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Abstract. Scientists’ ability to generate and collect massive-scale datasets is in-
creasing. As a result, constraints in data analysis capability rather than limita-
tions in the availability of data have become the bottleneck to scientific discov-
ery. MapReduce-style platforms hold the promise to address this growing data
analysis problem, but it is not easy to express many scientific analyses in these
new frameworks. In this paper, we study data analysis challenges found in the
astronomy simulation domain. In particular, we present a scalable, parallel al-
gorithm for data clustering in this domain. Our algorithm makes two contribu-
tions. First, it shows how a clustering problem can be efficiently implemented
in a MapReduce-style framework. Second, it includes optimizations that enable
scalability, even in the presence of skew. We implement our solution in the Dryad
parallel data processing system using DryadLINQ. We evaluate its performance
and scalability using a real dataset comprised of 906 million points, and show
that in an 8-node cluster, our algorithm can process even a highly skewed dataset
17 times faster than the conventional implementation and offers near-linear scala-
bility. Our approach matches the performance of an existing hand-optimized im-
plementation used in astrophysics on a dataset with little skew and significantly
outperforms it on a skewed dataset.

1 Introduction

Advances in high-performance computing technology are changing the face of science,
particularly in the computational sciences that rely heavily on simulations. Simulations
are used to model the behavior of complex natural systems that are difficult or impossi-
ble to replicate in the lab: subatomic particle dynamics, climate change, and, as in this
paper, the evolution of the universe. Improved technology — and improved access to
this technology — are enabling scientists to run simulations at an unprecedented scale.
For example, by the end of 2011, a single astrophysics simulation of galaxy formation
will generate several petabytes of data, with individual snapshots in time ranging from
10s to 100s of terabytes. The challenge for scientists now lies in how to analyze the
massive datasets output by these simulations. In fact, further increases in the scale and
resolution of these simulations — to adequately model, say, star formation — are con-
strained not by limitations of the simulation environment, but by limitations of the data
analysis environment. That is, data analysis rather than data acquisition has become the
bottleneck to scientific discovery.
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Ad hoc development of data analysis software to efficiently process petascale data
is difficult and expensive [1]. As a result, only relatively few science projects can afford
the staff to develop effective data analysis tools [2, 3]. An alternate strategy is to use
either a parallel database management system (DBMS) or a MapReduce-style paral-
lel processing framework [4, 5]. Both types of systems provide the following benefits:
(1) they run on inexpensive shared-nothing clusters; (2) they provide quick-to-program,
declarative interfaces [6–8]; and (3) they manage all task parallelization, execution,
and failure-handling challenges. These frameworks thus hold the promise to enable
cost-effective, massive-scale data analysis. However, porting complex scientific analy-
sis tasks to these platforms is far from trivial [9, 10] and therefore remains relatively
rare in practice.

Clustering algorithms in particular have been difficult to adapt to these shared noth-
ing parallel data processing frameworks, for two reasons.

First, both parallel DBMSs and MapReduce-type systems support a dataflow style
of processing where data sets are transformed by a directed acyclic graph of operators
that do not otherwise communicate with each other. Additionally, the system controls
the data placement and movement. In this setting, it is difficult to efficiently track clus-
ters that span machine boundaries because such tracking typically requires frequent
communication between nodes, especially when clusters may be arbitrarily large, as
is the case in astronomy. Previous work on distributed clustering used a space-filling
curve to partition the data, then built and queried a global distributed spatial index such
that only adjacent partitions needed to communicate [11]. However, the same approach
is difficult to implement in a MapReduce-style system that constrains communication
patterns and controls data placement.

Second, the varying data density causes significant skew (i.e., inter-node load im-
balance) in processing-times per partition. Significant skew can counteract the benefit
of using a parallel system [12]. We find this effect to be significant in the astronomy
simulation domain (see Section 6). Previous research proposed to use approximation
to handle such dense regions [13, 14]. This approach, however, yields a different result
than an exact serial computation.

In this paper, we address the above two challenges by describing dFoF, an algo-
rithm for scalable, parallel clustering of N-body simulation results in astrophysics. Our
algorithm is designed to run efficiently in a MapReduce-style data processing engine
and is also optimized to deliver high performance even in the presence of skew in the
data. We implement dFoF on the shared-nothing parallel data processing framework
Dryad [15], and evaluate it on real data from the astronomy simulation domain. Dryad
can be described as a generalization and refinement of MapReduce [4] allowing arbi-
trary relational algebra expressions and type-safe language integration [16].

