
ing-wide RFID infrastructure
with 80 RFID readers, 300
antennas, tens of tagged people,
and thousands of tagged ob-
jects.3 The RFID Ecosystem is
a capture-and-access system
that streams all data from the
readers into a central database,
where applications can access

it. Our goal is to provide a laboratory for long-
term research in security and privacy, as well as
applications, data management, and systems is-
sues for RFID-based, community-oriented per-
vasive computing.

RFID security is a vibrant research area, with
many protection mechanisms against unautho-
rized RFID cloning and reading attacks emerg-
ing.4 However, little work has yet addressed the
complementary issue of protecting the privacy of
RFID data after an authorized system has cap-
tured and stored it. We’ve investigated peer-to-

peer privacy for personal RFID data through an
access-control policy called Physical Access Con-
trol. PAC protects privacy by constraining the data
a user can obtain from the system to those events
that occurred when and where that user was phys-
ically present. While strictly limiting information
disclosure, PAC also affords a database view that
augments users’ memory of places, objects, and
people. PAC is appropriate as a default level of
access control because it models the physical
boundaries in everyday life. Here, we focus on the
privacy, utility, and security issues raised by its
implementation in the RFID Ecosystem.

Privacy and utility in pervasive
architectures

The 18th-century legal philosopher Jeremy
Bentham first described the perfect architecture
for surveillance: the panopticon, a prison that
arranges its cells about a central tower from
which a guard can monitor every cell while
remaining invisible to the inmates. The architec-
ture’s innovation is that the guard’s presence
becomes unnecessary except for occasional pub-
lic demonstrations of power. Many privacy con-
cerns in pervasive computing stem from a similar
potential for an unseen observer to access and act
on data about someone else. Under these condi-
tions, the “state of conscious and permanent vis-
ibility [assures] the automatic functioning of
power”5 because individuals must constantly
conform to the code of conduct their peers or
superiors hold them to.

Just as surveillance can be built into an archi-
tecture, so can privacy assurances. Our funda-

To protect the privacy of RFID data after an authorized system captures it,
this policy-based approach constrains the data users can access to system
events that occurred when and where they were physically present.
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mental conviction regarding privacy in
the RFID Ecosystem is that privacy must
be designed into the system from the
ground up. The challenge in architecting
privacy into a pervasive-sensing system
is to provide enough utility to support
the desired applications suite while care-
fully controlling what information to
disclose, to whom, how, and under what
conditions. Effective decisions must ho-
listically trade off privacy and utility.6 In
particular, a proposed privacy mecha-
nism must consider perspectives and
methods from computer security, data-
bases, human-computer interaction, and
the social sciences. Only in this way can
we understand the mechanism’s security
vulnerabilities, how well it matches
users’ expectations of privacy, how easy
it is to understand, and its utility.

Most pervasive-sensing systems rep-
resent one of two architectural models:
wearable or infrastructure. Generally
speaking, each model makes different
trade-offs between privacy and utility.
The wearable model processes and stores
sensors and data on devices that the user
owns and wears. MyLifeBits embodies
this model: users wear microphones,
video cameras, and other sensors that
continually record sensor data.7 Such
systems can put the device wearer in con-
trol if they store the data locally and dis-
close no information without the user’s
explicit consent. These “perfect mem-
ory” systems, however, pose privacy
concerns for others who encounter the
user but don’t consent to information
capture.8 Plausible deniability is lost:
although human memory is lossy, cap-
tured sensor data isn’t.

In contrast, the infrastructure model
has a central authority that manages sen-
sor data on users’ behalf. This model
gives rise to the threat of permanent vis-
ibility, but we adopted it for the RFID
Ecosystem because it enables much
richer services through data and resource
sharing. It’s also less expensive because

cost is amortized over many users. More-
over, a central database allows a system
to leverage database security and privacy
techniques such as privacy-preserving
data mining9 and k-anonymity.10 These
techniques enable privacy-preserving sta-
tistical queries that complement and
extend the utility of careful access con-
trol for point queries, such as “When did
I see Bob today?” A principled, privacy-
sensitive framework for managing data
should employ both statistical and point
queries—as in a Hippocratic database,11

for example. However, our focus here is
on point queries under one possible
access control policy.

PAC: How it works
We could define many access-control

policies for captured RFID data. For
example, policies might allow a manager
to track employee location during work
hours, support staff to locate inventory
objects, and individual users to grant
conditional tracking permissions to their
friends. However, these policies present
problems when applied as a default. The
managerial example raises surveillance
concerns, the object finder can be abused
to track people, and user-defined poli-

cies often lack foresight and vigilance.12

On the other hand, a restrictive policy
that lets users access only their own data
precludes many interesting applications
that might be safe.

