
Query-Based Data Pricing

Paraschos Koutris, Prasang Upadhyaya,
Magdalena Balazinska, Bill Howe, and Dan Suciu

University of Washington, Seattle, WA
{pkoutris,prasang,magda,billhowe,suciu}@cs.washington.edu

ABSTRACT
Data is increasingly being bought and sold online, and Web-
based marketplace services have emerged to facilitate these
activities. However, current mechanisms for pricing data are
very simple: buyers can choose only from a set of explicit
views, each with a specific price. In this paper, we propose
a framework for pricing data on the Internet that, given
the price of a few views, allows the price of any query to
be derived automatically. We call this capability “query-
based pricing.” We first identify two important proper-
ties that the pricing function must satisfy, called arbitrage-
free and discount-free. Then, we prove that there exists a
unique function that satisfies these properties and extends
the seller’s explicit prices to all queries. When both the
views and the query are Unions of Conjunctive Queries,
the complexity of computing the price is high. To ensure
tractability, we restrict the explicit prices to be defined only
on selection views (which is the common practice today).
We give an algorithm with polynomial time data complex-
ity for computing the price of any chain query by reducing
the problem to network flow. Furthermore, we completely
characterize the class of Conjunctive Queries without self-
joins that have PTIME data complexity (this class is slightly
larger than chain queries), and prove that pricing all other
queries is NP-complete, thus establishing a dichotomy on
the complexity of the pricing problem when all views are
selection queries.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational Databases

General Terms
Algorithms, Economics, Theory

Keywords
Data Pricing, Arbitrage, Query Determinacy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS ’12, May 21–23, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1248-6/12/05 ...$10.00.

1. INTRODUCTION
Whether for market research, targeted product advertise-

ment, or other business decisions, companies commonly pur-
chase data. Increasingly, such data is being bought and
sold online. For example, Xignite [31] sells financial data,
Gnip [1] provides data from social media, PatientsLikeMe [2]
sells anonymized, self-reported patient statistics to phar-
maceutical companies, and AggData [6] aggregates various
types of data available on the Web. To support and facil-
itate this online data market, Web-based marketplace ser-
vices have recently emerged: the Windows Azure Market-
place [9] offers over 100 data sources from 42 publishers in
16 categories, and Infochimps [17] offers over 15,000 data
sets also from multiple vendors.

Current marketplace services do not support complex ad
hoc queries, in part because it is not clear how to assign
a price to the result. Instead, sellers are asked to define a
fixed set of (possibly parameterized) views and assign each
a specific price. This simplistic approach not only forces the
seller to try and anticipate every view in which a buyer might
be interested, but also forces the buyer to browse a large
catalog of views (with possibly unknown redundancies and
relationships), then often purchase some superset of the data
they actually need. Worse, this pricing model can expose
non-obvious arbitrage situations that can allow a cunning
buyer to obtain data for less than the advertised price. A
better approach, which we explore in this paper, is to allow
the seller to assign prices to a manageable number of views,
then automatically derive the correct price for any query.

Consider an example. CustomLists [13] sells the Ameri-
can Business Database for $399; a customer can also buy the
subset of companies that have an e-mail address for $299 or
only information about businesses in Washington State for
$199. A customer interested in only a set of specific coun-
ties in various states may not be willing to pay $399 for data
she does not need, and so refuses to buy. In response, the
seller might provide a view for each county in every state.
However, the relationship between state-based pricing and
county-based pricing is difficult for either the seller or the
buyer to reason about, and inconsistencies or arbitrage sit-
uations may result. For example, if the database does not
contain any business information for some fraction of coun-
ties in a state, then purchasing the data for the remaining
counties could be cheaper, yet could yield the same infor-
mation content as purchasing the data for the entire state.

Query-based Pricing. To address the above challenge,
in this paper, we propose a framework for pricing data on
the Internet that allows the seller to assign explicit prices

to only a few views (or sets of views), yet allows the buyer
to issue and purchase any query. The price of the query is
derived automatically from the explicit prices of the views.
Thus, buyers have full freedom to choose which query to
buy, without requiring the seller to explicitly set prices on
an exhaustive catalog of all possible queries. We call this
pricing mechanism query-based pricing. Our mechanism is
based on the economic theory of pricing information prod-
ucts using versions [27] (reviewed in Section 5), in the sense
that each query corresponds to a version of the original data.
Since every query (in a given query language) is a version,
our framework allows a large number of versions, and, con-
sequently, appeals to large variety of buyers with a large
variety of needs.

Formally, query-based pricing consists of a pricing func-
tion, which takes as input a database instance and a query
(or set of queries) and returns a non-negative real number
representing the price. We argue that a reasonable pricing
function should satisfy two axioms.

First, the pricing function should be arbitrage-free. Con-
sider the USA business dataset: if p is the price for the
entire dataset and p1, . . . p50 the prices for the data in each
of the 50 states, then a rational seller would ensure that
p1 + . . . + p50 ≥ p. Otherwise, no buyer would pay for the
entire dataset, but would instead buy all 50 states separately.
In general, we say that a pricing function is arbitrage-free if
whenever a query q is “determined”by the queries q1, . . . , qn,
then their prices satisfy p ≤ p1 + . . . + pn. Determinacy
means that the first query can be answered from the latter
queries. It should not be confused with query containment:
if q is contained in q′, it does not mean that the price of
q′ is related to that of q. For example, q′ may return the
list of all Fortune 500 companies, while q returns a small
subset of companies whose stocks have a “strong buy” rec-
ommendation. The seller computes q by semi-joining with a
proprietary database, and the buyer cannot answer it only
from q′. In this example, while q is contained in q′, we ex-
pect the price of q to be much higher than the price of q′,
even though q returns less data.

Second, the pricing function should be discount-free. This
axiom concerns the way the pricing function is derived from
the explicit views and prices set by the seller. When she
specifies an explicit price pi for view Vi, the sellers’ intent
is to sell the view at a discount over the entire data set:
the latter is normally sold at a premium price, p ≫ pi.
The discount-free axiom requires that the pricing function
will not introduce any new discounts additional to those
explicitly defined by the seller.

In addition to these two axioms, we argue that the pricing
function should also be monotone with respect to database
updates: when new data items are inserted into the database,
the price of a query should not decrease. We show that, in
general, the pricing function is not necessarily monotone,
but give sufficient conditions under which it is.

In today’s data markets, the price of the data reflects only
its information value, and does not include any computa-
tional costs associated with user queries. We make the same
assumption in this paper. We also ignore the computational
cost in the definition of arbitrage, assuming the worst-case
scenario that a buyer has the capability to determine any
query given apropriate views, assuming the task is compu-
tationally feasible.

Contributions. In this paper, we present several results
on query-based pricing.

Our first result is a simple but fundamental formula for
computing an arbitrage-free, discount-free pricing function
that agrees with the seller’s explicit price points, and for
testing whether one exists; if it exists, we call the set of
price points consistent. To check consistency, it suffices to
check that no arbitrage is possible between the explicit price
points defined by the seller: there are only finitely many
arbitrage combinations, as opposed to the infinitely many
arbitrage combinations on all possible queries; hence, con-
sistency is decidable. When the set is consistent, the pric-
ing function is unique, and is given by the arbitrage-price
formula (Equation 2). This implies an explicit, yet ineffi-
cient method for computing the price, which is presented in
Section 2.

Second, we turn to the tractability question. We show
that even when the seller’s explicit price points are restricted
to selection queries (which is the common case for data sold
online today), computing the price of certain conjunctive
queries is NP-hard in the size of the input database. For
this reason, we propose a restriction of conjunctive queries,
which we call Generalized Chain Queries, or GChQ. These
are full conjunctive queries whose atoms can be ordered in a
sequence such that for any partition into a prefix and a suf-
fix, the two sets of atoms share at most one variable. GChQ
includes all path joins, like R(x, y), S(y, z), T (z, u), P (u, v),
star joins, like R(x, y), S(x, z, u), T (x, v), P (x, w), and com-
binations. We prove that, when all explicit price points are
selection queries, one can compute the price of every GChQ
query in PTIME data complexity. This is the main result
of our paper, and provides a practical framework for query-
based pricing. The algorithm is based on a non-trivial re-
duction to the Min-Cut problem in weighted graphs, which
is the dual of the Max-Flow problem [12], Subsection 3.1.

Third, we study the complexity of all conjunctive queries
without self-joins. We prove that cycle queries (which are
not generalized chain queries) can also be computed in poly-
nomial time: this is the most difficult result in our paper,
and the algorithm is quite different from the algorithm for
GChQ. With this result, we can prove a dichotomy of the
data complexity of all conjunctive queries without self-joins,
in PTIME or NP-complete, Subsection 3.2.