The contributions of this paper are threefold. First, we develop dFoF, the first
density-based parallel clustering algorithm for MapReduce-type platforms. Second, we
show how to leverage data-oriented (rather than space-oriented) partitioning and intro-
duce a spatial index optimization that together enable dFoF to achieve near-linear scala-
bility even for data sets with massive skew. Third, we implement the proposed algorithm
using DryadLINQ [16] and evaluate its performance in a small-scale eight-node clus-
ter using two real world datasets from the astronomy simulation domain. Each dataset
comprises over 906 million objects in 3D space. We show that our approach can cluster
a massive-scale 18 GB simulation dataset in under 70 minutes (faster than the naı̈ve
version by a factor of 17) and offers near-linear scaleup and speedup. We also show that



3

DA B

C

ε

Fig. 1. Friends of Friends clustering algorithm. Two particles are considered friends if the
distance between them is less than a threshold ε: A and B are friends and B and C are friends,
but A and C are not. The friend relation is symmetric if the distance is symmetric. The Friend of
Friend relation (FoF) is defined between two points if they are friends or if they are contained in
the transitive closure of the friend relation (e.g., A and C are a friend of friend pair via B). In the
figure, the FoF relation induces a partition on the particles: all black points are in one cluster and
all white points are in another.

our approach matches the performance of an existing hand-optimized implementation
used in the astrophysics community on a dataset with little skew and improves running
time by a factor of 2.7 on a skewed dataset.

2 Background and Related Work

Application domain. Cosmological simulations serve to study how structure evolves in
the universe on distance scales ranging from a few million light-years to several billion
light-years in size. In these simulations, the universe is modeled as a set of particles.
These particles represent gas, dark matter, and stars and interact with each other through
gravitational force and fluid dynamics. Particles may be created or destroyed during the
simulation (e.g., a gas particle may spawn several star particles). Every few simulation
timesteps, the program outputs a snapshot of the universe as a list of particles, each
tagged with its identifier, location, velocity, and other properties. The data output by a
simulation can therefore be stored in a relation with the following schema:

Particles(id, x, y, z, vx, vy, vz,mass, density, · · · )
State of the art simulations (e.g., Springel et al. 2005 [17]) use over 10 billion parti-

cles producing a dataset size of over 200 GB per snapshot. When the NCSA/IBM Blue
Waters system [18] comes online in late 2010, it will support astrophysical simulations
that generate 100 TB per snapshot and a total data volume of more than 10 PB per run.

Friends of Friends Clustering Algorithm. The Friends-of-Friends (FoF) algo-
rithm (c.f.Davis et al. 1985 [19] and references therein) has been used in cosmology for
at least 20 years to identify interesting objects and quantify structure in simulations [17,
20]. FoF is a simple clustering algorithm that accepts a list of particles (pid, x, y, z)
as input and returns a list of cluster assignment tuples (pid, clusterid). To compute
the clusters, the algorithm examines only the distance between particles. FoF defines
two particles as friends if the distance between them is less than ε. Two particles are
friends-of-friends if they are reachable by traversing the graph induced by the friend
relationship. To compute the clusters, the algorithm computes the transitive closure of
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the friend relationship for each unvisited particle. All particles in the closure are marked
as visited and linked as a single cluster. Figure 1 illustrates this clustering algorithm.

Related work. Thanks to its simplicity, FoF is one of only two algorithms to have
been implemented in a distributed parallel fashion in the astrophysics community [21,
22] using the Ntropy library [21, 22]. Ntropy is an application-specific library that sup-
ports parallel kd-trees by combining “distributed shared memory” (DSM), a popular
parallel data-management paradigm, with “remote procedure call” for workload orches-
tration.

FoF is a special case of the DBSCAN algorithm [23] corresponding to a MinPts
parameter of zero; there exists a large body of work on distributed DBSCAN algo-
rithms [11, 13, 14, 24]. This prior work can be categorized into two groups. The first
category of approaches is similar to Ntropy. These algorithms build a distributed spatial
index on a shared-nothing cluster and use this index when merging local clustering re-
sults [11, 24]. The second category of approaches is to perform approximate clustering
by using clustering on local models [13] or using samples to reduce the size of data or
the number of spatial index lookups [14].

In contrast to these prior techniques, dFoF does not require any approximations.
More importantly, it is designed and implemented to run on a data analysis platform
such as Dryad [15] or MapReduce [4] rather than as a stand-alone parallel or dis-
tributed application. By leveraging an existing platform, dFoF automatically benefits
from fault-tolerance, task scheduling, and task coordination. Further, dFoF does not
rely on a global shared index but rather incrementally merges large clusters detected by
different compute nodes.

Additionally, previous work on parallelizing DBSCAN has been evaluated against
relatively small and often synthetic datasets [11, 13, 14, 24]. Their datasets have, at
most, on the order of one million objects in two dimensions. In this paper, we eval-
uate the performance and scalability with real datasets of substantially larger scale.

