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Abstract—This paper presents a study of skew — highly vari-
able task runtimes — in MapReduce applications. We describe
various causes and manifestations of skew as observed in real
world Hadoop applications. Runtime task distributions from
these applications demonstrate the presence and negative impact
of skew on performance behavior. We discuss best practices
recommended for avoiding such behavior and their limitations.

I. INTRODUCTION

MapReduce [1] has proven itself as a powerful and cost-
effective approach for massively parallel analytics [2]. A
MapReduce job runs in two main phases: map phase and
reduce phase. In each phase, a subset of the input data is
processed by distributed tasks in a cluster of computers. When
a map task completes, the reduce tasks are notified to pull
newly available data. This transfer process is referred to as
a shuffle. All map tasks must complete before the shuffle
part of the reduce phase can complete, allowing the reduce
phase to begin. We consider the case where computational
load is imbalanced among map tasks or among reduce tasks.
We refer to such an imbalanced situation as map-skew and
reduce-skew respectively. Skew can lead to significantly longer
job execution times and significantly lower cluster throughput.
Figure 1 illustrates the problem. Each line in the figure
represents one task. Time increases from left to right. This
job exhibits map-skew: a few map tasks take 5 to 10 times as
long to complete as the average, causing the job to take twice
as long as an execution without outliers.

In this paper, we consider skew originating from the char-
acteristics of the algorithm and dataset. For these sources of
skew, speculative execution (a popular strategy in MapReduce-
like systems [1], [3], [4] to mitigate skew stemming from
a non-uniform performance of physical nodes) is ineffective
because the speculative tasks would take a similar amount of
time as the original tasks.

In Section II, we describe sources of skew and give one
example of each source’s effect on a representative application.
In Section III, we describe best practices for avoiding skew,
their limitations, and present directions for future work.

II. TYPES OF SKEW IN A MAP REDUCE APPLICATION

We present five types of skew that can arise in a MapReduce
application. For each type, we relate an application where we
encountered this source of skew in practice.

A. Sources of Map-side Skew

We identify three causes of skew in the map phase.
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Fig. 1. A timing chart of a MapReduce job running the PageRank
algorithm from Cloud 9 [5]. Exec represents the actual map and
reduce operations. The slowest map task (first one from the top)
takes more than twice as long to complete as the second slowest
map task, which is still five times slower than the average. If all
tasks took approximately the same amount of time, the job would
have completed in less than half the time.

1) Expensive Record: Map tasks typically process a col-
lection of records in the form of key-value pairs, one-by-one.
Ideally, the processing time does not vary significantly from
record to record. However, depending on the application, some
records may require more CPU and memory to process than
others. These expensive records may simply be larger than
other records, or the map algorithm’s runtime may depend on
the record’s value.

PageRank [6] is an application that can experience this
type of skew. PageRank is a link analysis algorithm that
assigns weights (ranks) to each vertex in a graph by itera-
tively aggregating the weights of its inbound neighbors. This
application can thus exhibit skew if the graph includes nodes
with a large degree of incoming edges. We took the PageRank
implementation from Cloud 9 [5] and applied it to the freebase
dataset [7]. We patched Cloud 9 so that it would properly
handle graph nodes with large numbers of edges without
running out of memory. The freebase graph is 2 GB in size,
and contains 37M nodes and 342M edges. We stored the graph
in a Hadoop sequence file, hash-partitioned on node id.1

1Cloud 9 provides multiple ways to partition data and multiple implementa-
tions of the PageRank algorithm. We chose the most straight forward schemes:
hash partition and best practice implementation with combiner.
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(a) Page Rank - Map
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(b) Page Rank - Reduce

Fig. 2. The distribution of task runtimes for PageRank with 128 map
and 128 reduce tasks. A graph node with a large number of edges
is much more expensive to process than many graph nodes with few
edges. Skew arises in both the map and reduce phases, but the overall
job is dominated by the map phase.
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(a) CloudBurst - Map
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(b) CloudBurst - Reduce

Fig. 3. Distribution of task runtime for CloudBurst. Total 162 map
tasks, and 128 reduce tasks. The map phase exhibits a bimodal
distribution. Each mode corresponds to map tasks processing a
different input dataset. The reduce is computationally expensive and
has a smooth runtime distribution, but there is a factor of five
difference in runtime between the fastest and the slowest reduce tasks.