Our pricing framework is based on a notion of query de-
terminacy. Informally, we say that a set of views V de-
termines some query Q if we can compute the answer of
Q only from the answers of the views without having ac-
cess to the underlying database. Information-theoretic de-
terminacy, denoted V ։ Q, is discussed by Segoufin and
Vianu [26] and by Nash, Segoufin, and Vianu [23, 24], and is
a notion that is independent of the database instance; their
motivation comes from local-as-view data integration and se-
mantic caching, where an instance independent rewriting is
needed. For query-based pricing, however, the database in-
stance cannot be ignored when checking determinacy, since
the price normally depends on the state of the database. For
example, consider a query Q1 that asks for the businesses
that are located in both Oregon and Washington State and
a query Q2 that asks for the restaurants located in Oregon,
Washington and Idaho. In general, we cannot answer Q2 if
we know the answer of Q1. But suppose we examine the an-
swer for Q1 and note that it includes no restaurants: then we
can safely determine that Q2 is empty. We define instance-

based determinacy, D ⊢ V ։ Q, to mean that, for all D′ if
V (D′) = V (D), then Q(D) = Q(D′). Information-theoretic
determinacy is equivalent to instance-based determinacy for
every instance D. We prove several results on the complexity
of checking instance-based determinacy: for unions of con-
junctive queries, it is Πp

2, and the data complexity (when
V, Q are fixed and the input is only D) is co-NP complete
(Theorem 2.3). When the views are restricted to selection
queries (which is a case of special interest in query-based
pricing), then for any monotone query Q, instance-based de-
terminacy has polynomial time data complexity, assuming
Q itself has PTIME data complexity (Theorem 3.3).

The paper is organized as follows. We introduce the query-
based pricing framework and give the fundamental formula
for checking consistency and computing the pricing func-
tion in Section 2. We turn to the tractability questions
in Section 3, where we describe our main result consist-
ing of the polynomial time algorithm for Generalized Chain
Queries in Subsection 3.1, and give the dichotomy theorem
in Subsection 3.2. We discuss some loose ends in Section 2
and related work in Section 5, then conclude in Section 6.

2. THE QUERY PRICING FRAMEWORK

2.1 Notations
Fix a relational schema R = (R1, . . . , Rk); we denote a

database instance with D = (RD
1 , . . . , RD

k), and the set of
all database instances with InstR [20]. In this paper we only
consider monotone queries, and we denote L a fixed query
language; in particular, CQ, UCQ are Conjunctive Queries,
and Unions of Conjunctive Queries respectively. Q(D) de-
notes the answer of a query Q on a database D. A query bun-
dle is a finite set of queries; we use the term “bundle” rather
than “set” to avoid confusion between a set of queries and
a set of answers. We denote by B(L) the set of query bun-
dles over L, and write a bundle as Q = (Q1, . . . , Qm). The
output schema of a query bundle is RQ = (RQ1

, . . . , RQm),
and consists of one relation name for each query. Thus, a
bundle defines a function Q : InstR → InstRQ

.
The identity bundle, ID, is the bundle that returns the

entire dataset, ID(D) = (RD
1 , . . . , RD

k). The empty bundle is
denoted (): it is the empty set of queries, not to be confused
with the emptyset query. Given two bundles, Q1 and Q2, we
denote their union as Q = Q1,Q2: this is the query bundle
consisting of all queries in Q1 and Q2, not to be confused
with the union Q1 ∪ Q2 of two queries of the same arity.

2.2 The Pricing Function

Definition 2.1 (Pricing Function). Fix a database
instance D ∈ InstR. A static pricing function is a function
pD : B(L) → R.

A dynamic pricing function is a partial function p : InstR →
(B(L) → R), s.t. for each D where p is defined, p(D) is a
static pricing function. We write pD for p(D).

For now, we allow prices to be negative, but we show
in Proposition 2.8 that they are always non-negative un-
der reasonable assumptions. The intuition is as follows. If
the user asks for the bundle Q, then she has to pay the
price pD(Q), where D is the current database instance. The
static pricing function is defined only for the current state
of the database D. A dynamic pricing function p allows

the database to be updated, and associates a different pric-
ing function pD to each database; notice that it need not
be defined for all instances D ∈ InstR. We start with
static pricing in this section, and call a static pricing func-
tion simply a pricing function; we discuss dynamic pricing
in Subsection 2.7.

The price is for an entire query bundle, not just for one
query. For example, if a user needs to compute queries
Q1, Q2, and Q3, then she could issue them separately, and
pay pD(Q1)+pD(Q2)+pD(Q3), but she also has the option of
issuing them together, as a bundle, and pay pD(Q1, Q2, Q3).
We will show that, in general, the pricing function is subad-
ditive: the price of a bundle is always lower than the sum of
the individual prices.

In the query pricing framework, the seller does not spec-
ify the pricing function directly, but gives only a finite set
of explicit price points. The system then computes the pric-
ing function on all queries; this function must, furthermore,
satisfy two axioms, arbitrage-free and discount-free. In the
rest of this section we discuss the details of this framework.

2.3 Axiom 1: Arbitrage-Free
The first axiom that a pricing function must satisfy is

defined in terms of a notion of determinacy. Intuitively,
a bundle V determines a bundle Q given a database D,
denoted D ⊢ V ։ Q, if one can answer Q from the answer
of V by applying a function f such that Q(D) = f(V(D)).
The impact on pricing is that if the user needs to answer Q,
she also has the option of purchasing V, and then applying
f . The arbitrage-free axiom requires that pD(Q) ≤ pD(V),
meaning that the user never has the incentive to compute Q

indirectly by purchasing V. Thus, the notion of arbitrage
depends on the notion of determinacy, which we define here:

Definition 2.2 (Instance-based Determinacy). We
say V determines Q given a database D, denoted D ⊢ V ։

Q, if for any D′, V(D) = V(D′) implies Q(D) = Q(D′).

The connection to answerability is the following. Let f :
InstRV

→ InstRQ
be Q composed with any left inverse of

V: that is, for every E ∈ InstRV
, if there exists D s.t.

V(D) = E, then choose any such D and define f(E) =
Q(D); otherwise, f(E) is undefined. One can check that
D ⊢ V ։ Q iff ∀D′.V(D) = V(D′) ⇒ f(V(D′)) = Q(D′).
Thus, if the user knows V(D) and D ⊢ V ։ Q holds,
then she can compute Q(D) as f(V(D)). The proof of the
following theorem is in the full version of the paper [19].

Theorem 2.3. The combined complexity of instance-based
determinacy, D ⊢ V ։ Q, when V,Q are in B(UCQ) is
in Πp

2; the data complexity (where V,Q are fixed) is co-NP-
complete, and remains co-NP complete even for B(CQ).

We leave open the question whether the bound on the
combined complexity is tight. Instance-based determinacy
is different from information-theoretic determinacy, defined
in [23] as follows: V ։ Q if ∀D : D ⊢ V ։ Q. Information-
theoretic determinacy, V ։ Q, is undecidable for B(UCQ)
and its status is unknown for B(CQ) [23].

Example 2.4. Let Q1(x, y, z) = R(x, y), S(y, z), Q2(y, z, u) =
S(y, z), T (z, u) and Q(x, y, z, u) = R(x, y), S(y, z), T (z, u).
Then (Q1, Q2) ։ Q, since it suffices to define f as the
function that joins Q1(D) and Q2(D). Then, we have that

Q(D) = f(Q1(D), Q2(D)) for all D. On the other hand,
Q1 6։ Q. However, let D be a database instance s.t. Q1(D) =
∅. Then D ⊢ Q1 ։ Q, because we know that Q(D) = ∅. For
example, let f always return the emptyset: then, for any D′

s.t. Q1(D) = Q1(D
′)(= ∅) we have Q(D′) = f(Q1(D

′)).

In this paper we use instance-based determinacy to study
pricing. However, other options are possible: for example
one may use information-theoretic determinacy, or one may
use its restriction that we discuss in Subsection 2.7. To keep
the framework general, we base our discussion on an ab-
stract notion of determinacy, defined below. Our results in
this section apply to any determinacy relation that satisfies
this definition, except for complexity results, which are spe-
cific to instance-based determinacy. Our results in the next
section are specific to instance-based determinacy.

Definition 2.5. A determinacy relation is a ternary re-
lation D ⊢ V ։ Q that satisfies the following properties:

Reflexivity: D ⊢ V1,V2 ։ V1.

Transitivity: if D ⊢ V1 ։ V2 and D ⊢ V2 ։ V3, then
D ⊢ V1 ։ V3.

Augmentation: if D ⊢ V1 ։ V2, then D ⊢ V1,V
′

։

V2, V
′.

Boundedness: D ⊢ ID ։ V

We prove in [19] that both instance-based and information-
theoretic determinacy satisfy this definition. We also have:

Lemma 2.6. If ։ is a determinacy relation, then (a) D ⊢
V ։ () for every bundle V, and (b) if D ⊢ V ։ V1 and
D ⊢ V ։ V2, then D ⊢ V ։ V1,V2.

Proof. The reflexivity axiom D ⊢ V, () ։ () proves the
first claim, since V, () = V. For the second, we apply aug-
mentation to D ⊢ V ։ V1 and obtain D ⊢ V,V ։ V,V1;
next apply augmentation to D ⊢ V ։ V2 and obtain D ⊢
V,V1 ։ V1, V2; transitivity gives us D ⊢ V,V ։ V1,V2,
which proves the claim because V,V = V.

The Arbitrage-Free Axiom. We can now state the
first axiom that a pricing function must satisfy:

Definition 2.7 (Arbitrage-free). A pricing function
pD is arbitrage-free if, whenever D ⊢ Q1, . . . ,Qk ։ Q, then
pD(Q) ≤

P

i
pD(Qi).

Of course, even if Q1, . . . ,Qk determine Q, it may be
non-trivial for the buyer to compute the answer of Q from
the answers of Q1, . . . , Qk, for two reasons: she first needs
to find the function f for which f(Q1(D), . . . ,Qk(D)) =
Q(D), and, second, it may be computationally expensive
to evaluate f . In this paper, however, we do not address
the economic cost of the computation, focusing only on the
information-theoretic aspect; i.e. we assume that the only
cost that matters is that of the data itself. Thus, if an
arbitrage condition exists, then the buyer will exploit it, by
avoiding to pay pD(Q) and purchasing Q1, . . . , Qk instead,
then computing Q (at no extra cost).