Programming shared-nothing clusters has been gaining increased attention. Several
distributed job execution engines have been proposed [5, 4, 15, 25], and several high-
level job description languages have been defined [7, 16, 26–28]. However, complex
scientific analysis tasks are only just beginning to be ported to these new platforms.
In particular, Chu et al. investigated how to leverage such emerging platforms to run
popular machine-learning algorithms and gain linear scalability [29]. There are sev-
eral efforts to implement scalable machine learning algorithms in MapReduce-style
framework [30–32]. Papadimitriou et al. implemented a co-clustering algorithm [31].
Panda et al. implemented a decision tree learning algorithm using MapReduce [32].
The Mahout project, inspired by Chu et al., implements many machine learning algo-
rithms in Hadoop including k-means and other clustering algorithms, but there is no
density-based algorithm yet [30].

3 Basic Distributed Friends of Friends

In this section, we introduce dFoF, our distributed FoF algorithm for MapReduce-style
shared-nothing clusters. We discuss critical optimizations that make this algorithm truly
scalable in the following section.

The basic idea behind any distributed clustering algorithm is to (1) partition the
space of data to be clustered, (2) independently cluster the data inside each partition, and
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Fig. 2. Dataflow in dFoF algorithm. dFoF runs in four phases. Each phase exchanges data in the
form of a standard relation or set of key-value pairs. Underlined attributes are the primary keys
of the corresponding relations. part represents a partition id. pid represents a particle ID. x, y,
and z correspond to the particle coordinates. cid is a cluster id. Phases execute in series but with
intra-phase parallelism.

finally (3) merge clusters that span partition boundaries. There are several challenges
related to implementing this type of algorithm on a MapReduce-style platform and in
the context of astronomy data.

Challenges. First, in astrophysical applications, there is no characteristic cluster
size or mass. The clustering of matter in the universe is largely scale-invariant at the
size represented by the simulation. This means a cluster can be arbitrarily large and
span arbitrarily many partitions. To identify such arbitrarily-large clusters from locally
found ones, one cannot simply send to each compute node its own data plus a copy
of the data at the boundary of adjacent partitions. Indeed, nearly all data would have
to be copied to merge the largest clusters. Alternatively, one could try to use a global
index structure, but this approach requires extensive inter-node communication and is
therefore unsuitable for the dataflow-style processing of MapReduce-type platforms.
In this paper, we investigate a radically different approach. Instead of trying to use a
distributed index, we redesign the algorithm to better follow the shared-nothing, parallel
query processing approach and not require a global index at all. In this section, we
present this algorithm, which we call dFoF.

Second, the uncharacteristic clusters pose a challenge for load balancing — each
node needs to hold a contiguous region of space but there is no a priori spatial de-
composition that is likely to distribute the processing load evenly. Load imbalances
can negate the benefits of parallelism [12]. To achieve load balance and improve per-
formance, we must ensure that each partition of the same operation processes its input
data in approximately the same amount of time. This requirement is more stringent than
ensuring each node processes the same amount of data. Indeed, in the FoF algorithm,
execution times depend not only on the number of particles in a partition but also their
distribution: small dense regions are significantly slower to process than large sparse
ones. We discuss extensions to our algorithm that address these challenges in Section 4.

Approach. Our basic dFoF algorithm follows the typical distributed clustering ap-
proach in that the data is first partitioned, then clustered locally, and finally the local
clusters are reconciled into large ones. Our algorithm differs from earlier work pri-
marily in the way it handles the last phase of the computation. Instead of relying on
a distributed index, dFoF reconciles large clusters through a hierarchical merge pro-
cess that resembles a parallel aggregate evaluation [33]. To keep the cost of merging
low, only the minimum amount of data is propagated from one merge step to the next.
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Fig. 3. Illustration of the dFoF algorithm. (a) shows the first local clustering phase. Data is
partitioned into four cells. Points with the same shape are in the same global cluster. Particles
with different shades but with the same shape are in different local clusters. Each Pi shows
the cell boundary and each I shows the interior region that is excluded during the Hierarchical
Merge phase. (b) demonstrates Hierarchical Merge phase. Note that only boundary particles in
(a) are considered during the merge phase. After the merge, three cluster mappings are gener-
ated: (C4,C3), (C5,C3), and (C6,C3). Such mappings are used to relabel local clusters during the
Relabel phase as illustrated in (c).

The rest of the data is written to disk before the merge. A final relabeling phase takes
care of updating this data given the final merged output. dFoF thus runs in four phases:
Partition, Local cluster, Hierarchical merge, and Relabel. Figure 2 shows the overall
data flow of the algorithm, with each step labeled with the type of its output. We now
describe the four phases in more detail using a simple 2D example.

