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Query-Based Data Pricing
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Data is increasingly being bought and sold online, and Web-based marketplace services have emerged to
facilitate these activities. However, current mechanisms for pricing data are very simple: buyers can choose
only from a set of explicit views, each with a specific price. In this article, we propose a framework for
pricing data on the Internet that, given the price of a few views, allows the price of any query to be derived
automatically. We call this capability query-based pricing. We first identify two important properties that
the pricing function must satisfy, the arbitrage-free and discount-free properties. Then, we prove that there
exists a unique function that satisfies these properties and extends the seller’s explicit prices to all queries.
Central to our framework is the notion of query determinacy, and in particular instance-based determinacy:
we present several results regarding the complexity and properties of it.

When both the views and the query are unions of conjunctive queries or conjunctive queries, we show
that the complexity of computing the price is high. To ensure tractability, we restrict the explicit prices to be
defined only on selection views (which is the common practice today). We give algorithms with polynomial
time data complexity for computing the price of two classes of queries: chain queries (by reducing the problem
to network flow), and cyclic queries. Furthermore, we completely characterize the class of conjunctive queries
without self-joins that have PTIME data complexity, and prove that pricing all other queries is NP-complete,
thus establishing a dichotomy on the complexity of the pricing problem when all views are selection queries.
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1. INTRODUCTION

Whether for market research, targeted product advertisement, or other business
decisions, companies commonly purchase data. Increasingly, such data is being
bought and sold online. For example, Xignite (xignite.com) sells financial data, Gnip
(gnip.com) provides data from social media, PatientsLikeMe (patientslikeme.com) sells
anonymized, self-reported, patient statistics to pharmaceutical companies, and Agg-
Data (aggdata.com) aggregates various types of data available on the Web. To sup-
port and facilitate this online data market, Web-based marketplace services have re-
cently emerged: The Windows Azure Marketplace (datamarket.azure.com) offers over
100 data sources from 42 publishers in 16 categories, and the Infochimps Data Market-
place (infochimps.com/marketplace) offers over 10,000 data sets from multiple vendors.
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Current marketplace services do not support complex ad hoc queries, in part because
it is not clear how to assign a price to the result. Instead, sellers are asked to define
a fixed set of (possibly parameterized) views and assign each a specific price. This
simplistic approach not only forces the seller to try and anticipate every view in which
a buyer might be interested, but also forces the buyer to browse a large catalog of
views with possibly unknown redundancies and relationships and then purchase some
superset of the data they actually need. Worse, this pricing model can expose non-
obvious arbitrage situations that can allow a cunning buyer to obtain data for less
than the advertised price. A better approach, which we explore in this article, is to
allow the seller to assign prices to a manageable number of views and automatically
derive the correct price for any query.

Consider an example. CustomLists (customlists.net) sells the American Business
Database for $399; a customer can also buy the subset of companies that have an email
address for $299 or only information about businesses in Washington State for $199.
A customer interested only in a set of specific counties in various states may not be
willing to pay $399 for data she does not need, and so refuses to buy. In response, the
seller might provide a view for each county in every state. However, the relationship
between state-based pricing and county-based pricing is difficult for either the seller or
the buyer to reason about, and inconsistencies or arbitrage situations may result. For
example, if the database does not contain any business information for some fraction
of counties in a state, then purchasing the data for the remaining counties could be
cheaper, yet could yield the same information content as purchasing the data for the
entire state.

Query-based Pricing. To address this challenge, in this article we propose a frame-
work for pricing data on the Internet that allows the seller to set explicit prices on
only a few views (or sets of views), yet allows the buyer to issue and purchase any
query1. The price of the query is derived automatically from the explicit prices of the
views. Thus, buyers have full freedom to choose which query to buy, without requiring
the seller to explicitly set prices on an exhaustive catalog of all possible queries. We
call this pricing mechanism query-based pricing. Our mechanism is based on a recent
economic theory of pricing information products based on versions [Shapiro and Varian
1998] (reviewed in Section 7), in the sense that each query corresponds to a version.
Since every query (in a given query language) is a version, our framework allows a
large number of versions, and, as a consequence, appeals to large variety of buyers
with a large variety of needs. Buyers with different needs are able to choose which
queries to buy, based on the value that they associate to the data.

Formally, query-based pricing consists of a pricing function, which takes as input
a database instance and a query (or set of queries) and returns a nonnegative real
number representing the price. We argue that a reasonable pricing function should
satisfy two axioms.

First, the pricing function should be arbitrage-free. Consider the USA business
dataset: if p is the price for the entire dataset and p1, . . . p50 the prices for the data in
each of the 50 states, then a rational seller would ensure that p1 +· · ·+ p50 ≥ p. Other-
wise, no buyer would pay for the entire dataset, but would instead buy all 50 states sep-
arately. In general, we say that a pricing function is arbitrage-free if whenever a query
q is “determined” by the queries q1, . . . , qn, then their prices satisfy p ≤ p1 + · · · + pn.

Second, the pricing function should be discount-free. This axiom concerns the way
the pricing function is derived from the explicit views and prices set by the seller.
In general, there may be several arbitrage-free pricing functions that agree with the

1Throughout the article, we will follow the convention of calling the queries for which the seller sets explicit
prices views and the queries the buyer asks queries.
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prices that are explicitly set by the seller; the discount-free axiom requires that the
pricing function should also be a maximal one.

Contributions. We present several results on query-based pricing.
Our first result is a simple but fundamental formula for computing an arbitrage-free,

discount-free pricing function that agrees with the seller’s explicit price points, and for
testing whether one exists; if it exists, we call the set of price points consistent. To
check consistency, it suffices to check that no arbitrage is possible between the explicit
price points defined by the seller: there are only finitely many arbitrage combinations
between the views explicitly priced by the seller, as opposed to the infinitely many
arbitrage combinations on all possible queries; hence, consistency is decidable. When
the set is consistent, the pricing function is unique, and is given by the arbitrage-
price formula (2). This formula immediately gives an explicit, yet inefficient method
for computing the price, which is presented in Section 2.

Second, we turn to the tractability question. We show that even when the seller’s ex-
plicit price points are restricted to selection queries (which is the common case for data
sold online today), the decision version of the problem of computing the price of certain
conjunctive queries is NP-hard in the size of the input database. However, we show
that for a large class of full conjunctive queries (which include cyclic and chain queries),
computing the price can be done efficiently (PTIME) when all explicit price points are
selection queries. This class includes all path joins, like R(x, y), S(y, z), T (z, u), P(u, v),
star joins, like R(x, y), S(x, z, u), T (x, v), P(x, w), and combinations.

In order to show the tractability for this class of queries, we provide two algorithms.
The first algorithm prices chain queries and is based on a nontrivial reduction to the
MIN-CUT problem in weighted graphs, which is the dual of the MAX-FLOW problem
[Cormen et al. 2001], Section 5.5. The second algorithm prices cyclic queries and re-
duces the problem to a BIPARTITE MATCHING problem. Moreover, we provide several
constructions that can reduce queries to either a cyclic or a chain query.

Third, we study the complexity of all conjunctive queries without self-joins. We prove
a dichotomy of the data complexity of all conjunctive queries without self-joins, in
PTIME or NP-complete, in Section 5.4: this is the main result of our article. In partic-
ular, we show that if a query can not be reduced to a chain or cyclic query, then it is
NP-hard to price.

Our definition of arbitrage is based on a notion of query determinacy. Informally,
we say that a set of views V determines some query Q if we can compute the answer
of Q only from the answers of the views without having access to the underlying
database. If V determines Q, then a potential buyer interested in purchasing Q can
purchase V instead, and derive from it the answer to Q: arbitrage occurs when the
price of V is lower than that of Q. Information-theoretic determinacy, denoted V � Q,
is discussed by Segoufin and Vianu [2005] and by Nash et al. [2007, 2010] and is
a notion that is independent of the database instance; their motivation comes from
local-as-view data integration and semantic caching, where an instance independent
rewriting is needed. For query-based pricing, however, the database instance cannot
be ignored when checking determinacy, since the price normally depends on the state
of the database. For example, consider a query Q1 that asks for the businesses that
are located in both Oregon and Washington State and a query Q2 that asks for the
restaurant chains located in Oregon, Washington, and Idaho. In general, we cannot
answer Q2 if we know the answer of Q1. But suppose we examine the answer for Q1
and note that it includes no restaurant chains: then we can safely determine that Q2
is empty.

We define instance-based determinacy, D � V � Q, to mean that, for all D′ if
V (D′) = V (D), then Q(D) = Q(D′). Information-theoretic determinacy is equivalent
to instance-based determinacy for every instance D. We prove several results on the
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complexity of checking instance-based determinacy: for unions of conjunctive queries,
it is �P

2 , and the data complexity (when V, Q are fixed and the input is only D) is co-
NP complete (Theorem 3.6). When the views are restricted to selection queries (which
is a case of special interest in query-based pricing), then for any monotone query Q,
instance-based determinacy has polynomial time data complexity, assuming Q itself
has PTIME data complexity (Theorem 5.6).

Lastly, we consider various practical generalizations of the pricing problem and
discuss how to adapt our framework to handle them. We begin by showing why query
containment fails as an abstraction for pricing. We next generalize selection-based
pricing to the case where the views V are defined as a conjunction of selections over
multiple attributes instead of just one. We then discuss the effect of allowing self-joins
in the query Q. Lastly, we show how our framework can be easily extended to price
certain types of sets of queries, {Q1, Q2, . . .}, called bundles, instead of pricing just a
single query Q at a time. Note that purchasing multiple queries simultaneously can be
cheaper than buying them independently since purchased views may be shared across
more than one query.

Organization. We begin by formally defining the basic pricing axioms and the general
query pricing problem in Section 2. We introduce instance-based determinacy and
analyze its complexity in Section 3. In Section 4, we discuss the complexity of pricing
(based on instance-based determinacy). Section 5 presents our main contribution where
we restrict the pricing problem to the practically useful and tractable case of pricing
where views are selections and the queries are UCQs, and prove the dichotomy result
that separates the problem of pricing the queries that are UCQs into a polynomial-time
fragment and an NP-hard fragment. In Section 6, we briefly discuss several practical
generalizations of the basic pricing problem as defined in Section 2. We present related
literature and conclude in Section 7 and Section 8 respectively.

2. THE QUERY PRICING FRAMEWORK

In this section, we formally describe the pricing framework.

2.1. Notations

Fix a relational schema R = (R1, . . . , Rk); we denote a database instance2 with D =
(RD

1 , . . . , RD
k ), and the set of all database instances with InstR [Libkin 2004]. In this

article we only consider monotone queries, and we denote by L a fixed query language.
In particular, CQ and UCQ are the conjunctive queries, and unions of conjunctive
queries respectively. Q(D) denotes the answer of a query Q on a database D.

A CQ is without self-joins if each relation Ri occurs at most once in Q; for example,
the query Q(x, y) = R(x), S(x, y), R(y) has a self-join (since R occurs twice), whereas the
query Q(x, y) = R(x), S(x, y), T (y) is without self-joins. Also, a conjunctive query is full
if all variables in the body appear in the head; as an example, the query Q(x) = R(x, y)
is not full (y does not appear in the head), whereas the query Q(x, y) = R(x), S(x, y)
is full. Moreover, a CQ is boolean if the head contains no variables. A boolean query
returns a yes or no answer.

We also say that a body variable x is a hanging variable for Q if x appears only in a
single atom. For example, for Q(x, y) = R(x), S(x, y), the variable y is hanging (since it
appears only in S), whereas x is not hanging.

Finally, we associate with each conjunctive query Q a hypergraph G as follows:
for every body variable x, we introduce a new node v(x) ∈ V (G) and for every atom
R(x1, . . . , xk), we introduce a hyperedge {v(x1), . . . , v(xk)}. A connected component of Q

2Throughout this article, we consider only finite databases.
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refers to a connected component of the corresponding hypergraph G. For example,
consider the query Q(x, y, z) = R(x), S(x, y), T (z),U (z, w). Q has two connected compo-
nents: Q1(x, y) = R(x), S(x, y) and Q2(z) = T (z),U (z, w).

A query bundle is a finite set of queries; we use the term “bundle” rather than “set”
to avoid confusion between a set of queries and a set of answers. We denote by B(L)
the set of query bundles over L, and write a bundle as Q = (Q1, . . . , Qm). The output
schema of a query bundle is RQ = (RQ1 , . . . , RQm), and consists of one relation name for
each query. Thus, a bundle defines a function Q : InstR → InstRQ .

The identity bundle, ID, is the bundle that returns the entire dataset, ID(D) =
(RD

1 , . . . , RD
k ). The empty bundle is denoted (): it is the empty set of queries, not to be

confused with the emptyset query (which is a single query returning the emptyset
regardless of the input). Given two bundles, Q1 and Q2, we denote their union as
Q = Q1, Q2: this is the query bundle consisting of all queries in Q1 and Q2, not to be
confused with the union Q1 ∪ Q2 of two queries of the same arity.

2.2. The Pricing Function

Definition 2.1 (Pricing Function). Fix a database instance D ∈ InstR. A pricing
function is a function pD : B(L) → R ∪ {+∞}.
The intuition is that if the user asks for the bundle Q, then she has to pay the price
pD(Q), where D is the database instance. If pD(Q) = +∞, this is equivalent to saying
that Q is not offered for sale. The positive infinity +∞ behaves exactly as in the affinely
extended real number system: for example, a + ∞ = +∞, and for any a, a ≤ +∞.

The price is for an entire query bundle, not just for one query. For example, if a user
needs to obtain queries Q1, Q2, and Q3, then she could issue them separately, and pay
pD(Q1) + pD(Q2) + pD(Q3), but she also has the option of issuing them together, as a
bundle, and pay pD(Q1, Q2, Q3). We will enforce that, in general, the pricing function is
subadditive. In particular, the price of the bundle is at least as low as the sum of the
individual prices.

In the query pricing framework, the seller does not specify the pricing function
directly, but gives only a finite set of explicit price points. The system then computes
the pricing function on all queries in L. Furthermore, this function must satisfy two
axioms, arbitrage-free and discount-free. In the rest of this section we discuss the
details of this framework.

2.3. Axiom 1: Arbitrage-Free

The first axiom that a pricing function must satisfy is defined in terms of a notion of
determinacy. Intuitively, a bundle V determines a bundle Q given a database D, denoted
D � V � Q, if one can answer Q from the answer of V by applying a function f such
that Q(D) = f (V(D)). The impact on pricing is that if the user needs to answer the query
Q, she also has the option of querying V, and then applying f . The arbitrage-free axiom
requires that pD(Q) ≤ pD(V), meaning that the user will never have the incentive to
compute Q indirectly by purchasing V. Thus, the notion of arbitrage depends on the
notion of determinacy, which can be defined in several ways.

Throughout this work, we will focus on one notion of determinacy, instance-based
determinacy. We will discuss this in detail in Section 3, but for completeness we briefly
give the definition here: V determines Q given the database D, denoted D � V � Q,
if for any D′, V(D) = V(D′) implies Q(D) = Q(D′). It is possible that other notions
of determinacy can be used for query pricing: for example one may use information-
theoretic determinacy. To keep the framework general, we base our discussion on an
abstract notion of determinacy, defined in the following. Our results in this section
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apply to any determinacy relation that satisfies this definition, except for complexity
results, which are specific to instance-based determinacy.

Definition 2.2. A determinacy relation is a ternary relation D � V � Q that satisfies
the following properties.

Reflexivity. D � V1, V2 � V1.
Transitivity. If D � V1 � V2 and D � V2 � V3, then D � V1 � V3.
Augmentation. If D � V1 � V2, then D � V1, V′ � V2, V′.
Boundedness. D � ID � V

It is straightforward that instance-based determinacy satisfies the definition and
hence is a determinacy relation. The definition implies the following property for de-
terminacy relations.

LEMMA 2.3. If � is a determinacy relation, then (a) D � V � () for every bundle V,
and (b) if D � V � V1 and D � V � V2, then D � V � V1, V2.

PROOF. The reflexivity axiom D � V, () � () proves the first claim, since V, () = V.
For the second, we apply augmentation to D � V � V1 and obtain D � V, V � V, V1;
next apply augmentation to D � V � V2 and obtain D � V, V1 � V1, V2; transitivity
gives us D � V, V � V1, V2, which proves the claim because V, V = V.

As we will discuss in later sections, we often require that a determinacy relation
satisfies a monotonicity property.

Definition 2.4 (Monotonicity). We say that a determinacy relation � is monotone
for the query bundles V, Q if, whenever D1 ⊆ D2 and D2 � V � Q, then D1 � V � Q.

The Arbitrage-Free Axiom. We can now state the first axiom that a pricing function
must satisfy.

Definition 2.5 (Arbitrage-free). A pricing function pD is arbitrage-free if, whenever
D � Q1, . . . , Qk � Q, then pD(Q) ≤ ∑k

i=1 pD(Qi).

Of course, even if Q1, . . . , Qk determine Q, it may be nontrivial for the buyer to
compute the answer of Q from the answers of Q1, . . . , Qk, for two reasons: she first
needs to find the function f for which f (Q1(D), . . . , Qk(D)) = Q(D), and, second, it may
be computationally expensive to evaluate f . In this article, however, we do not address
the economic cost of the computation, focusing only on the information-theoretic aspect;
that is, we assume that the only cost that matters is that of the data itself. Thus, if a
pricing function is not arbitrage-free, then the buyer will exploit it, by avoiding to pay
pD(Q) and purchasing Q1, . . . , Qk instead, then computing Q (at no extra cost).

Arbitrage-free pricing functions exist: for example, the trivial function pD(Q) = 0, for
all Q, is arbitrage-free; we will show nontrivial functions. First, we prove some basic
properties.

PROPOSITION 2.6. Any arbitrage-free pricing function pD satisfies the following
properties.

(1) Subadditivity: pD(Q1, Q2) ≤ pD(Q1) + pD(Q2).
(2) Nonnegativity: pD(Q) ≥ 0.
(3) Not asking3 is free: pD() = 0.
(4) Upper-boundedness: pD(Q) ≤ pD(ID).

3 pD() means pD(()), the price of the empty bundle.
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PROOF. We apply arbitrage-freeness to two instances of the reflexivity property. First
to D � Q1, Q2 � Q1, Q2, and derive pD(Q1, Q2) ≤ pD(Q1) + pD(Q2), which proves
item 1. Next to D � Q, Q � Q, and derive pD(Q) ≤ pD(Q) + pD(Q), which implies
pD(Q) ≥ 0, proving item 2. For item 3, take Q = () and k = 0 in Theorem 2.5: then
D � Q1, . . . , Qk � Q holds by reflexivity (D � () � ()) and pD(Q) ≤ ∑

i pD(Qi) implies
pD() ≤ 0. Also, arbitrage-freeness applied to the boundedness axiom D � ID � Q
proves item 4.

