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ABSTRACT
Scientists today have the ability to generate data at an un-
precedented scale and rate and, as a result, they must in-
creasingly turn to parallel data processing engines to per-
form their analyses. However, the simple execution model
of these engines can make it difficult to implement efficient
algorithms for scientific analytics. In particular, many sci-
entific analytics require the extraction of features from data
represented as either a multidimensional array or points in
a multidimensional space. These applications exhibit sig-
nificant computational skew, where the runtime of different
partitions depends on more than just input size and can
therefore vary dramatically and unpredictably. In this pa-
per, we present SkewReduce, a new system implemented on
top of Hadoop that enables users to easily express feature ex-
traction analyses and execute them efficiently. At the heart
of the SkewReduce system is an optimizer, parameterized
by user-defined cost functions, that determines how best to
partition the input data to minimize computational skew.
Experiments on real data from two different science domains
demonstrate that our approach can improve execution times
by a factor of up to 8 compared to a naive implementation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—parallel
databases

General Terms
Algorithms, Design, Experimentation

1. INTRODUCTION
Science is becoming data-intensive [23, 34]. As a result,

scientists are moving data analysis activities off of the desk-
top and onto clusters of computers — public and private
“clouds”. Programming these clouds for scientific data anal-
ysis remains a challenge, however, despite the proliferation
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of parallel dataflow frameworks such as MapReduce [6] and
Dryad [19].

Specialized data models represent one source of challenges.
In particular, multi-dimensional arrays and other order-
sensitive data structures are common, and data values are
often associated with coordinates in space or time. For ex-
ample, images in astronomy are 2D arrays of pixel intensi-
ties, and each element corresponds to a point in the sky and a
time at which the image was taken. Climate and ocean mod-
els use arrays or meshes to describe 3D regions of the atmo-
sphere and oceans, simulating the behavior of these regions
over time by numerically solving the governing equations.
Cosmology simulations model the behavior of clusters of 4D
particles to analyze the origin and evolution of the universe.
Flow cytometry technology uses scattered light to recognize
microorganisms in water, generating an enormous volume of
events in a 6D space corresponding to different wavelengths
of light. These application domains all must reason about
the space in which the data is embedded as well as the data it-
self. The spatial relationships of the data pose challenges for
conventional “loosely-coupled” shared-nothing programming
paradigms because data must be range-partitioned across
nodes rather than hash-partitioned, complicating load bal-
ancing.

A second source of challenges result from specialized sci-
ence algorithms that must be re-expressed in these new cloud
platforms. The translation is challenging even if these plat-
forms provide high-level, declarative interfaces [16, 25, 41].
Indeed, science algorithms often need to extract some fea-
tures from the data (e.g., clustering, image segmentation,
and object recognition) possibly also tagging the original
data with these features. Engineering the translation of
such algorithms in a way that preserves performance is non-
trivial. For example, in prior work, we found that a näıve
implementation of a data clustering algorithm on a real as-
tronomy simulation dataset took 20 hours to complete on an
8-node Dryad [19] cluster. In contrast, an optimized version
took only 70 minutes, but took multiple weeks to develop
and debug by a team of domain and computer scientists [21].

In this paper, we address these challenges by presenting
and evaluating SkewReduce, a new shared-nothing parallel
data processing system designed to support spatial feature
extraction applications common in scientific data analysis.

We observe that these applications share a common struc-
ture that can be parallelized using the following strategy:
(1) Partition the multidimensional space and assign each
node a contiguous region, (2) run a serial form of the anal-
ysis locally on each region, extracting locally found features



and labeling the input data with these features if necessary,
(3) efficiently merge the local results by considering only
those features that cross region boundaries, re-labeling the
input data as necessary. Although this formulation is simple
and sound, a näıve implementation on existing parallel data
processing engines is dominated by skew effects and other
performance problems.

The standard approach to handling skew in parallel sys-
tems is to assign an equal number of data values to each
partition via hash partitioning or clever range partitioning.
These strategies effectively handle data skew, which occurs
when some nodes are assigned more data than others. Com-
putation skew, more generally, results when some nodes take
longer to process their input than other nodes and can oc-
cur even in the absence of data skew — the runtime of many
scientific tasks depends on the data values themselves rather
than simply the data size [17].

Existing parallel processing engines offer little support for
tolerating general computation skew, so scientific program-
mers are typically forced to develop ad hoc solutions. At re-
alistic scales, these ad hoc solutions not only require intimate
familiarity with the source data, but also expertise in dis-
tributed programming, scheduling, out-of-core processing,
performance monitoring and tuning, fault-tolerance tech-
niques, and distributed debugging. SkewReduce efficiently
reduces computational skew and helps scientific program-
mers express their solutions in popular parallel processing
engines such as MapReduce.

In addition to skew, two other sources of performance
problems are the merge and data labeling steps. Because
of large data volumes, it may not be efficient or even pos-
sible to execute the merge phase on a single node. Instead,
feature reconciliation must be performed incrementally in a
hierarchical fashion. Similarly, intermediate results must be
set aside to disk during the merge phase, then re-labeled in
parallel after the merge phase is complete to obtain the final
result. While both these strategies can be implemented in
existing systems, doing so is non-trivial. Additionally, the
same type of translation is repeated independently for each
new feature extracting application.

Approach Informed by the success of MapReduce [6],
SkewReduce is a new parallel computation framework tai-
lored for spatial feature extraction problems to address the
above challenges. To use the framework, the programmer
defines three (non-parallel) data processing functions and
two cost functions to guide optimization. Given this suite
of functions, the framework provides a parallel evaluation
plan that is demonstrably efficient and — crucially — skew-
tolerant. The plan is then executed in a Hadoop cluster.
We show that this framework delivers significant improve-
ment over the status quo. The improvement is attributable
primarily to the reduction of skew effects, as well as the
elimination of performance issues in the merge and labeling
steps. Further, we argue that the cognitive load for users
to provide the suite of control functions is significantly less
than that required to develop an ad hoc parallel program.
In particular, the user remains focused on their application
domain: they specify their analysis algorithm and reason
about its complexity, but do not concern themselves with
distributed computing complications.

Overall, SkewReduce is a powerful new framework that
provides a complete and general solution to an important
class of scientific analysis tasks.

Technical contributions: We deliver the following con-
tributions: we present the SkewReduce system for efficiently
processing spatial feature extraction scientific user-defined
functions. SkewReduce comprises (1) a simple API for users
to express multidimensional feature extraction analysis tasks
(Section 3.1) and (2) a static optimization engine designed
to produce a skew-resistant plan for evaluating these tasks
(Section 3.2 and 3.3). SkewReduce is implemented using
Hadoop [15]. (3) We demonstrate the efficacy of our frame-
work on real data from two different science domains (Sec-
tion 4). The results show that SkewReduce can improve
query runtime by a factor of up to 8 compared with an un-
optimized implementation.