Marc Langheinrich argues that prox-
imity-based disclosure could limit the
surveillance threat.13 PAC implements
this proposal. It attempts to realize the
spatial privacy features of wearable sys-

tems within an infrastructure architec-
tural model. We propose it as a default
access-control policy because it models
spatial privacy in everyday life. It places
upper and lower bounds on accessible
information, restricting the information
users can obtain to what they could have
observed in person. Specifically, a user
can “see” other users and her own
tagged objects at any time and place
when she was physically present, but
can’t see the other users’ objects. For
each user, the database stores a persis-
tent record of all encountered persons
and personal objects. PAC thus respects
Yitao Duan and John Canny’s data dis-
cretion principle,14 which states that
users should have access to media
recorded when they were physically pre-
sent and shouldn’t when they weren’t
present. We believe that PAC provides
an intuitive, easily understandable flow
of captured information.12

Although PAC is conservative in the
information it reveals, its memory-like
view of the data provides useful service
primitives. For example, a user’s query
on the location of his lost object will
return the location where he last saw
it—a likely answer. Queries over a

user’s entire history of activities could
enable other personal-memory appli-
cations—for example, a reminder ser-
vice that alerts users when they forget to
take an item with them as they go home
for the day.1 This balance between
privacy and utility makes PAC a suit-
able default access-control policy for
a pervasive RFID deployment. More-
over, privacy-preserving extensions and 
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relaxations of PAC could enable an even
greater range of applications. As such,
rather than plunge a community into an
information-promiscuous environment,
our strategy is to start with information
disclosure commensurate with everyday
life and carefully extend it as needed for
useful applications.

Implementation
RFID systems collect data as a stream

of triples having the form (Identity, Location,
Time). PAC defines a database view con-
sisting of only those triples representing
a user’s own location and the locations
of users and objects he or she could plau-
sibly have seen. A database respecting
the PAC policy always responds to a
user’s queries through her view, rather
than the complete data—in other words,
PAC employs a Truman model.15 For
example, if a user asks, “How many peo-
ple were on the fourth floor yesterday?”
the system effectively responds, “You
saw five people on the fourth floor,”
instead of “You saw five out of the 11
total people on the fourth floor.”

A PAC implementation thus requires

a procedure for inferring when a user
could plausibly have seen another user
or object. Our implementation relies on
a notion of mutual visibility for this pro-
cedure. Two users or a user and an object
are mutually visible if they share an
unobstructed line of sight. Every such
instance of mutual visibility is called a
visibility event. 

Consider the scenario in figure 1. It
presents a snapshot of six users, A–F,
going about their daily routines and a
table enumerating all visibility events.

This definition of mutual visibility is
an ideal that the system must approxi-
mate using captured sensor data. In the
RFID Ecosystem, the mutual-visibility
computation incorporates the spatio-
temporal relationships between the
RFID tag reads that antennas collect.
The RFID Ecosystem’s formal definition
of mutual visibility depends on these
relations between tag reads:

• Spatial. Determining the unobstructed
line of sight between two tag reads
poses two challenges. First, a sighted
tag’s exact location is unknown; in-

stead, the antenna’s location serves as
a proxy for the tag’s location. Second,
two tags might be mutually visible yet
read by two different antennas, which
motivates the definition of mutually
visible antennas: pairings of antennas
A1 and A2 such that the system can
interpret a tag read at A1 as mutually
visible with a tag read at A2.

• Temporal. By protocol, each antenna
reads tags rapidly and in sequence, so
two tags are rarely read at exactly the
same time. We therefore use a para-
meterizable time window, �, that de-
fines how close in time two tag reads
must occur for the tags to be consid-
ered mutually visible.

We can now express a formal defini-
tion of mutual visibility in terms of the
data captured by the system: Two tags
X and Y are mutually visible if X is
read by antenna A1 at time tX and Y is
read by antenna A2 at time tY, such that
|tX � tY| � � and A1 and A2 are mutually
visible.

This definition yields the visibility
events marked in figure 1. In this sce-
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nario, antennas 18 and 15 are mutually
visible, so the system will correctly inter-
pret A and C as mutually visible at t = 3.
In contrast, antennas 11 and 12 are not
mutually visible, so E and C won’t be
considered mutually visible. Note how
varying � tunes mutual visibility’s strict-
ness. In figure 1, � = 1, so the system
never detects D and A as mutually visi-
ble; however, if � = 2, then they are mutu-
ally visible during time steps 5 to 7.