2.4. Explicit Price Points

It is difficult to specify a nontrivial arbitrage-free pricing function, and we do not expect
the data owner to define such a function herself. Instead, the data owner specifies a set
of explicit price-points, and the system extrapolates them to a pricing function on all
query bundles. A price point is a pair consisting of a view (query bundle) and a price
(positive real number).

Definition 2.7 (Price Points). A price point is a pair (V, p), where V ∈ B(L) and
p ∈ R

+. We denote a finite set of price points S as {(V1, p1), . . . , (Vm, pm)}.
Definition 2.8 (Validity). A pricing function pD for a database D is valid w.r.t. a set

S of price-points if

(1) pD is arbitrage-free;
(2) ∀(Vi, pi) ∈ S, pD(Vi) = pi.

Our goal is to compute a valid pricing function for a set S. In general, such a function
may not exist; if it exists, then we call S consistent.

Definition 2.9 (Consistency). A set of price points S for a database D is consistent if
it admits a valid pricing function.

2.5. Axiom 2: Discount-Free

To see the intuition behind the second axiom, one can view the explicit price points in S
as discounts offered by the seller relative to the price that would be normally charged
if that price point were not included in S. The second axiom requires a pricing function
to make no additional implicit discounts.

Definition 2.10 (Discount-Free). A valid pricing function pD for S is called discount-
free if for any other valid pricing function p′

D we have: ∀Q, p′
D(Q) ≤ pD(Q).

A discount-free pricing function is unique, because if both pD and p′
D are discount

free, then we have both pD ≤ p′
D and p′

D ≤ pD, hence pD = p′
D. We will show in the next

section that, if S is consistent, then it admits a discount-free pricing function.

2.6. The Fundamental Query Pricing Formula

The fundamental formula gives an explicit means for checking consistency and for
computing the discount-free and arbitrage-free price. It associates to any S (not nec-
essarily consistent) a pricing function, which we call arbitrage-price. To introduce the
formula, we need some notation. If Qi for i = 1, 2 . . . , k are query bundles, then denote
their union as

⊙
i Qi = Q1, . . . , Qk. If C ⊆ S is a set of price points, then we denote its

total price as p(C) = ∑
(Vi ,pi )∈C pi.

Fix a set of price points S and an instance D. The support of a query bundle Q is

suppS
D(Q) =

⎧⎨
⎩C ⊆ S | D �

⊙
(V,p)∈C

V � Q

⎫⎬
⎭ . (1)
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The support of the bundle Q thus contains all the subsets of price points from S so
that the corresponding views determine Q.

Definition 2.11 (Arbitrage-Price). The arbitrage-price of a query bundle Q is

pS
D(Q) =

{
minC∈suppS

D(Q) p(C) if suppS
D(Q) �= ∅,

+∞ otherwise.
(2)

The arbitrage price is our fundamental formula. It represents the price that a savvy
buyer would pay for the query Q: find the cheapest support C, meaning the cheapest
set of views that determine the query Q: purchase C, then derive from it the answer to
the query Q. It is also worth observing that for a query bundle Q, pS

D(Q) always has a
finite price (and so is offered for sale) if and only if D � V1, . . . , Vm � Q. Indeed, if Q is
determined by the set of views, then the support is not empty, and since pi < +∞ for
all i, pS

D(Q) must also be finite. On the other hand, if Q is not determined by the set of
views, the support is empty and the price is +∞; in this case, the query bundle is not
offered for sale. We now prove the following.

LEMMA 2.12. (a) For all (Vi, pi) ∈ S, pS
D(Vi) ≤ pi. In other words, the arbitrage-price

is never larger than the explicit price. (b) The arbitrage-price pS
D is arbitrage-free.

PROOF. The first claim follows from the fact that {(Vi, pi)} ∈ suppS
D(Vi), because of

the reflexivity axiom D � Vi � Vi.
For the second claim, consider D � Q1, . . . , Qk � Q; we will prove that pS

D(Q) ≤∑
i pS

D(Qi). Notice that if for some i we have that suppS
D(Qi) = ∅, then pD(Qi) = +∞

and the claim trivially holds. So now, for i = 1, . . . , k, let Cm
i = arg minC∈suppS

D(Qi ) p(C),
that is, the cheapest set of price points in the support of Qi. By the definition of
arbitrage-price, D � ⊙

(V j ,pj )∈Cm
i

V j � Qi and pS
D(Qi) = p(Cm

i ).
Let C = ⋃

i Cm
i ⊆ S and Vm = ⊙

(V j ,pj )∈C V j . Since Cm
i ∈ suppS

D(Qi), it follows that
C ∈ suppS

D(Qi) because the set suppS
D(Qi) is upwards closed4. It follows that D � Vm �

Qi, for every i = 1, . . . , k. By inductively applying Lemma 2.3(b), we derive D � Vm �
Q1, . . . , Qk and, by transitivity, we further derive D � Vm � Q. This implies C ∈
suppS

D(Q), and therefore,

pS
D(Q) ≤ p(C) =

∑
(Vj ,pj )∈C

pj ≤
∑

i

∑
(V j ,pj )∈Cm

i

pj =
∑

i

pS
D(Qi).

The second inequality holds because the pi ’s are nonnegative (Theorem 2.7). This proves
that pS

D is arbitrage-free.

The arbitrage-price is a fundamental formula because it allows us to check consis-
tency, and, in that case, it gives the discount-free price. The following theorem captures
how crucial arbitrage-price is for our pricing framework.

THEOREM 2.13. Consider a set of price points S. Let pS
D denote the arbitrage-price

function (2). Then

(1) S is consistent iff ∀(Vi, pi) ∈ S, pi ≤ pS
D(Vi);

(2) if S is consistent, pS
D is the unique, valid, and discount-free pricing function for S.

PROOF. We claim that, for any pricing function pD valid for S and every query bundle
Q, we have that pD(Q) ≤ pS

D(Q). The claim proves the theorem. Indeed, the “if” direction

4For any query bundle Q, if C1 ∈ suppS
D(Q) and C1 ⊆ C2 then C2 ∈ suppS

D(Q), by the reflexivity axiom.
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of item 1 follows from two facts. First, pS
D is arbitrage-free by Lemma 2.12(b). Second,

if pi ≤ pS
D(Vi) holds for all price points (Vi, pi) ∈ S, then by Lemma 2.12(a) pS

D(Vi) = pi.
Hence, pS

D is valid, proving that S is consistent. The “only if” direction follows from the
claim: if pD is any valid pricing function for S then pi = pD(Vi) ≤ pS

D(Vi). The claim
also implies item 2 immediately.

To prove the claim, let pD be a valid pricing function (thus pD(Vi) = pi for all
(Vi, pi) ∈ S), and let Q be a bundle. If suppS

D(Q) = ∅, then pD(Q) = +∞ and the
claim holds trivially. So let C ∈ suppS

D(Q), and V = ⊙
(Vi ,pi )∈C Vi. By definition we have

D � V � Q. Since pD is arbitrage-free, we have

pD(Q) ≤
∑

(Vi ,pi )∈C
pD(Vi) =

∑
(Vi ,pi )∈C

pi = p(C).

Since this holds for any C in the support of Q:

pD(Q) ≤ min
C∈suppS

D(Q)
p(C) = pS

D(Q).

This concludes the proof of the theorem.

The theorem says that, in order to check consistency it suffices to rule out arbitrage
situations among the views in S. There are infinitely many possible arbitrage situations
in Definition 2.5: the theorem reduces this to a finite set.

Furthermore, it provides a simple but inefficient algorithm to compute the price
of any query in our framework if we are equipped with a black box for computing
determinacy: iterate over all 2k subsets of S, check whether a subset determines the
query and keep the minimum cost subset; if no such subset exists, simply set the price
to +∞. In the rest of the article, we explore the black box of determinacy and also
design algorithms to speed up the computation of prices.

3. INSTANCE-BASED DETERMINACY

In this section, we discuss in detail instance-based determinacy.

Definition 3.1 (Instance-Base Determinacy). Let D be an instance and V, Q be two
query bundles. We say that V determines Q given D, in notation D � V � Q, if for all
D′ ∈ InstR, V(D′) = V(D) implies Q(D′) = Q(D).

Our interest in instance-based determinacy is justified by the following proposition
that is straightforward to show.

PROPOSITION 3.2. For any V, Q there exists a function f : InstRV → InstRQ such that,
for all D, if D � V � Q, then Q(D) = f (V(D)).

Moreover, if there exists a function f such that for all D′ such that V(D′) = V(D),
f (V(D′)) = Q(D′), then D � V � Q.

Example 3.3. Let Q1(x, y, z) = R(x, y), S(y, z), Q2(y, z, u) = S(y, z), T (z, u) and
Q(x, y, z, u) = R(x, y), S(y, z), T (z, u). Notice that for any database D, D � (Q1, Q2) � Q,
because it suffices to define f as the function that joins Q1(D) and Q2(D); then
Q(D) = f (Q1(D), Q2(D)). To decide whether Q1 determines Q depends on the database
D. For example, let D be a database instance s.t. Q1(D) = ∅. Then D � Q1 � Q,
because we know that Q(D) = ∅: if f always returns the emptyset, then for any
D′ s.t. Q1(D) = Q1(D′)(= ∅) we have Q(D′) = f (Q1(D′)). On the other hand, if
D = {R(a, b), S(b, c)}, then D � Q1 �� Q.

We now provide an alternate definition of instance-based determinacy that is based
on the notion of certain answers.
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Definition 3.4 (Certain Answers Under CWA). Let V be a set of views, E correspond-
ing view extensions, and Q a query. A tuple t is a certain answer (under the closed world
assumption, CWA) if t ∈ Q(D) for every D such that V(D) = E.

Moreover, let certQ,V(E) be the set of certain answers. Alternatively, certQ,V(E) =⋂
D′:V(D′)=E Q(D′).

The definition of instance-based determinacy is identical to the definition of lossless
views under the exact view assumption proposed in [Calvanese et al. 2002]. It is easy
to check that the following alternative definitions of instance-based determinacy.

PROPOSITION 3.5. Let V be a set of views, D a database, Q a query and E = V(D).
Then, the following are equivalent.

(1) ∀D′, D′′, V(D′) = V(D′′) = E implies Q(D′) = Q(D′′).
(2) ∀D′, V(D′) = E implies Q(D′) = certQ,V(E).
(3) ∀D′, V(D′) = E implies Q(D′) = Q(D).

We next study the complexity of instance-based determinacy and show that it is
decidable for a large class of queries.

THEOREM 3.6. The combined complexity of the INSTANCE-BASED DETERMINACY problem,
D � V � Q, when V, Q are in B(UCQ) is in �P

2 ; the data complexity (where V, Q are
fixed) is co-NP complete, and remains co-NP complete even for B(CQ).

We prove Theorem 3.6 by first determining the combined complexity and then by
determining the data complexity.

LEMMA 3.7. For views and query in UCQ, the combined complexity of INSTANCE-BASED

DETERMINACY is in �P
2 , while the data complexity is in co-NP.

PROOF. We reduce the problem of instance-based determinacy to the problem of
finding certain answers. Given a set of views V, a query Q, and the view extension E,
to show that V does not determine Q relative to E, it suffices to find a witness tuple t
such that

(1) t is a possible answer: ∃D1 : (V(D1) = E) ∧ (t ∈ Q(D1));
(2) t is not a certain answer: ∃D2 : (V(D2) = E) ∧ (t /∈ Q(D2)).

Thus, we need to find two databases D1, D2 such that the view V evaluates to E on
both databases; Q(D1) contains the witness tuple t, while Q(D2) does not contain t.

To find the witness tuple, we enumerate over all possible tuples that are candidates
for being a witness. Let A be the set of all constants that appear in E and let the arity
of Q be k. Introduce k distinct constants C = {c1, . . . , ck} that do not appear in E. Then,
it follows from the genericity of databases that we need only check for the witness in
(A∪ C)k. Thus there are at most (|E| + k)k distinct tuples that may be witness tuples,
and these tuples are polynomially many in the size of the view extension E.

It is now easy to observe that it suffices to choose D1, D2 of polynomial size. Indeed,
suppose that E contains n tuples and k is the maximum number of atoms over all views
in V. If there exists a database D with n tuples such that V(D) = E and t /∈ Q(D), then
there must be a database D′ ⊆ D of size at most kn such that V(D′) = E (since each
tuple in E can be produced by at most k tuples). Since Q is monotone, it must also be
that t /∈ Q(D′); then D′ is our D2 of polynomial size. Similarly, if k′ is the number of
atoms in Q, and D is a database such that V(D) = E and t ∈ Q(D), we can construct a
database D′ ⊆ D of size at most (n + 1) max(k, k′) such that V(D′) = E and t ∈ Q(D′);
then D′ is our D1 of polynomial size.

Journal of the ACM, Vol. 62, No. 5, Article 43, Publication date: October 2015.



Query-Based Data Pricing 43:11

Since query evaluation for UCQs has PTIME data complexity and NP-complete
combined complexity, it follows that for finding a witness tuple, the data complexity is
in NP and the combined complexity in NPNP. Hence, the data complexity of INSTANCE-
BASED DETERMINACY is in co-NP and the combined complexity in �P

2 .

LEMMA 3.8. The data complexity of INSTANCE-BASED DETERMINACY is co-NP hard for
CQs.

PROOF. We will reduce NON-3-COLORABILITY to INSTANCE-BASED DETERMINACY. The proof
is similar to [Abiteboul and Duschka 1998]. Let G = (V, E) be a graph with at least one
edge (otherwise 3-colorability is trivial). Fix a relational schema R with the relations
color(X, Y ) (node X has color Y ) and edge(X, Y ) (node X is connected with node Y ). Next,
consider the bundle V = (V1, V2, V3), where V1(X) = color(X, Y ), V2(Y ) = color(X, Y )
and V3(X, Y ) = edge(X, Y ).

The database D is such that edge(X, Y ) = E and color(X, Y ) assigns exactly one of
three colors {a, b, c} to a node of G. Let Q() = edge(X, Y ), color(X, Z), color(Y, Z), that is,
Q asks whether there exist two neighboring nodes with the same color. We will show
that D � V � Q if and only if G is not 3-colorable. Notice first that any database D′
such that V(D′) = V(D) is equivalent to a color assignment to each node of the graph.

Indeed, assume that G is not 3-colorable. Then, for every coloring Q returns true.
Hence, for every database D′ such that V(D′) = V(D), Q is true. This implies that V
determines Q.

For the other direction, assume that V determines Q under D. Then, for every
database D′ such that V(D′) = V(D), Q returns the same answer, true or false. Consider
the database D′ which assigns to every node the same color. In this case, since G has at
least one edge, Q on D′ will return true. Hence, Q will always return true. This implies
that for any coloring, Q can find a pair of neighbors with the same color; hence, G is
not 3-colorable.

4. THE COMPLEXITY OF PRICING

In this section, we discuss the complexity of pricing for instance-based determinacy in
the case of CQs and UCQs.

Denote by PRICE(S, Q) the decision version of the price computation problem: “given
a database D and k, is the price pS

D(Q) less than or equal to k”? Let us also denote by
PRICE(Q) the decision version of the same problem, but where the set of price points S
is now part of the input.

COROLLARY 4.1. Suppose S, Q consist of UCQs. Then, (a) the complexity of PRICE(Q)
is in �P

2 and (b) the complexity of PRICE(S, Q) is co-NP complete.

PROOF. For (a), to check whether pS
D(Q) ≤ k, guess a subset of price points

(V1, p1), . . . , (Vm, pm) in S, then check that both D � V1, . . . , Vm � Q (this is in co-
NP by Theorem 3.6) and that

∑
i pi ≤ k. For (b), instead of guessing, we can iterate over

all subset of price points, since there is only a fixed number of them; hence it is co-NP.
To prove co-NP hardness, consider the price points S = {(V, k)}. Then, pS

D(Q) ≤ k if and
only if D � V � Q, and recall from Theorem 3.6 that INSTANCE-BASED DETERMINACY is
co-NP hard even for CQs.

Thus, computing the price is expensive. This expense is unacceptable in practice,
since prices are computed as frequently as queries, perhaps even more frequently (for
example users may inquire about the price, then decide not to buy). We have an exten-
sive discussion of tractability in Section 5, and will describe an important restriction
under which pricing is tractable. For now, we restrict our discussion of the complexity
to showing that pricing is at least as complex as computing the determinacy relation.
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Let PRICE-CONSISTENCY(S) be the problem of deciding whether a set S is consistent for
a database D, and DETERMINACY(V, Q) the problem of checking determinacy D � V � Q.
The proof of Corollary 4.1 shows that the former problem is no more than exponentially
worse than the latter. We prove here a weak converse:

PROPOSITION 4.2. There is a polynomial time reduction from DETERMINACY(V, Q) to5

the complement of PRICE-CONSISTENCY(S).

PROOF. Assume that we want to decide whether D � V � Q, where V = {V1, . . . , Vk}.
We can assume w.l.o.g. that none of the Vi are constant, since in this case we could
just remove them from V. We will reduce this to an instance of the PRICE-CONSISTENCY

problem. Indeed, consider the following set of price points:

S = {(V1, p), . . . , (Vk, p), (Q, kp + ε)}, ε > 0.

We will prove that D � V � Q if and only if S is not consistent for D. For the one
direction, suppose that D � V � Q. Then, for any valid pricing function pD we must
have that kp + ε = pD(Q) ≤ ∑

i pD(Vi) = kp, a contradiction. Hence S admits no valid
pricing function and is not consistent.

For the other direction, assume that S is not consistent. By applying Theorem 2.13,
we have that for the arbitrage price pS

D either there exists some i such that pS
D(Vi) < p,

or pS
D(Q) < kp + ε. The first case is not possible, since every set which may determine

Vi, including Vi, is priced at least p (note that Vi is not constant). Hence, it must be
that pS

D(Q) < kp + ε. It follows that there exists a choice of price points that determine
Q and are priced less than kp + ε; however, this can only be a subset V′ ⊆ V. Thus,
D � V′ � Q and by reflexivity D � V � Q.