Cloud 9 expresses each iteration of PageRank as a sequence
of two MapReduce jobs. We observed skew in the first job.
Figure 2(a) shows the distribution of map task runtimes in
that job, during the first iteration of the algorithm (subsequent
iterations show similar trends). The total runtime of this job is
approximately 5 minutes. In Figure 2(a), the longest map task
takes more than four minutes while most map tasks complete
in 30 seconds. After investigation, we found that the slow map
tasks were processing graph nodes with a large number of
outgoing edges. These graph nodes were significantly slower
to process, leading to the skew shown in the figure.

2) Heterogeneous Maps: MapReduce is a unary operator,
but can be used to emulate an n-ary operation by logically
concatenating multiple datasets as a single input. Each dataset
may require different processing, leading to a multi-modal
distribution of task runtimes.

For example, SkewedJoin is one of the join implementations
in the Pig system [8]. Each map task in SkewedJoin distributes
frequent join keys from one of the input datasets in a round-
robin fashion to reduce tasks, but broadcasts joining records
from the other dataset to all reduce tasks. These two algorithms
exhibit different runtimes because the map tasks that perform
the broadcasts do more I/O than the other map tasks.

CloudBurst [9] is a MapReduce implementation of the

RMAP algorithm for short-read gene alignment2. CloudBurst
aligns a set of genome sequence reads with a reference
sequence. CloudBurst distributes the approximate-alignment
computations across reduce tasks by partitioning the reads and
references on their n-grams. The references and reads bearing
frequent n-grams are handled similarly to frequent join keys in
SkewedJoin: frequent n-grams from a reference sequence are
replicated, and frequent n-grams from a read are distributed
in round-robin.

Figure 3(a) shows the runtime distribution of map tasks
in the CloudBurst application.3 The total runtime for the
job is over 8 hours. Unlike the PageRank application, the
runtime distribution during the map phase exhibits a bimodal
distribution and there is little variance within each mode.
We verified that the two modes correspond to the two input
datasets. Although there is no significant skew within each
mode, the MapReduce job is experiencing skew because the
two modes coexist in a single job.

3) Non-Homomorphic Map: One of the key features of the
MapReduce framework is that users can run arbitrary code
as long as it conforms to the MapReduce interface: map() or
reduce(), and typically initialization and cleanup. Such flexi-
bility enables users to push, when necessary, the boundaries
of what map and reduce phases have been designed to do:
each map output can depend on a group of input records —
i.e., the map task is non-homomorphic. For example, although
the conventional join algorithm in MapReduce requires both
map and reduce phases, if the data are sorted on the join
attribute, the join can be implemented directly in the map
phase using a sort-merge algorithm. Similarly, a clustering
algorithm can directly run during the map phase if the data are
already partitioned by a prior MapReduce job [11]. In these
scenarios, a map task may run what is normally reduce logic
such as aggregation or join, consuming a group of records as
a unit rather than a single record as in a typical MapReduce
application. Thus, the map tasks may experience reduce-side
skews discussed in Section II-B.

Users can also employ the MapReduce framework to im-
plement a distributed analysis application by only leveraging
the distributed execution and fault-tolerance features of the
MapReduce engine (e.g., [12]). In such scenarios, the map
phase often runs arbitrary computation which is potentially
non-homomorphic4.

In the above scenarios, map tasks may run a CPU-intensive
algorithm over many input records. If the runtime of the
algorithm varies depending on the distribution of input data
or the relationships between input data, then a job may incur
significant map-skew.