2. MOTIVATION
We begin by describing three motivating applications from

different scientific domains. We then discuss the common-
alities between these applications and the challenges that
arise when trying to implement them on a MapReduce-type
platform.

Astronomy Simulation. Cosmological simulations are
used to study the structural evolution of the universe on
distance scales ranging from a few million light-years to sev-
eral billion light-years. In these simulations, the universe is
modeled as a set of particles. These particles represent gas,
dark matter, and stars and interact with each other through
gravity and fluid dynamics. Every few simulation timesteps,
the simulator outputs a snapshot of the universe as a list of
particles, each tagged with its identifier, location, velocity,
and other properties. The data output by a simulation can
thus be stored in a relation with the following schema:
Particles(id, time, x, y, z, vx, vy, vz, · · · )
State of the art simulations (e.g., Springel et al. 2005 [31])

use over 10 billion particles producing a data set size of over
200 GB per snapshot and are expected to significantly grow
in size in the future.

Astronomers commonly used various sophisticated clus-
tering algorithms [13, 20, 37] to recognize the formation of
interesting structures such as galaxies. The clustering algo-
rithm is typically executed on one snapshot at a time [21].
Given the size of individual snapshots, however, astronomers
would like to run their clustering algorithms on a parallel
data processing platform in a shared-nothing cluster.

Flow Cytometry. A flow cytometer measures scattered
and fluoresced light from a stream of particles, using data
analysis to recognize specific microorganisms. Originally de-
vised for medical applications, it has been adapted for use in
environmental microbiology to determine the concentrations
of microbial populations. Similar microorganisms exhibit
similar intensities of scattered light, as in Figure 1.

In an ongoing project in the Armbrust Lab at the Uni-
versity of Washington [2], flow cytometers are being contin-
uously deployed on ocean-going vessels to understand the
ocean health. All data is reported to a central database
for ad hoc analysis and takes the form of points in a 6-
dimensional space, where each point represents a particle or
organism in the water and the dimensions are the measured
properties.

As in the astrophysics application, scientists need to clus-
ter the resulting 6D data. As their instruments increase in
sophistication, so does the data volume, calling for efficient
analysis techniques that can run in a shared-nothing cluster.

Image Processing. As a final example, consider the



Figure 1: A scatter plot of flow cytometry measure-

ments. Each point represents an organism and clusters

represent populations. The axes correspond to different

wavelengths of light.

problem of analyzing collections of 2D images. In many sci-
entific disciplines, scientists process such images to extract
objects (or features) of interest: galaxies from telescope im-
ages, hurricanes from satellite pictures, etc. As these images
grow in size and number, parallel processing becomes nec-
essary.

General Feature Extracting Applications. Each of
these scientific applications follow a similar pattern: data
items (events, particles, pixels) are embedded in a metric
space, and the task is to identify and extract emergent fea-
tures from the low-level data (populations, galaxies). These
algorithms then typically return (a) a set of features (signif-
icantly smaller than the input data), (b) a modified input
dataset with each element tagged with the corresponding
feature (potentially as large as the input), or (c) both. For
example, the output of the astronomy clustering task is a
list of clusters with the total number of particles in each
and a list of the original particles annotated with their clus-
ter identifier.

Parallel Implementation Challenges. A straightfor-
ward way to parallelize such feature extraction applications
in a compute-cluster with N nodes is the following: (1) split
the input into N equal-sized hypercubes, (2) extract features
in each partition and annotate the input with these initial
features, (3) reconcile features that span partition bound-
ary, relabeling the input as appropriate. With existing par-
allel processing systems, there are several challenges with
expressing this seemingly simple algorithm in a manner that
achieves high performance.

First, the data distribution in many scientific applications
is highly skewed. Even worse, the processing time of many
feature-extraction algorithms depends not only on the num-
ber of data points but also on their distribution in space.
For example, in a simple clustering algorithm used in astro-
physics called “friends-of-friends” [5], clusters correspond to
connected components of the graph induced by the “friend”
relationship — two particles are friends if they are within
a given distance threshold. To identify a cluster, the al-
gorithm starts with a single point, then searches a spatial
index to find its immediate friends. For each such friend, the
algorithm repeats the search recursively. In a sparse region
with N particles, the algorithm completes in O(N logN)
time (i.e., all particles are far apart). In a dense region,
however, a single particle can be a friend of all the other
particles and vice versa. Thus, the algorithm takes O(N2)
time. In the two simulation snapshots that we received from
astronomers [21], we found that the number of friends asso-

ciated with a given particle varied between 2 and 387, 136.
As a result, without additional optimizations, a dense region
takes much longer to process than a sparse one even when
both contain the same number of total particles [21]. The
consequence is a type of computational skew, where some
data partitions require dramatically more time than others
to process. Computational skew is the reason that the näıve
parallel implementation of the astronomy clustering applica-
tion mentioned in Section 1 required over 20 hours, while an
optimized one took only 70 minutes on the same dataset [21].
Our key motivation is that existing platforms do nothing to
reduce computational skew. In our case, developing a skew-
resistant algorithm (by optimizing index traversal to avoid
quadratic behavior in the dense region) required significant
effort from multiple experts over several weeks [21].

Second, the feature reconciliation phase (which we refer
to as the “merge” phase) can be both CPU and memory
intensive. For example, to reconcile clusters at the bound-
ary of two data partitions requires processing all particles
within a small distance of that boundary. If the space is
initially carved into N partitions, it may not be efficient or
even possible for a single node to reconcile the data across
all these partition boundaries in one step. Instead, reconcil-
iation should be performed in a hierarchical fashion, recon-
ciling increasingly large regions of the space, while keeping
the amount of data to process at each step approximately
constant (i.e., the memory requirement cannot increase as
we move up the hierarchy). At the same time, while the
local data processing and later merge steps proceed, the in-
put data must be labeled and re-labeled as necessary, e.g.,
to track feature membership. While it is possible to imple-
ment both functions using existing systems, expressing them
using current APIs is non-trivial.

Problem Statement Summary. The goal of SkewRe-
duce is to enable scientists to easily express and efficiently
execute feature-extraction applications at very large scale
without consideration of resource constraints and data or
computation skew issues.

3. SkewReduce
SkewReduce has two components. The first component is

an API for expressing spatial feature-extraction algorithms
such as the ones above. We present the API in Section 3.1.
The functions in our API are translated into a dataflow that
can run in a MapReduce-type platform [6, 15, 19]. The sec-
ond component of SkewReduce is a static optimizer that par-
titions the data to ensure skew-resistant processing if possi-
ble. The data partitioning is guided by a user-defined cost
function that estimates processing times. We discuss the
cost functions in Section 3.2 and the SkewReduce optimizer
in Section 3.3.