5. PRICING WITH SELECTIONS

The combined complexity for computing the price when the views and queries are UCQs
is high: it is coNP-hard and in �P

2 . This is unacceptable in practice. In this section,
we restrict the views on which the seller can set explicit prices and show that for a
large class of queries, the price can be computed in polynomial time. This is the main
result in the article, since it represents a quite practical framework for query-based
pricing. We further show an even stronger result: for the class of conjunctive queries
without self-joins, there exists a dichotomy of their pricing complexity into PTIME and
NP-complete. The proof of this dichotomy is the most technically difficult result of the
article and will be the focus of this section.

Organization. We first motivate and formally define the restriction to views as se-
lections (Section 5.1). In Section 5.2, we study the complexity of instance-based de-
terminacy if the price points are selections and show that for the class of UCQs the
complexity is in polynomial time. In Section 5.4, we discuss the complexity of pricing
and formally present the dichotomy result. The remaining part of the section presents
the proof of the dichotomy, split into several steps.

5.1. The Pricing Framework with Selections

We restrict the views to selection queries, where the selection is on a single attribute.
We will discuss in Section 6.3 how to extend several of our results in the case where
the views are selections over multiple attributes.

We denote a selection query by σR.X=a, where R is a relation name, X an attribute, and
a a constant. For example, given a ternary relation R(X, Y, Z), the selection query σR.X=a
is Q(x, y, z) = R(x, y, z)∧x = a. Throughout this section, the seller can set explicit prices

5S has one price point for each V ∈ V and one for Q; the instance D is part of the input in both cases.
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only on selection views. We argue that this restriction is quite reasonable in practice.
Many concrete instances of online data pricing that we have encountered set prices
only on selection queries6.

Example 5.1. Following the example from the introduction, CustomLists
(customlists.net) sells the set of all businesses in any given state for $199, thus it
sells 50 selection views, one for each state.

Example 5.2. Infochimps (infochimps.com/marketplace) sells the following selec-
tion queries, in the form of API calls. The Domains API: given IP address, retrieve
the domain, company name and NAICS Code. The MLB Baseball API: given an MLB
team name, retrieve the wins, losses, current team colors, seasons played, final regular
season standings, home stadium, and team ids. The Team API: given the team ids, get
the team statistics, records, and game ids. And, the Game API: given game id, get the
attendance, box scores, and statistics.

Thus, restricting the explicit price points to selection queries is quite reasonable for
practical purposes.

An important assumption made by sellers today is that the set of values on which
to select is known. For example, the set of valid MLB team names is known to the
buyers, or can be obtained for free from somewhere else. In general, for each attribute
R.X we assume a finite set ColR.X = {a1, . . . , an}, called column. This set is known
both to the seller and the buyer. Furthermore, the database D satisfies the inclusion
constraint RD.X ⊆ ColR.X. The input to the pricing algorithm consists of both the
database instance D, and all the columns ColR.X

7 : thus, the latter are part of the input
in data complexity. A column should not be confused with a domain: while a domain
may be infinite, a column has finitely many values. It should not be confused with the
active domain either, since the database need not have all values in a column. We also
assume that columns always remain fixed when the database is updated.

We call the set of all selections on column R.X, �R.X = {σR.X=a | a ∈ ColR.X}, the full
cover of R.X. Note that D � �R.X � R. We denote � the set of all selections on all
columns. Thus, the explicit price points S = {(V1, p1), (V2, p2), . . .} are such that Vi ∈ �.
We denote p : � → R

+ the partial function defined as: p(Vi) = pi if (Vi, pi) ∈ S. Finally,
we say that a set of views V ⊆ � fully covers R.X if �R.X ⊆ V.

Recall that PRICE(S, Q) denotes the data complexity of the pricing problem in Sec-
tion 2. Since now S can be as large as �, we treat it as part of the input. Thus, we denote
the pricing problem as PRICE(Q), where the input consists of the database instance D,
all columns ColR.X, and the function p.

In order to give some more intuition about using selections as views, we discuss
pricing with the following example.

Example 5.3. Consider Q = R(x), S(x, y), T (y) over the database D in Figure 2(a).
We have Q(D) = {(a1, b1)}. There are 14 possible selection queries: �R.X = {σR.X=a1 ,
σR.X=a2 , σR.X=a3 , σR.X=a4}, �S.X = {σS.X=a1 , σS.X=a2 , σS.X=a3 , σS.X=a4}, and similarly for S.Y
and T .Y . Suppose S assigns the price $1 to each selection query.

6The only exception are sites that sell data by the number of tuples; for example, Azure allows the seller to
set a price on a “transaction”, which means any 100 tuples.
7We will often refer to Colx , where x is a variable that occurs in a query Q. In this case, Colx is the
intersection of all columns where the variable x appears in Q; it is easy to see that we can discard any other
value, since it will never join. As an example, if Q(x, y) = R(x), S(x, y), and our schema is {R(X), S(X, Y )},
Colx = ColR.X ∩ ColS.X.
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To compute the price of Q, we need to find the smallest set V ⊆ � that “determines”
Q: that is, forall D′ s.t. V(D) = V(D′), the query must return the same answer {(a1, b1)}
on D′, as on D. First, V must guarantee that (a1, b1) is an answer, and for that it must
ensure that all three tuples R(a1), S(a1, b1), T (b1) are in D′; for example, it suffices to
include in V the views V0 = {σR.X=a1 , σS.X=a1 , σT .Y=b1} (we could have chosen σS.Y=b1 in-
stead of σS.X=a1 ). Second, V must also ensure that none of the other 11 tuples (ai, bj) are
in the answer to Q. V0 is not sufficient yet. For example, consider the tuple (a3, b2), which
is not in the answer. Let D′ = D ∪ {R(a3), T (b2)}; then V0(D) = V0(D′), since V0 does
not inquire about either R(a3) or T (b2), yet Q(D′) contains (a3, b2). Thus, V must ensure
that either R(a3) is not in D′, or that T (b2) is not in D′. Continuing this reasoning leads
us to the following set of views V = {σR.X=a1 , σR.X=a4 , σS.Y=b1 , σS.Y=b3 , σT .Y=b1 , σT .Y=b2}.
The reader may check that this is a minimal set that determines Q, hence the price of
Q is pS

D(Q) = 6.

Let us also prove the following lemma.

LEMMA 5.4. Let V ⊆ �. Then D � V � σR.X=a iff (a) it is trivial (i.e., σR.X=a ∈ V), or
(b) V fully covers some attribute Y of R.

PROOF. Assume that D � V � σR.X=a and neither (a) or (b) holds. Let R(X1, . . . , Xk).
Since no attribute of R is fully covered, for every attribute Xi of R, there exists a
selection σR.Xi=ai /∈ V. W.l.o.g., let X = X1 and consider the databases D+ = D ∪
{R(a, a2, . . . , ak)} and D− = D−{R(a, a2, . . . , ak)}. It is easy to see that V(D+) = V(D−) =
V(D), since the tuple tR = R(a, a2, . . . , ak) does not appear in any of the views. However,
tR ∈ σR.X=a(D+) and tR /∈ σR.X=a(D−), a contradiction to the fact that V determines
σR.X=a.

The lemma gives us a simple criterion for checking whether S is consistent. By
Theorem 2.13, this holds iff there is no arbitrage between the views in S. The lemma
implies that the only risk of arbitrage is between a full cover �R.Y and a selection view
σR.X=a.

PROPOSITION 5.5 (CONSISTENCY FOR SELECTIONS). S is consistent iff for every relation
R, any σR.X=a such that p(σR.X=a) is defined, and any attribute Y such that for every
b ∈ ColR.Y , p(σR.Y=b) is defined as

p(σR.X=a) ≤
∑

b∈ColR.Y

p(σR.Y=b).

This implies that consistency can be checked very efficiently in the case we use only
selections. Moreover, the consistency is independent of the database instance.

5.2. The Complexity of Determinacy under Selections

We study here the complexity of determinacy when the views are selections. We say
that a query Q has PTIME data complexity if Q(D) can be computed in polynomial time
in the size of D. UCQ queries, datalog queries, and extensions of datalog with negation
and inequalities have PTIME data complexity [Abiteboul et al. 1995].

THEOREM 5.6. Assume V ⊆ �. Let Q be any monotone query that has PTIME data
complexity. Then, D � V � Q can be decided in PTIME data complexity.

PROOF. First, let us define two database instances Dmin and Dmax. For a relation
R(X1, . . . , Xk) in D, let us call a tuple t ∈ ColR.X1 × · · · × ColR.Xk invisible in R if, for any
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selection σR.Xi=a ∈ V, t.Xi �= a. Then, for the relation R define:

RDmin =
⋃

σR.Xi=a∈V

σR.Xi=a(D), (3)

RDmax = RDmin ∪ {t ∈ ColR.X1 × · · · × ColR.Xk | t invisible in R}. (4)

Notice that both databases are of polynomial size in the size of the columns and the
input database. Moreover, they can be constructed from V(D), without having access
to the underlying database D. Additionally, Dmin ⊆ Dmax by definition. The following
lemma establishes that both instances agree with D under the views V.

LEMMA 5.7. V(Dmin) = V(Dmax) = V(D).

PROOF. We first examine Dmin. For a view σR.A=c ∈ V, consider a tuple tR ∈
σR.A=c(Dmin). By construction, tR ∈ D. For the converse, if tR ∈ σR.A=c(D), then tR ∈ RDmin

and hence tR belongs in Dmin.
As for Dmax, by definition the new tuples we have added to a relation R are invisible

in this relation under the views V, hence they can not appear in any V. Thus, V(Dmax) =
V(Dmin).

The next lemma justifies why we have constructed Dmin and Dmax: they are the
minimum and maximum databases respectively that agree with V(D).

LEMMA 5.8 (SANDWICH LEMMA). For any database D′ s.t. V(D′) = V(D), we have that
Dmin ⊆ D′ ⊆ Dmax.

PROOF. We will first show that Dmin ⊆ D′. For the sake of contradiction, suppose that
for a relation R in D there exists a tuple tR ∈ RDmin

such that tR /∈ D′. By the definition
of Dmin, tR ∈ σR.A=c(D) for a view σR.A=c ∈ V. However, we also have that tR /∈ σR.A=c(D′).
This implies that V(D′) �= V(D), a contradiction.

We next show that Dmax ⊇ D′. Again, for the sake of contradiction let us assume
that for some relation R in D there exists a tuple tR ∈ RD′

such that tR /∈ Dmax. We
now distinguish two cases. In the first case, tR ∈ σR.A=c(D′) for some σR.A=c ∈ V. We
can apply Lemma 5.7 to obtain that σR.A=c(D′) = σR.A=c(Dmax). This would imply that
tR ∈ σR.A=c(Dmax), a contradiction. Otherwise, tR /∈ σR.A=c(D′) for all σR.A=c ∈ V. This
implies in turn that tR is invisible in R under V. By the construction of Dmax, we would
have that tR ∈ Dmax, a contradiction again.

The lemma “sandwiches” every database that agrees with V(D) between the min-
imum and maximum database. We next leverage this property to show how we can
efficiently characterize determinacy.

PROPOSITION 5.9. Let Q be any monotone query. Then, D � V � Q if and only if
Q(Dmin) = Q(Dmax).

PROOF. For the one direction, let us assume that Q(Dmin) = Q(Dmax). Consider a
database D′ such that V(D′) = V(D). By Lemma 5.8, Dmin ⊆ D′ ⊆ Dmax. Since Q is mono-
tone, it follows that Q(Dmin) ⊆ Q(D′) ⊆ Q(Dmax). By the equality of Q(Dmin), Q(Dmax),
Q(D′) = Q(Dmin). Notice also that we can apply Lemma 5.8 to sandwich D between
Q(Dmin), Q(Dmax). Thus, Q(D) = Q(Dmin) and Q(D) = Q(D′).

For the other direction, assume that Q(Dmin) �= Q(Dmax). Then, since by Lemma 5.7 we
have that V(Dmin) = V(Dmax) = V(D), the databases Dmin, Dmax form a counterexample
for determinacy.

The algorithm for determinacy computes Dmin, Dmax from V(D) and checks whether
Q(Dmin) = Q(Dmax), in which case it outputs yes, otherwise no. The validity of the
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Fig. 1. Given D and Q(x, y) = R(x), S(x, y), does the set of views V = {σR.X=a2 , σS.X=a1 } determine Q? By
Proposition 5.9, we construct the databases Dmin and Dmax , as the figure shows. Indeed, as the construction
claims, σR.X=a2 (D) = σR.X=a2 (Dmin) = σR.X=a2 (Dmax) = ∅ (similarly for σS.X=a1 ). However, Q(Dmin) = ∅,
whereas Q(Dmax) = {(a1, b1)}. Thus, V does not determine Q.

algorithm follows from Proposition 5.9. Moreover, the algorithm runs in PTIME, since
the databases Dmin, Dmax are of polynomial size and also the evaluation of Q can be
done in polynomial data complexity. This concludes the proof of the theorem.

The example in Figure 1 presents our construction and the algorithm to decide
determinacy when the views are selections.

Unfortunately, the PTIME complexity depends not only on the |V(D)|, but also on
the size of the columns (which is usually larger). We next show that, under stronger
conditions than monotonicity and PTIME evaluation, we can construct an algorithm
such that its complexity depends only on |V(D)|.

LEMMA 5.10. Let Q be a positive Datalog query without inequalities. Then, there
exists a database Dm of polynomial size in |V(D)| such that (a) V(Dm) = V(D), and (b)
Q(Dmax) = Q(Dmin) if and only if Q(Dmin) = Q(Dm).

PROOF. The database Dm is constructed from Dmax as follows. For each column Colx,
consider a fixed value cx ∈ Colx that does not appear in V(D). Then, construct a function
f : Col → Col, such that each value of Colx that does not appear in V(D) is mapped to
cx; otherwise it is mapped to itself. Let Dm = f (Dmax). Clearly, Dm is of size polynomial
to |V(D)| (considering Q, V fixed). Also, by construction, Dm ⊆ Dmax.

It is also easy to see that V(Dm) = V(Dmax) = V(D). It remains to show that Q(Dm) =
Q(Dmin) iff Q(Dmax) = Q(Dmin). Indeed, suppose that Q(Dmax) = Q(Dmin). Then, since
Dm agrees with D on V, by Lemma 5.8, Q(Dm) is sandwiched between Q(Dmin), Q(Dmax)
and hence Q(Dm) = Q(Dmin). For the other direction, suppose that Q(Dmin) �= Q(Dmax).
Since Q(Dmin) ⊆ Q(Dmax), there exists t ∈ Q(Dmax) such that t /∈ Q(Dmin). Since Q is a
Datalog query without any inequalities, f (t) ∈ Q(Dm). To conclude the proof, we will
show that f (t) /∈ Q(Dmin). Suppose that f (t) ∈ Q(Dmin) and consider the tuples t1, . . . , tk
that contribute to f (t). By the definition of Dmin, every tuple ti is selected by some view
in V. Thus, every constant appearing in the ti ’s appears also in V(D). This implies that
f (t) = t, hence t ∈ Q(Dmin), a contradiction.

This theorem implies that we can replace in our algorithm Dmax with Dm, where the
size of the latter depends only on V(D). Hence, the complexity of determinacy is now
polynomial only in |V(D)|.
5.3. Preliminaries

We prove now some basic results that will be used in proofs throughout this section.
We say that a set of selections V ⊆ � covers a tuple t = (a1, . . . , ak) in a relation

R(X1, . . . , Xk) if for some i = 1, . . . , k, σR.Xi=ai ∈ V. Notice that this definition is inde-
pendent of any database instance.
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LEMMA 5.11. Consider a database D, a set of views V ⊆ � and a full CQ Q. Then,
D � V � Q if and only if, for any t = (a1, . . . , ak) ∈ ColX1 × · · · × ColXk.

—If t ∈ Q(D), for any projection tR of t to some relation R in Q, tR is covered by V.
—If t /∈ Q(D), there exists a projection tR of t to some relation R in Q such that tR /∈ RD

and V covers tR.

PROOF. We first show the “only if” direction. If t ∈ Q(D) and V does not cover some
tR, then for the database D− = D − {R(tR)} we have that V(D−) = V(D), but t /∈ Q(D−);
hence V can not determine Q. If t /∈ Q(D) and for every atom R in Q the projection
tR /∈ RD V does not cover it, then consider the database D+ that adds to D all such
tuples. Clearly, the view extensions V(D) are not modified; however, t ∈ Q(D+), which
means that V does not determine Q.

For the “if” direction, we again distinguish two cases. If t ∈ Q(D), since V covers
every tuple tR for any R, any D′ that agrees with V(D) discovers correctly that t ∈ Q(D).
If t /∈ Q(D), since V covers at least one tuple tR /∈ RD, any database that agrees with
V(D) knows that t can not belong in Q(D).

PROPOSITION 5.12. If V ⊆ � and Q is a bundle with full conjunctive queries, then
instance-based determinacy is monotone for V, Q.

PROOF. It suffices to prove the proposition for a single query Q. Let D2 � V � Q.
We want to show that, if D1 ⊆ D2, then D1 � V � Q. In order to show this, it suffices
to prove that, if for some database D we have D � V � Q, then for any tuple t ∈ D,
D − t � V � Q; then, the proposition follows by induction.

First, notice that Q(D − t) ⊆ Q(D), since Q is monotone. Let t′ ∈ Q(D − t). Then,
t′ ∈ Q(D); consider the projections of t′ on the different atoms in Q: tR1 , . . . , tRk. Notice
that for any i = 1, k, tRi �= t, since otherwise t′ would not belong in Q(D − t). Now, all
these tuples must be covered by views V by Lemma 5.11. Thus, (a) for t′ ∈ Q(D − t), all
its projections are covered by V.

Next, let t′ /∈ Q(D − t). If also t′ /∈ Q(D), then by Lemma 5.11, there exists some
projection tRi /∈ D (hence tRi �= t) of t′ such that tRi is covered by some view in V.
Otherwise, t′ ∈ Q(D) and thus t contributes to t′ in D. By Lemma 5.11, it must be
covered by some selection in V. In either case, (b) for t′ /∈ Q(D), there exists a projection
tR on some atom R s.t. tR /∈ D − t and tR is covered by V.

Combining (a), (b) and invoking Lemma 5.11, we obtain the desired proposition.

Definition 5.13. Given a database D and a query Q, we call a subset T c of the
database D critical for Q if Q(D) �= Q(D − T c).

A critical set of tuples is thus a part of the database that is crucial for answering
Q. For a set of tuples T and a view V , let us define (V − T )(D) = V (D − T ). We also
extend this notation to (V − T )(D) = {(V − T )(D) | V ∈ V}.