Partition During partitioning, we assign each node a contiguous region of space
to improve the probability that particles in the same cluster will be co-located on the
same node. Figure 3 illustrates a 2D space split into four partitions P1 through P4. To
determine these uniform regions, dFoF recursively bisects the space, along all dimen-
sions, until the estimated number of particles per region is below the memory threshold
of a node, such that local processing can be performed entirely in memory. We call the
hierarchical regions cells, and the finest-resolution cells — the leaves of the tree — unit
cells. The output of this phase is a partition of all data points (i.e., particles).

Local Cluster Once the data is partitioned, the original FoF algorithm runs within
each unit cell. As shown in Figure 2, the output of this phase is written to disk and con-
sists of a set of pairs: (pid,cid), where pid is a particle ID and cid is a globally-
unique cluster ID. Each input particle is labeled with exactly one cluster ID. Particles
within distance ε of the boundary of each cell continue on to the next phase. They will
serve to identify locally found clusters that need to be merged into larger ones.

Hierarchical Merge To identify clusters that span multiple cells, particles at cell
boundaries must be examined. If particles in adjacent partitions are within distance
threshold ε of each other, their clusters must be merged. Figure 3 illustrates the merge
step for four partitions P1 through P4. The outer boxes, Pi, represent the cell bound-
aries. The inner boxes, I , are distance ε away from the corresponding edge of the cell. In
Figure 3(a), the local clustering step identified a total of six clusters labeled C1 through
C6. Each cluster comprises points illustrated with a different shape and shade of gray.
However, there are only three global clusters in this dataset. These clusters are identified
during the hierarchical merge process. Clusters C3, C4, C5, and C6 are merged because
the points near the cell boundaries are within distance ε of each other. Only points in-
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Algorithm 1 Merge result of FoF (mergefof)
Input: D ← {(pid, cid, x, y, z)} // output from Local Cluster or Hierarchical merge

ε← distance threshold
Output: {(old cid, new cid)}
1: M ← ∅ // nested set to store cluster ids of merged clusters
2: R← ∅ // output mappings
3: sidx← build spatial index(D)
4: for all unvisited p ∈ D do // compute cluster ids to merge
5: N ← friendclosure(p, ε, sidx) // find all friends of friends of p using the spatial index
6: mark all q ∈ N as visited
7: C ← {x.cid | x ∈ N} // set of all cluster ids found in N
8: M ←M ∪ {C} // All cluster ids in N must be merged
9: end for

10: repeat // find additional clusters to merge
11: for all C ∈M do
12: C+ ← {X|X ∈M,C ∩X 6= ∅}
13: if |C+| > 1 then
14: M ←M − C+

15: C′ ← {x|x ∈ X,X ∈ C+}
16: M ←M ∪ {C′}
17: end if
18: end for
19: until M does not change
20: for all C ∈M do // produce output
21: newCid← minC // select the lowest identifier in C
22: R← R ∪ {(cid, newCid)|cid ∈ C}
23: end for
24: return R

side each Pi but outside each region I are needed to determine that these clusters must
be merged. Figure 3(b) shows the actual input to the hierarchical merge following local
clustering phase. This data reduction is necessary to enable nodes to process hierarchi-
cally larger regions of space efficiently and without running out of memory.

Algorithm 1, which we call mergefof, shows the detailed pseudocode of the
merge procedure. At a high-level, the algorithm does two things. First, it re-computes
the clusters in the newly merged space. Second, it relabels the cluster ids of those clus-
ters that have been merged. The input is a set of particles, each labeled with a cluster
id. The output is a set of pairs (oldcid, newcid) providing a mapping between the pre-
merge cluster ids and the post-merge cluster ids.

Lines 1-8 show the initial cluster re-computation whose output,M , is a nested set of
clusters that must be merged. For example, for the dataset in Figure 3,M will have three
elements, {{C1}, {C3, C4, C5}, {C4, C6}}. This setM , however, is not yet quite cor-
rect, as there are potentially members of M that should be further combined. To see
why, recall that some particles — those in the interior of the merged regions — were
set aside to disk before the merge process began. These set-aside particles may connect
two otherwise disconnected clusters. In our example, C6 should be merged with C3,
C4, and C5 but is not because the particles of C4 bridging C6 to C3 were set aside to
disk before merging. We can infer such missing links by examining the pairwise inter-
sections between sets of merged cluster identifiers. For example, since {C3, C4, C5}
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and {C4, C6} both contain C4, we infer that C3, C4, C5, and C6 are all part of the
same cluster and can be assigned a single cluster id. The second step of mergefof
(lines 10-19) performs this inference. In the last step, the algorithm simply chooses the
lowest cluster id as the new id of the merged cluster (lines 20-23).