Users, objects, and ownership
We distinguish between user tags and

object tags. A user can see an object’s
location only when the user and object
are mutually visible and the user owns
that object. The ownership restriction is
required because RFID tags are readable
through opaque materials, such as back-
packs. X-ray vision is not part of the
PAC information ethic. In our current
model, ownership is simple: each object
is singly owned. However, our goal is to
study community-oriented systems, so
future work will need to investigate how
PAC can operate with shared objects.

Measuring mutual visibility
Given a pair of antennas Ai, Aj, we

would like to label them as mutually vis-
ible or not in a way that minimizes false
visibility events. Our approach has been
to label each antenna pair with the prob-
ability that two tags in these coverage
areas share a line of sight. The motiva-
tion is to give system administrators a
way to systematically reason about po-
tential information leakage.

One method is to sample a large num-
ber of points from each antenna’s ex-
pected coverage area and calculate the
fraction of point pairs that share a line
of sight. Let Ci and Cj be two sets of
points uniformly drawn from Ai’s and
Aj’s respective coverage areas and let
visiblePoints(pa, pb) be 1 when points pa

and pb share a line of sight, and 0 other-
wise. Then

We then consider Ai, Aj mutually visible
if visibility(Ai, Aj) � �, where � sets the
lower bound on the fraction of point
pairs that must share a line of sight for
two antennas to be considered mutually
visible. With � = 1.0, all points must
share a line of sight, providing the high-
est privacy by minimizing falsely de-
tected, mutually visible tags. However, 

� = 1.0 will likely miss many actual visi-
bility events, thus degrading utility. After
studying our deployment, we labeled the
antennas we thought should be mutu-
ally visible, yielding � = 0.84.

This measure has limitations. First, �
is an approximation because true an-
tenna coverage varies over time and with
environmental conditions. Second, an-
tennas can sometimes read through
opaque surfaces (for example, an inte-
rior laboratory window with curtains
drawn). Further techniques are necessary
to accurately model antenna behavior.

PAC feasibility
Our definition of PAC assumes a well-

behaved, lossless model for our RFID
equipment. We therefore wanted to de-
termine how PAC performed in a real
deployment with antennas that might not
behave as expected. Erroneous behavior
can have adverse effects on both privacy
and utility. For example, privacy viola-
tions can occur if an antenna reads a tag
beyond its expected range (possibly caus-
ing false visibility events); likewise, util-
ity can be degraded when an antenna fails

to read a tag. Here, we discuss our exper-
iment to evaluate PAC in practice.

Experimental setup 
and methodology

We evaluated PAC over a set of user
scenarios that cover some ways visibil-
ity events could occur. For each scenario,
we enacted multiple trials and collected
the corresponding stream of raw tag
reads that the antennas captured on each
trial. For each trial, we also captured
ground-truth location data. A simulator
then processed the ground truth data,

producing a stream of simulated tag
reads that models the case of a well-
behaved, lossless RFID deployment.

Representative scenarios. A visibility
event can occur in many ways. We’ve
defined four scenarios that, while not
exhaustive, represent common types of
visibility events:

• In the personal-objects scenario, a sin-
gle user walked around the halls carry-
ing six tagged objects on various parts
of the body and inside a duffel bag. 

• In the glimpses scenario, one user
stood at one end of a hallway while
another entered the opposite end from
an office and quickly walked around
the corner. 

• In the walking-together scenario, two
users walked around the hallways
together. 

• In the passing-by scenario, two users
passed one another while walking in
opposite directions.

Data collection and ground truth. The
scenarios gave a rough script for exper-
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imenters to follow. To collect ground
truth accurately for each trial, experi-
menters used tablet PCs with a map-
based data-collection tool.16 Using the
tool’s stylus, experimenters could track
their current location as they enacted
the scenarios by moving a cross-hair to
the corresponding location on a map.
In this way, each trial produced an
XML trace of time-stamped latitude
and longitude coordinates. This trace is
fed to the simulator to produce the sim-
ulated tag reads. On the basis of expe-
rience with our RFID deployment, we
set the antenna coverage area as a cir-
cle with a 2-meter radius about the
antenna.

Comparing visibility events. For each pair
of tags X and Y in a given trial, we com-
pared the visibility events detected in the
raw and simulated data. Let S and R
denote the set of all visibility events for
X and Y in the simulated and raw data,
respectively. By definition, a visibility
event v occurs during a window of time
(tX, tY) such that |tX – tY| � �. We define
the visibility-event time stamp of v as �v

= (tY + tX)/2. A visibility event s in S
occurs in R if there exists an r in R such
that | �r – �s | � �. So, a visibility event
in S also occurs in R when a visibility
event in R has a time stamp within � of
the visibility-event’s time stamp in S. In
our experiments, � = 1 second.