LEMMA 5.14. If D � V � Q, where V ⊆ � and Q is a full CQ, then D � (V − T ) � Q,
for any noncritical subset T of D.

PROOF. Since D−T ⊆ D, we can apply Proposition 5.12 (monotonicity) to obtain that
D − T � V � Q. Hence, it follows from Proposition 3.2 that there exists a function f
such that for every D′ s.t. V(D′) = V(D − T ), f (V(D′)) = Q(D − T ). Now, consider any
database D0 such that (V − T )(D0) = (V − T )(D). We will show that f ((V − T )(D0)) =
Q(D), which implies the determinacy relation. Indeed, note first that V(D0 − T ) =
(V−T )(D0) = (V−T )(D) = V(D−T ). Thus, f ((V−T )(D0)) = f (V(D0−T )) = Q(D−T ) =
Q(D), where the last equality follows from the fact that T is a noncritical set of views
for Q.
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We next show a basic theorem that allows us to safely remove redundant views from
a set that determines some query Q.

THEOREM 5.15 (REDUNDANT VIEWS). Let Q be a full CQ and D � V � Q, where V ⊆ �.
Let V0 ⊆ V such that all tuples t ∈ V0(D) are such that either noncritical or belongs in
(V \ V0)(D). Then, D � V \ V0 � Q.

PROOF. Let T = V0(D) and let T c ⊆ T contain the individually noncritical tuples
of T :

T c = {t ∈ T | Q(D) = Q(D − {t})}.
We will prove the theorem in several steps as follows:

D � V \ V0 � (V \ V0) − T c � V − T c � Q.

LEMMA 5.16. D � V \ V0 � (V \ V0) − T c.

PROOF. We will show the more general result that, for any V′ ⊆ �, D � V′ � V′ − T c.
To prove this, we first show that for any V ∈ �, D � V � V − T c. Notice that for

selection views, (V − T c)(D) = V (D) − T c; hence, (V − T c)(D) can be constructed from
V (D) by applying the function f (V (D)) = V (D) − T c.

By repeatedly applying the augmentation property for all the other V ′ ∈ V′, we
obtain that D � V′ � V′ − T c.

LEMMA 5.17. D � (V \ V0) − T c � V − T c.

PROOF. We first show that D � (V \ V0) − T c � σR.y=c − T c for any σR.y=c ∈ V0.
Indeed, by the assumption of the theorem, (σR.y=c − T c)(D) contains only tuples that
also belong to some view other than those in V0 (since every noncritical tuple belongs
in T c); hence, the view can be precisely reconstructed.

Applying repeatedly augmentation and transitivity, we obtain the result.

LEMMA 5.18. D � (V − T c) � Q.

PROOF. We first show that T c is not critical. For the sake of contradiction, assume
that T c is critical; then Q(D − T c) �= Q(D). Since D − T c ⊆ D and Q is monotone,
Q(D − T c) ⊂ Q(D) and hence there exists a tuple t ∈ Q(D) s.t. t /∈ Q(D − T c). However,
since Q is a full query, it suffices to delete a single tuple t′ ∈ T c from D to delete t from
Q(D). Thus, t′ is critical, a contradiction.

We can now directly apply Lemma 5.14 to obtain that D � (V − T c) � Q.

Combining the lemmas through the transitivity property of determinacy, we conclude
that D � V \ V0 � Q.

As a corollary of Theorem 5.15, we can show the following lemma.

LEMMA 5.19. If D � σR.A=d, σR.B=d, V0 � Q, where V ⊆ �, and Q requires that
R.A = R.B, then D � σR.B=d, V0 � Q.

PROOF. From Theorem 5.15, it suffices to show that every tuple tR ∈ σR.A=d is either
noncritical or belongs in σR.B=d. Indeed, if tR ∈ T is critical, then it must be that the
positions R.A, R.B in the tuple will have the same value d. Hence, tR ∈ σR.B=d(D).

5.4. The Complexity of Pricing Under Selections

Having determined the complexity of determinacy when the price points are selections,
we are equipped to explore the complexity of pricing.
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COROLLARY 5.20 (COMPLEXITY). Let Q be a bundle of monotone queries that have
PTIME data complexity. Then PRICE(Q) is in NP (data complexity).

PROOF. To check if pS
D(Q) ≤ k, guess a subset of selection views V ⊆ S, then check

that both D � V � Q (which is equivalent to D � V � Qi, for all Qi ∈ Q, by Lemma 2.3)
and that

∑
V∈V p(V ) ≤ k. From Theorem 5.6, the check on determinacy can be done in

polynomial time.

The restriction to selection queries has lowered the complexity of price computation
from �P

2 (Corollary 4.1) to NP. However, it is not possible to further lower the complexity
of pricing for the class of CQs; indeed, as we will see, there are CQs where pricing is
NP-complete. There are also CQs where pricing under selections is in PTIME. This
raises an important question: can we syntactically characterize the pricing complexity
for the class of CQs?

In the remaining section, we give a full characterization of the complexity of all
Conjunctive Queries without self-joins, showing that for each query its complexity is
either PTIME or NP-complete. Note that our characterization applies to single queries,
not to query bundles: we will discuss bundles in Section 6.5.

We next define the class of normalized queries, which will be of interest to us, since
we will show that the pricing of any conjunctive query w/o self-joins can be reduced to
computing the price of a normalized query.

Definition 5.21. A normalized query is a full conjunctive query Q without self-joins
such that Q has a single connected component and no constants, no multiple occur-
rences of a variable in the same atom and no hanging variables.

A normalized query where every atom is unary or binary is called 2-normalized.

Example 5.22. The query Q1(x, y, z) = R(x), S(x, y, z), T (x),U (y, z) is a normalized
query. The following queries are not normalized: Q2(x, y, z) = R(x), S(x, y, z), T (x) (z
is hanging), Q3(x, y) = R(x), S(x, ‘a‘, y) (a constant exists), Q4(x, y) = R(x), S(x, x, y) (x
appears twice in S).

We identify two basic classes of normalized queries where pricing is in PTIME and
provide algorithms for both: chain queries and cyclic queries.

Definition 5.23. A chain query is a 2-normalized conjunctive query Q =
R0, R1, . . . , Rk such that any two consecutive atoms Ri, Ri+1 share exactly one vari-
able. Let us denote the class of chain queries by CHQ.

Some examples of CHQ queries are the following:

Q1(x, y) = R(x), S(x, y), T (y),
Q2(x, y, z) = R(x), S(x, y), T (y),U (y), V (y, z), W(z).

We present and analyze an algorithm that computes the price for any chain query in
Section 5.5.

Definition 5.24. A cyclic query Ck is a 2-normalized conjunctive query of the form
Ck(x1, . . . , xk) = R1(x1, x2), . . . , Rk(xk, x1).

The algorithm for computing Ck is described in Section 5.6. It is quite different from
the reduction to MIN-CUT that we used for chain queries, suggesting that these two
classes cannot be unified in a natural way. The class of queries Ck is also much more
brittle than chain queries: adding a single unary predicate makes the query NP-hard.
For example, see the query H2 in Theorem 5.35: it is obtained by adding one unary
predicate to C2, and is NP-hard. By contrast, by adding a unary predicate to a chain
query we still obtain a chain query.
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We can now formally define the dichotomy result for the complexity of pricing.

THEOREM 5.25 (DICHOTOMY THEOREM). Let S contain only selection views (in �) and
Q be a CQ w/o self-joins. The data complexity for PRICE(Q) is the following.

—If Q has connected components Q1, . . . , Qk, then: if PRICE(Qi) is in PTIME for all
i = 1, . . . , k, it is in PTIME; else, if at least one component Qi is NP-complete, it is
NP-complete.

—Else if Q is neither full nor boolean, it is NP-complete.
—Else if Q is a boolean query, let Qf be the corresponding full query (add all variables

to the head): the complexity of Q is the same as that of Qf .
—Else if Q is a full CQ, let Qn be obtained from Q by replacing each atom R with an

atom R′ such that R′ contains exactly one occurrence from each nonhanging variable
from R (Qn is normalized): if Qn is a chain or cyclic query, it is PTIME; otherwise, it
is NP-complete.

We provide an example of how to apply Theorem 5.25 as follows.

Example 5.26. Consider the following query Q() = R(x, y), S(y, z, w), T (w, ‘b‘),U (v).
Note that Q has two connected components, Q1() = R(x, y), S(y, z, w), T (w, ‘b‘) and
Q2() = U (v). Since Q1 is boolean, it suffices to study the pricing complexity of the full
query Qf

1 (x, y, z, w) = R(x, y), S(y, z, w), T (w, ‘b‘). From this, consider the normalized
query Qf n

1 (y, w) = Rn(y), Sn(y, w), T n(w) (we have removed the constants and hanging
variables). Since Qf n

1 is a chain query, Q1 is computable in polynomial time. Similarly,
Q2 can also be computed in polynomial time; thus, Q is also in PTIME.

On the other hand, pricing the query Q(x, y, z) = R(x), S(x, x, y), T (y, x, z) in NP-
complete. Indeed, the normalized query Qn(x, y) = R(x), S(x, y), T (y, x) is neither chain
or cyclic, and hence it is hard to price.

The proof of Theorem 5.25 is split into four parts. In Section 5.5, we present the
PTIME algorithm for chain queries and in Section 5.6 we present the algorithm for
cyclic queries. In Section 5.7, we identify several basic CQs for which pricing is hard.
Finally, in Section 5.8, we show how to reduce any CQ either to a hard query or to
a query computable in polynomial time (cyclic or chain query); the latter part also
concludes the dichotomy proof.

5.5. A PTIME Algorithm for Chain Queries

We prove here the following theorem.

THEOREM 5.27 (CHAIN QUERIES). Assume that all explicit price points in S are selection
queries. Then, the price of any chain query can be computed in PTIME (data complexity).

We show that the price of chain query can be reduced to the MIN-CUT problem,
which is the dual of the MAX-FLOW graph problem and can be solved in polynomial
time [Cormen et al. 2001]. The running example for this section will be the chain query
Q(x, y) = R(x), S(x, y), T (y).

Given a chain query Q with atoms R0, . . . , Rk, denote xi, xi+1 the variables occurring
in Ri: if Ri is unary, then xi = xi+1. In particular, x0 = x1 and xk = xk+1 since the first
and last atoms are unary. Thus, each query Q[i: j] = Ri, . . . , Rj has variables xi, . . . , xj+1.
Let us also define Q[i:i−1] = Colxi . Define the left-, middle-, and right-partial-answers:

Lti =�xi (Q[0:i−1](D)), 0 ≤ i ≤ k
Md[i: j] =�xi ,xj+1 (Q[i: j](D)), 1 ≤ i ≤ k, i − 1 ≤ j ≤ k − 1

Rt j =�xj+1 (Q[ j+1:k](D)), 0 ≤ j ≤ k

where � is the projection operator.
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We next describe the construction of the directed graph G. To construct the vertex
set V (G), we first introduce a source node s and a target node t. Moreover, for each
attribute R.X and constant a ∈ ColR.X, we introduce two nodes: vR.X=a and wR.X=a. The
edges E(G) are constructed as follows.

View edges. For each attribute R.X and constant a ∈ ColR.X we create the edge

vR.X=a
view−→ wR.X=a.

Capacity = the price8 p(σR.X=a) in S.
Tuple edges. For each binary atom R(X, Y ), and constants a ∈ ColR.X, b ∈ ColR.Y ,
we create the edge

wR.X=a
tuple−→ vR.Y=b.

Capacity = ∞.
Skip edges. For all partial answers we create the edges

s
skip−→ vRi .X=a if a ∈ Lti,

wRi−1.Y=a
skip−→ vRj+1.X=b if (a, b) ∈ Md[i: j],

wRj .Y=b
skip−→ t if b ∈ Rtj .

In all cases, capacity = ∞.

In particular, since Lt0 = Colx0 , Md[i:i−1] = Colxi , Rtk = Colxk, the construction will
include the following edges, which are independent of the content of the database D
and depend only on the columns:

s
skip−→vR0.X=a,

wRi−1.Y=a
skip−→vRi .X=a,

wRk.Y=a
skip−→t.

We explain now the intuition behind the graph construction, and will also refer to the
example of Figure 2. Notice that the view edges of finite capacity in G are in one-to-one
correspondence with the views in S, and the view edges in general are in one-to-one
correspondence with the views in �. The main invariant is: for every set of view edges
C, C is a “cut” (it separates s and t) if and only if the corresponding set of views V
determines the query. Before justifying this invariant, note that the core of the graph
consists of sequences of three edges:

vRi .X=a
view−→ wRi .X=a

tuple−→ vRi .Y=b
view−→ wRi .Y=b

for all binary relations Ri(X, Y ) and constants a ∈ ColRi .X, b ∈ ColRi .Y . (Unary relations
have just one view edge.) Consider a possible answer to Q, t = (u1, u2, . . . , uk), where
u1 ∈ Colx1 , . . . , uk ∈ Colx2 . If D � V � Q, then, for all D′ s.t. V(D) = V(D′), V must
ensure two things: if t ∈ Q(D) then it must ensure that t ∈ Q(D′), and if t �∈ Q(D) then it
must ensure that t �∈ Q(D′). Take the first case, t ∈ Q(D). For each i = 0, . . . , k, denoting

8If the query has no explicit price in S then capacity = ∞.
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Fig. 2. (a) An example database D and query Q, along with the answers to the partial queries
Q[0:1], Q[1:2], Q[0:2]. (b) The flow graph G that corresponds to Q, D (see Theorem 5.28).

a = ui and9 b = ui+1, we have: a ∈ Lti (is a left partial answer), Ri(a, b) ∈ D, and b ∈ Rti
(is a right partial answer). Hence there are two skip edges:

s
skip−→ vRi .X=a wRi .Y=b

skip−→ t.

Combined with the three edges above, they form an s − t path: thus, any cut of finite
capacity must include one of the two view edges, hence, the corresponding set of views
V includes either σRi .X=a or σRi .Y=b, ensuring Ri(a, b) ∈ D′. Since this holds for any i, it
follows that D′ has all the tuples needed to ensure t ∈ Q(D′). For example, in Figure 2

9When i = k then ui = ui+1, hence a = b.
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the answer (a1, b1) ∈ Q(D) leads to three s − t paths.

s
skip−→ vR.X=a1

view−→ wR.X=a1

skip−→ t

s
skip−→ vS.X=a1

view−→ wS.X=a1

tuple−→ vS.Y=b1

view−→ wS.Y=a1

skip−→ t

s
skip−→ vT .Y=b1

view−→ wT .Y=b1

skip−→ t

Any cut ensures R(a1), S(a1, b1), T (b1) are present.
Take the second case, t �∈ Q(D). Then some of the tuples Ri(ui, ui+1) are missing from

D, and V must ensure that at least one is missing. The sequence u1, . . . , uk consists of
partial answers, alternating with missing tuples. We are interested only in the latter
and the skip edges help by skipping over the partial answers. Thus the missing tuples
are on a path from s to t. For an illustration, assume that exactly two tuples are missing,
Ri(ui, ui+1) and Rj(uj, uj+1); denoting a = ui, b = ui+1, c = uj, d = uj+1:

a ∈ Lti, (a, b) �∈ Md[i:i], (b, c) ∈ Md[i+1: j−1], (c, d) �∈ Md[ j: j], d ∈ Rtj,

leading to the following s − t path:

s
skip−→ vRi .X=a

view−→ wRi .X=a
tuple−→ vRi .Y=b

view−→ wRi .Y=b

skip−→ vRj .X=c
view−→ wRj .X=c

tuple−→ vRj .Y=d
view−→ wRj .Y=d

skip−→ t.

To summarize, we prove the following.

THEOREM 5.28. The cost of the minimum cut in G is equal to the price of Q. Therefore,
the price of Q can be computed in polynomial time, by reduction to MIN-CUT.

PROOF. We prove that the reduction to MIN-CUT we described earlier is indeed valid.
As we have previously discussed, there exists a one-to-one correspondence of views in
� to view edges in G: for a view V ∈ �, let e(V ) be the corresponding edge, and for an
edge e, let V (e) be the corresponding view.

We start by showing that every set of views that determines Q corresponds to a set
of edges in the graph that is a cut.

LEMMA 5.29. Let V ⊆ � s.t. D � V � Q. Then, every s − t path in G is cut by an edge
in C = {e(V ) | V ∈ V}.

PROOF. Suppose not. Then, there exists an uncut path that goes from s to t. First,
notice that we can describe an s − t path uniquely by listing the view edges it crosses,
which correspond to selections (since any path visits alternatingly v,w nodes). More-
over, if a path crosses a selection σRi .X=a, where Ri is binary, the path will also have
to cross some selection σRi .Y=b; in this case, we can say that the path crosses the tuple
R(a, b). Hence, we can equivalently describe an s − t path in the graph as a sequence
of tuples t1, t2, . . . , t� (which may or may not occur in D).

The crucial observation is that we can add or remove the tuples t1, . . . , t� from the
database without modifying the view extensions V(D), since the selections on these
values are not present in V. Consider the two databases D+ = D ∪ {t1, . . . , t�} and
D− = D − {t1, . . . , t�}. We have that V(D+) = V(D−) = V(D).

Now, consider two consecutive tuples in the path: ti, ti+1 (i = 1, . . . , � − 1) and let
ti ∈ Rj, ti+1 ∈ Rj ′ , where j < j ′. Let a = ti.xj+1 and b = ti+1.xj ′ . The path P then
goes from the node wRj .xj+1=a to vRj′ .xj′=b through an infinity edge, which implies that
(a, b) ∈ Md[ j+1: j ′−1]. For the first tuple t1, notice that it is directly connected to s and
hence t1.X ∈ Ltm, whereas also for t�, it must be that t�.Y ∈ Rtm′ . Hence, D+ is going to
produce an extra tuple for Q(D+) that will not be in D−, a contradiction.
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For the converse direction, notice that we can assume w.l.o.g. that an s − t cut
contains only view edges. Indeed, if the cut has finite cost, it contains only view edges
by construction; if its cost is ∞, then we can trivially obtain an equal cost cut (of infinity)
by including all the possible view edges (since every s − t path includes at least one
such edge). We can now show the following.

LEMMA 5.30. If a set of view edges S is a cut for G, then for V = {V (e) | e ∈ S},
D � V � Q.

PROOF. In order to prove the lemma, we will apply Lemma 5.11. For this, we need to
consider two cases.