Arbitrage-free pricing functions exists: the trivial function
pD(Q) = 0, for all Q, is arbitrage-free; we will show non-
trivial functions below. First, we prove some properties.

Proposition 2.8. Any arbitrage-free pricing function pD

has the following properties:

1. Subadditive: pD(Q1, Q2) ≤ pD(Q1) + pD(Q2).

2. Non-negative: pD(Q) ≥ 0.

3. Not asking1 is free: pD() = 0.

4. Upper-bounded: pD(Q) ≤ pD(ID).

Proof. We apply arbitrage-freeness to two instances of
the reflexivity property. First to D ⊢ Q1,Q2 ։ Q1,Q2,
and derive pD(Q1,Q2) ≤ pD(Q1) + pD(Q2), which proves
item 1. Next to D ⊢ Q, Q′

։ Q′, and derive pD(Q′) ≤
pD(Q) + pD(Q′), which implies pD(Q) ≥ 0, proving item 2.
For item 3, take Q = () and k = 0 in Definition 2.7: then
D ⊢ Q1, . . . ,Qk ։ Q holds by reflexivity (D ⊢ () ։ ())
and pD(Q) ≤

P

i
pD(Qi) implies pD() ≤ 0. Also, arbitrage-

freeness applied to the boundedness axiom D ⊢ ID ։ Q

proves item 4.

2.4 Explicit Price Points
It is difficult to specify a non-trivial arbitrage-free pricing

function, and we do not expect the seller to define such a
function herself. Instead, the data seller specifies a set of
explicit price points, and the system extrapolates them to a
pricing function on all query bundles. A price point is a pair
consisting of a view (query bundle) and a price (positive real
number).

Definition 2.9 (Price points). A price point is a pair
(V, p), where V ∈ B(L) and p ∈ R

+. We denote a finite set
of price points S as {(V1, p1), . . . , (Vm, pm)}.

We will assume that D ⊢ (V1, . . . ,Vm) ։ ID; i.e., the
seller is always willing to sell the entire dataset, perhaps in-
directly through other views. This is a reasonable assump-
tion: if the seller does not wish to sell certain parts of the
data, we can simply not model those parts by removing re-
lation names from the schema or removing tuples from the
instance. To simplify the discussion, in this section we as-
sume that (ID, B) ∈ S ; i.e., ID is sold explicitly at a (high)
premium price B. We relax this assumption in Section 3.

Definition 2.10 (Validity). A pricing function pD is
valid w.r.t. a set S of price points if:

1. pD is arbitrage-free.

2. ∀(Vi, pi) ∈ S, pD(Vi) = pi.

Our goal is to compute a valid pricing function for a set
S . In general, such a function may not exist; if it exists,
then we call S consistent.

Definition 2.11 (Consistency). A set of price points
S is consistent if it admits a valid pricing function.

2.5 Axiom 2: Discount-Free
To see the intuition behind the second axiom, recall that

B is the price set by the seller for the entire dataset. Any
arbitrage-free pricing function will be ≤ B, by Proposition 2.8
(item 4). The explicit price points in S can be viewed as dis-
counts offered by the seller relative to the price that would
be normally charged if that price point were not included in
S . The second axiom requires that a pricing function makes
no additional implicit discounts.

Definition 2.12 (Discount-free). A valid pricing func-
tion pD for S is called discount-free if for every valid pricing
function p′

D for S we have: ∀Q ∈ B(L), p′
D(Q) ≤ pD(Q).

1pD() means pD(()), the price of the empty bundle.

A discount-free pricing function is unique, because if both
pD and p′

D are discount-free, then we have both pD ≤ p′
D

and p′
D ≤ pD, hence pD = p′

D. We will show that, if S is
consistent, then it admits a discount-free pricing function.

2.6 The Fundamental Query Pricing Formula
The fundamental formula gives an explicit means for check-

ing consistency and for computing the discount-free price.
The formula associates with any S (not necessarily consis-
tent) a pricing function, called arbitrage-price; if S is consis-
tent, then the arbitrage-price is the unique valid, discount-
free pricing function, and if S is inconsistent, we can use
arbitrage-price to detect it.

If Qi, i = 1, 2 . . . , k, are query bundles, then denote their
union as

J

i
Qi = Q1, . . . ,Qk. If C ⊆ S is a set of price

points, then we denote its total price as p(C) =
P

(Vi,pi)∈C
pi.

Fix a price points set S and an instance D. The support
of a query bundle Q is:

suppS

D(Q) ={C ⊆ S | D ⊢
K

(V,p)∈C

V ։ Q} (1)

The support is non-empty, because we assumed that S con-
tains ID. This allows us to define:

Definition 2.13 (Arbitrage-price). The arbitrage-
price of a query bundle Q is:

p
S
D(Q) = min

C∈suppS

D
(Q)

p(C) (2)

The arbitrage-price represents the strategy of a savvy buyer:
to purchase Q, buy the cheapest support C for Q, meaning
the cheapest set of views that determine Q. We prove:

Lemma 2.14. (a) For all (Vi, pi) ∈ S, pS
D(Vi) ≤ pi. In

other words, the arbitrage-price is never larger than the ex-
plicit price. (b) The arbitrage-price pS

D is arbitrage-free.

Proof. The first claim follows from the fact that {(Vi, pi)} ∈
suppS

D(Vi), because of the reflexivity axiom D ⊢ Vi ։ Vi.
For the second claim, consider D ⊢ Q1, . . . ,Qk ։ Q; we will
prove that pS

D(Q) ≤
P

i
pS

D(Qi). For i = 1, . . . , k, let Cm
i =

arg min
C∈suppS

D
(Qi)

p(C). By definition, D ⊢
J

(Vj ,pj)∈Cm
i

Vj ։

Qi and pS
D(Qi) = p(Cm

i). Let C =
S

i
Cm

i ⊆ S . Let

Vm =
J

(Vj ,pj)∈C
Vj . Since Cm

i ∈ suppS

D(Qi), it follows

that C ∈ suppS

D(Qi) because the set suppS

D(Qi) is upwards
closed2. It follows that D ⊢ Vm

։ Qi, for every i =
1, k. By inductively applying Lemma 2.6 (b), we derive
D ⊢ Vm

։ Q1, . . . ,Qk and, by transitivity, we further
derive D ⊢ Vm

։ Q. This implies C ∈ suppS

D(Q), and
therefore:

p
S
D(Q) ≤ p(C) =

X

(Vj ,pj)∈C

pj ≤
X

i

X

(Vj ,pj)∈Cm
i

pj =
X

i

p
S
D(Qi)

The second inequality holds because the pi’s are non-negative
(Proposition 2.8). This proves that pS

D is arbitrage-free.

The arbitrage-price is our fundamental formula because it
allows us to check consistency, and, in that case, it gives the
discount-free price.

Theorem 2.15. Consider a set of price points S. Let pS
D

denote the arbitrage-price function (Equation 2). Then:

2For any query bundle Q, if C1 ∈ suppS

D(Q) and C1 ⊆ C2

then C2 ∈ suppS

D(Q), by the reflexivity axiom.

1. S is consistent iff ∀(Vi, pi) ∈ S, pi ≤ pS
D(Vi).

2. If S is consistent, then pS
D is the unique discount-free

pricing function for S.

Proof. We claim that, for any pricing function pD valid
for S and every query bundle Q, we have that pD(Q) ≤
pS

D(Q). The claim proves the theorem. Indeed, the “if”
direction of item 1 follows from two facts. First, pS

D is
arbitrage-free by Lemma 2.14(b). Second, if pi ≤ pS

D(Vi)
holds for all price points (Vi, pi) ∈ S , then by Lemma 2.14(a)
pS

D(Vi) = pi. Hence, pS
D is valid, proving that S is consis-

tent. The “only if” direction follows from the claim: if pD is
any valid pricing function for S then pi = pD(Vi) ≤ pS

D(Vi).
The claim also implies item 2 immediately.

To prove the claim, let pD be a valid pricing function (thus
pD(Vi) = pi for all (Vi, pi) ∈ S), and let Q be a bundle.
Let C ∈ suppS

D(Q), and V =
J

(Vi,pi)∈C
Vi. By definition

we have D ⊢ V ։ Q. Since pD is arbitrage-free, we have:

pD(Q) ≤
X

(Vi,pi)∈C

pD(Vi) =
X

(Vi,pi)∈C

pi = p(C)

It follows that pD(Q) ≤ min
C∈suppS

D
(Q) p(C) = pS

D(Q)

The theorem says that, in order to check consistency, it
suffices to rule out arbitrage situations among the views in
S . There are infinitely many possible arbitrage situations in
Definition 2.7, but the theorem reduces this to a finite set.

Next, we examine the complexity of checking consistency
and computing the price. For this discussion, we will as-
sume that ։ is the instance-based determinacy given by
Definition 2.2. Denote by Price(S ,Q) the decision version
of the price computation problem: “given a database D and
k, is the price pS

D(Q) less than or equal to k”? Let us also
denote by Price(Q) the decision version of the same prob-
lem, but where the set of price points S is now part of the
input.