2http://rulai.cshl.edu/rmap/
3We ran the CloudBurst job on a biology dataset [10]. For each alignment,

we allowed up to 4 mismatches including insertion and deletion. We used 160
map tasks and 128 reduce tasks for the entire alignments. We use 64 reduce
tasks to process low-complexity fragments. The reduce phase processes 128
sequences at a time (first loading data from reference dataset in memory, then
processing 128 sequences from the query dataset in a batch).

4The new interface since Hadoop 0.20 makes writing this kind of applica-
tions easier and cleaner.



0 50 100 150 200 250 300
Rank

0

10000

20000

30000

40000

50000

60000

R
u
n
ti

m
e
 (

se
co

n
d
s)

Fig. 4. Runtime distribution of the local clustering phase of the
Friends-of-Friends algorithm [11], [12]. Total 276 map tasks. Even
though all map tasks received the same amount of data, the slowest
map takes more than 50000 seconds while the fastest one completes
in 400 seconds due to different input data value distributions.
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(a) Number of key groups
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(b) Number of input records

Fig. 5. Distribution of the number of key groups and input records
per reduce task with respect to runtime for CloudBurst. The number
of key groups assigned to each reducer is almost equal. However,
the number of input records assigned to each reduce task varies by a
factor of two. The runtime increases as input size increases, but the
variance is larger than that of the input record distribution.

An example of such an application is a data clustering
algorithm called Friends of Friends (FoF) [13] that we have
implemented in multiple MapReduce-type systems, including
Hadoop, in prior work [11], [12]. FoF is used by astronomers
to analyze the structure of the universe within a snapshot of
a simulation of the universe evolution. For each point in the
dataset, the FoF algorithm uses a spatial index to recursively
look up neighboring points to find connected clusters. The
performance of a range query over a spatial index varies
depending on the data distribution. In a dense region, every
lookup returns a large number of neighbors, but in a sparse
region the lookup returns few records. Thus, processing times
depend on the distribution of input data to map tasks.

Figure 4 shows the runtime distribution of the FoF “local
clustering phase” [11], [12], which runs in the map tasks. The
data is space-partitioned by a prior MapReduce job. There are
276 map tasks. Each task is assigned a region of space such
that all tasks have the same amount of data in bytes and in
number of records (they differ by less than 2%). Even with
this condition enforced, the runtime varies between 6 minutes
and 13 hours.

B. Reduce-side skew

We identify two types of reduce-skew. The first one, parti-
tioning skew, is unique to reduce. The other type of skew is
analogous to the map-skew problems above.

1) Partitioning skew: In MapReduce, the outputs of map
tasks are distributed among reduce tasks via hash-partitioning
(by default) or some user-defined partitioning logic. The de-
fault hash-partitioning is usually adequate to evenly distribute
the data. However, reduce-skew can still arise in practice.
Consider the following two examples.

First, consider an application that needs to process many
small files. In Hadoop, processing a small number of large
files is more efficient than processing a large number of
small files. As a result, users often write MapReduce jobs
that combine small files into larger sequence files. One of
our science collaborators wrote such a MapReduce job. The
map derives the target sequence file name from the content
of the small files, then the output is distributed among reduce
tasks by hash-partitioning on the target sequence file name
with a default hash function. The user wanted to assign one
reduce task for each sequence file but unfortunately the hash
partitioning scheme did not evenly distribute the key groups
(i.e., file names) across the available reduce tasks. As a result,
some reduce tasks ended up writing multiple sequence files,
each in the order of a TB, while others completed almost
immediately.

As a second example, even when the partitioning function
perfectly distributes keys across reducers, some reducers may
still be assigned more data simply because the key groups they
are assigned contain significantly more values. Figure 3(b)
shows the runtime distribution with respect to the number of
input key groups and the number of input records per reduce
task for the CloudBurst application above. While the keys are
distributed evenly across the reduce tasks (Figure 5(a)), there is
a factor of two difference between the smallest and the largest
key-group in the number of input records (Figure 5(b)). As a
result, the runtime of the reducers exhibits skew.