3.1 Basic SkewReduce API
Informed by the success of MapReduce [6], the basic

SkewReduce API is designed to be a minimal control inter-
face allowing users to express feature extraction algorithms
in terms of serial programs over familiar data structures.
The basic SkewReduce API is the minimal interface that
must be implemented to use our framework. The basic API



Table 1: Summary of notation
T A record in the original input data file assigned to a

region (e.g., a particle in an astronomy simulation)
S A record set aside during the process phase or merge

phase. (e.g., a particle far away from a partition
boundary tagged with a local cluster id).

F An object representing a set of features extracted
during the process phase for a given region. May
not be relational. Includes enough information to
allow reconciliation of features extracted in different
partitions (e.g., the clusters identified so far and the
particles near a partition boundary)

Z A record in the final result set (e.g., a particle tagged
with a global cluster id)

is

process :: 〈Seq. of T 〉 → 〈F, Seq. of S〉
merge :: 〈F, F 〉 → 〈F, Seq. of S〉

finalize :: 〈F, S〉 → 〈Seq. of Z〉

The notation used in these types is defined in Table 1. At
a high-level, T refers to the input data. F is the set of
features and S is an output data field that must be tagged
with the features F to form Z. The above three functions
lead to a very natural expression of feature extracting al-
gorithms: First, partition the data (not shown). Second,
apply process to each partition to get an initial set of lo-
cal features and an initial field. Third, merge, or reconcile,
the output of each local partition to identify a global set of
features. Finally, adjust the output of the original process
functions given the final, global structures output by merge.
For example, in the case of the astronomy simulation clus-
tering task, process identifies local clusters in a partition of
the 3D space. merge hierarchically reconciles local clusters
into global clusters. Finally, the finalize function relabels
particles initially tagged by process with a local cluster ID
using the appropriate global cluster ID.

The functions of the SkewReduce API loosely corre-
spond to the API for distributed computation of algebraic
user-defined aggregates found in OLAP systems and dis-
tributed dataflow frameworks. For example, Yu et al. pro-
pose a parallel aggregation framework consisting of func-
tions initialreduce, combine, and finalreduce [40]. The func-
tion initialreduce generates intermediate partial aggregates,
combine merges partial aggregates, and the final aggregate
value can be further transformed by finalreduce.

The distinguishing characteristic of our API is that our
analog of the initialreduce and finalreduce functions return
two types of data: a representation of the extracted features,
and a representation of the“tagged”field. A given algorithm
may or may not use both of these data structures, but we
have found that many do.

We now present the three functions in SkewReduce’s API
in more detail.

3.1.1 Process: Local Computation with Set-Aside
The process function locally processes a sequence of in-

put tuples producing F , a representation of the extracted
features, and Seq. of S, a sequence of tuples that are set
aside from the hierarchical reconciliation. In our astronomy
simulation use-case, process performs the initial clustering
of particles within each partition. Although we can forward
all the clustering results to the merge function, only par-

ticles near the boundary of the fragment are necessary to
merge clusters that span two partitions. Thus, process can
optionally set aside those particles and results that are not
required by the following merges. This optimization is not
only helpful to reduce the memory pressure of merge but
also improves overall performance by reducing the amount
of data transferred over the network. In this application,
our experiments showed that almost 99% of all particles can
thus be set aside after the Process phase (Figure 9).

3.1.2 Merge: Hierarchical Merge with Set-Aside
The merge function is a binary operator that combines two

intermediate results corresponding to two regions of space.
It takes as input the features from each region and returns a
new merged feature set. The two feature set arguments are
assumed to fit together in the memory of one node. This
constraint is a key defining characteristic of our target ap-
plications. This assumption is shared by most user-defined
aggregate frameworks [26, 32, 40]. However, SkewReduce
provides more flexibility than systems designed with trivial
aggregation functions such as sum, count, average in mind.
Specifically, we acknowledge that the union of all feature
sets may not fit in memory, so we allow the merge function
to set aside results at each step. In this way, we ensure that
the size of any value of type F does not grow larger than
memory. We acknowledge that some applications may not
exhibit this property, but we have not encountered them in
practice. We assume that both functions process and merge
set aside data of the same form. This assumption may not
hold in general, but so far we have found that applications
either set aside data in the process phase or in the merge
phase, but not both.

In our running example, the merge function combines fea-
tures from adjacent regions of space, returning a new feature
object comprising the bounding box for the newly merged
region of space, the cluster id mappings indicating which
local clusters are being merged, and the particles near the
boundary of the new region. Figure 2 illustrates the merge
step for four partitions P1 through P4. The outer boxes,
Pi, represent the cell boundaries. The inner boxes, I, are
a fixed distance ε away from the corresponding edge of the
region. The local clustering step, process, identified a total
of six clusters labeled C1 through C6. Each cluster com-
prises points illustrated with a different shade of gray and
shape. However, there are only three clusters in this dataset.
These clusters are identified during the hierarchical merge
step. Clusters C3, C4, C5, and C6 are merged because the
points near the cell boundaries are within distance ε of each
other. In Figure 2, C2 does not merge with any other clus-
ter because all points in C2 are sufficiently far from P1’s
boundary. We can thus safely discard C2 before merging:
These points are not needed during the merge phase. In
general, we can discard all the points in the larger I regions
before merging, reducing the size of the input to the merg-
ing algorithm. This reduction is necessary to enable nodes
to process hierarchically larger regions of space without ex-
hausting memory.

3.1.3 Finalize: Join Features with Set-Aside Data
The finalize function can be used to implement a join be-

tween the final collection of features and the input represen-
tation as output by the process and merge functions. This
function is useful for tagging the original data elements with
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Figure 2: Illustration of the merge step of the cluster-
ing algorithm in the SkewReduce framework. Data
is partitioned into four chunks. Points with the same
shape are in the same global cluster. Point with
different colors but with identical shapes are in dif-
ferent local clusters (e.g., the circles in the middle
of the figure). Each Pi labels the cell boundary
and each I labels the interior region. Only points
outside of I are needed in the subsequent merge
phase. After the hierarchical merge phase, three
cluster mappings are generated: (C4,C3), (C5,C3),
and (C6,C3). Such mappings are used to relabel
local cluster ids during the finalize phase.

their assigned feature. The finalize function accepts the fi-
nal feature set from the merge phase and a single tuple set
aside during processing. The SkewReduce framework man-
ages evaluation of this function over the entire distributed
dataset.

Our emphasis on distinguishing “features” and “set aside”
data may at first appear to be over-specialized to our partic-
ular examples, but we find the idiom to be quite general. To
understand why, consider the analogous distinction between
vector and raster representations of features. For example,
Geographic Information Systems (GIS) may represent a geo-
graphic region as an image with each pixel assigned a value of
“road”, “waterway”, “building”, etc. (the raster representa-
tion). Alternatively, these objects may be represented indi-
vidually by line segments, polygons, or some other complex
object (the vector representation). Neither representation
is ideal for all algorithms, so both are frequently computed
and maintained. In our running example, the tagged parti-
cles are analogous to the raster representation — each point
in the original dataset is labeled with the feature to which
it contributes.