Corollary 2.16. Suppose S ,Q consist of UCQs. Then,
(a) the complexity of Price(Q) is in Σp

2 and (b) the com-
plexity of Price(S ,Q) is coNP-complete.

Proof. For (a), to check whether pS
D(Q) ≤ k, guess

a subset of price points (V1, p1), . . . , (Vm, pm) in S , then
check that both D ⊢ V1, . . . ,Vm ։ Q (this is in coNP by
Theorem 2.3) and that

P

i
pi ≤ k. For (b), instead of guess-

ing, we can iterate over all subset of price points, since there
is only a fixed number of them.

Thus, computing the price is expensive. This expense is
unacceptable in practice, since prices are computed as fre-
quently as queries, perhaps even more frequently (for exam-
ple, users may just inquire about the price, then decide not
to buy). We have an extensive discussion of tractability in
Section 3, and will describe an important restriction under
which pricing is tractable. For now, we restrict our discus-
sion of the complexity to showing that pricing is at least as
complex as computing the determinacy relation.

Let Price-Consistency(S) be the problem of deciding
whether a set of price points S is consistent for a database
D, and Determinacy(V, Q) the problem of checking de-
terminacy D ⊢ V ։ Q. The proof of Corollary 2.16 shows
that the former problem is no more than exponentially worse
than the latter. We prove in the full paper [19] a weak con-
verse:

Proposition 2.17. There is a polynomial time reduction
from Determinacy(V, Q) to3 Price-Consistency(S).

We end this section with a brief discussion of the case when
ID is not determined by S = {(V1, p1), . . . , (Vk, pk)}, that
is, D ⊢ (V1, . . . ,Vk) 6։ ID; in other words, the seller
does not sell the entire dataset. In this case, S admits no
discount-free pricing function. Indeed, consider any B such
that B ≥

P

i pi, and denote S+B = S∪{(ID, B)}. One can

check that, if S is consistent, then so is S+B, and that pS+B
D

is a valid pricing function for S . If pD were any discount-
free pricing function for S , we fix some database instance D

and choose B > pD(ID). Then, pS+B
D (ID) = B > pD(ID),

contradicting the fact that p is discount-free. In the rest of
the paper, we will always assume that ID is included in the
set of price points.

2.7 Dynamic Pricing
So far we assumed that the database instance was static.

We now consider the pricing function in a dynamic setting,
i.e. when the database D is updated; in this paper, we con-
sider only insertions. Note that the set of price points S
remains unchanged, even when the database gets updated.
For example, the seller has decided to sell the entire dataset
for the price B, (ID, B) ∈ S , and this price remains un-
changed even when new items are inserted in the database.
This is the most common case encountered today: explicit
prices remain fixed over long periods of time, even when the
underlying data set is updated.

When the database is updated, we can simply recompute
the pricing function on the new data instance. However, we
face two issues. The first is that the price points S may
become inconsistent: S was consistent at D1, but after in-
serting some items, S becomes inconsistent at D2. This
must be avoided in practice. Second, as more data items
are added, in most cases the seller does not want any price
to drop. As an example, adding more businesses to the USA
business database should not remove value from any query.
However, there are cases where more data adds noise and
hence decreases the value of the dataset: we do not explore
this scenario in this paper.

Example 2.18. Let V (x, y) = R(x), S(x, y) and Q() =
R(x) (a boolean query checking whether R is non-empty).
Let D1 = ∅, D2 = {R(a), S(a, b)}. Then D1 ⊢ V 6։ Q and
D2 ⊢ V ։ Q. The second claim is obvious: since V (D2) =
{(a, b)} we know for certain that RD2 6= ∅. To see the first
claim consider D′

1 = {R(a)}. Then V (D1) = V (D′
1) = ∅ but

Q(D1) = false 6= Q(D′
1) = true, proving that D1 ⊢ V 6։ Q.

This example implies two undesired consequences. First,
let S1 = {(V, $1), (Q, $10), (ID, $100)}: the entire dataset
costs $100, the query Q $10, and the view V $1. S1 is con-
sistent when the database instance is D1, but when tuples
are inserted and the database instance becomes D2, then S1

is no longer consistent (because a buyer can avoid paying
$10 for Q by asking V instead, for just $1). Alternatively,
consider the set of price points S2 = {(V, $1), (ID, $100)}.
The reader may check that S2 is consistent for any database
instance D. However, the price of Q decreases when the
database is updated: p

S2

D1
(Q) = $100, while p

S2

D2
(Q) = $1.

Next, we describe two ways to fix both issues.
3S has one price point for each V ∈ V and one for Q; the
database instance D is part of the input in both cases.

Definition 2.19. Fix the bundles V,Q. We say that a
determinacy relation ։ is monotone for V,Q if, whenever
D1 ⊆ D2 and D2 ⊢ V ։ Q, then D1 ⊢ V ։ Q.

Information-theoretic determinacy is vacuously monotone,
since it does not depend on the instance. But, as we saw in
Example 2.18, instance-based determinacy is not monotone
in general. We prove in [19]:

Proposition 2.20. If V is a bundle consisting only of se-
lection queries and Q is a bundle of full conjunctive queries,
then instance-based determinacy is monotone for V,Q.

A conjunctive query is full if it has no projections; in partic-
ular, a selection query is full. We show in the full version [19]
that the property fails for CQs with projections.

As we mentioned earlier, we would like that a dynamic
pricing function be monotone: when data is added to the
database, the price should never decrease:

Definition 2.21 (Monotonicity). Let p be a totally
defined, dynamic pricing function. We say that p is mono-
tone on Q if, for any D1 ⊆ D2, pD1

(Q) ≤ pD2
(Q).

Fix a set of price points S . The arbitrage-price given by
Equation 2 is a totally defined function pS , since pS

D is well
defined for every database instance D. We prove:

Proposition 2.22. Fix S and Q, and suppose that ։ is
monotone for every subset V1, . . . ,Vm of S, and Q. Then,
the dynamic arbitrage-price pS is monotone on Q.

Proof. By Equation 1: suppS

D1
(Q) ⊇ suppS

D2
(Q). By

Equation 2: pS
D1

(Q) ≤ pS
D2

(Q).

Proposition 2.23. If pS is monotone on every Vi, S is
consistent on D1, and D1 ⊆ D2, then S is consistent on D2.

Proof. To check consistency on D2 it suffices to check
that pi ≤ pS

D2
(Vi), for all i = 1, . . . , m. We have pi ≤

pS
D1

(Vi) since S is consistent on D1, and pS
D1

(Vi) ≤ pS
D2

(Vi)

because pS is monotone.

The goal in the dynamic setting is to ensure that pS is
monotone on every query (Definition 2.21). There are two
ways to achieve this. One is to restrict all views to selection
queries and all queries to full conjunctive queries: we pursue
this in Section 3. However, if one needs more general views
and queries, then we propose a second alternative: to con-
sider a different determinacy relation along with monotone
views. Let ։ be any determinacy relation (Definition 2.5).
Its restriction D ⊢ V ։

∗ Q is: ∀D0,V(D0) ⊆ V(D),
D0 ⊢ V ։ Q. We prove in detail in [19]:

Proposition 2.24. For the restriction ։
∗: (a) ։

∗ is a
determinacy relation (Definition 2.5), (b) ։

∗ is monotone
(Definition 2.19) for any monotone V and any Q, (c) if pS

D

and qSD are the arbitrage-prices for ։ and ։
∗, respectively,

then pS
D(Q) ≤ qSD(Q) for all Q, and (d) if ։ is instance-

based determinacy, then the data complexity of ։
∗ is in

coNP.

Thus, by replacing instance-based determinacy ։ with
its restriction ։

∗, we obtain a monotone pricing function
qS . In particular, if S is consistent in a database D, then it
will remain consistent after insertions. To illustrate, recall
that in Example 2.18 S1 became inconsistent when D1 was
updated to D2: this is because D1 ⊢ V 6։ Q and D2 ⊢ V ։

Q. Now we have both D1 ⊢ V 6։∗ Q and D2 ⊢ V 6։∗ Q,
hence S1 is consistent in both states of the database.

3. TRACTABLE QUERY-BASED PRICING
The combined complexity for computing the price when

the views and queries are UCQs is high: it is coNP-hard and
in ΣP

2 . This is unacceptable in practice. In this section, we
restrict both the views on which the seller can set explicit
prices and the queries that the buyer can ask, and present
a polynomial time algorithm for computing the price. This
is the main result in the paper, since it represents a quite
practical framework for query-based pricing. For the case of
conjunctive queries without self-joins, we prove a dichotomy
of their complexity into polynomial time and NP-complete,
which is our most technically difficult result.

The Views. We restrict the views to selection queries.
We denote a selection query by σR.X=a, where R is a re-
lation name, X an attribute, and a a constant. For exam-
ple, given a ternary relation R(X,Y, Z), the selection query
σR.X=a is Q(x, y, z) = R(x, y, z) ∧ x = a. Throughout this
section, the seller can set explicit prices only on selection
views. We argue that this restriction is quite reasonable
in practice. Many concrete instances of online data pric-
ing that we have encountered set prices only on selection
queries4. For example, CustomLists [13] sells the set of all
businesses in any given state for $199, thus it sells 50 se-
lection views. Infochimps [17] sells the following selection
queries, in the form of API calls. The Domains API: given
IP address, retrieve the domain, company name and NAICS
Code. The MLB Baseball API: given an MLB team name,
retrieve the wins, losses, current team colors, seasons played,
final regular season standings, home stadium, and team ids.
The Team API: given the team ids, get the team statistics,
records, and game ids. And, the Game API: given game id,
get the attendance, box scores, and statistics. Thus, we ar-
gue, restricting the explicit price points to selection queries
is quite reasonable for practical purposes.