First, assume that t ∈ Q(D). Then, consider all the projections of t on the different
atoms in Q: tR0 , . . . , tRk. Let us consider a tuple tRi = (a, b) w.l.o.g. (it may be that
tRi = (a)). Notice that a ∈ Lti−1 and b ∈ Rti. Hence, by the construction of G, there
exists a skip edge from s to the view edge σRi .xi=a, and a skip edge that connects the
view edge σRi .xi+1=b to t. This implies that there exists an s− t path that crosses only the
two selections (or one) for Ri, on a and b. Hence, for any i = 0, . . . , k, tRi will be covered
by V .

For the other case, let t /∈ Q(D). Again, consider the projections of t: tR0 , . . . , tRk and
keep only these that do not belong in D: t1, . . . , t�. Then, by the construction of G, there
exists a path P = t1, . . . , t�. Assume that the path will be cut by S in some selection of
the tuple ti; in this case, ti is covered by V.

This concludes the proof that the reduction is indeed correct.

5.6. A PTIME Algorithm for Cyclic Queries

We describe and analyze an algorithm with polynomial data complexity for the cyclic
queries Ck(x1, . . . , xk) = R1(x1, x2), . . . , Rk(xk, x1). The algorithm reduces the pricing of
a cyclic query to WEIGHTED BIPARTITE VERTEX COVER, which can be solved in polynomial
time. We first extend the definition of a full cover. To simplify the presentation and
take advantage of the symmetry of a cyclic query, we define R0 ≡ Rk.

Definition 5.31 (Full Cover). Let variables xi, xj , where 1 ≤ i ≤ j ≤ k. For a set of
views V ⊆ �, we say that the pair (xi, xj) is fully covered by V if, for any a ∈ ColRi−1.xi , b ∈
ColRj .xj such that (a, b) ∈ Md[i: j−1], V contains σRi−1.xi=a or σRj .xj=b.

If i = j, we just say instead that xi is fully covered by V. Note that this is equivalent
to saying that for every a ∈ Colxi , V contains one of σRi−1.xi=a, σRi .xi=a.

LEMMA 5.32. If D � V � Ck, where V ⊆ �, at least one variable xi is fully covered.

PROOF. Suppose not. Then, for every variable xi, there exists a value ai ∈ Colxi

such that σRi−1.xi=ai , σRi .xi=ai /∈ V. Let T = {R1(a1, a2), . . . , Rk(ak, a1)} and consider the
databases D+ = D∪T and D− = D−T . By our construction, V(D+) = V(D−). However,
(a1, . . . , ak) ∈ Ck(D+), whereas (a1, . . . , ak) /∈ Ck(D−), which contradicts the fact that V
determines Ck.

Lemma 5.32 guarantees that at least one variable xi is fully covered. Let F be any
fixing of this variable (which, due to symmetry, we can assume that it is w.l.o.g. x1) and
further a fixing of whether any pair of variables (xi, xj), 1 ≤ i ≤ j ≤ k, is fully covered
or not. We will construct a weighted bipartite graph G[F] for any such fixing F.

The Graph Construction. We construct a weighted bipartite graph G[F] = (A, B, E).
We introduce a node in G[F] for every selection in �. The left partition A includes the
left-selections in a relation (i.e., of the form σRi .xi=a), whereas B the right-selections (i.e.,
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of the form σRi .xi+1=a). The weight of each node is equal to the price of the corresponding
selection.

As for the edges, we distinguish the following cases.

Start edges. For every a ∈ Colx1 , we add the edge (σR1.x1=a, σRk.x1=a).
Full Cover edges. If a pair (xi, xj) is fully covered, for every (a, b) ∈ Md[i: j−1], we
introduce the edge (σRi−1.xi=a, σRj .xj=b).
Tuple edges. For every tuple t = (a1, . . . , ak) ∈ Colx1 × · · · × Colxk, consider the
projections of t at all relations: tR1 , . . . , tRk.
(1) If t ∈ Ck(D), for i = 1, . . . , k, we add the edge (σRi .xi=ai , σRi .xi+1=ai+1 ).
(2) If t /∈ Ck(D), let tRi1

, . . . , tRi�
be the tuple projections that do not belong in D and

consider all the pairs of variables Pt = {(xi1+1, xi2 ), . . . , (xi�−1+1, xi� )}. We add an
edge (σRi1 .xi1 =ai1

, σRi� .xi�+1=ai�+1 ) if none of the pairs in Pt is fully covered.

For a graph G, let VC(G) be the cost of the minimum vertex cover of G. The algorithm
for pricing cyclic queries (CYCLIC PRICE) assigns to Ck the price minF{V C(G[F])}.

PROPOSITION 5.33. CYCLIC PRICE has polynomial data complexity.

PROOF. First, note that the number of choices for F depends only on Ck and thus is
constant for data complexity. Second, weighted bipartite vertex cover is in PTIME.

We next show the validity of the algorithm. For this, it suffices to show what follows.

PROPOSITION 5.34. If the optimum solution to pricing Ck satisfies F, VC(G[F]) equals
the price of Ck.

PROOF. For the one direction, let us assume a vertex cover C for G[F] and for any
vertex v, let σ (v) be the corresponding selection. Moreover, denote V = ⊙

v∈C σ (v). We
show that D � V � Ck. Indeed, consider a tuple t = (a1, . . . , ak). If t ∈ Ck(D), by
the construction of G[F], any projection of t to an Ri, (ai, ai+1), will be covered by V.
Let t /∈ Ck(D). Then, consider all the tuple projections to atoms of Ck such that the
tuples do not belong in D: tRi1

, . . . , tRi�
. If any pair of variables (xi1+1, xi2 ), . . . , (xi�−1+1, xi� )

is fully covered, then some tuple will be covered by V. Else, there exists an edge
(σRi1 .xi1 =ai1

, σRi� .xi�+1=ai�+1 ), which means that a tuple will again be covered. We can apply
Lemma 5.11 to conclude that V indeed determines Ck.

For the other direction, let us consider any V ⊆ � such that D � V � Ck and V
satisfies F. Suppose that the corresponding set of vertices C is not a vertex cover for
G[F]. Then, there exists an edge e ∈ E(G[F]) that is not covered. First, note that e can
not be one of the start edges, since V satisfies F and thus fully covers x1. For the same
reason, e can not be one of the full cover edges. Hence, e must be a tuple edge, which
implies that the introduction of e can be traced back to a tuple t.

If t = (a1, . . . , ak) ∈ Ck(D), by Lemma 5.11 every edge introduced by t would be covered
by V. Consequently, t /∈ Ck(D). Let tRi1

, . . . , tRi�
be the tuple projections of t that do not

appear in D. Consider any two consecutive tuples in the sequence, tRim
= (aim, aim+1),

tRim+1
= (aim+1 , aim+1+1). Notice that (aim+1, aim+1 ) ∈ Md[im:im+1], but by our construction

(xim+1, xim+1 ) is not fully covered. This implies that there exists some (a′
im+1, a′

im+1
) ∈

Md[im:im+1] such that σRim.xim+1=a′
im+1

, σRim+1 .xim+1 =a′
im+1

/∈ V. Now, consider the tuple set T =
{Ri1 (ai1 , a′

i1+1), Ri2 (a
′
i2 , a′

i2+1), . . . , Ri� (a
′
i� , ai�+1)}. Let D+ = D ∪ T and D− = D − T . Since

e is not covered, the tuple (ai1 , ai�+1) is also not covered by V; this fact, together with
our construction imply that V(D+) = V(D−). However, notice that D+ contains now one
extra tuple from D−, a contradiction.
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Fig. 3. An example of a 3-partite 3-uniform hypergraph, along with the corresponding database for the
reduction to PRICE(H1).

5.7. Hardness Results

In this section, we prove the NP-hardness for several CQs. These queries are the
essential hard cases for pricing, and we will show in the next section that every other
hard query reduces to one of them.

THEOREM 5.35 (NP-COMPLETE QUERIES). PRICE(Q) is NP-complete (data complexity)
when Q is any of the following queries:

H1(x, y, z) = R(x, y, z), S(x), T (y),U (z), (5)
H2(x, y) = R(x), S(x, y), T (x, y), (6)

H3(x) = R(x, y), (7)
H4(x1, x2, x3, y) = R1(x1), S1(x1, y), R2(x2), S2(x2, y), R3(x3), S3(x3, y). (8)

If Q is one of H1, H2, H4 then the pricing complexity remains NP-complete even when
the database instance D is restricted s.t. Q(D) = ∅.

We next show the hardness for pricing each of the given queries. We start by showing
the hardness for PRICE(H1), which is a special case of the following proposition.

PROPOSITION 5.36. Let Q be a full query with three variables x, y, z such that it
contains the atom R(x, y, z) and variable i ∈ {x, y, z} belongs also in an atom Ri �= R
(Rx, Ry, Rz are not necessarily different). Then, PRICE(Q) is NP-complete.

PROOF. The hardness for pricing H1 is obtained in the case where all Rx, Ry, Rz are
different and contain only x, y, z respectively.

The reduction for Q is from 3-PARTITE 3-UNIFORM HYPERGRAPH VERTEX COVER

(3P3UHVC), which is proven NP-complete in Gottlob and Senellart [2010]. In this,
we are given a hypergraph G(A, B, C, E) which is 3-partite (no vertices of the same
part can belong in the same hyperedge). The vertex sets A, B, C denote the three parts.
The graph is also 3-uniform, which means that each hyperedge contains exactly 3 ver-
tices, one from each part. The decision version of the problems asks whether there
exists a vertex cover of G of size ≤ k; recall that a vertex cover is a set of vertices V
such that every edge contains at least one vertex from V .

We now define the reduction. Let the columns be Colx = A, Coly = B, Colz = C.
We construct a database D where RD

x , RD
y , RD

z are empty and RD = E (see Figure 3).
Notice that Q(D) = ∅. Let us price every selection query on R to 0 and every selection
query of the form σRi .i=a to 1, where i = x, y, z. Note that this construction defines
a straightforward one-to-one mapping from vertices in G to selection queries on the
relations Rx, Ry, Rz. Let σ (v) be the selection query corresponding to node v and for
a set of nodes S, define also σ (S) = ⊙

v∈S σ (v). Moreover, let �R denote the set of all
selection queries in R.

We will show that G has a vertex cover of size k if and only if Q can be determined
by a subset of � with cost k. Equivalently, we will show that S = {v1, . . . , vk} is a vertex
cover for G if and only if D � σ (S), �R � Q (since the cost of the views σ (S), �R is
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Fig. 4. An example graph G and the corresponding database for the reduction to PRICE(H2).

exactly k and also w.l.o.g. any views of cost k will be of this form). Applying Lemma 5.11
and since Q(D) = ∅, we obtain that D � σ (S), �R � Q is equivalent to the following:
for every tuple (a, b, c) ∈ Colx × Coly × Colz such that (a, b, c) ∈ RD, at least one of the
views σRx .x=a, σRy.y=b, σRz.z=c must belong in σ (S). However, this is equivalent to the fact
that for any edge (a, b, c) ∈ E, one of its vertices is covered by S.

PROPOSITION 5.37. PRICE(H2) is NP-complete, where

H2(x, y) = R(x), S(x, y), T (x, y).

PROOF. We reduce VERTEX COVER (VC) to pricing H2. Given an undirected graph
G(V, E), the VC problem asks for the minimum number of vertices that cover every
edge of G.

We construct an instance of H2 as follows (See Figure 4). First, we take the columns
to be Colx = V ∪ {v0} where v0 /∈ V is a dummy value, and Coly = E. Second, for every
edge e = (v1, v2) ∈ E, we add (v1, e) to SD and (v2, e) to T D (here, we assume an arbitrary
orientation of the edges that will be fixed throughout the reduction). Note that for each
edge one endpoint contributes to S and the other to T . Finally, we add the dummy node
v0 to RD. Note that H2(D) = ∅, since RD = {v0} and v0 has no corresponding tuples to
join: indeed, ∀e ∈ Coly, S(v0, e) and T (v0, e) are both false.

To construct the price points S, we price the selection queries as follows.

—∀v ∈ V , p(σR.x=v) = 1 and p(σR.x=v0 ) = 0.
—∀a ∈ Colx, p(σS.x=a) = p(σT .x=a) = |E|.
—∀e ∈ Coly, p(σS.y=e) = p(σT .y=e) = 1.

Note that given a set of selections V that determines H2, if σS.x=a ∈ V, then we can
replace σS.x=a by

⊙
e∈E σS.y=e to get a new set of selections that determines H2 and is

no costlier than V. This is because ∀a ∈ Colx : D � �S.y � σS.x=a and p(
⊙

e∈E σS.y=e) =∑
e∈E 1 = |E| = p(σS.x=a).
We next show that there exists a vertex cover C ⊆ V of size ≤ k iff there exists a set

of views V that determines H2, such that p(V) ≤ k + |E|.
To prove the forward direction, assume that |C| = k. Define V to be the set of

selections that includes ∀v ∈ C : σR.x=v and σR.x=v0 . Moreover, ∀e = (vi, v j) ∈ E:

(1) if vi, v j ∈ C, include σS.y=e,
(2) if vi ∈ C and v j /∈ C, include σS.y=e,
(3) if vi /∈ C and v j ∈ C, include σT .y=e.

(Notice that vi, v j /∈ C is not possible since C is a vertex cover.) It is easy to see that
p (V) = |C| + |E|. Further, D � V � H2. Indeed, consider a possible answer (v, e). If
v ∈ C, σR.x=v is selected and hence any database D′ that agrees with σR.x=v ∈ V can not
contain (v, e) (since σR.x=v(D) = ∅). If v /∈ C, then either v is an endpoint of e or it is not.
In the latter case, the selection over e (either σS.y=e or σT .y=e) does not include (v, e);
hence, for any database D′ agreeing with the selection, (v, e) /∈ H2(D′). In the former
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case, w.l.o.g. we can assume that e = (v, v j). Then, v j must belong in C and this is case
(3) in the construction of V; hence, σT .y=e ∈ V. However, the construction of T implies
that (v, e) /∈ σT .y=e(D) and thus, for any database D′ that agrees with V, (v, e) /∈ H2(D′).

For the converse direction, consider a set of selections V that determines H2 with
p(V) = k + |E|, where k < |V |. For costlier selections, the proposition is trivially valid
by choosing the cover C = V . Now, for each e ∈ E, V necessarily includes σS.y=e

or σT .y=e, else we can construct database D′ with (v0, e) ∈ SD′
, T D′

. Then, (v0, e) ∈
H2(D′) �= ∅ = H2(D) even though V(D) = V(D′), leading to a contradiction. Further,
for e = (vi, v j), if both σS.y=e, σT .y=e ∈ V, then we can replace σS.y=e with σR.x=vi or
replace σT .y=e with σR.x=v j and have an equal cost determinacy set. Indeed, the views
σS.y=e, σT .y=e ∈ V prevent (v, e) (for any v ∈ Colx) to belong to H2(D). And, so do the
views σR.x=vi , σT .y=e ∈ V, since σT .y=e(D) = {(v j, e)} and σR.x=vi (D) = ∅. A symmetrical
argument holds for replacing σT .y=e with σR.x=v j .

Thus, each edge has a selection from exactly one of S or T (|E| of them): we now show
that for each edge, at least one of its endpoints is selected in R. Suppose not and consider
the edge e = (vi, v j) for which this not true. Then, σR.x=vi , σR.x=v j /∈ V. Moreover, w.l.o.g.
let σS.x=e ∈ V and σT .y=e /∈ V. Since σS.x=e(D) = (vi, e), we can add tuples T (v j, e), R(v j)
to create a database D′ that agrees with D in the views, but now (v j, e) ∈ H2(D′). Hence
the selections from R lead to a valid vertex cover of size p(V) − |E| = k.

PROPOSITION 5.38. PRICE(H3) is NP-complete, where

H3(x) = R(x, y).

PROOF. We prove the hardness of H3 by reduction from SET COVER. Consider a uni-
verse U and a family of subsets S ⊆ 2U . Then, the SET COVER problem asks for the
minimum size subset of S that covers every element of U .

For the reduction, let us define a schema {R(X, Y )} such that ColX = U and ColY = S.
Then, consider the database D where (a, S) ∈ RD iff a ∈ S. Notice that H3(D) = U .
Let us set prices p(σR.X=a) = |S| for any a ∈ ColX = U and p(σR.Y=S) = 1 for any
S ∈ ColY = S. We will show that U has a set cover of size k if and only if H3 can be
determined by a set of views of price k.

For the one direction, consider a set cover {S1, . . . , Sk} ⊆ S and let V = {σR.Y=Si |
i = 1, . . . , k}. We will show that D � V � H3 (notice that V is of cost k). Consider a
database D′ such that V(D′) = V(D) and for the sake of contradiction assume that
some a ∈ U does not belong in H3(D′). By the construction of V, some set S covers
a, hence (a, S) ∈ σR.Y=S(D) and σR.Y=S ∈ V. This implies that (a, S) ∈ σR.Y=S(D′) and
consequently a ∈ H3(D′), a contradiction.

For the converse direction, suppose that H3 is determined by a set of views V of price
k. We can assume w.l.o.g. that no selection from R.X belongs in V, since in this case
k ≥ |S| and we could instead buy all the views σR.Y=S for a cost of |S| and determine
H3 trivially. Hence, V contains views of the form σR.Y=Si for i = 1, . . . k. We will show
that S1, . . . , Sk is a set cover. Suppose not; then, there exists an element a ∈ U not
covered by any set. Consider the database D′ that is constructed by removing from D
all tuples of the form R(a, ∗). It is easy to see that D′, D agree on the views V, since
V contains no view of the form σR.Y=S such that S contains a. Moreover, a /∈ H3(D′),
whereas a ∈ H3(D); this contradicts the fact that V determines H3.

PROPOSITION 5.39. Let Q be a full query with four variables y, x1, x2, x3 such that it
contains the atoms S1(x1, y), S2(x2, y), S3(x3, y) and variable xi, i = 1, 2, 3 belongs also
in an atom Ri �= S1, S2, S3 (Rx, Ry, Rz are not necessarily different). Then, PRICE(Q) is
NP-complete.
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PROOF. The hardness for pricing H4 is obtained when R1, R2, R3 are different and
contain only x1, x2, x3 respectively.

We prove the hardness of H4 by applying the same idea presented in the hardness
proof of H1, namely by showing a reduction from 3P3UHVC. Similarly to the proof of
Proposition 5.36, we will present a slightly more general proof, which will prove the
hardness for two more queries: H′

4, where R1(x1), R2(x2) is replaced by R1(x1, x2), and
H′′

4 , where R1(x1), R2(x2), R3(x3) is replaced by R1(x1, x2, x3). To do this, we will assume
throughout the proof that any Ri may refer to the same relation.