The user thus specifies the above three functions. Given
these functions, SkewReduce automatically partitions the
input data into hypercubes and schedules the execution of
the process, merge, and finalize operators in a Hadoop clus-
ter. We further discuss the details of the Hadoop translation
in Section 4. The partition plan is derived by SkewReduce’s
optimizer, as we discuss below.

In many application domains the process function satisfies
the following property:

Definition 3.1. process Monotonicity For datasets
R,S where R ⊆ S, the execution time time[process(R)] ≤
time[process(S)] (Intuition: as data size increases, so must
the local processing cost).

The SkewReduce’s optimizer is designed primarily for ap-
plications where this property holds. However, it can still
handle applications that violate this property, as we discuss
in Section 3.3.

For the applications we encounter in practice, we find that
process is far more expensive than merge, which causes ag-
gressive partitioning to be generally beneficial. In these
cases, the limiting factor in partitioning is the scheduling
overhead. In contrast, if merge is expensive or comparable
relative to process, partitioning simply ensures that no node
is allocated more data than will fit in its memory.

Optional Pre-Processing. The process function oper-
ates on a set of records Seq. of T . In some applications,
especially those operating on arrays, individual records are
not cells but rather small neighborhoods of cells, sometimes
called stencils. This distinction is not an issue for process,
which receives as input a contiguous block of cells and
can thus extract stencil neighborhoods unilaterally. How-
ever, since the optimizer operates on a sample of the input
data, SkewReduce must apply a pre-processing step that ex-
tracts application-defined computational units before sam-
pling them. For this reason, although not part of the basic
API, we allow a user to provide a custom function to trans-
form a sequence of “raw” records into a sequence of compu-
tational units, Seq. of T .

3.2 Cost Functions
We have presented the basic SkewReduce API, but we

have not explained how skew is handled. Both the process
and merge phases of the API are crucially dependent on the
initial partitioning of data into regions. Feature extraction
applications often exhibit both data skew and computational
skew, and both are determined by how the data are parti-
tioned. Datasets prone to significant data and computa-
tional skew (usually due to extreme variations in data den-
sity) can be processed efficiently if an appropriate partition-
and-merge plan can be found. As we will show, plan quality
can be improved dramatically if the user can estimate the
runtime costs of their process and merge functions.

We allow the user to express these costs by providing
two additional cost functions Cp and Cm, corresponding to
process and merge, respectively. These cost functions oper-
ate serially on samples of the original dataset returning a
real number; that is:

Cp :: (S, α,B)→ R
Cm :: (S, α,B)× (S, α,B)→ R

where S is a sample of the input, α is the sampling rate,
and B is a bounding hypercube.

The cost functions accept both a representation of the
data (the sample S) and a representation of the region (the
bounding hypercube B, represented as a sequence of ranges,
one for each dimension). The cost of the feature extraction
algorithms we target is frequently driven by the distribution
of the points in the surrounding space. One approach to
estimate cost inexpensively is therefore to build a histogram
using the bounding hypercube and the sample data and com-
pute an aggregate function on that histogram. The sampling
rate α allows the cost function to properly scale up the esti-
mate to the overall dataset. When discussing cost functions
in the remainder of this paper, we omit the bounding hy-
percube and sampling rate parameters when they are clear
from the context.

Given a representative sample, the cost functions Cp and
Cm must be representative of actual runtimes of the process
and merge functions. More precisely, the functions must
satisfy the following properties.



• Fidelity For samples R,S, if Cp(R) < Cp(S), then
time[process(R)] < time[process(S)] (intuition: the
true cost and the estimated cost impose the same total
order on datasets). Similarly, for samples R,S, T, U ,
if Cm(R,S) < Cm(T,U), then time[merge(R,S)] <
time[merge(T,U)].

• Boundedness For some constants ρp and ρm and
samples R and S, time[process(R)] = ρpCp(R) and
time[merge(R,S)] = ρmCm(R,S)

For the boundedness condition, we can estimate the con-
stant factors ρp and ρm in at least two ways. The first
method is to run the process and merge algorithms over a
data sample and compute the constants. This type of ap-
proach is related to curve fitting for UDF cost estimation [4].
The second method is to derive new constants for a new cost
function from past executions of the same analysis.

Many MapReduce-style analytic systems are running on
top of chunk-based distributed file systems such as GFS,
HDFS, and S3 and use the chunk as a unit of task distri-
bution and computation. SkewReduce takes a similar ap-
proach and requires that the process and merge functions
have the ability to process at least one chunk-size of in-
put data without running out of memory. Alternatively, we
could optionally allow users to specify memory usage es-
timation functions that take a form analogous to the cost
functions above. In both cases, the optimizer ensures a par-
tition plan with sufficient granularity that no operator runs
out of memory.

3.3 SkewReduce’s Optimizer
There are two potential optimization goals for a SkewRe-

duce application: minimize execution time or minimize re-
source usage. SkewReduce’s current optimizer adopts a tra-
ditional approach and minimizes the query execution time
subject to a constraint on the number of available machines
in a cluster. This constraint can be dictated by the size of a
locally available cluster or by monetary reasons when using
a pay-as-you-go platform such as Amazon EC2 [1]. SkewRe-
duce’s optimizer could be used to try alternative cluster sizes
if a user tries to find some desired price-performance trade-
off, but we leave it for future work to automate such explo-
ration.

SkewReduce’s optimizer is designed to operate on a small
sample of the entire dataset, so that the optimizer can ex-
ecute on a user’s desktop before the user acquires or even
just reserves any resources on a large cluster. In this paper,
we do not address the problem of how the user generates
such a sample. Such samples are already commonly used
for debugging in these environments.

At a high level, SkewReduce’s optimizer thus works as
follows: given a sample S of the input data, process and
merge functions and their corresponding cost functions Cp

and Cm, a compute cluster-size constraint of M nodes, and
a scheduling algorithm, the optimizer attempts to find the
partitioning plan that minimizes the total query execution
time. The user-supplied cost functions and the scheduling
algorithm guide the optimizer’s search for such best plan.
SkewReduce works best with a task scheduler that minimizes
makespan subject to task dependencies. However, it uses the
scheduler as a black box and can therefore work with various
schedulers.

Since the scheduler is modeled as a black box and the
cost functions may not be completely accurate, SkewReduce

does not guarantee to generate an optimal plan. However,
our experiments in Section 4 show that it finds very efficient
plans in practice (Figure 3).

We begin by defining the SkewReduce partition plan, ex-
ecution plan, and the optimization problem more precisely.

Partition Plan: A SkewReduce partition plan is a full
binary tree where all intermediate nodes represent merge op-
erators and all leaf nodes represent process operators. Each
node in the tree is associated with a bounding hypercube
defining the region of space containing all data in the parti-
tion. The hypercubes at a given height in the tree partition
the space; there are no gaps or overlaps.