An important assumption made by sellers today is that
the set of values on which to select is known. For exam-
ple, the set of valid MLB team names is known to the
buyers, or can be obtained for free from somewhere else.
In general, for each attribute R.X we assume a finite set
ColR.X = {a1, . . . , an}, called the column. This set is known
both to the seller and the buyer. Furthermore, the database
D satisfies the inclusion constraint RD.X ⊆ ColR.X . The
input to the pricing algorithm consists of both the database
instance D, and all the columns ColR.X : thus, the latter are
part of the input in data complexity. A column should not
be confused with a domain: while a domain may be infinite,
a column has finitely many values. It should not be confused
with the active domain either, since the database need not
have all values in a column. We also assume that columns
always remain fixed when the database is updated.

We call the set of all selections on column R.X, ΣR.X =
{σR.X=a | a ∈ ColR.X}, the full cover of R.X. Note that
D ⊢ ΣR.X ։ R. We denote Σ the set of all selections
on all columns. Given V ⊆ Σ, we say that it fully covers
R.X if ΣR.X ⊆ V. Thus, the explicit price points S =
{(V1, p1), (V2, p2), . . .} are such that each Vi ∈ Σ. We denote
p : Σ → R

+ the partial function defined as: p(Vi) = pi if
(Vi, pi) ∈ S .

Recall that Price(S ,Q) denotes the data complexity of

4The only exception are sites that sell data by the number
of tuples; for example, Azure allows the seller to set a price
on a “transaction”, which means any 100 tuples.

the pricing problem in Section 2. Since now S can be as
large as Σ, we treat it as part of the input. Thus, we denote
the pricing problem as Price(Q), where the input consists
of the database instance D, all columns ColR.X , and the
function p. We start with a lemma (which we prove in [19]):

Lemma 3.1. Let V ⊆ Σ. Then D ⊢ V ։ σR.X=a iff (a)
it is trivial (i.e. σR.X=a ∈ V), or (b) V fully covers some
attribute Y of R.

The lemma has two consequences. First, recall that in
Subsection 2.4 we required that the views in S determine
ID. By the lemma, this requirement becomes equivalent
to requiring that, for any relation R, S fully covers some
attribute X. Second, the lemma gives us a simple criterion
for checking whether S is consistent. By Theorem 2.15, this
holds iff there is no arbitrage between the views in S . The
lemma implies that the only risk of arbitrage is between a
full cover ΣR.Y and a selection view σR.X=a, hence:

Proposition 3.2. S is consistent iff for every relation R,
any two attributes X, Y of R and any constant a ∈ ColR.X :

p(σR.X=a) ≤
X

b∈ColR.Y

p(σR.Y =b)

Note that now consistency is independent of the database
instance; this is unlike Subsection 2.7, where we showed that
consistency may change with the database.

The Queries. We would like to support a rich query
language that buyers can use, while ensuring tractability
for the price computation. We start with an upper bound
on the data complexity of pricing. We say that a query
Q has PTIME data complexity if Q(D) can be computed
in polynomial time in the size of D. UCQ queries, dat-
alog queries, and extensions of datalog with negation and
inequalities have PTIME data complexity[4].

Theorem 3.3. Assume V ⊆ Σ. Let Q be any monotone
query that has PTIME data complexity. Then, D ⊢ V ։ Q

for V ⊆ Σ can be decided in PTIME data complexity.

We give the proof in the full version of this paper [19].

Corollary 3.4. Let Q be a bundle of monotone queries
that have polynomial time data complexity. Then Price(Q)
is in NP.

Proof. To check if pS
D(Q) ≤ k, guess a subset of selection

views V ⊆ Σ, then check that both D ⊢ V ։ Q (which is
equivalent to D ⊢ V ։ Qi, for all Qi ∈ Q, by Lemma 2.6)
and that

P

V ∈V
p(V) ≤ k.

Thus, the restriction to selection queries has lowered the
complexity of price computation from Σp

2 (Corollary 2.16)
to NP. However, for some Conjunctive Queries, computing
the price is still NP-hard (the detailed proof is in [19]):

Theorem 3.5 (NP-Complete Queries). Price(Q) is
NP-complete (data complexity) when Q is any of the follow-
ing queries:

H1(x, y, z) = R(x, y, z), S(x), T (y), U(z) (3)

H2(x, y) = R(x), S(x, y), T (x, y) (4)

H3(x, y) = R(x), S(x, y), R(y) (5)

H4(x) = R(x, y) (6)

If Q is one of H1, H2, H3 then the pricing complexity re-
mains NP-complete even when the database instance D is
restricted s.t. Q(D) = ∅.

Thus, we cannot afford to price every conjunctive query.
In Subsection 3.1, we introduce a class of conjunctive queries
whose prices can be computed in PTIME. In Subsection 3.2,
we study the complexity of all conjunctive queries without
self-joins, and establish a dichotomy for pricing into PTIME
and NP-complete.

3.1 A PTIME Algorithm
We define a class of conjunctive queries, called Generalized

Chain Queries, denoted GChQ, and we provide a non-trivial
algorithm that computes their prices in polynomial time.

We consider conjunctive queries with interpreted unary
predicates C(x) that can be computed in PTIME: that is, we
allow predicates like x > 10 or User-Defined-Predicate(x),
but not x < y. A conjunctive query is without self-joins if
each relation Ri occurs at most once in Q; e.g. query H3 in
Theorem 3.5 has a self-join (since R occurs twice), the other
three queries are without self-joins. A conjunctive query
is full if all variables in the body appear in the head; e.g.
queries H1, H2, H3 are full, while H4 is not. We restrict our
discussion to full, conjunctive queries without self-joins. We
abbreviate such a query with Q = R0, R1, . . . , Rk, C1, . . . , Cp,
where each Ri is an atomic relational predicate, and each
Cj is an interpreted unary predicate; we assume the or-
der R1, . . . , Rk to be fixed. For 0 ≤ i ≤ j ≤ k, we de-
note Q[i,j] the full conjunctive Q[i,j] = Ri, Ri+1, . . . , Rj (ig-
noring the unary predicates). For example, if Q(x, y, z) =
R(x), S(x, y), T (y),U(y, z), V (z), then Q[1:2](x, y) = S(x, y), T (y).
If k is the index of the last relational predicate, then we ab-
breviate Q[j,k] with Q[j:∗]. Denote V ar(Q) the set of vari-
ables in Q.

Definition 3.6. A generalized chain query, GChQ, is a
full conjunctive query without self-joins, Q, such that, for all
i, |Var(Q[0:i−1])∩Var(Q[i:∗])| = 1. We denote xi the unique
variable shared by Q[0:i−1] and Q[i:∗]. The (not necessarily
distinct) variables x1, . . . , xk are called join variables. All
other variables are called hanging variables.

In other words, a GChQ query is one in which every join
consists of only one shared variable. Note that the definition
ignores the interpreted unary predicates occurring in Q. The
following are some examples of GChQ queries:

Q1(x, y) = R(x), S(x, y), T (y)

Q2(x, y, z, w) = R(x, y), S(y, z), T (z), U(z), V (z, w)

Q3(x, y, z, u, v, w) = R(x, y), S(y, u, v, z), T (z, w), U(w)

On the other hand, none of the queries in Theorem 3.5 are
GChQ: the atoms in queries H1 and H2 cannot be ordered
to satisfy Definition 3.6, H3 has a self-join, and H4 is not a
full query.

We can now state our main result in this paper:

Theorem 3.7 (Main Theorem). Assume that all ex-
plicit price points in S are selection queries. Then, for any
GChQ query, one can compute its price in PTIME (data
complexity).

Before we give the algorithm, we illustrate pricing with
an example.

R S T
X X Y Y Q(x, y) = R(x), S(x, y), T (y)

a1 b1 Q[0:1](x, y) = R(x), S(x, y)
a1 a1 b2 b1 Q[1:2](x, y) = S(x, y), T (y)
a2 a2 b2 b3

a3 b2 Colx = {a1, a2, a3, a4}
a4 b1 Coly = {b1, b2, b3}

(a)
Q[0:1](D) =
X Y

a1 b1

a1 b2

a2 b2

Q[1:2](D) =
X Y

a1 b1

a4 b1

Q[0:2](D) = Q(D)
X Y

a1 b1

(b)

(c)

Figure 1: (a) The database D and query Q for Example 3.8
(b) The answers to the partial queries Q[0:1], Q[1:2], Q[0:2] (c)
The flow graph for computing the price of the example (see
Theorem 3.13).

Example 3.8. Consider Q = R(x), S(x, y), T (y) over the
database D in Figure 1(a). We have Q(D) = {(a1, b1)}.
There are 14 possible selection queries that are priced: ΣR.X =
{σR.X=a1

, σR.X=a2
, σR.X=a3

, σR.X=a4
}, as well as ΣS.X =

{σS.X=a1
, σS.X=a2

, σS.X=a3
, σS.X=a4

}, and similarly for S.Y

and T.Y . Suppose S assigns the price $1 to each selection
query.