Denote the hypergraph by G(A, B, C, E). For the reduction, let Colx1 = A, Colx2 = B,
Colx3 = C. Let Coly = {1, . . . , |E|}. Next, consider any one-to-one mapping m : E →
Coly. For the construction of D, let RD

i = ∅ for i = 1, 2, 3. The construction of the
Si ’s is as follows: for every edge (a, b, c) ∈ E, we add to D the tuples S1(a, m(a, b, c)),
S2(b, m(a, b, c)), S3(c, m(a, b, c)). Notice that H4(D) = ∅. Finally, we set the prices for the
selections on Si to be zero and for the selections of Ri to be 1. We prove that G has a
vertex cover of size k if and only if H4 can be determined by a subset of selection views
with cost k. Let �S be the set of selections from S1, S2, S3. For a vertex v ∈ C, let σ (v)
be the corresponding selection and σ (C) = ⊙

v∈C σ (v).
As with the proof of Proposition 5.36, it suffices to show that C = {v1, . . . , vk} is a

vertex cover for G iff D � σ (C), �S � Q (again, note that the σ (C), �S costs exactly k
and also w.l.o.g. any views of cost k will be of this form). Applying Lemma 5.11 and since
Q(D) = ∅, we obtain that D � σ (C), �S � Q is equivalent to the following: for every
tuple (a, b, c, m) ∈ Colx1 ×Colx2 ×Colx3 ×Coly such that (a, m) ∈ SD

1 , (b, m) ∈ SD
2 , (c, m) ∈

SD
3 , at least one of the views σR1.x1=a, σR2.x2=b, σR3.x3=c must belong in σ (C). However,

this is equivalent to the fact that for any edge (a, b, c) ∈ E, one of its vertices is covered
by C.

5.8. Proof of the Dichotomy Theorem

In this section, we complete the proof of the dichotomy theorem. We will first prove the
dichotomy theorem for full conjunctive queries w/o self-joins. Then, we will show how
to extend the dichotomy in the case of projections.

Let us first introduce some notation for the reductions. We denote PRICE(Q1) ≺
PRICE(Q2) if we can reduce PRICE(Q1) to PRICE(Q2) in polynomial time. We write
PRICE(Q1) ∼ PRICE(Q2) if there is a PTIME reduction in both directions, that is,
PRICE(Q1) ≺ PRICE(Q2) and PRICE(Q2) ≺ PRICE(Q1).

The proof consists of several steps, which we briefly describe here.

(1) We reduce the problem to a single connected component (Proposition 5.40).
(2) We reduce the problem to CQs without constants (Proposition 5.48), multiple oc-

currences of a variable in the same atom (Proposition 5.41), and hanging variables
(Proposition 5.44): the remaining queries are normalized.

(3) Applying Proposition 5.36, we show that pricing a normalized query is NP-hard if
it contains a ternary predicate.

(4) We finally apply Proposition 5.39 to show that if a query is not cyclic or chain, it is
NP-hard.

Throughout this section, we will often need to show a result of the following form: if
D � V � Q, then D′ � V′ � Q′. In order to prove this, it suffices to define a function f
from V′(D′) to V(D), and a function g from Q(D) to Q′(D′). Indeed, since V determines
Q, there exists some function h such that Q(D) = h(V(D)). Then, Q′(D′) = g(Q(D)) =
(g ◦ h)(V(D)) = (g ◦ h ◦ f )(V′(D′)), which shows that V′ indeed determines Q′ under D′.

5.8.1. Connected Components. We start by examining queries with more than one con-
nected component. The following proposition establishes that for a query Q with
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connected components Q1, Q2, pricing Q is in PTIME if and only if pricing both Q1, Q2
is also in PTIME. Notice that the proposition holds not only for full CQs, but even for
CQs with projections.

PROPOSITION 5.40. Assume that Q can be partitioned such that Q(x̄1, x̄2) =
Q′

1(x̄′
1), Q′

2(x̄′
2), where x̄′

1, x̄′
2 are disjoint sets of variables, x̄1 ⊆ x̄′

1 and x̄2 ⊆ x̄′
2. Let Q1(x̄1) =

Q′
1(x̄′

1) and Q2(x̄2) = Q′
2(x̄′

2). Then, PRICE(Qi) ≺ PRICE(Q) and PRICE(Q) ≺ PRICE(Q1, Q2).

PROOF. Let us assume a database D and a set of price points S. In order to show that
PRICE(Q) ≺ PRICE(Q1, Q2), we show that the following equation holds:

pS
D(Q) =

⎧⎪⎪⎨
⎪⎪⎩

min{pS
D(Q1), pS

D(Q2)} if Q1(D) = Q2(D) = ∅,

pS
D(Q1) if Q1(D) = ∅, Q2(D) �= ∅,

pS
D(Q2) if Q2(D) = ∅, Q1(D) �= ∅,

pS
D(Q1) + pS

D(Q2) else.

(9)

First, consider the case where Qi(D) = ∅ for some i = 1, 2. Notice that Qi(D) being
empty implies that Q(D) = ∅ as well. Hence, D � Qi � Q and, by the arbitrage-free
property, pS

D(Q) ≤ pS
D(Qi).

Next, consider the case where Q1(D) �= ∅. We will show that, if D � V � Q, then
D � V � Q2, which implies that pS

D(Q) ≥ pS
D(Q2). Denote by D1 and D2 the databases

that are contained in D and correspond to the relations that appear in Q1 and Q2
respectively. Note that D1 ∪ D2 = D. For the sake of the contradiction, assume that V
does not determine Q2. This implies that exists some database D′

2 such that Q2(D′
2) �=

Q2(D2) and V(D2) = V(D′
2). Let us now construct the database D′ = D1 ∪ D′

2. It is easy to
see that V(D) = V(D′). Also, let t2 is the tuple which witnesses the nondeterminacy of
Q2. Since Q1(D) is nonempty, there exists t1 ∈ Q1(D). It is easy to see that t1◦t2 witnesses
the nondeterminacy of Q, a contradiction. We can show the same symmetrically in the
case where Q2(D) �= ∅.

Combining the two inequalities, we prove case 2 (and symmetrically case 3) of (9).
In order to prove case 1 (where both Q1, Q2 are empty), assume that we have some

V that determines neither Q1 nor Q2. Then, consider the tuples t1, t2 that witness the
nondeterminacy for Q1, Q2 for databases D′

1, D′
2 which are of minimum size. The tuple

t1 ◦ t2 will then be a witness for not being able to determine Q, for the database D1′ ∪ D2′ .
This implies that pS

D(Q) ≥ min{pS
D(Q1), pS

D(Q2)} and concludes case 1.
As for case 4, where both Q1, Q2 are nonempty, notice that D � V � Q implies that

for every i = 1, 2, D � V � Qi. Let Vi be the selections from V that are only on
atoms from Qi. Then, it easy to see that D � Vi � Qi as well. Since V1 ∩ V2 = ∅ and
V1, V2 = V, we have that pS

D(Q) ≥ pS
D(Q1) + pS

D(Q2). The lower bound is trivial, so this
concludes case 4.

We finally show that PRICE(Qi) ≺ PRICE(Q) (w.l.o.g. let i = 1). Assume that we want
to compute the price of Q1 for some database D1 under price points S. We construct
a database D = D1 ∪ D2, where D2 is a fixed database such that Q2(D2) �= ∅ (such a
D2 always exists, since Q2 is not trivially empty). Moreover, let us price for S ′ every
selection on the atoms of Q2 (the set �2) to 0 and every other selection (in �1) the same.
An immediate observation is that ∀t2 ∈ Q2(D2), t◦t2 ∈ Q(D) iff t ∈ Q(D1). This gives us a
map between the query answers. Notice also that for V ⊆ �1, it is immediate to obtain
V(D), �2(D) from V(D1) and vice versa, since V(D) = V(D1) and �2(D) is fixed. Hence,
D1 � V � Q1 if and only if D � V, �2 � Q; this implies that pS

D1
(Q1) = pS ′

D (Q).

5.8.2. Multiple Occurrences. We next show that it suffices to characterize the complexity
of a query by looking at the one that occurs after having removed multiple occurrences
of a variable in the same atom of Q.

Journal of the ACM, Vol. 62, No. 5, Article 43, Publication date: October 2015.



Query-Based Data Pricing 43:31

PROPOSITION 5.41. Let Q contain an atom R where a variable x appears more than
once and let Q′ be the query obtained if we replace R by R′, where we keep only one
occurrence of x. Then, PRICE(Q) ∼ PRICE(Q′).

PROOF. For ease of exposition, let us assume w.l.o.g. that R appears in Q as
R(x, x, . . . ), where R has schema R(A, B, . . . ). Let R′ be the corresponding relation
in Q′, with schema R(A, . . . ).

We first show that PRICE(Q′) ≺ PRICE(Q). Suppose we want to compute the price of Q′
for a database D′ and prices S. Then, we create a database D for Q such that for S �=
R : SD = SD′

and also replace R′D′
with RD such that (a, . . . ) ∈ R′D′

iff (a, a, . . . ) ∈ RD.
It is easy to observe that Q′(D′) = Q(D). Let the prices in S ′ be p(σR.A=a) = p(σR.B=a) =
p(σR′.x=a) for any a ∈ Colx and keep the same price for any other selection. It is easy to
see now that pS

D(Q) = pS ′
D′(Q′) (since we have a 1-1 mapping between views and query

answers).
We next show that PRICE(Q) ≺ PRICE(Q′). Given a database D, Q and S, we construct

a new database D′ where we replace only RD with R′D′
such that (a, . . . ) ∈ R′D′

iff
(a, a, . . . ) ∈ RD. Moreover, for S ′ we let p(σR′.x=a) = min{p(σR.A=a), p(σR.B=a)} for any a ∈
Colx and keep the other prices the same. Again, it is easy to observe that Q(D) = Q′(D′).
Now, consider the minimum priced V ⊆ � such that D � V � Q. By Lemma 5.19, V
can not contain the maximum priced selection out of σR.A=a, σR.B=a, for any a ∈ Colx.
Hence, by replacing the minimum priced σR.A=a with σR′.x=a (w.l.o.g.), we can obtain
an equal cost set V′. We next show that D′ � V′ � Q′. Indeed, if T are the tuples
from RD such that t.A �= t.B, we have from Lemma 5.14 that D − T � V � Q. Now,
from V′(D′) we can compute V(D − T ), which by the determinacy assumption gives
Q(D − T ) = Q(D) = Q′(D′). For the converse direction, let D′ � V′ � Q′. We will show
that D � V′ � Q. Indeed, if we know V′(D), we can compute V(D′), and then by the
determinacy assumption Q(D′) = Q(D).

The proposition says that pricing the query Q(x, y) = R(x, x), S(x, y, x) is equivalent
to pricing the query Q′(x, y) = R′(x), S′(y, x).

5.8.3. Hanging Variables. Recall that a hanging variable is one that occurs in only one
atom of Q (and by the previous discussion, we can assume it appears only once there).

Let Q be a query with a hanging variable R.X, where R(X1, . . . , Xk, X). For a tuple
t = (a1, . . . , ak, a) ∈ R, define for b ∈ ColR.X, t(b) = (a1, . . . , ak, b). Also, let M(t) = {t(b) |
b ∈ ColR.X}.

LEMMA 5.42. Let x be a hanging variable in Q, occurring in the attribute position
R.X. Let V ⊆ �. If D � V � Qthen either (a) V fully covers R.X or (b) D � (V\�R.X) � Q
(in other words, every view in V referring to R.X is redundant).

PROOF. We will assume that R.X is not fully covered and then show that �R.X (i.e.,
any view of the form σR.X=a) is redundant to V. By Theorem 5.15, it suffices to show
that a tuple tR ∈ �R.X(D) is either noncritical or belongs to some view in (V \ �R.X)(D).

For the sake of contradiction, suppose that tR is critical and also that it does not
belong in any view of the set (V \ �R.X)(D). Since R.X is not fully covered, there exists
some c ∈ ColR.X such that σR.X=c /∈ V. Now, construct a database D′ = D ∪ {R(t′

R)},
where t′

R is as tR apart from the attribute R.X, where its value is c. The new tuple t′
R

does not belong in any of the views in V(D′), hence V(D′) = V(D). Next, since tR is
critical, it contributes to an answer t ∈ Q(D). When t′

R is added, we will thus get an
answer t′ ∈ Q(D′), where t is as t′ apart from position R.X which has value c. However
t′ /∈ Q(D), a contradiction.
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LEMMA 5.43. Let Q be a query with a hanging variable R.x, where R(X1, . . . , Xk, X).
Given a database D, define DC = D ∪ ⋃

t∈RD M(t). Then, for any price points S, pS
D(Q) =

pS
DC

(Q).

PROOF. It suffices to show that D � V � Q iff DC � V � Q.
The one direction comes from Proposition 5.12, since D ⊆ DC . For the other direction,

let t ∈ D and a ∈ ColR.x. Let Da = D ∪ R(t(a)). We will show that Da � V � Q; then,
the lemma follows by induction. Indeed, notice that (Da − t) � V � Q by genericity
and since x is hanging. Moreover, Q(Da) = Q(D) ∪ Q(Da − t). Hence, having V(Da), we
can compute both V(D), V(Da − t), then compute the answers and union the results to
obtain Q(Da).

PROPOSITION 5.44. Let QH be the query obtained from Q if we remove all the hanging
variables. Then, PRICE(QH) ∼ PRICE(Q).

PROOF. We will show this for the case of one hanging variable; then, we can obtain
the proposition using induction. Let us assume that the hanging variable is of the
form R.X and let Q−x be the query obtained by removing variable x from the atom
R(X1, . . . , Xk, X), obtaining the new atom R′(X1, . . . , Xk). Notice that R also contains at
least one other variable (since we can assume w.l.o.g. one connected component).

We first show that PRICE(Q) ≺ PRICE(Q−x). Let D be a database and S price points for
Q. From Lemma 5.43, we can instead consider the database DC with the same price
points.

Let D′ the database for Q−x, where we have replaced RDC by R′D′
, such that R′D′

contains the tuples from RDC where x has been projected out. A key property is that if
the head variables are (x, x1, . . . ), then (a1, . . . ) ∈ Q−x(D′) iff ∀a ∈ ColR.x : (a, a1, . . . ) ∈
Q(DC). We now distinguish two cases for the prices: S ′ prices every selection in R′ to
zero, and every other selection to the same price. S ′′ keeps all the prices the same. We
show that

pS
DC

(Q) = min
{

pS ′
D′(Q−x) + p(�R.X), pS ′′

D′ (Q−x)
}
.

Note that by Lemma 5.42, if D � V � Q, we can consider only two cases: either V
contains every view in the set �R.X = {σR.X=a | a ∈ Colx} or none of them.

We first show that, if �R.X ⊆ V, then DC � V � Q iff D′ � R′, V \ �R.X � Q−x (notice
that the price of R′ is zero). Indeed, we have a function to go from Q(DC) to Q−x(D) and
vice versa. Moreover, we also have a function to map V(DC) to R(D′), (V \ �R.X)(D′) and
vice versa.

If �R.X �⊆ V, we can assume that V contains no views from �R.X at all and show that
DC � V � Q iff D′ � V � Q−x. Again, we have a direct mapping from V(D′) to V(DC)
and vice versa and also the mapping for the query answers.

For the other direction, we want to show that PRICE(Q−x) ≺ PRICE(Q). Suppose some
D′,S ′ for Q−x. Let Dom(R.X) = {a}. We create a new database D where RD is populated
as follows: t = (a1, . . . , ak, a) ∈ RD iff (a1, . . . , ak) ∈ R′D′

. The rest of the relations remain
exactly as in D′.

We now observe that, by construction, (a1, . . . , al) ∈ Q−x(D) iff (a1, . . . , al, a) ∈ Q(D).
We define the price points S by pricing the single selection σR.x=a at the cost of the
table R and keeping all the other prices the same. This implies that we can assume
w.l.o.g. that the optimal pricing pS

D will never choose σR.x=a, since we could just replace
it by asking for the individual selections of the cheapest attribute of R. Hence, any
selection set for Q corresponds to a selection set for Q−x. Moreover, we have a one-to-
one mapping of the answers of Q, Q−x and a one-to-one mapping for V(D), V(D′). Thus,
pS

D(Q) = pS ′
D′(Q−x).
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We now have an algorithm for removing hanging variables: compute two prices for
Q′, and take the minimum. The first price corresponds to the case when R.X is fully
covered: in that case, we give out R′ for free (by setting all prices σR′.Y=a to 0, for some
other attribute Y ) and compute the price of Q′: then, add to that the true cost of the full
cover �R.X, that is,

∑
a p(σR.Y=a). The second price corresponds to the case when R.X is

not covered at all, and is equal to the price of Q′.

Example 5.45. For a simple example, if Q(x, y, z) = R(x, y), S(y, z), T (z), then
Q′(y, z) = R′(y), S(y, z), T (z). Let p1 be the price of Q′ where we set all prices of σR′.Y=b
to 0; let p2 be the regular price of Q′ (where all prices are unchanged, but the views
σR.X=a are removed); return min(p1 + p(�R.X), p2).

5.8.4. Constants. We next show how to deal with constants (and constraints more
general). The first proposition holds for any atomic constraint that can be computed in
polynomial time, that is, we allow predicates like x > 10 or USER-DEFINED-PREDICATE(x),
but not x < y.

PROPOSITION 5.46. Suppose Q contains a variable x filtered by an atomic predicate
C(x). Let Q′ be the query obtained by removing C(x) from Q. If C is computable in
PTIME, PRICE(Q) ≺ PRICE(Q′).

PROOF. The idea is to shrink the column of x to Col′x = {a ∈ Colx | C(a) = true} for Q′,
thus removing all constants that do not satisfy C. Let S ′ ⊆ S be obtained by removing
all selection views that refer to these constants, and similarly D′ ⊆ D be the database
obtained by filtering on the predicate C.

We next show that pS
D(Q) = pS ′

D′(Q′). The key observation is that if for some V ⊆ �,
D � V � Q, we can assume w.l.o.g. that no selection on x = a,¬C(a) appears in V
(this follows from the fact that any tuple in such a selection would be noncritical and
Theorem 5.15). It is now easy to see that, under this assumption, D � V � Q iff
D′ � V � Q′. Indeed, Q(D) = Q′(D′). Moreover, if D′ � V � Q′, then we can take
V(D), compute V(D′) by filtering the tuples with C, then use determinacy to compute
Q′(D′) = Q(D). For the converse, if D � V � Q, it follows that D − T C � V � Q,
where T C are the tuples of D filtered by C (from Proposition 5.12). Now, we can take
V(D′) = V(D − T C), and from that compute Q(D − T C) = Q(D) = Q′(D′).