Valid Partition Plan: A partition plan is valid if no
node in the plan is expected to receive more data than will
fit in memory. The memory size is applied after scaling
the sample data back to the original input data size, as-
suming the sample, S, is representative. For example, if
a 1% data sample leads to a partition with 2, 000 parti-
cles, and we know that a single node cannot process more
than 100, 000 particles, the plan will not be valid since
2, 000 ∗ 100 > 100, 000.

Execution Plan: A SkewReduce execution plan com-
prises a partition plan and its corresponding schedule using
a job scheduling algorithm schedule. A valid execution plan
is a valid partition plan and its schedule.

Optimization Problem: Given a sample S of the input
data, process and merge functions with their correspond-
ing cost functions and constants (ρp, ρm), a compute cluster
of M nodes, a scheduling algorithm and constant operator
scheduling delay (∆), return the valid execution plan that
is estimated to minimize query runtime.

3.3.1 Optimizing the Partition Plan
The search space of the optimizer is the set of all possible

partitions of the hypercube defined by the input data. The
optimizer enumerates potentially interesting partition plans
in this search space using a greedy strategy. This greedy
strategy is motivated by the fact that all process cost func-
tions are assumed to be monotonic (Section 3.2).

Starting from a single partition that corresponds to the
entire hypercube bounding the input data I, and thus also
the data sample, S, the optimizer greedily splits the most
expensive leaf partition in the current partition plan. The
optimizer stops splitting partitions when two conditions are
met: (a) All partitions can be processed and merged with-
out running out of memory; (b) No further leaf-node split
improves the runtime: i.e., further splitting a node increases
the expected runtime compared to the current plan. Algo-
rithm 1 summarizes this approach.

In order for a partition split to decrease the runtime, the
savings in process processing times must outweigh the cost
of the extra merge including scheduling overheads. More
specifically, in the algorithm, the runtime after the split for
the partition is estimated to be the sum of the runtime of the
slower of the two new process operators (given that they will
most likely be processed in parallel), the runtime of merge,
and the task scheduling delay (∆) for the merge operator.
This is compared to the estimated runtime before the split,
which was simply the time to run the process operator (line
9). Additionally, the resulting parallel execution plan must
be valid and must improve the total estimated runtime. We
estimate the total runtime by running the black-box schedul-
ing algorithm. The algorithm updates the current best plan



Algorithm 1 Searching Optimal Partitioning Plan

Input: p0: root partition
M : the number of machines

Output: P : the best partitioning plan
bestCost: the best cost to run P
schedule: the schedule of P

1: P ← {p0}
2: bestCost← schedule cost(P,M)
3: L← {p0} // all leaf partitions in P
4: while L 6= ∅ do
5: p← choose the most expensive partition
6: pl, pr ← find best split of p
7: c← ρp max{Cp(pl), Cp(pr)}+ ρmCm(pl, pr) + ∆
8: force← p does not satisfy memory requirement
9: if c < ρpCp(p) or force then

10: s← schedule cost(P ∪ {pl, pr},M)
11: if s < bestCost or force then
12: L← L ∪ {pl, pr}
13: P ← P ∪{pl, pr} // p becomes an internal node.
14: bestCost← s
15: end if
16: end if
17: L← L− {p}
18: end while
19: if all p ∈ P satisfies memory requirement then
20: return (P, bestCost, schedule(P ))
21: else
22: raise failed to find a valid plan
23: end if

only when the runtime improves (line 10-11) or if a split
is mandatory due to memory constraints. We perform this
two-level filtering to reduce the number of calls to the sched-
uler function.

The optimizer returns an error if no valid partition plan
exists. That is, if in all considered partition plans at least
one process or one merge operators run out of memory (line
22).

The algorithm uses two key subroutines: finding the best
point where to split a partition in two (line 5) and estimat-
ing the cost of a schedule in terms of processing time (line
10). In the following subsections, we discuss each of these
two subroutines and SkewReduce’s default implementation
of these routines. Alternatively, the user may also supply
custom implementations.

3.3.2 Partition Splitting
When splitting a hypercube in two, the optimizer has two

choices to make: which axis to use for the split and at what
point along this axis to perform the split.

An ideal split should partition the data into two subpar-
titions with identical real runtimes. In contrast, the worst
split creates two subpartitions with very different real run-
times, with the runtime for the slower subpartition similar
to the pre-split runtime.

Algorithm 2 shows the optimizer’s approach to choosing
the split axis and split point for a given partition. This
algorithm applies the user-defined cost functions on the data
sample, S, to estimate execution times.

For a low dimensional data, typically 3 to 4, the optimizer
exhaustively tries to split the data along each of the available
axes because the optimization process is low-overhead (as we

Algorithm 2 Searching best split for a given partition

Input: B: bounding hypercube
S: sample data bounded by B

Output: bestSplit: axis and splitting point
1: bestCost←∞
2: bestSplit← null
3: A← chooseAxes(B,S)
4: for all axis ∈ A do
5: split← find best split point along axis
6: Bl, Br ← split B at split along axis
7: c← max{Cp(Bl, S), Cp(Br, S)}
8: if c < bestCost and satisfies merge memory require-

ment then
9: bestSplit← (axis, split)

10: bestCost← c
11: end if
12: end for
13: return bestSplit

show later in Figure 8). For a high dimensional data, the
user can supply a heuristic to filter out bad split axes to
improve optimization time. We define the best split to be
the one that minimizes the maximum cost Cp of any of the
subpartitions created without violating the merge memory
requirement.

To select the point along an axis where to split the data,
different algorithms are possible. We present and compare
three strategies. All three methods require that the exam-
ined sample data be sorted along the splitting axis with tie-
breaking using values in other dimensions. Thus, we sort
the sample data before run the strategy.

Discrete: The Discrete approach considers splitting the
data at each one of n uniformly-spaced points along the
splitting-axis. n is given as a parameter. For each point,
the discrete strategy computes the cost of splitting the data
at that point. The discrete approach is thus the most general
strategy because it can work even when the cost function is
not monotonic. It simply tries all possible splitting points
assuming a given minimum granularity. On the other hand,
this strategy may not return the best estimated splitting
point, especially if n is small.

Binary Search: This approach requires that cost func-
tions be monotonic and performs a binary search for the
best split point. The algorithm terminates after examin-
ing all log |S| candidate split points. Binary search always
returns the optimal split as estimated by the cost function.

Incremental Update: The Incremental Update ap-
proach requires that the cost function be monotonic and
incrementally updatable. That is, whenever the cost func-
tion is updated with a sample through an API call, the new
cost is returned. Given these restrictions, the Incremen-
tal Update approach achieves the best optimization perfor-
mance. The approach searches for the best split point in
two phases. The algorithm starts with two empty subpar-
titions. It continuously adds samples to these subpartitions
starting at both ends of partitioning axis. Each new data
point is added to the partition currently estimated to have
the lower runtime. The algorithm terminates when all sam-
ples have been assigned to a subpartition and the splitting
point is the mid-point between the last sample inserted into
each partition.