To compute the price of Q, we need to find the smallest set
V ⊆ Σ that “determines” Q: that is, forall D′ s.t. V(D) =
V(D′), the query must return the same answer {(a1, b1)}
on D′, as on D. First, V must guarantee that (a1, b1) is
an answer, and for that it must ensure that all three tuples
R(a1), S(a1, b1), T (b1) are in D′; for example, it suffices to
include in V the views V0 = {σR.X=a1

, σS.Y =b1 , σT.Y =b1}
(we could have chosen σS.X=a1

instead of σS.Y =b1). Second,
V must also ensure that none of the other 11 tuples (ai, bj)
are in the answer to Q. V0 is not sufficient yet. For exam-
ple, consider the tuple (a3, b2), which is not in the answer.
Let D′ = D ∪ {R(a3), T (b2)}; then V0(D) = V0(D

′), since
V0 does not inquire about either R(a3) or T (b2), yet Q(D′)
contains (a3, b2). Thus, V must ensure that either R(a3) is

not in D′, or that T (b2) is not in D′. Continuing this rea-
soning, leads us to the following set of views V = {σR.X=a1

,

σR.X=a4
, σS.Y =b1 , σS.Y =b3 , σT.Y =b1 , σT.Y =b2}. The reader may

check that this is a minimal set that determines Q, hence the
price of Q is pS

D(Q) = 6.

We can also generalize the algorithm to GChQ query bun-
dles, which are defined as follows.

Definition 3.9. A GChQ query bundle is a set Q of
GChQ queries without interpreted predicates, such that any
two queries Q, Q′ ∈ Q only share in common a prefix and/or
a suffix: ∃i, j, m : Q[0:i−1] = Q′

[0:i−1], Q[j:∗] = Q′

[m:∗], and

Q[i:j−1], Q′

[i:m−1] have no common relation names.

For example, the bundle {Q1 = S(x, y), R(y, z), U(z), Q2 =
S(x, y), T (y, z), Q3 = S(x, y), T (y, z), U(z)} is a GChQ bun-
dle. To simplify the presentation, we discuss only single
queries and defer query bundles to [19]. We now describe
the algorithm, which consists of the four steps below.

STEP 1: Remove Atomic Predicates. Suppose Q

has a variable x with an atomic predicate C(x): here we
simply shrink the column5 of x to Col ′x = {a ∈ Colx |
C(a) = true}, thus removing all constants that do not sat-
isfy C. Let S ′ ⊆ S be obtained by removing all selection
views that refer to these constants, and similarly D′ ⊆ D

be the database obtained by filtering on the predicate C.
Finally, let Q′ be the query obtained from Q by removing

the predicate C(x). We prove in [19] that pS
′

D′(Q′) = pS
D(Q).

To illustrate this step, consider the query Q(y,w, z) =
R(y), S(y, w, z), T (z), w = a1 and Colw = {a1, a2, a3}. Then,
we restrict the column of w to {a1}, next remove the views
σS.W=a2

, σS.W=a3
from S to obtain S ′, filter D on w = a1

to obtain D′, and then compute the price of Q′(x, y, z) =
R(y), S(y, w, z), T (z).

STEP 2: Remove Multiple Variable Occurrences

from Each Atom. We only sketch this step, and defer the
details to the full version [19]. Suppose a variable x occurs
twice in the atom R(x, x, z), where R has schema R(X,Y, Z).
Let R′(X, Z) be a new relation name s.t. ColR′.X = Colx,
and let us set the prices on R′.X as follows: p(σR′.X=a) =
min{p(σR.X=a), p(σR.Y =a)}. We prove that the price of the
new query (obtained by replacing the atom R(x, x, z) with
R′(x, z)) is the same as the price of Q.

STEP 3: Removing Hanging Variables. Recall that
a hanging variable is one that occurs in only one atom of
Q; by the previous step, it only occurs in one position R.X.
We prove in the full paper the following:

Lemma 3.10. Let x be a hanging variable in Q, occurring
in the attribute position R.X. Let V ⊆ Σ. If D ⊢ V ։ Q

then either (a) V fully covers R.X or (b) D ⊢ (V\ΣR.X) ։

Q (in other words, every view in V referring to R.X is
redundant).

Thus, when computing the price of Q, for each hanging
variable we need to consider two cases: either fully cover
it, or not cover it at all. We claim that each of these cases
becomes another price computation problem, namely for the
query Q′, obtained from Q by replacing R with R′ (obtained
from R by removing the attribute R.X), on the database D′

obtained from D by projecting out R.X:
5If x occurs on several attribute positions R.X, S.Y , etc,
then we may assume w.l.o.g. that ColR.X = ColS.Y = . . .
and denote it with Colx.

Lemma 3.11. Let R.X be an attribute containing a hang-
ing variable in Q, V ⊆ Σ, and V′ = V \ ΣR.X .

• If V fully covers R.X, let Y be any attribute Y 6= X

of R. Then D ⊢ V ։ Q iff D′ ⊢ V′, ΣR′.Y ։ Q′.

• If V does not fully cover R.X, then D ⊢ V ։ Q iff
D′ ⊢ V′

։ Q′.

We prove this as part of a more general lemma in the full
version [19]. The lemma gives us an algorithm for remov-
ing hanging variables: compute two prices for Q′, and take
the minimum. The first price corresponds to the case when
R.X is fully covered: in that case, we give out R′ for free
(by setting all prices σR′.Y =a to 0, for some other attribute
Y) and compute the price of Q′: then, add to that the true
cost of the full cover ΣR.X , i.e.

P

a
p(σR.X=a). The sec-

ond price corresponds to the case when R.X is not covered
at all, and is equal to the price of Q′. For a simple ex-
ample, if Q(x, y, z) = R(x, y), S(y, z), T (z), then Q′(y, z) =
R′(y), S(y, z), T (z). Let p1 be the price of Q′ where we set
all prices of σR′.Y =b to 0; let p2 be the regular price of Q′

(where all prices are unchanged, but the views σR.X=a are
removed); return min(p1+p(ΣR.X), p2). In general, we need
to repeat this process once for every hanging variable; thus,
we end up computing 2k prices, if there are k attributes with
hanging variables.

STEP 4: Reduction to Maximum Flow. Finally, we
have reached the core of the algorithm. At this point, the
query is a Chain Query:

Definition 3.12. A Chain Query is a full conjunctive
query without self-joins, Q = R0, R1, . . . , Rk s.t.: (a) ev-
ery atom Ri is either binary or unary, (b) any two consec-
utive atoms Ri, Ri+1 share exactly one variable, denoted xi,
(c) the first and the last atoms are unary, R0(x0), Rk(xk).
Denote ChQ the set of chain queries.

We show that pricing a chain query can be reduced to the
Min-Cut problem, which is the dual of the Max-Flow
graph problem and can be solved in polynomial time [12].

Given a chain query Q, denote xi, xi+1 the variables oc-
curring in Ri: if Ri is unary, then xi = xi+1. In particu-
lar, x0 = x1 and xk = xk+1, since the first and last atoms
are unary. Thus, each query Q[i:j] = Ri, . . . , Rj has vari-
ables xi, . . . , xj+1. Also, let us define Q[i:i−1] = Colxi

=
ColRi−1.Y ∩ ColRi.X . Define the left-, middle-, and right-
partial-answers:

Lti =Πxi
(Q[0:i−1](D)), 0 ≤ i ≤ k

Md [i:j] =Πxi,xj+1
(Q[i:j](D)), 1 ≤ i ≤ k, i − 1 ≤ j ≤ k − 1

Rtj =Πxj+1
(Q[j+1:k](D)), 0 ≤ j ≤ k

We construct the following graph G. The graph has a
source node s and a target (sink) node t. Moreover, for each
attribute R.X and constant a ∈ ColR.X , we introduce two
nodes: vR.X=a and wR.X=a. The edges of G are:

View edges: For each attribute R.X and constant a ∈

ColR.X we create the edge: vR.X=a
view
−→ wR.X=a ,

where the capacity equals the price6 p(σR.X=a) in S .

Tuple edges: For each binary atom R(X, Y) and constants
a ∈ ColR.X , b ∈ ColR.Y , we create the following edge:

wR.X=a
tuple
−→ vR.Y =b , where capacity = ∞.

6If the query has no explicit price in S then capacity = ∞.

Skip edges: For all partial answers we create the edges:

s
skip
−→ vRi.X=a if a ∈ Lt i

wRj−1.Y =b
skip
−→ vRi+1.X=a if (b, a) ∈ Md [j:i]

wRj .Y =b
skip
−→ t if a ∈ Rtj

In all cases, capacity = ∞.