Algorithm mergefof executes every time a set of child cells under the same parent
are merged as we proceed up the cell hierarchy. After each execution, the mappings
between clusters that are found are saved to disk. They will be reused during the final
Relabel phase.

Relabel In dFoF, there are two occasions for relabeling, intermediate and global.
Intermediate relabeling assigns each particle used during the merge process a new clus-
ter id based on the output of mergefof. This operation occurs once for each cell in
the merge hierarchy. Global relabeling occurs at the end of dFoF. This operation first
determines the final cluster ids for each local cluster id based on the accumulated output
of mergefof. It then updates the local cluster assignments from the first phase with
the final cluster id information by reprocessing the data previously set aside to disk as
shown in Figure 2.

4 Scalable Distributed Friends of Friends

The dFoF algorithm presented thus far is parallel but not scalable due to skew effects.
Some compute nodes during Local clustering phase may run significantly longer than
others, negating the benefits of parallelism. In this section, we discuss this problem and
present two optimizations that address it. The first optimization significantly improves
the performance of both local fof and mergefof algorithms. The second optimiza-
tion improves load balance.

4.1 Pruning Visited Subtrees

With an ordinary spatial index implementation, each partition can spend a significantly
different amount of time processing its input during the local clustering phase (i.e.,
FoF), despite having approximately the same amount of input data. We demonstrate this
effect in Section 6, where we measure the variance in task execution times (in Figure 7,
all plots except for non-uniform/optimized exhibit high variance). This imbalance is due
to densely populated regions taking disproportionately longer to process than sparsely
populated regions, even when both contain the same number of points.

To understand the challenge related to dense regions, recall that the serial FoF al-
gorithm computes the transitive closure of a particle using repeated lookups in a spatial
index. The average size of the closure, and therefore of the traversed part of the index,
are proportional to the density of the region. These lookups dominate the runtime. As-
tronomy simulation data is especially challenging in this respect, because the density
can vary by several orders of magnitude from region to region. To address this chal-
lenge, we optimize the local cluster computation as follows.

The original FoF algorithm constructs a spatial index over all points to speed up
friend lookups. We modify this data structure to keep track of the parts of the subtree
where all data items have already been visited. For each node in the tree (leaf node and
interior node), we add a flag that is set to true when all points within the subtree rooted
at the node have been returned as a result of previous friends lookups. The algorithm
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Algorithm 2 Range search with pruning visited subtree
Input: root← search root node

query ← center of the range search (i.e., querying object)
ε← distance threshold

Output: set of objects within distance ε of query
1: if root.visitedAll is true then
2: return ∅ // skip this subtree
3: end if
4: R← · · · // normal range search for root

// update bookkeeping information
5: if entire branch under root marked visited then
6: root.visitedAll← true
7: end if
8: return R

can safely skip such flagged subtrees because all data items within them have already
been covered by previous lookups. By the nature of spatial indexes, points in a dense
region are clustered under the same subtree and are therefore quickly pruned. With this
approach, the index shrinks over time as the previously visited subtrees are pruned.

Because this optimization requires only one flag per node in the spatial index, it im-
poses a minimal space overhead. Furthermore, the flag can be updated while processing
range lookups. In Algorithm 2, we show the modified version of the range search using
this modified index structure. Line 5 is dependent on the type of spatial index. For a
kd-tree, the condition can be evaluated by checking the flags of the child nodes and
the data item assigned to the root node. For an R-tree, the condition can be evaluated
similarly by checking child nodes and data items in a leaf node.

We apply this optimization both during the local clustering and the merging phases.

4.2 Non-Uniform Data Partitioning

While the above optimization solves the problem of efficiently processing dense re-
gions, it does not solve all load imbalance problems. Indeed, with the uniform space-
based partitioning described in Section 3, some nodes may be assigned significantly
more data than others and may delay the overall execution or even halt if they run out
of memory when the data is not uniformly distributed. The only way to recover is for
the system to restart the job using a smaller unit cell. On the other hand, unit cells that
are unnecessarily fine-grained add significant scheduling and merging overheads.