If multiple points fall on the partition boundary, the algo-



rithm enters a second phase, where it computes the fraction
of such points that were assigned to each partition. At run-
time, when the entire dataset is partitioned, points on the
same partition boundary are randomly distributed to sub-
partitions according to these precomputed proportions.

3.3.3 Estimating the Cost of a Schedule
The newly split partitions are only added if the candidate

plan yields a better total runtime than the current plan.
We estimate the runtime by calling a black box scheduling
function schedule. To match the units of the operator costs
to those of the scheduling overheads, we scale the process
and merge costs using the pre-computed ρp, ρm constants,
thus converting these costs into time units.

Converting a schedule to a cost estimate is straight for-
ward; we invoke the scheduling algorithm with the costs of
all operators and M slots as input then take the total run-
time. While we leave the scheduling algorithm as a black
box, we found that Longest Processing Time (LPT) schedul-
ing algorithm [14] works well in practice and satisfies all nec-
essary features such as job dependency and multiple slots.
Thus, we use LPT algorithm in the prototype.

4. EVALUATION
In this section, we evaluate the performance of SkewRe-

duce on the friends-of-friends clustering task over datasets
from two different domains: astronomy and oceanography
(see Section 2). Table 2 summarizes the properties of the two
datasets. We implemented friends-of-friends in a straightfor-
ward fashion without any optimizations, and using a stan-
dard KD-tree for storing local data and looking up friends.

Summary. We answer the following questions: (1) Does
SkewReduce improve task completion times compared to
uniform data partitioning, and, if so, is the difference signifi-
cant? (2) How important is the fidelity of the cost model for
SkewReduce’s optimization? (3) How does the sample size
affect cost estimates and ultimately performance? (4) What
is the overhead of scheduling and optimization in SkewRe-
duce? Our results show that SkewReduce imposes a negli-
gible overhead (Figure 8) and can decrease total runtime by
a factor of 2 or more compared to uniform data partitioning
(Figure 3). We also find that small sample sizes of just 1%
suffice to guide optimization, but the quality of the resulting
plan does depend on the characteristics of the sample (Fig-
ures 6 and 7). Finally, a cost function that better captures
the analysis algorithms helps SkewReduce find better plans,
but even an approximate cost function can improve runtime
compared to not using SkewReduce at all (Figures 4 and 5).

Implementation. The SkewReduce prototype consists
of two Java classes: the SkewReduce optimizer and the
SkewReduce execution engine. The optimizer takes the cost
model and sample data as input and produces an optimized
partition plan and a corresponding schedule. The execution
engine converts the plan into a graph of Hadoop jobs and
submits them to Hadoop according to the schedule from the
optimizer. SkewReduce deploys a full MapReduce job for
the initial data partitioning task (if necessary) and for each
finalize operator, but deploys a map-only job for each process
or merge operator. This design gives us better control over
the timing of the schedule because Hadoop only supports
user specified priorities at the job level rather than at the
task level.

SkewReduce minimizes the scheduling overhead by using

Table 2: Datasets used in the evaluation
Dataset Size # items Description

Astro 18 GB 900 M Cosmology simulation
Seaflow 1.9 GB 59 M Flow Cytometry

Table 3: Cost-to-time conversion constant for cost
models (ρp, ρm,scale)

Data Size Histogram 1D Histogram 3D

Astro 83 4.3 10−6 1500 2.9 10−12 3.0 40 10−7

Sea'ow 4.8 1.6 10−5 9.3 130 10−12 6.0 200 10−8

asynchronous job completion notifications of the Hadoop
client API. Optionally, the user can implement the finalize
operator as a Pig script [25] instead of a MapReduce pro-
gram.

Setup. We perform all experiments in an eight-node clus-
ter running Hadoop 0.20.1 with a separate master node.
Each node uses two 2 GHz quad-core CPUs, 16 GB of RAM,
and two 750 GB SATA disk drives (RAID 0). All nodes are
used as both compute and storage nodes. The HDFS block
size is set to 128 MB and each node is configured to run at
most four map tasks and four reduce tasks concurrently.

We compare SkewReduce to various uniform data parti-
tioning algorithms. We use the LPT scheduling algorithm
for the SkewReduce optimizer. Uniform alternatives cannot
use this approach because they do not have any way to esti-
mate how long different tasks will take to process the same
amount of data.

Default Optimization Parameters. SkewReduce’s op-
timizer assumes a MapReduce job scheduling overhead (∆)
of 10 seconds [28]. Unless indicated otherwise, experiments
use a sample size of 1%. The default cost function builds
a 3D equi-width histogram of the data. Each bucket covers
a range equal to the friend distance threshold along each
dimension. The cost is computed as the sum of squared fre-
quencies for all buckets. Each frequency is scaled back by
the sample size (e.g., for a 1% sample, all bucket frequencies
are multiplied by 100) before squaring. The intuition behind
this cost model is this: To identify a cluster, the friends-of-
friends algorithm starts with a point and recursively finds
friends and friends-of-friends using the KD-tree until no new
friends can be added. This process yields quadratic runtime
in dense regions, since every point is a friend of every other
point. We obtain the conversion constants ρp, ρm (shown
in Table 3) by executing 10 micro-benchmark runs of the
analysis task over a 1% data sample.

4.1 Overall SkewReduce Performance
In this section, we present experimental results that an-

swer the following question: Q: Does SkewReduce im-
prove task completion times in the presence of com-
putational skew compared to uniform data partition-
ing? Is the improvement significant?

To answer this question, we measure the total runtime of
the plans generated by SkewReduce for both datasets. We
compare them against the runtimes of a manually crafted
plan called Manual and plans with various uniform parti-
tioning granularities: Coarse, Fine, Finer, and Finest. All
plans are generated from the same 1% data sample. Coarse
mimics Hadoop, which assigns a Map task to each HDFS
chunk. Similarly, Coarse partitions the data into fragments
that each contains the same number of data points. It does
so by repeatedly splitting the region to bisect the data, one
axis at a time in a round robin fashion, just like a KD-tree
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Completion time (hours for Astro, minutes for Seaflow)

Dataset Coarse Fine Finer Finest Manual Opt
Astro 14.1 8.8 4.1 5.7 2.0 1.6

Seaflow 87.2 63.1 77.7 98.7 - 14.1

Figure 3: Relative speed of different partitioning strate-

gies compared with the optimized plan (Opt). The table

shows the actual completion time for each strategy (units

are hours for Astro and minutes for Seaflow). Man-

ual plan is shown only for the Astro dataset. Overall,

SkewReduce’s optimization significantly improves the

completion time.

using a Recursive Coordinate Bisection (RCB) scheme [3].
Coarse stops splitting when the size of each partition is less
than 128 MB. Fine stops splitting only when each partition
is 16 MB. Finer and Finest partition the Fine partitions fur-
ther until each partition holds 4 MB and 2 MB, respectively.
Finally, we prepared the Manual plan by tweaking the Fine
plan based on the execution results: we merged partitions
experiencing no skew and split slow partitions further. We
prepared a manual plan only for the Astro dataset due to the
tedious nature of this task. Figure 3 shows the relative com-
pletion times of all plans compared to the optimized plan,
labeled as Opt. We also report the actual completion time
of each plan in the accompanying table.