In particular, since Lt0 = Colx0
, Md [i:i−1] = Colxi

, Rtk =
Colxk

we also have the following skip edges:

s
skip
−→ vR0.X=a, wRi−1.Y =a

skip
−→ vRi.X=a, wRk.Y =a

skip
−→ t

We explain now the intuition behind the graph construc-
tion, and will also refer to Figure 1 (b) and (c), which illus-
trates the graph for Example 3.8. Notice that the edges of
finite capacity in G are in one-to-one correspondence with
the views in S . The main invariant (which we prove in the
full paper) is: for every set of edges C of finite capacity, C

is a “cut” (it separates s and t) if and only if the correspond-
ing set of views V determines the query. Before justifying
this invariant, note that the core of the graph consists of
sequences of three edges:

vRi.X=a
view
−→ wRi.X=a

tuple
−→ wRi.Y =b

view
−→ wRi.Y =b

for all binary relations Ri(X, Y) and constants a ∈ ColRi.X , b ∈
ColRi.Y (unary relations have just one view edge.) Con-
sider a possible answer to Q, t = (u1, u2, . . . , uk), where
u1 ∈ Colx1

, . . . , uk ∈ Colx2
. If D ⊢ V ։ Q, then, for all D′

s.t. V(D) = V(D′), V must ensure two things: if t ∈ Q(D)
then it must ensure that t ∈ Q(D′), and if t 6∈ Q(D) then it
must ensure that t 6∈ Q(D′). Take the first case, t ∈ Q(D).
For each i = 0, . . . , k, denoting a = ui and7 b = ui+1, we
have: a ∈ Lti (is a left partial answer), Ri(a, b) ∈ D, and
b ∈ Rt i (is a right partial answer). Hence there are two skip
edges:

s
skip
−→ vRi.X=a wRi.Y =b

skip
−→ t

Combined with the three edges above, they form an s − t

path: thus, any cut of finite capacity must include one of
the two view edges, hence, the corresponding set of views V

includes either σRi.X=a or σRi.Y =b, ensuring Ri(a, b) ∈ D′.
Since this holds for any i, it follows that D′ has all the tuples
needed to ensure t ∈ Q(D′). For example, in Figure 1 the
answer (a1, b1) ∈ Q(D) leads to three s − t paths:

s
skip
−→vR.X=a1

view
−→ wR.X=a1

skip
−→t

s
skip
−→vS.X=a1

view
−→ wS.X=a1

tuple
−→vS.Y =b1

view
−→ wS.Y =a1

skip
−→ t

s
skip
−→vT.Y =b1

view
−→ wT.Y =b1

skip
−→ t

Any cut ensures that R(a1), S(a1, b1), T (b1) are present.
Take the second case, t 6∈ Q(D). Then some of the tuples

Ri(ui, ui+1) are missing from D, and V must ensure that
at least one is missing. The sequence u1, . . . , uk consists
of partial answers, alternating with missing tuples. We are
interested only in the latter and the skip edges help by skip-
ping over the partial answers. Thus the missing tuples are
on a path from s to t. For an illustration, assume that ex-
actly two tuples are missing, Ri(ui, ui+1) and Rj(uj , uj+1);

7When i = k then ui = ui+1, hence a = b.

denoting a = ui, b = ui+1, c = uj , d = uj+1 we have:

a ∈ Lti, (a, b) 6∈ Md [i:i], (b, c) ∈ Md [i+1:j−1], (c, d) 6∈ Md [j:j], d ∈ Rtj

leading to the following s − t path:

s
skip
−→ vRi.X=a

view
−→ wRi.X=a

tuple
−→ wRi.Y =b

view
−→ wRi.Y =b

skip
−→ vRj .X=c

view
−→ wRj .X=c

tuple
−→ wRj .Y =d

view
−→ wRj .Y =d

skip
−→ t

To summarize, we prove the following in the full paper [19]:

Theorem 3.13. The cost of the minimum cut in G is
equal to the price of Q. Therefore, the price of Q can be
computed in polynomial time, by reduction to Min-cut.

3.2 A Dichotomy Theorem
Are there any other queries besides GChQ whose data

complexity is in PTIME? The answer is yes. We study them
here, and give a full characterization of the complexity of all
conjunctive queries without self-joins, showing that for each
query its complexity is either PTIME or NP-complete. Note
that our characterization applies to all queries without self-
joins, not just full queries. However, it only applies to single
queries, not to query bundles: we leave open whether query
bundles admit a similar dichotomy as single queries.

We start by characterizing the PTIME class. Clearly, all
GChQ queries are in PTIME. By definition, every GChQ
query is connected: it is easy to check that PTIME queries
are closed under cartesian products:

Proposition 3.14. Assume that Q is disconnected, and
partitioned into Q(x̄1, x̄2) : −Q1(x̄1), Q2(x̄2), where x̄1, x̄2

are disjoint sets of variables. Then,

p
S
D(Q) =

8

>

>

>

<

>

>

>

:

min{pS
D(Q1), p

S
D(Q2)} if Q1(D) = Q2(D) = ∅,

pS
D(Q1) if Q1(D) = ∅, Q2(D) 6= ∅,

pS
D(Q2) if Q2(D) = ∅, Q1(D) 6= ∅,

pS
D(Q1) + pS

D(Q2) else

We prove this proposition, along with the converse re-
duction, in [19]. As a consequence, the complexity of any
disconnected query is no larger than that of any of its con-
nected components.

A more surprising class of queries that admits a PTIME
algorithm is the the class of cycle queries:

Theorem 3.15. For any integer k, Price(Ck) is in PTIME,
where Ck(x1, . . . , xk) = R1(x1, x2), . . . , Rk(xk, x1).

The algorithm for computing Ck is described in the full
version. It is technically the most difficult result in this
paper, and is quite different from the reduction to Min-cut
that we used for GChQ, suggesting that these two classes
cannot be unified in a natural way. The class of queries
Ck is also much more brittle than GChQ: adding a single
unary predicate makes the query NP-hard. For example, see
the query H2 in Theorem 3.5: it is obtained by adding one
unary predicate to C2, and is NP-hard. By contrast, we can
add freely unary predicates to GChQ.

We conclude our analysis with the following theorem, whose
proof can be found in the full version of this paper [19]:

Theorem 3.16 (Dichotomy Theorem). Let S contain
only selection views (in Σ) and Q be a CQ w/o self-joins.
The data complexity for Price(Q) is the following:

• If Q has connected components Q1, . . . , Qk, then: if all
components Qi are in PTIME, it is in PTIME, and if
one component Qi is NP-complete, Q is NP-complete.

• Else if Q is neither full nor boolean, it is NP-complete.

• Else if Q is a boolean query, then let Qf be the cor-
responding full query (add all variables to the head);
then the complexity of Q is the same as that of Qf .

• Else if Q is a full CQ, let Q′ be obtained from Q by
removing all hanging variables, constants and multiple
occurrences of a variable in the same atom: (a) if Q′

is a GChQ then it is PTIME, (b) if Q′ = Ck for
some k, then it is also PTIME, (c) otherwise, Q is
NP-complete.

4. DISCUSSION
We end this this paper with a brief discussion on loose

ends and design choices.
Step v.s. smooth pricing function. The pricing func-

tion pS can take only finitely many values, because the
arbitrage-price is always the sum of a subset of prices from
S . For some applications, this may be too limiting. One
such example is selling private data, where the price should
be proportional to the degree of privacy breached by the
query: since privacy mechanisms add a noise that can be
tuned continuously (e.g. the ε parameter in differential pri-
vacy [15]), one expects the pricing function to also vary con-
tinuously. Studying such “smooth” pricing functions is part
of future work.

Pricing and query containment. The price should
not be required to be monotone w.r.t. query containment.
Recall that two queries (of the same arity) are said to be
contained if Q1(D) ⊆ Q2(D) for any database D. If Q2

always returns at least as much data as Q1, one might insist
that pD(Q1) ≤ pD(Q2). We argue against this.

Example 4.1. Let Q1(x, y) = R(x), S(x, y) and Q2(x, y) =
S(x, y). Then, Q1 ⊆ Q2, but the information in Q1 may be
more valuable than that in Q2. For example, S(x, y) may be
the list of the top 500 companies and their stock price, while
R(x) may be an analyst’s confidential list of 5 companies
with very high potential for growth. Clearly, the seller wants
to set pD(Q1) ≫ pD(Q2).

There is also a theoretical argument: if pD is arbitrage-free
and monotone w.r.t. query containment, then all Boolean
queries have the same price! Indeed, let T be the Boolean
query that is always true, i.e. T (D) = true for any database
D, and let Q be any Boolean query. We have Q ⊆ T , hence
pD(Q) ≤ pD(T); on the other hand, D ⊢ Q ։ T , which
implies pD(T) ≤ pD(Q).

Price updates. What happens if the seller adds price
points to S? We prove in the full paper [19] that, as long
the price points remain consistent, the prices never increase;
in other words, the seller can only add more discounts, but
cannot raise the prices (of course, one can modify S to raise
prices, but prices do not increase through additions to S .)

Selections on Multiple Attributes. The PTIME al-
gorithm in Subsection 3.1 allows explicit prices only on se-
lection queries on single attributes, e.g. σR.X=a. A natural
question is whether one can extend it to prices for selections
on two or more attributes, e.g. σR.X=a,R.Y =b. The answer to
this question varies. For Chain Queries (Definition 3.12) this
is possible: simply modify the flow graph by setting the ca-
pacity of the tuple-edge (wR.X=a, vR.Y =b) to p(σR.X=a,R.Y =b)

instead of ∞. For Generalized Chain Queries, however, this
is not possible in general. In fact, even for a very sim-
ple query, Q(x, y, z) = R(x, y, z), if S has prices on all
these types of selection queries: σR.X=a, σR.Y =b, σR.Z=c,
σR.X=a,R.Y =b,R.Z=c, then we prove in the full paper [19]
that computing the price of Q is NP-hard.

5. RELATED WORK
There exist many independent vendors selling data on-

line [1, 2, 6, 13, 31] and Amazon cloud users can sell their
S3 data for a profit [7]. In addition, digital market services
for data have recently emerged in the cloud [9, 17, 29], which
enable content providers to upload their data and make it
available either freely or for a fee, and support some limited
forms of views. In the case of Infochimps [17], the seller can
set prices on APIs (modeled as selection queries) or entire
datasets. The Azure Marketplace [9] uses data subscriptions
with query limits on transactions, i.e. a group of records re-
turned by a query that can fit on a page (currently 100).
WebScaled is a pre-launch startup providing a marketplace
for datasets from ongoing Web crawls: social graphs, lists
of sites using particular advertising platforms, frequency of
specific doctypes and other HTML elements, etc. [29, 30].
Apollo Mapping sells access to satellite imagery [8]. The ap-
proach that we develop in this paper extends these pricing
methods with the ability to interpolate prices for arbitrary
queries over a seller’s database.