In general, balanced data allocation is a difficult problem
if the partitioning logic relies upon values computed during
the execution of the map algorithm because the values are not
known beforehand.

2) Expensive Input: In MapReduce, reduce tasks process
a sequence of (key, set of values) pairs. As in the case of
expensive records processed by map, expensive (key, set of
values) pairs can skew the runtime of reduce tasks. Since re-
duce operates on key groups instead of individual records, the
expensive input problem can be more pronounced, especially
when the reduce is a holistic operation.

A holistic reduce requires memory proportional to the size
of the input data [14]. For example, both SkewedJoin and
CloudBurst require that data from one relation (or reference
sequences) should be buffered in memory, thus, require mem-
ory proportional to the size of buffered data. In this scenario,
the processing time for reduce depend not only on the number
of records in the key group and the number of key groups but
also the distribution (e.g., for a join key, the proportion of data
from the two datasets in SkewedJoin) or relationships between
input data values (e.g., alignments in CloudBurst).

Figure 5(b) illustrates the impact of a holistic reduce in
CloudBurst. There is factor of two difference in the number



of input records between the fastest and the slowest reduce
tasks, but there is a factor of five difference in runtime between
tasks. The difference might have been greater depending on
the data and the parameters of the algorithms.

III. BEST PRACTICES

We present a survey of best practices to mitigate skew in
a MapReduce job. We present them in order of our estimate
of their implementation complexity. We discuss their benefits,
their limitations, and opportunities for future work.

Best Practice 1. Use domain knowledge when choosing the
map output partitioning scheme if the reduce operation is
expensive: Range partition or some other form of explicit
partition may be better than the default hash-partition.

The default hash-partitioning scheme on key is a well-
known technique in the parallel database literature for ensuring
an even data distribution [15]. However, when the reduce
operation is expensive and susceptible to skew, this simple
technique often fails. Frequently, load must be balanced not
at the granularity of keys but at the granularity of values as
shown in Figure 5. In case of Holistic Reduce operations,
the partitioning strategy must be application-dependent, which
puts a significant burden on the developer.

To choose or implement better domain-specific partitioning
strategies, the user must already be familiar with the properties
of the application and the data. We found that the next best
practice is useful in achieving this goal.

Best Practice 2. Try different partitioning schemes on sample
workloads or collect the data distribution at the reduce input
if a MapReduce job is expected to run several times.

Future Work. It remains an area of future work to develop
techniques that will automatically partition the reduce input
in the case of holistic and expensive reduce functions. One
possible approach is to leverage debug runs on data sam-
ples to learn properties of the data and reduce function and
partition subsequent runs accordingly. Another approach is
to dynamically detect when skew arises and repartition data
on the fly. A third approach is to study the source-code of
reduce functions and extract properties of their behavior. We
are currently studying these methods.

Best Practice 3. Implement a combiner to reduce the amount
of data going into the reduce-phase and, as such, significantly
dampen the effects of any type of reduce-skew.

In MapReduce (and in Hadoop), at the output of the
map phase and before the reduce phase, one can optionally
implement a combiner that pre-aggregates the map output.
Combiners are in general beneficial when the expected re-
duction ratio for data to be shuffled is significant.

The combiner optimization, however, may hurt performance
if the CPU and disk I/O cost of the combiner is greater than
the diminished network I/O cost [16]. As shown by Lin and
Schatz [17], manually combining the output within a map
is desirable, if possible, because it avoids extra serialization

overheads to prepare the input for the combiner. This is true
for the current Hadoop implementation. Other MapReduce and
future Hadoop implementations may not have this issue.

Combiners are effective at handling Partitioning Skew and
Expensive Input at the reduce side when the skew observed
during the reduce phase is mainly due to the volume of data
transferred during the shuffle phase because a proper combiner
can significantly reduce the transferred data size and mitigate
the problems. To be more effective, we recommend using
both a combiner and domain-specific partitioning strategy as
described in the previous practice.
Future Work: An interesting area for future work is to
automatically decide when to run a combiner, how much
memory to give to the combiner, and more generally how to
configure the combiner for optimal performance.