The following example illustrates the given construction.

Example 5.47. Let Q(y, w, z) = R(y), S(y, w, z), T (z), w = a1 and Colw = {a1, a2, a3}.
Then, we restrict the column of w to {a1}, remove the views σS.W=a2 , σS.W=a3 from S to
obtain S ′, filter D on w = a1 to obtain D′, and then compute the price of Q′(x, y, z) =
R(y), S(y, w, z), T (z).

PROPOSITION 5.48. Suppose Q has a constant a in some atom R(a, x1, . . . , xm). Let
Q′ be the query where R is replaced with R′(x1, . . . , xm) such that a is removed. Then,
PRICE(Q) ∼ PRICE(Q′).

PROOF. We first show that PRICE(Q) ≺ PRICE(Q′). Indeed, we can rewrite Q by intro-
ducing a new variable xa to replace the constant a and add the constraint xa = a. By
Proposition 5.46, we can now remove the constraint xa = a. Then, notice that xa is a
hanging variable, so we can remove it as well by Proposition 5.44 to obtain Q′. To prove
that PRICE(Q′) ≺ PRICE(Q), we can apply the same proof as in the second part of Propo-
sition 5.44 to reduce Q′ to Q′′, where we have added to R′ an extra attribute xa with
column Colxa = {a}. But now adding to Q′′ the constraint xa = a gives an equivalent
query, which is Q.
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As an example, pricing the query Q(x, y) = R(x, y), S(x, a) is equivalent to pricing
the query Q′(x, y) = R(x, y), S′(x).

5.8.5. The Dichotomy for Normalized Queries. At this point, it suffices to characterize the
complexity for pricing a normalized query to complete the dichotomy proof. We remind
here that a normalized query is a full CQ without self-joins, which has one connected
component, no constants, no hanging variables and no multiple occurrences of variables
in the same atom.

We first present two useful lemmas for hardness reductions. The first lemma states
that, given a hard query, we can add any variable in any atom (or even introduce a new
atom) and the query still remains hard. The lemma holds also for CQs with projections.
Given a query Q that contains an atom R with a variable x, we denote by Q−R.x the
query obtained by removing x from R (and if R has a single attribute, remove R).

LEMMA 5.49. PRICE(Q−R.x) ≺ PRICE(Q).

PROOF. Without loss of generality, we can assume that x is not hanging (otherwise
the lemma holds trivially by Proposition 5.44).

Consider pricing the query Q−R.x under some database D and price points S. We will
show how to compute this query by reducing it to a computation of Q for S ′, D′. Assume
that Q is obtained from Q−R.x by replacing R(X1, . . . , Xk) with R′(X1, . . . , Xk, Y ). The
column for Y is ColY = Colx. We create D′ from D as follows:

(a1, . . . , ak) ∈ RD =⇒ ∀b ∈ ColY : (a1, . . . , ak, b) ∈ R′D′
.

If R does not exist in Q−R.x, add a new table R′D′ = Colx.
We now claim that Q−R.x(D) = Q(D′). Indeed, consider a tuple t ∈ Q(D′) and any

tuple from R′D′
that contributes to t, let it be tR′ = (a1, . . . , ak, b). Then, (a1, . . . , ak) ∈ RD.

Since the other relations remain unchanged, t ∈ Q−R.x(D). For the opposite direction,
let t ∈ Q−R.x(D) and consider a tuple tR = (a1, . . . , ak) from RD that contributes to t.
Moreover, for the assignment of values to variables that results in tR contributing to
t, let b be the value of the attribute x at tuple t (since x appears somewhere in Q−R.x).
Then, by our construction, (a1, . . . , ak, b) ∈ R′D′

. Again, since the other tables remain
unchanged, t ∈ Q(D′).

In order to construct S ′, we let the price of any selection on R.x to be equal to the price
of asking for the whole R, in other words pS

D(R), and all the other prices remain the
same as in S. Hence, we can assume w.l.o.g. that no selection from R.x will be chosen for
any V that determines Q. In order to prove that pS ′

D′(Q) = pS
D(Q−R.x), it suffices to show

that D � V � Q−R.x iff D′ � V � Q. However, this follows from the fact that we can
compute V(D) from V(D′) and vice versa, as well as the fact that Q−R.x(D) = Q(D′).

The second lemma is as follows.

LEMMA 5.50. Let Q(z̄) = Q1(x, x̄′), R(x, y), Q2(y, ȳ′) be a CQ. Moreover, let Q′(z̄′) =
Q1(x, x̄′), Q2(x, ȳ′), where z̄′ is obtained from z̄ by replacing y with x. Then, PRICE(Q′) ≺
PRICE(Q).

PROOF. Assume a database D′ for Q′, along with a set of price points S ′. In order
to prove the reduction, we construct a new database D where we have added to D′
the relation RD = {(a, a) | a ∈ Colx}. It is easy to see that this construction allows a
one-to-one mapping from tuples in Q(D) to Q′(D′) and vice versa. More precisely, y
does not appear in z̄, then Q(D) = Q′(D′). Otherwise, we distinguish two cases. First,
Q has head variables (x, y, . . . ) and Q′ has (x, . . . ). Then, (a, . . . ) ∈ Q′(D′) if and only if
(a, a, . . . ) ∈ Q(D). Second, Q has head variables (y, . . . ) and thus Q′ has (x, . . . ). In this
case, we again have that Q(D) = Q′(D′).
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As for the set of price points S, we keep the prices for the other relations the same as
in S ′, and price every selection from R to zero. In order to show that pS

D(Q) = pS ′
D′(Q′),

it suffices to prove that D � V, �R.x � Q iff D′ � V � Q′. However, there is a direct
mapping from V(D), �R.x(D) to V(D′) (since R is constant and the other views are
exactly the same) and vice versa. This, together with the 1-1 mapping between the
answers, concludes the proof.

PROPOSITION 5.51. If a normalized query Q contains an atom with ≥ 3 attributes,
PRICE(Q) is NP-complete.

PROOF. Assume that Q contains an atom R(x, y, z, . . . ). Since Q is normalized, the
variables x, y, z will be different. Applying repeatedly Lemma 5.49, we can remove all
other variables and obtain a query Q′ that contains only x, y, z. Since Q is normalized,
the variables x, y, z are not hanging and thus will appear in other atoms in Q′. Let Q′′
be the query obtained from Q′ by keeping exactly two occurrences of each x, y, z: one in
R and the other in Rx, Ry, Rz respectively. By Lemma 5.49, PRICE(Q′′) ≺ PRICE(Q). We
can now apply Proposition 5.36 to show that PRICE(Q′′) is NP-complete (and hence also
PRICE(Q)).

Hence, it now suffices to characterize normalized queries where every atom has at
most 2 attributes: recall that these are 2-normalized queries.

PROPOSITION 5.52. For any query of the form

C+
k (x1, . . . , xk) = Si1 (xi1 ), . . . , Si� (xi�), Ck(x1, . . . , xk),

where k > 1 and � > 0, PRICE(C+
k ) is NP-complete.

PROOF. First, we apply Lemma 5.49 to keep only one unary predicate, let it be S(x1).
We can reduce then Q to the query Q′(x1, . . . , xk) = S(x1), R1(x1, x2), . . . , Rk(xk, x1). Next,
we apply repeatedly Lemma 5.50 to remove the relations R3, . . . , Rk. Indeed, applying
once Lemma 5.50 reduces Q′ to Q2(x1, . . . , xk−1) = S(x1), R1(x1, x2), . . . , Rk−1(xk−1, x1).
The next application will reduce Q2 to Q3(x1, . . . , xk−2) = S(x1), R1(x1, x2), . . . ,
Rk−2(xk−2, x1), and so on. After k − 2 applications, we have reduced Q to the query
Qk−2(x1, x2) = S(x1), R1(x1, x2), R2(x2, x1). This is exactly the query H2, for which
PRICE(H2) is NP-complete by Proposition 5.37.

PROPOSITION 5.53. Let Q be a 2-normalized query where a variable x appears in ≥ 3
binary predicates. Then, PRICE(Q) is NP-complete.

PROOF. Let the three binary predicates be S1(x1, y), S2(x2, y), S3(x3, y). Also, consider
the query Q′ that is obtained by removing all the other variables apart from y, x1, x2, x3
and keeping these 3 occurrences of y along with a second occurrence for each variable
xi. By Lemma 5.49, it suffices to show the hardness for Q′. Let R1, R2, R3 be the rela-
tions where x1, x2, x3 appear respectively. We now distinguish two cases, depending on
whether the variables xi are the same or not.

—Any two xi are equal. W.l.o.g. let us assume that x1 = x2(= x). Then, we can re-
duce Q′ to the query Q′′(x, y) = S1(x, y), S2(x, y), R1(x), which is the hard query C+

2
(Proposition 5.52).

—All xi are different. Then, we prove hardness by applying Proposition 5.39.

This concludes the proof of the proposition.

Equipped with this proposition, we can now provide a syntactic characterization for
2-normalized queries and thus conclude the dichotomy proof.
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PROPOSITION 5.54. Let Q be a 2-normalized query. Then, Q either:

(1) is Ck or C+
k ,

(2) has a variable x that appears in ≥ 3 binary predicates,
(3) is a chain query.

PROOF. Consider the graph G that is defined by the binary atoms of Q. If we assume
that condition (2) does not hold, then in G every node has degree at most 2. It is easy
to see that such a graph G is either a cycle or a line (G has one connected component).

In the case of a cycle, Q is either Ck (no unary predicates) or C+
k (at least one unary

predicate). In the case where G is a line, Q is a chain query.

5.8.6. Projections. Finally, we show how to extend the dichotomy result for CQs with
projections.

LEMMA 5.55. If Q is a boolean query, PRICE(Q) ∼ PRICE(Qf ), where Qf is the corre-
sponding full query of Q.

PROOF. Let D be the database for which we compute the price of Q. If Q(D) is false,
then pricing Q is equivalent to pricing Qf , because Q is false iff Qf is empty. If Q(D) is
true, in order to determine Q it suffices to find a valuation that makes Q true. Thus,
we are looking for the cheapest set of views from � such that the tuples in this set
evaluate Q to true. We can compute this in polynomial time: we first compute Qf (D),
and then for each tuple t ∈ Qf (D) compute the cheapest set of views that determines
every projection tR, where R is an atom in Q. Since the tuples tR belong in at most
arity(R) views, this can be computed in polynomial time. Thus, we have showed how
to reduce PRICE(Q) to PRICE(Qf ).

To show the reverse reduction, we need to prove that when PRICE(Qf ) is NP-hard, so is
PRICE(Q). The crucial observation is that if PRICE(Qf ) is NP-hard, then by Theorem 5.35
and the structure of the reductions in this section, it also remains NP-hard if we restrict
the databases D such that Qf (D) = ∅. Since Qf (D) = ∅ if and only if Q(D) is false, this
implies that the hardness results carry over to the boolean case.

Lemma 5.55, along with Proposition 5.38 imply the following dichotomy for CQs with
projections.

THEOREM 5.56 (DICHOTOMY FOR PROJECTIONS). For a conjunctive query Q without self-
joins and one connected component, let Qf be the corresponding full CQ. Then,

—if Q is full or boolean, PRICE(Q) ∼ PRICE(Qf );
—else, PRICE(Q) is NP-complete.

PROOF. The first part follows directly from Lemma 5.55. For the second part, assume
a query Q(x̄) = Q1(x̄, ȳ), where x̄, ȳ are not empty (since it is not full nor boolean).
Consider any two variables x0 ∈ x̄ and y0 ∈ ȳ. Notice that both x0, y0 must exist in some
atom with at least two attributes, since Q has one connected component. Let R, S such
atoms for x0, y0 respectively. Moreover, since Q is one connected component, x0 and y0
will be connected. In other words, there will be w.l.o.g. a sequence of atoms R1, . . . , R�

such that any two consecutive atoms Ri, Ri+1 share a variable xi, R and R1 share a
variable x1 and R� and S share a variable x�. Applying Lemma 5.49, we can remove
any other variable from Q to obtain a query Q′(x̄′) = R(x0, x1), R1(x1, x2), . . . , R�(x�, y0),
where x̄′ ⊆ x̄, but still containing x0. Finally, we can repeatedly apply Lemma 5.50
to obtain the query Q′′(x0) = R(x0, y0), which is the NP-complete query H3 (Proposi-
tion 5.38).

Journal of the ACM, Vol. 62, No. 5, Article 43, Publication date: October 2015.



Query-Based Data Pricing 43:37

6. DISCUSSION

In this section, we present several results on extensions of our model.

6.1. Pricing and Query Containment

The price should not be required to be monotone w.r.t. query containment. Recall that
two queries (of the same arity) are said to be contained if Q1(D) ⊆ Q2(D) for any
database D. If Q2 always returns at least as much data as Q1, one might insist that
pD(Q1) ≤ pD(Q2). We argue against this.

Example 6.1. Consider Q1(x, y) = R(x), S(x, y) and Q2(x, y) = S(x, y). Then, Q1 ⊆
Q2, but the information in Q1 may be more valuable than that in Q2. For example,
S(x, y) may be the list of the top 500 companies and their stock price, while R(x) may
be an analyst’s confidential list of 5 companies with very high potential for growth.
Clearly, the seller wants to set pD(Q1) � pD(Q2).

There is also a theoretical argument: if pD is arbitrage-free and monotone w.r.t.
query containment, then all Boolean queries have the same price! Indeed, let T be the
Boolean query that is always true, that is, T (D) = true for any database D, and let
Q be any Boolean query. We have Q ⊆ T , hence pD(Q) ≤ pD(T ); on the other hand,
D � Q � T , which implies pD(T ) ≤ pD(Q).

6.2. Information Leakage

In this section, we explore whether learning the price of a query without revealing the
query answer leaks any information about the underlying database.

PROPOSITION 6.2. Let D be a database and S price points with selections and non-zero
prices. Moreover, assume that there exist two nonempty views σR.X=a, σS.Y=b ∈ S for two
distinct relations R, S. Given only the prices of any conjunctive query w/o self-joins, a
user can determine V (D) for any V ∈ S.

PROOF. Let the relations be R(X1, . . . , Xk) and S(Y1, . . . , Ym). Since S includes at least
one nonempty selection from R and S, there exist tuples t1 ∈ RD, t2 ∈ SD such that
p1 = p(R(t1.X1, . . . , t1.Xk)) < +∞ and p2 = p(S(t2.Y1, . . . , t2.Ym)) < +∞. Moreover,
p(R(t1.X1, . . . ), S(t2.Y1, . . . )) = p1 + p2. Observe that if t1 /∈ RD or t2 /∈ SD, then that
price would be p1 or p2, hence strictly smaller than p1 + p2. Thus, the user can learn
that t1 ∈ RD and t2 ∈ SD. Now, consider any potential tuple t = R(a1, . . . , ak) such that
its price is p < +∞ (its price is finite if and only if there exists an attribute Xi such
that σR.Xi=ai ∈ S). Then, we have that p(R(a1, . . . , ak), S(t2.Y1, . . . )) = p + p2 if t ∈ R,
otherwise it is p. Similarly from potential tuples from S. Hence, the user can determine
V (D) for any V ∈ S.

The proposition tells us that under very weak assumptions a user can derive from the
query prices all the query answers for the views that are for sale. In order to overcome
this issue, a pricing system can choose not to reveal any prices without a purchase, or
alternatively charge the buyer some amount for learning the price.

6.3. Selections on Multiple Attributes

In Section 5, we studied the case when the price points can only be selections on single
attributes. A natural question is whether one can extend our results when selections
on two or more attributes are used as price points: for instance, σR.X=a,R.Y=b. In this
section, we will present some result in this direction.

A first observation is that adding selections on multiple attributes will make
pricing at least as hard as having selections only on one attribute (indeed, pricing

Journal of the ACM, Vol. 62, No. 5, Article 43, Publication date: October 2015.



43:38 P. Koutris et al.

the multi-selections in a very high price reduces the problem to single-selection price
points). However, the data complexity of pricing conjunctive queries will be still in NP.

Unfortunately, computing the price becomes intractable even for very simple queries.
The next proposition shows that using selections on 3 attributes is always prohibitive.

PROPOSITION 6.3. If we allow selections on 3 attributes as price points, pricing the
query Q(x, y, z) = R(x, y, z) is NP-hard.

PROOF. The reduction is from 3-partitite 3-uniform hypergraph vertex cover
(3P3UHVC). Given a hypergraph G = (A, B, C, E), we construct a database D such
that RD = Ē, that is, the complement of the graph G. The columns of X, Y, Z are
A, B, C respectively. As for the price points, we price every selection on a single at-
tribute to 1, and a selection σR.X=a,R.Y=b,R.Z=c to 0 if (a, b, c) /∈ E, else we price it
to 1.

Now, notice that if a set of views determines Q, we can replace any 3-selection
σR.X=a,R.Y=b,R.Z=c such that (a, b, c) ∈ E with either σR.X=a, σR.Y=b or σR.Z=c with the same
cost of 1 and still determine Q. This holds still any of the single attribute selections
cover a superset of the tuples that the 3-selection covers. Thus, we can assume w.l.o.g.
that any solution consists only of single selections plus the free edges that correspond
to Ē.

It is now easy to see that any set vertex cover defines a corresponding equal cost
set of 1-selections that, together with the 3-selections from Ē determine Q, and vice
versa.

Hence, using selections on 3 attributes makes even the simplest queries infeasible
to compute. We next discuss the implications of adding selections on two attributes
(2-selections) to the complexity of pricing. Even in this case, we run into intractability
very soon.

PROPOSITION 6.4. If 2-selections are allowed, pricing the query Q(x, y, z, w) =
R(x, y), S(x, z), T (x, w) is NP-hard.

PROOF. The reduction is again from 3P3UHVC. Given a hypergraph G = (A, B, C, E),
we first give to each potential edge a unique ID (which corresponds to variable x). Then,
for each edge (a, b, c) /∈ E, with ID m, we introduce the tuples R(m, a), S(m, b), T (m, c).
As for the prices points S, we price the selections on R.y, S.z, T .w to 1, and the selections
on R.x, S.x, T .x to |A|, |B|, |C| respectively. This ensures that we can assume w.l.o.g. that
no selection from R.x, S.x, T .x needs to be purchased. Finally, we price a 2-selection on
m, v to zero if (m, v) is in D or the edge with ID m does not include vertex v; else, we
price it to 1.