To address this challenge, we use a variant of Recursive Coordinate Bisection
(RCB) scheme [34] to ensure that all partitions contain approximately the same amount
of data (i.e., same number of particles). The original RCB repeatedly bisects a space by
choosing the median value along alternating axis to evenly distribute input data across
multi-processors. Since the input data does not fit in memory, we first scan the data,
collect a random sample, and run RCB over the sample until the estimated size of the
data for each bucket fits into the memory of one node. We use RCB because its spatial
partitioning nature is well-suited to the underlying shared-nothing architecture (i.e., it
generates non-overlapping regions that are also easy to merge compared to space filling
curve). In Figure 4, we compare the uniform and data partitioning schemes. Because
we use a sample instead of the entire dataset, there is some small discrepancy in the
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Fig. 4. Uniform partitioning and Non-uniform partitioning. Uniform partitioning would gen-
erate uneven workloads: P1 contains 22 points while P3 have only 5 points in it. Data-oriented
partitioning, however, produces an even workload: each partition is assigned 10 or 11 points.

size of the partitions. Also, sampling requires an extra scan over the data, thus adding
overhead to the entire job. However, it effectively reduces load skew, especially with
the first optimization, and improves the job completion time as we show in Section 6.

5 Implementation

We implemented dFoF in approximately 3000 lines of C# code using DryadLINQ [16]
the programming interface to Dryad [15]. Dryad is a massive-scale data processing
system that is similar to MapReduce but offers more flexibility because its vertices are
not limited to map or reduce operations. DryadLINQ is a Language-Integrated Query
(LINQ) interface provider for Dryad. The LINQ offers relational-style operators such
as filters, joins, and groupings and users can write complex data query succinctly and
seamlessly in C#. At runtime, DryadLINQ automatically translates and optimizes the
task written in LINQ expressions into a Dryad job which is a directed acyclic graph of
operators with one process per operator. If possible, connected vertices communicate
through shared memory pipes. Otherwise, they communicate through compressed files
stored in a distributed file system. The job is then deployed and executed in the Dryad
cluster.

We wrote the core fof(), mergefof() functions as user-defined operators.
Because both functions have to see all data in the input data partition, we used
DryadLINQ’s apply construct which exposes the entire partition to the operator rather
than a single data at a time. Other than the user defined operators, we used standard
LINQ operators not only for the initial data partitioning and relabeling but also for the
post-processing output of each phase. We also used the lazy evaluation feature of the
LINQ framework to implement the iterative hierarchical merge phase. Thus, we only
submit a single Dryad job for the entire dFoF task. Using MapReduce, we would have
to schedule one MapReduce job for the local clustering, and also one for each itera-
tion of the iterative hierarchical merge process. The entire job coordination is written
in only 120 lines out of a total of 3000 lines. The final Dryad plan to process dataset in
Section 6 consists of 1227 vertices with three hierarchical merges.

For the node-local spatial index used in the FoF computation (and also partitioning
the data), we chose to use a kd-tree [35] because of its simplicity. We implemented both
a standard version of the kd-tree and the optimized version presented in Section 4.1.
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6 Evaluation

In this section, we evaluate the performance and scalability of the dFoF clustering al-
gorithm using two real world datasets. We execute our code on an eight-node cluster
running Windows Server 2008 Datacenter edition Service Pack 1. All nodes are con-
nected to the same gigabit ethernet switch. Each node is equipped with dual Intel Xeon
E5335 2.0GHz quad core CPU, 8GB RAM, and two 500GB SATA disks configured as
RAID 0. Each Dryad process requires 5GB RAM to be allocated, or it is terminated.
This constraint helps quickly detect unacceptable load imbalance. Note that we tuned
neither the hardware nor software configurations other than implementing the algorith-
mic optimizations that we described previously. Our goal is to show improvements in
the relative numbers rather than try and show the best possible absolute numbers.

We evaluate our algorithm on data from a large-scale astronomy simulation cur-
rently running on 2048 compute cores of the Cray XT3 system at the Pittsburgh Su-
percomputing Center [36]. The simulation itself was only about 20% complete at the
time of submission. Therefore we use two relatively early snapshots: S43 and S92 cor-
responding respectively to 580 million years and 1.24 billion years after the Big Bang.
Each snapshot contains 906 million particles occupying 43 GB in uncompressed binary
format. Each particle has a unique identifier and 9 to 10 additional attributes such as
coordinates, velocity vector, mass, gravitational potential stored as 32-bit real numbers.
The data is preloaded into the cluster and is hash partitioned on the particle identifier at-
tribute. Each partition is also compressed using the GZip algorithm. Dryad can directly
read compressed data and decompresses it on-the-fly as needed.

For this particular simulation, astronomers set the distance threshold (ε) to
0.000260417 in units where the size of the simulation volume is normalized to 1. Both
datasets require at least two levels of hierarchical merging.