Best Practice 4. Use a pre-processing MapReduce job that
extracts properties of the input data in the case of a long-
runing, skew-prone map phase. Appropriately partitioning the
data before the real application runs can significantly reduce
skew problems in the map phase.

For MapReduce jobs that may experience Expensive Input
on the map side and possibly a Non-homomorphic Map, skew
can be eliminated by changing the allocation of input data to
map tasks. If the behavior of the algorithm is known, then the
user can run a separate MapReduce job that checks whether
map-skew will occur. For example, a PageRank MapReduce
preprocessing job can check whether there are graph nodes
with large numbers of edges, and adjust the data partition
accordingly, before executing the real PageRank job.
Future Work: In our previous work on the SkewReduce
partition optimization framework [12], we developed an ap-
proach that semi-automates this process for feature extraction
applications on top of multi-dimensional datasets. It remains,
however, an area of future work to fully automate this process
in the general case.

Best Practice 5. Design algorithms whose runtime depends
only on the amount of input data and not the data distribution.

For MapReduce jobs with either Holistic Reduce or Non-
homomorphic Map problems, the best approach to avoid skew
is to re-design the map or reduce algorithms such that their
runtime performance depends only on the size of the input data
rather than the data value distribution. However, such redesign
often requires extra expertise. For example, in the friends-of-
friends clustering algorithm, we successfully eliminated skew
by reimplementing the in-memory spatial index structure [11].
Future Work: An interesting area of future work is to design
automated algorithms for avoiding or reacting to skew without
forcing users to redesign their algorithms.

IV. RELATED WORK

In the parallel database literature, there has been extensive
research on handling data skew in the join operator [18]–[23]
and aggregation algorithms [24]. While MapReduce shares
many challenges and solutions, the fixed execution phases



(map, shuffle, reduce) and user-defined functions differentiate
the practices for MapReduce applications from the skew-
resistant relational algorithms in parallel databases.

MapReduce handles machine skew using speculative exe-
cution [1], [3], [4], which re-launches slow tasks on different
machines and takes the result of the first replica to complete.
Speculative execution is effective in heterogeneous computing
environments or when machines fail. However, it is not effec-
tive against the types of skew described in this paper because
rerunning the skewed data partition even on a faster machine
can still yield a high response time. Lin analyzed the impact
of Partitioning Skew in MapReduce jobs when the reduce keys
follow a Zipfian distribution [25]. Ananthanarayanan et al. [26]
proposed the Mantri system that can mitigate skew problems
at runtime by improving scheduling decisions of MapReduce
jobs. Mantri can handle certain types of skew well such as
Partitioning Skew and Expensive Input when the source of the
problem is directly related to the amount of input data, but
does not offer a complete solution to data skew discussed
in this paper. Ibrahim et al. [27] proposed a solution to
Partitioning Skew on the reduce side with an explicit planning
phase after the map phase in Hadoop. Finally, there are several
skew-aware join implementations in MapReudce [8], [9], [28].
As we showed, however, the skewed join does not protect
against all sources of skew. Each of these existing approaches
thus addresses only some subset of possible skew problems.

In prior work, we developed SkewReduce, a system that
derives a data partition plan and a task schedule given an input
data sample and a user-defined cost models [12]. SkewReduce
has the potential to address all types of skews described in
this paper but it requires an appropriate cost model and a
good input data sample. Additionally, it is applicable only to
a specific class of applications.

V. CONCLUSION

MapReduce and its open source implementation Hadoop
have made large scale data analysis widely accessible. Such
runtime systems free users from problems associated with
distributed coordination, fault-tolerance, and scalability. How-
ever, users may still suffer from performance problems related
to skew if they are not careful regarding their map and
reduce implementations and how data is partitioned across
tasks. In this paper, we surveyed common sources of skew
in MapReduce applications and demonstrated skew problems
using real workloads. We presented best practices to address
these problems and opportunities for future work.
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