To measure privacy and utility, we

compared the recall and precision of the
visibility events detected in the raw and
simulated data. Recall measures utility
according to the fraction of simulated
visibility events that also occurred in the
raw data. A recall of 1 indicates that the
raw data accurately captured all visibil-
ity events in the simulated data. A recall
less than 1 indicates that the simulation
missed some visibility events because of
missed tag reads. In contrast, precision
measures privacy according to the frac-
tion of detected visibility events that also
occurred in the simulated data. A preci-
sion less than 1 indicates privacy loss
because the system detects false visibil-
ity events.

Computing results. We performed 10 tri-
als of each scenario. After each trial, we
calculated precision and recall for the vis-
ibility events of every tag pair. We then
computed the mean and standard devia-
tions of precision and recall across all the
trials for these visibility events. In the per-
sonal-objects scenario, visibility events
occur between the experimenter and each
of his or her objects. In this case, we give
the average and standard deviation ac-
ross all these pairings.

Results
Figure 2 shows the precision and recall

for all four scenarios. The experimental
outcome is encouraging and indicates
that PAC can indeed operate effectively

in a lossy environment to provide both
privacy and utility.

Privacy. The high precision demonstrates
that nearly all the visibility events
detected by our RFID deployment also
occurred in the simulated data, suggest-
ing that little information leaked. This
result also verifies the integrity of the
data-collection procedure because high
precision depends on correct ground
truth input.

Utility. Recall suffers when antennas fail
to read tags and so miss visibility events.
This can happen for various reasons,
such as the properties of the material to
which the tag is affixed and the tag’s ori-
entation with respect to the antennas.
The tags hung from the experimenters’
shirt or pants. This resulted in high read
rates for the user tags (recall between 90
and 95 percent) in all the experiments
and correspondingly high detection of
visibility events between user tags (more
than 80 percent).

In the personal-objects scenario, we
observed lower recall because the
antennas couldn’t consistently read the
tags in pockets or the duffel bag. How-
ever, several algorithms and tools could
ameliorate this problem by cleaning
RFID data. We evaluated whether such
tools could improve PAC performance
by comparing the precision and recall
of the raw data stream against a third
set of tag reads produced by the PEEX
(Probabilistic Event Extractor for RFID
Data) research prototype.17 PEEX uses
integrity constraints to correct raw
RFID data. We ran PEEX with a few
integrity constraints that capture logi-
cal, physical relations between objects
and people (for example, an object can’t
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move by itself). Figure 2 shows that
PEEX significantly improves recall in
the personal-objects and walking-to-
gether scenarios (t-test with p < 0.001),
without affecting precision.

Overall, our results show the practi-
cal feasibility of employing PAC. Despite
the noisy, lossy, and inaccurate nature of
real RFID data, PAC effectively limits
information disclosure while providing
good system utility. It captures user-user
interactions quite well. Inherent RFID
unreliabilities hamper the capture of
user-object interactions, but even simple
cleaning tools such as PEEX significantly
improve performance in this area.

“Misplaced” user tags
Our PAC implementation assumes

that users are always wearing their user
tags. We must, however, anticipate users
who accidentally or intentionally “mis-
behave.” For example, Alice might acci-
dentally forget her user tag in Bob’s
office, or she might maliciously place it
in Bob’s backpack. In both scenarios,
the system would incorrectly believe
that Alice is in Bob’s proximity and
would grant her access to his data. (Such
errors aren’t possible with object tags
because they can only be mutually visi-
ble with their owner.)

We’re developing several mechanisms
for addressing “misplaced” user tags. We
focus here on users who intentionally mis-
behave; mechanisms that defend against
malicious parties will also account for
accidental misuse. Our defensive tech-
niques fall under the principle of security
risk management. While an adversary
might still be able to circumvent our secu-
rity mechanisms, the cost of mounting an
attack against users’ privacy should out-
weigh the benefits to the adversary.

Detection
The threat of detection can deter mali-

cious activities because it might lead to
social sanctions and punitive measures for

the offending party. We’re exploring two
classes of detection mechanisms. First, the
RFID Ecosystem could automatically
detect anomalies in a user tag’s move-
ments. The system could trigger an alert
if Alice’s user tag is always mutually visi-
ble with Bob or one of Bob’s objects, such
as his backpack, or if Alice’s user tag has
been in an unusual location for too long.

Second, because nonvisually impaired
users generally know the ground truth
about the people (or at least the num-
ber of people) in their immediate vicin-
ity, we can explicitly involve users in
anomaly detection. For example, Bob
could detect Alice’s maliciously planted
RFID user tag if he’s in an elevator alone
but the elevator’s front panel says that
there are two occupants.