As the simulation progresses, the Universe becomes increasingly structured (i.e.,
more stars and galaxies are created over time). Thus, S92 has not only more clusters
(3496) than S43 (890) but also has denser regions than S43. The following table shows
the distribution of the number of particles within distance threshold (i.e., density of
data):
Percentile 25 50 75 90 99 99.9 100

S43 6 16 97 373 1,853 8,322 10,494
S92 8 44 1,370 41,037 350,140 386,577 387,136

S92:S43 1.33 2.75 14.12 110.02 188.96 46.45 36.89
Ideally, the structure of data should not affect the runtime of the algorithm so that

scientists can examine and explore snapshots taken at any time of simulation in a similar
amount of time.

Evaluation summary. In the following subsections, we evaluate our dFoF Dryad
implementation. First, we process both snapshots using an eight-node Dryad cluster
while varying the partitioning scheme and the spatial index implementation. These ex-
periments enable us to measure the overall performance of the algorithm and the impact
of our two optimizations. Second, we evaluate dFoF’s scalability by varying the number
of nodes in the cluster and the size of the input data. Finally, we compare dFoF to the
existing OpenMP implementation that the astronomers use today. Overall, we find that
dFoF exhibits a near linear speedup and scaleup even with suboptimal hardware and
software configurations. Additionally, dFoF shows consistent performance regardless
of skew in the input data thanks to the optimization in Section 4.



12

1:04 1:10

19:30 20:36

1:06 1:09 1:11
0

6

12

18

24

Uniform Non-uniform Uniform Non-uniform

S43 S92

A
v
g
. 
T

o
ta

l 

R
u

n
ti

m
e 

(h
o
u

rs
) Normal OPT

Fail

Fig. 5. Average time to cluster entire snapshot. Average of three executions except for jobs that
took longer than 20 hours. Missing bar is due to a failure caused by an out-of-memory error. As
the figure shows, with both optimizations enabled, both snapshots are processed within 70 min.
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Fig. 6. Runtime breakdown across phases. Average of three executions except jobs that take
longer than 20 hours. The initial fof() takes more than 40% of total runtime. The three-level
hierarchical merges, mergefof(), took less than 4% of total runtime. “Other” represents time
to take to run all standard vertices such as filter, partition, joins to glue the phases. Overall, fof()
is the bottleneck and completely dominates when the data is highly skewed and an ordinary kd-
tree is used.

6.1 Performance

In this section, we use the full eight-node cluster, varying the partitioning scheme and
spatial index implementation. For the partitioning scheme, we compare deterministic
uniform partitioning (Uniform) described in Section 3 and dynamic partitioning (Non-
uniform) described in Section 4.2. We also compare an ordinary kd-tree implementation
(Normal) to the optimized version (OPT) described in Section 4.1. We repeat all exper-
iments three times except for Uniform partitioning using the Normal kd-tree because it
took over 20 hours to complete. For Non-uniform partitioning, we use a sample of size
0.1%. We show the total runtime including sampling and planning times. There is no
special reason for using a small sample except to avoid a high overhead of planning. As
the results in this section show, even small samples work well for this particular dataset.

Figure 5 shows the total run times for each variant of the algorithm and each dataset.
For dataset S43, which has less skew in the cluster-size distribution, all variants com-
plete within 70 minutes. However, when there is high skew (i.e., more structures as
in S92), the normal kd-tree implementation takes over 20 hours to complete while the
optimized version still runs in 70 minutes. Uniform-OPT over snapshot S92 did not
complete because it reached full memory capacity while processing a specific data par-
tition, causing the failure of the entire query plan as we discuss in more detail below.

Figure 6 shows the average relative time taken by each phase of the algorithm.
The hierarchical merge occurs in order of mergeLv1, mergeLv2, and mergeLv3. As the
figure shows, local clustering, fof, takes more than 40% of total runtime in all cases
and completely dominates when there is high-skew in the data and a normal kd-tree
is used. All other user-defined functions account for less than 4% of total runtime. All
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a higher variance in peak memory utilization per partition than Non-uniform partitioning. This
high variance caused the crash of one of the partitions with optimized index traversal. The opti-
mized kd-tree index traversal has a higher memory footprint than the normal implementation.

other standard operators account for over 50% of total runtime, but the total is the sum of
more than 30 operators including repartitions, filters, and joins to produce intermediate
and final result for each level of the hierarchical merge. In the following subsections,
we report results only for the dominant fof phase of the computation and analyze the
impact of different partitioning schemes and different spatial index implementations.