While the interaction between data management and eco-
nomics has been studied in the database research community
before [14, 28], to the best of our knowledge, this paper is the
first to study the problem of data pricing, with the exception
of a short vision paper that we recently published [10].

There is a rich literature on pricing information products
(e.g., [18, 27]). We were mostly influenced by Shapiro and
Varian [27], who argue that the price of information products
is quite different from that of physical goods, and propose a
new theory for pricing information products, based on the
notion of versions. The difference is that information prod-
ucts have very high fixed costs, while the marginal costs
are tiny. For example, the cost of conducting a detailed
consumer survey in several countries is very high, while the
cost of distributing the resulting data tiny (copying a file).
As a consequence, the price of information products cannot
be determined by traditional means (production costs and
competition), but must be linked to the value that the buy-
ers place on the data. Different buyers may use the data in
different ways, and should be charged different prices. For
example, a retailer may be willing to pay a high price for the
entire consumer survey, while a journalist may only be will-
ing to pay a small amount for a few interesting statistics from
the consumer survey. In order to leverage these differences
in willingness to pay, Shapiro and Varian conclude that in-
formation products should be offered in different versions, at
different prices. Our approach extends version-based pricing
to relational data, by associating a version of the product to
each query that a user may ask.

The classic notion of determinacy was extensively studied
by Nash, Segoufin and Vianu [26, 23, 24], who have inves-
tigated both the decidability question, and the subtle rela-
tionship between determinacy and rewritability. We have
reviewed information-theoretic determinacy earlier (V ։ Q

if forall D, D′, V(D) = V(D′) implies Q(D) = Q(D′)).
Rewritability is specific to a query language L: Q can be

rewritten using V in the language L if there exists a query
R ∈ L s.t. Q(D) = R(V(D)) for all D. One goal of this line
of research was to establish tight bounds on the language L;
a surprising result is an example where both V and Q are
conjunctive queries, yet R is non-monotone, proving that
no monotone language is sufficient for CQ to CQ rewriting.
In our query pricing framework we do not impose any re-
striction on the language used for rewriting; in other words,
we assume that the buyer has unrestricted computational
power, and as a consequence the two notions become equal.
A second goal of the research [26, 23, 24] is to study the deci-
sion problem for determinacy: it is shown to be undecidable
even for Unions of Conjunctive Queries, and its status is
open for Conjunctive Queries. However, several classes of
CQ queries where determinacy is well-behaved have been
found: path queries [5], syntactic restrictions of FO and
UCQ (packed FO and UCQ [21]) and monadic views [24].
Determinacy has also been examined in the restricted set-
ting of aggregate queries [16].

A key difference in our paper is that we consider instance-
based determinacy, where determinacy is defined with re-
spect to a view extension. While applications like data in-
tegration or semantic caching require instance-independent
determinacy, in query pricing the current state of the database
cannot be ignored. Instance-based determinacy is identical
to the notion of lossless views [11] under the exact view as-
sumption. The definition is further based on the notion of
certain answers [3]. We note that instance-specific reasoning
also arises in data security and authorization views: in that
context, Zhang and Mendelzon study conditional query con-
tainment, where containment is conditioned on a particular
view output [32].

Finally, we should mention that, on the surface, our com-
plexity results for pricing seem related to complexity results
for computing responsibility [22]. The PTIME algorithm
for responsibility is also based on network flow, but the re-
duction for pricing is harder to establish. Furthermore, even
though some queries have the same complexity for both pric-
ing and responsibility, the connection is superficial: the price
of H2 (Theorem 3.5) is NP-complete, while its responsibil-
ity is in PTIME; and the price of C3 (Theorem 3.15) is in
PTIME while its responsibility is NP-complete.

6. CONCLUSION
We have presented a framework for pricing relational data

based on queries. The seller sets explicit prices on some
views, while the buyer may ask arbitrary queries; their prices
are determined automatically. We gave several results: an
explicit formula for the price, a polynomial time algorithm
for pricing Generalized Chain Queries, and a dichotomy the-
orem for conjunctive queries without self-joins. We also pre-
sented several results on instance-based determinacy.

Interesting future work includes considering competition:
when a seller sets prices for her data, she needs to consider
other data instances on the market that offer “related” data,
to avoid arbitrage. This requires reasoning about mappings
between the different data sources, and these mappings are
often approximate in practice. Another is the interaction
between pricing and privacy. Most of the literature on data
privacy [15] focuses on restricting access to private informa-
tion. Privacy, however, has a broader definition, and usually
means the ability of the data owner to control how her pri-

vate information is used [25]. Setting a price for private data
is one form of such control that we plan to investigate.
Acknowledgments. This work is supported in part by the
NSF and Microsoft through NSF grant CCF-1047815 and
also grant IIS-0915054. We also thank the anonymous re-
viewer for pointing out an inconsistency in the early version
of Corollary 2.16.

7. REFERENCES
[1] http://gnip.com.

[2] http://www.patientslikeme.com.

[3] S. Abiteboul and O. M. Duschka. Complexity of answering
queries using materialized views. In PODS, pages 254–263.
ACM Press, 1998.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[5] F. N. Afrati. Rewriting conjunctive queries determined by
views. In MFCS, pages 78–89, 2007.

[6] http://www.aggdata.com/.

[7] Using Amazon S3 Requester Pays with DevPay.
http://docs.amazonwebservices.com/AmazonDevPay/

latest/DevPayDeveloperGuide/index.html?S3RequesterPays.html.

[8] http://www.apollomapping.com/.

[9] https://datamarket.azure.com/.

[10] M. Balazinska, B. Howe, and D. Suciu. Data markets in the
cloud: An opportunity for the database community. Proc. of

the VLDB Endowment, 4(12), 2011.

[11] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi.
Lossless regular views. In L. Popa, editor, PODS, pages
247–258. ACM, 2002.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. The MIT Press
and McGraw-Hill Book Company, 2001.

[13] http://www.customlists.net/.

[14] D. Dash, V. Kantere, and A. Ailamaki. An economic model for
self-tuned cloud caching. In Proc. of the 25th ICDE Conf.,
pages 1687–1693, 2009.

[15] C. Dwork. A firm foundation for private data analysis.
Commun. ACM, 54(1):86–95, 2011.

[16] S. Grumbach and L. Tininini. On the content of materialized
aggregate views. J. Comput. Syst. Sci., 66(1):133–168, 2003.

[17] http://www.infochimps.com/.

[18] S. Jain and P. K. Kannan. Pricing of information products on
online servers: Issues, models, and analysis. Management
Science, 48(9):1123–1142, 2002.

[19] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and
D. Suciu. Query-based data pricing. Research Report
UW-CSE-12-03-02, University of Washington, 2012.

[20] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[21] M. Marx. Queries determined by views: pack your views. In
L. Libkin, editor, PODS, pages 23–30. ACM, 2007.

[22] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers
and non-answers. PVLDB, 4(1):34–45, 2010.

[23] A. Nash, L. Segoufin, and V. Vianu. Determinacy and rewriting
of conjunctive queries using views: A progress report. In ICDT,
pages 59–73, 2007.

[24] A. Nash, L. Segoufin, and V. Vianu. Views and queries:
Determinacy and rewriting. ACM Trans. Database Syst.,
35(3), 2010.

[25] B. Schneier. Secrets & Lies, Digital Security in a Networked

World. John Wiley & Sons, 2000.

[26] L. Segoufin and V. Vianu. Views and queries: determinacy and
rewriting. In C. Li, editor, PODS, pages 49–60. ACM, 2005.

[27] C. Shapiro and H. R. Varian. Versioning: The smart way to sell
information. Harvard Business Review, 76:106–114,
November-December 1998.

[28] Stonebraker et al. Mariposa: a wide-area distributed database
system. VLDB Journal, 5(1):048–063, 1996.

[29] http://webscaled.com/.

[30] Web marketing. Google group forum post,
http://groups.google.com/group/webmarketing/msg/c6643da409802f85.

[31] http://www.xignite.com/.

[32] Z. Zhang and A. O. Mendelzon. Authorization views and
conditional query containment. In ICDT, pages 259–273, 2005.

http://gnip.com
http://www.patientslikeme.com
http://www.aggdata.com/
http://docs.amazonwebservices.com/AmazonDevPay/
latest/DevPayDeveloperGuide/index.html?S3RequesterPays.html
http://www.apollomapping.com/
https://datamarket.azure.com/
http://www.customlists.net/
http://www.infochimps.com/
http://webscaled.com/
http://groups.google.com/group/webmarketing/msg/c6643da409802f85
http://www.xignite.com/

	Introduction
	The Query Pricing Framework
	Notations
	The Pricing Function
	Axiom 1: Arbitrage-Free
	Explicit Price Points
	Axiom 2: Discount-Free
	The Fundamental Query Pricing Formula
	Dynamic Pricing

	Tractable Query-Based Pricing
	A PTIME Algorithm
	A Dichotomy Theorem

	Discussion
	Related Work
	Conclusion
	References