The results from both datasets illustrate that fine-grained
uniform splitting only improves performance up to a certain
point before runtimes increase again due to overheads as-
sociated with scheduling and executing so many partitions.
The SkewReduce optimizer’s plan, however, guided by user-
defined cost functions, is more than twice as fast as the best
uniform plan. For the Astro dataset, SkewReduce improves
the completion time of the clustering task by a factor of
more than 8 compared with Coarse, which is the strategy
equivalent to the default approach in MapReduce-type sys-
tems. SkewReduce’s performance is even a bit better than
the Manual plan. For the Seaflow dataset, the Opt runtime
is a factor of 3 better than Fine and a factor of 6 better than
Coarse.

Overall, SkewReduce can thus significantly improve the
runtime of this analysis task.

4.2 Cost Model Fidelity
In this section, we start to study the parameters that affect

SkewReduce’s performance. In particular, we answer the
following question: Q: How important is the fidelity of
the cost model for SkewReduce’s optimization?

The fidelity of a cost function is related to the Fidelity
property defined in Section 3.2. Given two partitions R
and S, if a cost function CA is more likely to produce cost
estimates that reflect the correct execution time order than

Table 4: Cost functions for evaluation
Function Fidelity Description
Data Size Low The number of data items
Histogram 1D Medium Sum of squared freq., 10 buckets
Histogram 3D High Sum of squared freq., all buckets

2

4

6

8

10

12

14

16

C
o

m
p

le
ti

o
n

 t
im

e 
(H

o
u

rs
)

0

2

4

6

8

10

12

14

16

Data Size Histogram 1D Histogram 3D

C
o

m
p

le
ti

o
n

 t
im

e 
(H

o
u

rs
)

Cost Function

Estimated runtime and percent error for Astro data (hour)

Sample Data Size Histogram 1D Histogram 3D
1 6.64 (-53.0%) 7.59 (31.8%) 2.84 (76.2%)
2 6.64 (-37.9%) 7.21 (8.20%) 2.94 (-20.0%)
3 6.64 (-33.2%) 3.30 (135%) 2.73 (36.2%)

Figure 4: Completion times of plans for the Astro

dataset using different cost functions. The x-axis is cost

functions in increasing order of fidelity and y-axis is com-

pletion time in hours. Each line represents the real run-

times of the plans derived from the same sample. The

table shows estimated runtimes and percent errors with

respect to completion times.

a cost function CB , we say that CA is a higher-fidelity cost
function than CB .

To answer this question, we compare the performance of
SkewReduce using different cost functions and find that plan
quality is sensitive to the fidelity of the cost function to the
actual algorithm. In this experiment, we compare three cost
functions: the 3D histogram function described previously, a
simpler but less faithful 1D histogram, and simply the data
size as a cost proxy. Table 4 summarizes the three functions.

For each dataset, we prepared three independent 1% data
samples. We then ran the SkewReduce optimizer with the
different cost functions for each data sample and compared
the execution times of the resulting partition plans.

Figure 4 shows the result for the Astro dataset. The x-
axis shows the cost function in order of increasing fidelity.
Each dashed line represents the execution time of plans gen-
erated from the same sample. Overall, the fidelity of the cost
function significantly affects the total runtime.

The Data Size cost function leads to a plan essentially
equivalent to Coarse in Figure 3 thus there is no big im-
provement. Interestingly, the Histogram 1D function yields
a runtime close to the second best Finest from Figure 3.
Hence, even a cost function with limited fidelity to the ac-
tual algorithm can help compare to not using SkewReduce.
The most faithful Histogram 3D function yields the best plan
and significantly improves the execution time compared to
the least faithful cost function, Data Size. Across all three
samples, the higher fidelity cost function yields the better
plan. The estimated runtimes and percent errors with re-
spect to the real execution times are shown in the accompa-
nying table in Figure 4. The expected runtimes significantly
deviate from the actual runtimes because of discrepancies



5

10

15

20

25

30

35

40

C
o

m
p

le
ti

o
n

 t
im

e 
(M

in
u

te
s)

0

5

10

15

20

25

30

35

40

Data Size Histogram 1D Histogram 3D

C
o

m
p

le
ti

o
n

 t
im

e 
(M

in
u

te
s)

Cost Function

Estimated runtime and percent error for Seaflow data (minutes)

Sample Data Size Histogram 1D Histogram 3D
1 3.84 (-77.5%) 6.71 (-48.8%) 1.41 (-85.3%)
2 3.84 (-75.2%) 6.71 (-81.8%) 1.41 (-83.9%)
3 3.84 (-79.2%) 6.72 (-79.9%) 1.41 (-85.5%)

Figure 5: Completion time of plans for Seaflow dataset

using different cost functions. Note that the y-axis is in

minutes. Each line represents the real runtimes of the

plans derived from the same sample. The table shows

estimated runtimes and percent errors with respect to

completion times. Histogram 1D performs badly because

it significantly overestimates the cost of a partition.

between the cost function and the real algorithm, as well as
the sample and the real data.

Figure 5 shows the results of the same experiment on the
Seaflow dataset. Here, the Histogram 1D cost function yields
a worse plan than the Data Size cost function in two out of
three cases, while Histogram 3D consistently produces the
best plans.

The anomaly is due to characteristics of the Seaflow
dataset. Unlike the Astro dataset, all domains of the Seaflow
dataset are 16-bit unsigned integers with significant rep-
etition (e.g., values near 0 along the x-axis in Figure 1).
Histogram 1D tends to overestimate the cost of a partition
compared with Histogram 3D because it approximates the
cost using a fixed number of buckets (Table 4). With small
domains and many repeated values in the dataset, the error
becomes significant compromising fidelity and eventually af-
fecting the optimization. While the resulting plans are worse
than those produced by Data Size, the execution time is only
half of the best uniform partitioning strategy (Fine) in Fig-
ure 3. Thus, a less faithful cost function may not produce a
good plan consistently but still yields better results than a
uniform strategy.

Finally, the Data Size cost function significantly improves
the runtime compared with the Coarse and Fine plans from
Figure 3, while it seems that the two should be equivalent.
The difference is attributable to SkewReduce’s ability to se-
lect the partitioning axis that yields the best splits.

In summary, a high fidelity cost function benefits SkewRe-
duce’s optimization and improves the runtime significantly.
However, even approximate cost functions can yield better
plans than ignoring computation costs and splitting only
based on dataset sizes.

4.3 Sample Size
In this section, we examine the effects of the sample size on

SkewReduce’s performance and answer the following ques-
tion: Q: What sample sizes are required for SkewRe-
duce to generate good plans?
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Figure 6: Completion time for the Astro dataset with

varying sample rates. Error bars show the minimum and

maximum values obtained for each sampling rate.
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Figure 7: Completion time for the Seaflow dataset with

varying sample rates. Error bars show the minimum and

maximum values obtained for each sampling rate.