Prevention
We’re exploring two classes of pre-

vention mechanisms: making attacks too
costly or inconvenient for adversaries
and periodically verifying that the RFID
user tags are in the appropriate user’s
possession.

One method for increasing the cost to
an adversary is to combine user tags with
expensive or essential devices, such as

cell phones or employee badges. A sec-
ond method is to stop capturing reads
for user tags that become separated from
their legitimate owners. For example, we
could consider a user tag “capturable”
for n time units whenever the RFID
Ecosystem detects that the legitimate
user is actually in possession of that
tag—say, by detecting when the tag
enters that user’s office.

Other attack vectors
Alice could share her legitimate obser-

vations of Bob (as accessed through the
PAC system) with Charlie, thereby re-
vealing to Charlie information about
Bob’s location that Charlie couldn’t have
observed. Direct attacks on the RFID
hardware (for example, cloning tags) are
also possible, but we don’t consider them
here. (Ari Juels surveys the state of the
art in preventing such attacks.4)

Future work
We’re focusing our future work in

three areas.

Principled PAC relaxations
We’re looking at other access-control

mechanisms to implement alongside PAC
to provide additional information when
socially appropriate. For example, user-
defined access-control rules are impor-
tant for applications that rely on shared
context between users, such as location-
shared buddy lists.18 Because users ex-
plicitly grant permission to make their
information available when they opt in
to such applications, physical proximity
is not a necessary access requirement.

Socially situated events offer another

potential relaxation. For example, an
augmented calendar system might let a
user query the location of a meeting’s
invitees during the scheduled meeting
time. Such a relaxation would give users
socially acceptable information at par-
ticular times.

A third class of relaxations could
involve mediation with the system. For
example, a lost object’s owner might
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request its location. The system could
choose to reveal the object’s location to
the requester, or it could send an email to
the person most recently detected to have
moved it. By involving the system or an
administrator, this relaxation could pre-
vent abuse by not revealing sensitive
information while still supporting use-
ful actions.

Finally, an opportunistic access-
control scheme19 could let users access
private information in rare circum-
stances such as emergencies. Adminis-
trators would log and investigate these
actions to decide if they were legitimate.
Determining the conditions and fre-
quency under which to use this access
mechanism is an open problem.

User studies
We still need to empirically validate our

assertion that PAC is an intuitive policy
that will match users’ expectations of pri-
vacy in everyday life. Moreover, a number
of studies have examined user privacy
expectations for captured audio and video
data (for example, Giovanni Iachello and
his colleagues20) and disclosure of infor-
mation to others across potentially great
distances (for example, Sunny Consolvo
and her colleagues21), but few studies
examine how physical space factors into
people’s expectations of privacy for cap-
tured RFID data. Apu Kapadia and his
colleagues have begun to explore the use
of spatial metaphors,22 but further work
is necessary. The PAC definition and
implementation has helped in obtaining
the Institutional Review Board “minimal
risk” approval for these user studies.

Probabilistic data
We’ve demonstrated that using PEEX

to clean data enhances data utility, but
PEEX can also produce probabilistic
data. In this case, each tuple has an asso-
ciated probability that represents the sys-
tem’s confidence about its validity. 

Implementing PAC in a probabilistic

context leads to a challenging problem.
Suppose user A asks, “Is user B currently
at location L?” If A is at L, then PAC
allows the correct answer. If A isn’t at L,
then PAC refuses to reveal B’s location.
However, cleaned data would assign
probabilities pA and pB to the chance that
A is at L and B is at L, respectively. In the
probabilistic context, the correct answer
is no longer yes or no but pB. Yet the sys-
tem can’t return pB when A isn’t at L. 

One approach is to return pA • pB, the
probability that both A and B are at L.
However, this reveals too much. Even if
pA is small (A is not likely to be at L), A
can still compute pB. More generally, the
requirement is that if A is likely to be at
L (pA is large), then the system should
reveal pB. Otherwise, the system should
hide this information. One ad hoc strat-
egy is to return min(pA, pB). We plan to
explore more principled approaches that
fulfill this requirement.

T
he RFID Ecosystem project
aims to research socially appro-
priate RFID systems to provide
the community (including busi-

nesses and policy makers) examples of
effective methods for balancing utility
with privacy. PAC is a first step in this
direction because, as a default access con-
trol policy, it provides an upper and lower
bound on accessible information that
models human experience. It also leaves
open the possibility of utility-enhancing
extensions. Our experiments show that
PAC is a practical solution that works
well in a real-world RFID deployment
where sensors are unreliable.
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