
Advanced Clone-Analysis to Support Object-Oriented System Refactoring

Magdalena Balazinska1, Ettore Merlo2, Michel Dagenais2, Bruno Lague3, Kostas Kontogiannis4

(1) Dept. of Computer Science and Engineering, University of Washington,
(2) Dept. of Computer and Software Engineering,École Polytechnique de Montréal,

(3) BroadSoft, Montreal, (4) Dept. of Electrical and Computer Engineering, University of Waterloo

1. Abstract

Clone detection and re-factoring have grown in impor-
tance over the past 10 years. In this talk, we will briefly
review the WCRE 2000 work and discuss the advances in
the field.

The WCRE 2000 paper presented a computer assisted
clone re-factoring approach. The process was based on
metric-based clone analysis that produced clone clusters.
Clones in the same cluster were then compared using token-
based dynamic programming (DP) matching. Token-based
clone differences, which included insertions, deletions,and
substitutions, were then projected on to the ASTs corre-
sponding to clones. Re-factoring opportunities were eval-
uated using: (1) classification of differences involving su-
perficial differences, signature changes, and type changes,
(2) number of differences, and (3) size of candidate clones.
Selected clones were automatically re-factored using ”strat-
egy” and ”template” design patterns. Experimental evalua-
tion was performed on JDK1.1.5 from Sun Microsystems.

Significant work followed over the next years address-
ing problems that include matching algorithms, scalability,
and integration of clone detection in software engineering
activities such as maintenance, evolution, and re-factoring.
Several interesting surveys can be found in the literature to-
gether with a list of problems, many of which remain open
today. In particular, recent work on software clones in-
cluded new approaches to clone detection based on prefix
and suffix trees, approaches to detection involving source
code analysis based on latent semantic analysis, and clone
identification techniques using analysis of program depen-
dence graphs. In other works, a canonical representation
of clones was developed and used for matching and com-
parison; interesting discussions about harmfulness of clones
have also been reported; and empirical studies and evalua-
tions of clone detection approaches can be found in several
research papers. Evolution aspects have been taken into
consideration in terms of evolution of clones and their life-
time over several versions of a system and in terms of soft-

ware evolution by computing various similarity measures
between versions. Clone research has also touched upon
several interesting applications: intellectual propertyissues
such as license infringement and plagiarism of source code
have been addressed using software similarity concepts; in-
cremental approaches to clone detection have been investi-
gated; clones and similarity between structured software ar-
tifacts such as trees and graphs has been introduced; detec-
tion of bugs caused by inconsistent modifications between
clones in a systems and between fragments in several soft-
ware releases has been investigated; domain specific clones
have been studied; and approaches for clone visualization
have been proposed. Finally, new specialized workshops
and conferences on clones and on mining software reposi-
tories have been organized.

There are many open problems that remain and possible
areas for future work in CLAN (CLone Analysis) toolset
including the definition of clones; addressing type III (simi-
lar) and simple type IV (semantic) clones; performance and
scalability aspects; taxonomies of clones; clone classifica-
tion and statistics including frequent patterns of similarity in
large systems; inconsistent modifications of clones in one
version of a system and inconsistent source code changes
over several versions of a system leading to a taxonomy of
identifiable bugs; clone matching by parallelizing and im-
plementing it on a Graphical Processing Unit (GPU); in-
tellectual property and plagiarism detection using spectral
clone analysis; increase recall while maintaining precision;
clone maximality issues under thresholds; and more.

2. Acknowledgements

The authors wish to thank Bell Canada for the original
funding of the software quality assessment project that in-
cluded clone detection and re-factoring. Recent and current
research has been funded by the Natural Sciences and En-
gineering Research Council of Canada under the Discovery
Grants Program.

1