SkewReduce’s optimization is based solely on the sample,
and an unrepresentative sample may affect the accuracy of
the optimizer’s cost estimates. To measure the effect on ac-
curacy, we prepared three independent samples with varying
sampling rates, then generated and executed an optimized
plan using the best cost function, Histogram 3D.

Figures 6 and 7 show the results from the Astro and
Seaflow datasets, respectively. In both figures, the opti-
mizer’s cost estimates improve as the sample size increases
but the convergence is not smooth. Surprisingly, the esti-
mated runtime of the Astro dataset does not fluctuate as
much as that of the Seaflow dataset even at lower sampling
rates. The reason is that the extreme density variations
in the Astro dataset that drive the performance are still
captured even in a small sample. In contrast, the Seaflow
sample may or may not exhibit significant skew. We also
find that a larger sample does not always guarantee a better
plan. In Figure 7, the sampling rate of 10% does not yield
a better plan than a 5% sampling rate. The conclusion is
that the quality of optimization may vary subject to the rep-
resentativeness of the sample. Interestingly, the runtime of
this suboptimal plan is still a factor of 2 improvement com-
pared to the plans based on uniform partitioning as shown
in Figure 3.

4.4 SkewReduce Overhead
We finally study SkewReduce’s overhead and answer the

following question. Q: How long does SkewReduce’s opti-
mization take compared with the time to process the query?

Figure 8 shows the runtime of the prototype optimizer
using the Data Size and the Histogram 3D cost functions for
each dataset. At a 1% sampling rate, the optimization takes
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and cost functions. With a 0.01 sample rate, there are

590K samples for the Seaflow dataset and 9.1M samples

for Astro.
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The x-axis is the level in the partition tree with level 10

representing the leaves. The y-axis is in log scale. Data

and State together form the Feature object (F ). Data

corresponds to boundary particles with cluster ids and

State holds the cluster mappings found so far. Overall,

a significant amount of data is set-aside and only a small

amount of data is passed to merge.

18 seconds using 594K samples from the Seaflow dataset and
15 minutes using 9.1 M samples from the Astro dataset.
Considering that the prototype is not parallelized and does
not manage memory in any sophisticated way, the runtime
is still a small fraction of the actual runtime of the algorithm
for each dataset. With an efficient parallel implementation,
the SkewReduce optimizer could potentially run with a more
complex cost function or use multiple samples to produce a
better plan.

4.5 Data Volume between Operations
Lastly, we briefly consider the performance implications of

SkewReduce’s capability to set-aside some data during the
process and merge steps. The amount of data transferred be-
tween stages is known to be a bottleneck of MapReduce [12].
In SkewReduce, however, this is more than a bottleneck be-
cause a flood of data between levels eventually exceeds the
memory bounds of merge. In this section, we answer the
following question. Q: Does SkewReduce feed too much data
to merge? How much data is set aside?

In Figure 9, we analyze the total amount of data generated
at each level of the partition tree during one execution of
the clustering algorithm on the Astro dataset. Overall, a
total of 13.7 GB of data was set aside by process, which
corresponds to almost 99% of the input data. The total

data passed to all merge operators is only 2 GB and the
top-level merge has received the most amount of data (39
MB), however, this is only one third of the 128 MB chunk
size. Thus, through its API, SkewReduce guides application
writers toward an efficient implementation of their feature
extraction applications, setting aside significant amounts of
data when possible, reducing traffic between operators, and
helping to satisfy the per node memory requirement. We
acknowledge that the amount of data that is set aside data
will vary depending on the dataset and the application.

5. RELATED WORK
Effective handling of skew is an important problem in any

parallel system because improper skew handling can counter
all the benefits of parallel processing [10].

In parallel database research, four types of data skew have
been identified by Wolf et al. [35], and extensively researched
by many groups, especially, in the context of the Join opera-
tion [11, 18, 35, 36, 39, 38]. Shatdal et al. investigated skew
problems in aggregation algorithms [30]. Recent adaptive
query processing research also mostly focuses on relational
operators [7]. SkewReduce approaches the same problem
from a different angle. Instead of focusing on specialized
implementations of an operator, SkewReduce requests that
users provide cost models for their non-relational algorithms
and it performs cost-based static partitioning optimization.

Scientific simulation communities have long studied load
imbalance problems in parallel systems. Just as in paral-
lel database systems, there exist many mature infrastruc-
tures to run parallel simulations in a scalable manner [8,
24, 27]. The primary technique for attacking skew is adap-
tively repartitioning (or regridding) the data by periodically
monitoring the application runtime statistics or through ex-
plicit error measures of the parallel simulation [9]. The
SkewReduce optimization resembles these programs, but
uses sampling to optimize statically. Also, the partition-
ing is strictly guided by the user cost functions rather than
errors in the simulation. Several cosmological simulations
partition the workload based on gravitational potential and
construct a tree to balance parallel spatial index lookup
as well as computation [33]. SkewReduce shares the same
spirit with those simulations but provides a generic, domain-
independent framework to statically optimize the partition
plan using user-defined cost functions and execute it in a
shared-nothing cluster.

MapReduce and similar large scale data analysis plat-
forms handle machine skew using speculative execution [6,
19, 15]. Speculative execution simply re-launches slow tasks
on multiple different machines and takes the result of the
first replica to complete. Speculative execution is effective
in heterogeneous computing environments or when machines
fail. However, it is not effective against data skew because
rerunning the skewed data partition even on a faster ma-
chine can still yield a very high response time. Lin analyzed
such impact of data skew of a MapReduce program [22].
Handling data skew in these systems is, in general, at a rel-
atively early stage. Pig supports skewed join as proposed
by DeWitt et al. [11] in its latest 0.5.0 release. To the
best of our knowledge, this is the only effort to handle data
skew problems in MapReduce-based systems. Qiu et al. im-
plemented three applications for bioinformatics using cloud
technologies and reported their experience and measurement
results [29]. Although they also found skew problems in two



applications, they discussed a potential solution rather than
tackling the problem. SkewReduce is aiming to offer a more
general skew-resistant solution to applications running on
these types of platforms.

6. CONCLUSION
In this paper, we presented SkewReduce, a new API for

feature-extracting scientific applications and an implemen-
tation that leads to an efficient execution of these applica-
tions. At the heart of SkewReduce is a static optimizer that
leverages user-supplied cost functions to generate parallel
processing plans, which significantly reduce the impact of
computational skew inherent in many of these applications.
Through experiments on two real datasets, we showed that
SkewReduce can improve application run times by a fac-
tor of two to eight and takes only seconds to minutes to
run, facilitating offline resource planning. In future work,
we plan to extend SkewReduce to react to unanticipated
skew at runtime by dynamically repartitioning the data and
computation as necessary.
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