Let D � V � Q. By our construction, we can assume w.l.o.g. that any set of views that
V contains all the zero priced 2-selections and a set C of selections on R.y, S.z, T .w.
We will show that C corresponds to a vertex cover for G. Indeed, consider an edge
(a, b, c) ∈ E. Since none of the 2-selections σR.x=m,R.y=a, σS.x=m,S.z=b, σT .x=m,T .w=c will be
free, V must cover one of the selections σR.y=a, σS.z=b, σT .w=c, thus covering the edge.

For the other direction, consider a vertex cover C of G and a possible answer t =
(m, a, b, c). If t ∈ Q(D), the views σR.x=m,R.y=a, σS.x=m,S.z=b, σT .x=m,T .w=c will be free, and
hence the tuple t will be always discovered. Otherwise, t /∈ Q(D). Notice that if edge m
does not include any of the vertices a, b, c, then we know it since this selection is priced
to zero. Hence, m is a potential edge with vertices a, b, c. Since it is not an answer, all
of (m, a), (m, b), (m, c) do not belong in D and (a, b, c) ∈ E. Since all edge are covered,
one of the selections on a, b, c is chosen and hence we discover again that the tuple is
correctly not an answer.
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Notice that the given example also suggests that we cannot apply the reductions we
used for 1-selections in order to simplify the structure of a query: indeed, for the given
query, y, z, w are all hanging variables, but cannot be removed.

Fortunately, there exists a large class of conjunctive queries for which pricing with 2-
selections is still feasible, and this is the class of chain queries (Definition 5.23). Indeed,
there is a very elegant way to modify the construction of the flow graph such that 2-
selections are taken into account. For every binary relation R, instead of setting the
capacity of the tuple edges (wR.X=a, vR.Y=b) to infinity, we simply set it to p(σR.X=a,R.Y=b).
It is easy to see that the proof for the validity of the construction can be easily extended
for this case.

PROPOSITION 6.5. Even if 2-selections are allowed as price points, pricing any CHQ
query is in PTIME.

To sum up, pricing conjunctive queries in the presence of multi-selections as price
points leads to NP-hard problems even in the case of queries that could be trivially
priced in polynomial time with 1-selections. However, the tractability for pricing re-
mains for chain queries. We conjecture that there exists a dichotomy for pricing com-
plexity for multi-selections as well; we leave this as an open problem.

6.4. Self-Joins

The dichotomy theorem (Theorem 5.25) holds only for conjunctive queries without self-
joins. In this section, we present some partial results towards extending this dichotomy
for any conjunctive query. We leave open the problem of whether a dichotomy exists for
this case. We start the discussion on self-joins by showing the hardness of pricing the
following query.

PROPOSITION 6.6. PRICE(HJ) is NP-complete, where

HJ(x, y) = R(x), S(x, y), R(y)

PROOF. The reduction is from VERTEX COVER. Consider a graph G(V, E), where we
ask whether there exists a vertex cover of size ≤ k. Fix a schema {R(X), S(X, Y )} and
let ColX = ColY = V . Let a database D such that RD = ∅ and SD = E (fix an arbitrary
direction for the undirected edges E). As for the prices, let p(σS.X=c) = p(σS.Y=c) = 0
and p(σR.X=c) = 1. Notice that HJ(D) = ∅. We now show that G has a vertex cover of
size k if and only if HJ can be determined by a set of views with cost k.

For the one direction, assume that G has a vertex cover C = {v1, . . . , vk} of size k. Let
�S be the set of all the selections that include relation S. Then, we will show that for
VC = ⊙k

i=1 σR.X=vi , �S, we have D � VC � HJ. The cost of this set of views is k. In order
to show the determinacy, it suffices to show that for every D′ such that the view agrees
with D, HJ(D′) = ∅. For the sake of contradiction, assume that (a, b) ∈ HJ(D′). Then,
it must be that (a, b) ∈ SD′

and (a), (b) ∈ RD′
. Since σS.X=a ∈ VC , (a, b) ∈ SD. Hence,

(a, b) is an edge of the graph and one of the two vertices, let it be a, is covered by the
vertex cover. Thus, σR.X=a ∈ VC as well. Since σR.X=a(D) = ∅, and (a) ∈ σR.X=a(D′), we
have reached a contradiction.

For the converse direction, assume that there exists a set of views V that determines
HJ and has price k. This means that V has exactly k views of the form σR.X=vi . We will
show that {v1, . . . , vk} is a vertex cover for G. Indeed, suppose that it is not a vertex cover.
Then, there exists an edge (a, b) ∈ E that is not covered; this means that σR.X=a, σR.X=b /∈
V. We can also assume w.l.o.g. that (a, b) ∈ V(D). Let D′ = D ∪ {R(a), R(b)}. It is easy to
observe that V(D) = V(D′). However, HJ(D′) = {(a, b)} �= ∅, which contradicts the fact
that V determines HJ.
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This proposition suggests that self-joins complicate the computation of prices: indeed,
if any of the R atoms in HJ was replaced by another atom R′, the price of the query would
be computable in polynomial time. Furthermore, several of the reductions proved in
the previous section do not hold if the query contains a self-join. For example, consider
the query Q(x, y) = R(x), R(y). If we blindly apply Proposition 5.40, we would infer that
the price of Q is twice the price of R(x) (whereas the price of Q is exactly equal to
the price of R(x)). Indeed, we cannot split Q into two independent connected compo-
nents, since there is a dependency between the views of R that we purchase for each
component.

In order to further support that a dichotomy for queries with self-joins is challenging,
we show next that the problem of pricing query bundles can be reduced to pricing
queries with self-joins.

THEOREM 6.7. For a bundle Q = {Q1, Q2}, where Q1, Q2 are conjunctive queries, there
exists a conjunctive query Q (possibly with self-joins) s.t. PRICE(Q) ≺ PRICE(Q).

PROOF. Suppose we want to price Q for a database D and price points S. If Q1, Q2 have
variables x̄1, x̄2 respectively (we can assume w.l.o.g. that x̄1, x̄2 are disjoint, otherwise
they can be renamed), let Q(x̄1, x̄2) = Q1, Q2. To construct the corresponding database
D′, let a be a new constant added to every column and for any relation R(X1, . . . , Xk),
introduce a new tuple R(a, . . . , a); the tuples added guarantee that the query answer
is always nonempty. Finally, the price points for S ′ remain the same as in S, with the
addition that any selection on constant a is priced to zero. Let �a be all the selections
on constant a.

We next show that D � V � Q1, Q2 if and only if D′ � V, �a � Q; this suffices to
prove the theorem, since �a is free. First, notice that there exists a mapping between the
answers Q(D) and Q(D′). Indeed, notice that the answers in Q(D) completely determine
Q(D′) (since we know that Q2(D′), Q1(D′) are not empty), and vice versa. Moreover, it it
easy to see that one can compute V(D) from V(D′) and vice versa.

6.5. Query Bundles

In Section 5, we discussed how to price single queries when the price points are selec-
tions. An interesting question is whether any of our techniques to compute the price in
polynomial time apply in the case of a collection of conjunctive queries Q.

We will show that there exists a class of query bundles that generalize the notion of
a chain query and can be also priced in polynomial time.

Definition 6.8. A CHQ query bundle is a set Q of CHQ queries, such that any two
queries Q, Q′ ∈ Q only share in common a prefix and/or a suffix: ∃i, j, m : Q[0:i−1] =
Q′

[0:i−1], Q[ j:∗] = Q′
[m:∗], and Q[i: j−1], Q′

[i:m−1] have no common relation names.

For example, the bundle Q = {Q1(y, z) = S(y), R(y, z),U (z), Q2(x, y) = S(x), T (x, y),
W(y)} satisfies the definition (since Q1, Q2 share only the prefix S) and thus is a CHQ
bundle. For this class of bundles, computing the price is in polynomial time.

PROPOSITION 6.9. If the price points are selection views, pricing a CHQ query bundle
Q is in PTIME.

PROOF. In order to compute a price for a Q, we construct a flow graph G[Q] as in
the case of single CHQ queries. The construction is as follows: for each query Q in the
bundle Q, we construct separately the flow graph G[Q]: the construction is feasible,
since Q is a CHQ query. Then, we combine the graphs G[Q] for Q ∈ Q by merging nodes
with the same name and then edges that have the same endpoints. For example, for
our example bundle Q, the source and target nodes will be merged; moreover, all the
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nodes that correspond selections on S(X) will be merged. Hence, the path that goes
from s to vR.X=a to wR.X=a, where a ∈ ColR.X, will be common for both Q1 and Q2.

To prove the correctness of this construction, it suffices to show that any path from
G[Q] will exist in G[Q] and also that any path in G[Q] exists in some flow graph G[Q].
The first part comes directly from our construction, since no edge is removed. As for
the second part, consider any path P in G[Q]. As we have shown in Section 5.5, this
path corresponds to a sequence of tuples tR1 , . . . , tR�

. It suffices to show now that the
sequence of relations R1, . . . , R� corresponds to a chain query in the bundle Q. Suppose
not; then, there exists an index i, where 1 < i < � such that R1, . . . , Ri is a prefix of a
query Q ∈ Q and R1, . . . , Ri+1 is not a prefix of any query. This implies that there exists
some query Q′ ∈ Q where Ri, Ri+1 are consecutive atoms.

Hence, we have the two queries Q, Q′ that share the atom Ri. Since they both belong
in a CHQ bundle, it must be that they share Ri as part of a shared prefix or suffix. Note
that it can not be part of a shared prefix, since then R1, . . . , Ri+1 would be a prefix for
Q′, a contradiction. Moreover, it cannot be a shared suffix, since then Q would contain
Ri, Ri+1. This concludes our proof.

7. RELATED WORK

In this section, we present and discuss related work on data pricing.

Previous Work. While the interaction between data management and economics has
been studied in the database research community before [Dash et al. 2009; Stonebraker
et al. 1996], to the best of our knowledge, this work is the first to study the problem
of data pricing and is part of a wider effort to formalize and develop a flexible data
marketplace. This effort was initiated with a short vision paper that we recently pub-
lished [Balazinska et al. 2011], followed by Koutris et al. [2012a] and a demonstration
of an implementation of our framework in Koutris et al. [2012b]. Our pricing frame-
work was also adapted in Li and Miklau [2012], where the authors study the pricing
of aggregate linear queries.

Online Data Selling. There exist several independent vendors selling data on the
web (Gnip, PatientsLikeMe, AggData, Xignite). Furthermore, Amazon Cloud users can
sell their S3 data for a profit [Amazon].

On the other hand, digital market services for data have recently emerged in the cloud
(Azure Datamarket, Infochimps) these data marketplaces enable content providers
to upload their data and make it available either freely or for a fee, and support
some limited forms of views. In the case of Infochimps, the seller can set prices on
APIs (modeled as selection queries) or entire datasets. Data consumers pay monthly
subscriptions that enable a maximum number of queries (i.e., API calls) per month.
Alternatively, a data provider can set a price for users to download the entire dataset.
The Azure DataMarket uses data subscriptions with query limits: a group of records
returned by a query and that can fit on a page (currently 100) is called a transaction.
Each subscription of a data buyer is associated with a maximum number of transactions
per month. Apollo Mapping (apollomapping.com) sells access to satellite imagery. The
approach that we develop in this article extends these pricing methods with the ability
to interpolate prices for arbitrary queries over a seller’s database.

Pricing Information. There exists a rich literature on pricing information products
(e.g., [Jain and Kannan 2002; Shapiro and Varian 1998]). We were mostly influenced
by Shapiro and Varian [1998], who argue that the price of information products is quite
different from that of physical goods, and propose a new theory for pricing information
products, based on the notion of versions. The difference is that information products
have very high fixed costs, while the marginal costs are tiny. For example, the cost of
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conducting a detailed consumer survey in several countries is very high, while the cost
of distributing the resulting data tiny (copying a file). Information products offer vast
economies of scale, but can also lead to devastating price wars and ruin. Traditional
pricing mechanisms based on the production cost are bound to fail when applied to
information products. As a consequence, the price of information products cannot be
determined by traditional means (production costs and competition), but must be linked
to the value that the buyers place on the data. Different buyers may use the data in
different ways, and should be charged different prices. For example, a retailer may be
willing to pay a high price for the entire consumer survey, while a journalist may only
be willing to pay a small amount for a few interesting statistics from the consumer
survey. In order to leverage these differences in willingness to pay, Shapiro and Varian
conclude that information products should be offered in different versions, at different
prices. Our approach extends version-based pricing to relational data by associating a
version of the product to each query that a user may ask.

Query Determinacy. The classic notion of determinacy (information-theoretic deter-
minacy) was extensively studied by Nash, Segoufin and Vianu [Segoufin and Vianu
2005; Nash et al. 2007, 2010], who have investigated both the decidability question,
and the subtle relationship between determinacy and rewritability. In information-
theoretic determinacy, for two query bundles V, Q we say that V determines Q, in nota-
tion V � Q, if for all D1, D2, V(D1) = V(D2) implies Q(D1) = Q(D2). It is straightforward
to see that this definition also satisfies the properties of Definition 2.2. Rewritability is
specific to a query language R: Q can be rewritten using V in the language R if there
exists a query R ∈ R s.t. Q(D) = R(V(D)) for all D. One goal of this line of research was
to establish tight bounds on the language R; a surprising result is an example where
both V and Q are conjunctive queries, yet R is nonmonotone, proving that no monotone
language is sufficient for CQ to CQ rewriting. In our query pricing framework we do not
impose any restriction on the language used for rewriting; in other words, we assume
that the user has unrestricted computational power, and as a consequence the two
notions become equal. A second goal of the research [Segoufin and Vianu 2005; Nash
et al. 2007, 2010] is to study the decision problem for determinacy: it is shown to be
undecidable even for Unions of Conjunctive Queries, and its status is open for Conjunc-
tive Queries. The fact that information-theoretic determinacy is very hard to decide
is an argument against using it for pricing. However, several classes of CQ queries
where determinacy is well-behaved have been found: path queries [Afrati 2007], syn-
tactic restrictions of FO and UCQ which are called packed FO and UCQ [Marx 2007]
and monadic views [Nash et al. 2010]. Determinacy has also been examined in the
restricted setting of aggregate queries [Grumbach and Tininini 2003].

In our article we consider instance-based determinacy, where determinacy is defined
with respect to a given view extension. While applications like data integration or
semantic caching require instance-independent determinacy, in query pricing the cur-
rent state of the database cannot be ignored. Instance-based determinacy is identical
to the notion of lossless views [Calvanese et al. 2002] under the exact view assump-
tion. The definition is based on the notion of certain answers [Abiteboul and Duschka
1998]. We note that instance-specific reasoning also arises in data security and autho-
rization views: in that context, Zhang and Mendelzon [2005] study conditional query
containment, where the containment is conditioned on a particular view output.

Technical Content. Finally, we should mention that, on the surface, our complex-
ity results for pricing seem related to complexity results for computing responsibility
[Meliou et al. 2010]. The PTIME algorithm for responsibility is also based on net-
work flow, and some queries have the same complexity for both the pricing and the
responsibility problems. However, the connection is superficial: the price of H2 is
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NP-complete, while its responsibility is in PTIME; and the price of C3 is in PTIME
while its responsibility is NP-complete.

8. CONCLUSION

We have presented in this article a framework for pricing relational data based on
queries. The seller sets explicit prices on some views, while the buyer may ask arbitrary
queries; their prices are then determined automatically. We gave several results: an
explicit formula for computing the price, a polynomial time algorithm for a large class
of Conjunctive Queries and a dichotomy theorem for Conjunctive Queries without self-
joins. We also discussed several extensions of our results. Finally, we presented several
results on instance-based determinacy, which may be of independent interest.

Our work has left several open questions:

—Can the dichotomy result to PTIME or NP-complete be extended to pricing super-
classes of Conjunctive Queries without self-joins: CQs with self-joins, CQ bundles,
Unions of Conjunctive Queries? We have presented some steps towards this direction
in Section 6, but we do not have a full dichotomy for either of these cases.

—We have shown that the data complexity for INSTANCE-BASED DETERMINACY is co-NP
complete, but the combined complexity of the problem is not known (we know that is
between co-NP complete and �P

2 ).

Interesting future work also includes considering data pricing in more general set-
tings. For example, we can consider pricing with competition: when a seller sets prices
for her data, she needs to consider other data instances on the market that offer “re-
lated” data, to avoid arbitrage. This requires reasoning about mappings between the
different data sources, and these mappings are often approximate in practice.

Another direction is the interaction between pricing and privacy. Most of the litera-
ture on data privacy [Dwork 2011] focuses on restricting access to private information.
Privacy, however, has a broader definition, and usually means the ability of the data
owner to control how her private information is used [Schneier 2000]. Setting a price
for private data is one form of such control that we plan to investigate.

REFERENCES

S. Abiteboul and O. M. Duschka. 1998. Complexity of answering queries using materialized views. In Pro-
ceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM
Press, 254–263.

S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.
F. N. Afrati. 2007. Rewriting conjunctive queries determined by views. In MFCS. 78–89.
Amazon. Using Amazon S3 Requester Pays with DevPay. docs.amazonwebservices.com/AmazonDevPay/

latest/DevPayDeveloperGuide/index.html?S3RequesterPays.html.
M. Balazinska, B. Howe, and D. Suciu. 2011. Data markets in the cloud: An opportunity for the database

community. http://cloud-data-pricing.cs.washington.edu/balazinska-pvldb11.pdf.
D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. 2002. Lossless regular views. In Proceedings

of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. L. Popa, Ed.,
ACM, 247–258.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2001. Introduction to Algorithms 2nd Ed. MIT
Press and McGraw-Hill Book Company.

D. Dash, V. Kantere, and A. Ailamaki. 2009. An economic model for self-tuned cloud caching. In Proceedings
of the IEEE 25th International Conference on Data Engineering (ICDE’09). 1687–1693.

C. Dwork. 2011. A firm foundation for private data analysis. Commun. ACM 54, 1, 86–95.
G. Gottlob and P. Senellart. 2010. Schema mapping discovery from data instances. J. ACM 57, 2.
S. Grumbach and L. Tininini. 2003. On the content of materialized aggregate views. J. Comput. Syst. Sci.

66, 1, 133–168.

Journal of the ACM, Vol. 62, No. 5, Article 43, Publication date: October 2015.



43:44 P. Koutris et al.

S. Jain and P. K. Kannan. 2002. Pricing of information products on online servers: Issues, models, and
analysis. Management Sci. 48, 9, 1123–1142.

P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu. 2012a. Query-based data pricing. In
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. M.
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