In Figures 7 and 8, we measure the per-node runtime and peak memory utilization
of the local fof phase. We plot the quartiles and minimum and maximum values. Low
variance in runtime represents a balanced computational load, and low variance in peak
memory represents balance in both computation and data across different partitions. In
both Figures 7 and 8, Non-uniform partitioning shows a tighter distribution in runtime
and peak memory utilization than uniform partitioning. With uniform partitioning, the
worst scenario happens when we try the optimized kd-tree implementation. Due to high
data skew, one of the partitions runs out of memory causing the entire query plan to fail.
This does not happen with normal kd-tree and uniform partitioning because the opti-
mized kd-tree has a larger memory footprint as discussed in Section 4.1. Non-uniform
partitioning is therefore worth the extra scan over the entire dataset.
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Fig. 9. Speedup. dFoF runtime for each dataset with varying number of nodes. dFoF speedup is
almost linear. OS43 and OS49 are the result of OpenMP implementation of FoF with varying
degree of parallelism. Note that S43 overlaps with S92.

As Figure 7 shows, dFoF with the optimized index (Section 4.1) significantly
outperforms Normal implementation especially when there is significant skew in the
cluster-size distribution. Thanks to the pruning of visited subtrees, the runtime for S92
remains almost the same as that for S43. However, the optimization is not free. Due
to the extra tracking flag, the optimization requires slightly more memory than the or-
dinary implementation as shown in Figure 8. The higher memory requirement could
be alleviated by a more efficient implementation such as keeping a separate bit vector
indexed per node identifier or implicitly constructing a kd-tree on top of an array rather
than keeping pointers to children in each node. Overall, however, the added memory
overhead is negligible compared with the order-of-magnitude gains in runtime.

6.2 Scalability

In this section, we evaluate the scalability of the dFoF algorithm with non-uniform data
partitioning and the optimized kd-tree. In these experiments, we vary the number of
nodes in the cluster and redistribute the input data only to the participating nodes. All
reported results are the average of three runs. The standard deviation is less than 1%.

Figure 9 shows the runtime of dFoF for each dataset and increasing number of
compute nodes. Speedup measures how much faster a system can process the same
dataset if it is allocated more nodes [12]. Ideally, speedup should be linear. That is, a
cluster with N nodes should process the same input data N times faster than a single
node. For both datasets, the runtime of the dFoF is approximately half as long as we
double the number of nodes, showing a close-to perfect linear speedup. We do not
present the number for the single-node case due to an unknown problem in the Dryad
version we use; the system did not schedule remaining operators if currently running
operator takes too long to complete.

Figure 10 shows the scaleup results. Scaleup measures how a system handles data
size that has increased in proportion to the cluster size. Ideally, as the data and cluster
size increase proportionally to each other, the runtime should remain constant. To vary
the data size, we subsample the S43 and S92 datasets. For 4-node and 8-node configura-
tions, the scaleup is close to ideal: the ratio of runtimes to the single-node case are 0.99
and 0.91 respectively. The 2-node experiment showed a scaleup of only 0.83 and 0.78.
We investigated the 2-node case and found that the size of the subsampled dataset was
near the borderline of requiring one additional hierarchical merge. Thus, each partition
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Fig. 10. Scaleup. Runtime of dFoF with increasing data size proportional to the number of nodes.
Except for the two node case where scheduling overhead pronounced, dFoF scales up in linear.

was underloaded and completed quickly, overloading the job scheduler and yielding a
poorer scaleup.

Overall, considering our suboptimal hardware configuration, the scalability of dFoF
is excellent.

6.3 Compared to OpenMP implementation

Astronomers currently use a serial FoF implementation that has been moderately par-
allelized using OpenMP [37] as a means of scheduling computation across multiple
threads that all share the same address space. OpenMP is often used to parallelize pro-
grams that were originally written serially. The two biggest drawbacks of OpenMP are
(1) non-trivial serial portions of code are likely to remain, thereby limiting scalability
by Amdahl’s Law; (2) the target platform must be shared memory. The serial aspects of
this program are state-of-the-art in terms of performance — they represent an existing
program that has been performance-tuned by astrophysicists for over 15 years. It uses
an efficient kd-tree implementation to perform spatial searches, as well as numerous
other performance enhancements. The OpenMP aspects are not performance-oriented,
though. They represent a quick-and-dirty way of attempting to use multiple process-
ing cores that happen to be present on a machine with enough RAM to hold a single
snapshot.

The shared-nothing cluster that we used for the previous experiments represents a
common cost-efficient configuration for modern hardware: roughly 8 cores per node
and one to two GB of RAM per core. Our test dataset is deliberately much larger than
what can be held in RAM of a single one of these nodes. The astrophysics FoF applica-
tion must therefore be run on an unusually large shared-memory platform. In our case,
the University of Washington Department of Astronomy owns a large shared-memory
system with 128 GB of RAM, 16 Opteron 880 single-core processors running at 2.4
GHz, and 3.1 TB of RAID 6 SATA disks.

At the scale of 128 GB of RAM, it is now cheaper to buy a single shared-memory
system than to distribute the same 128 GB across 16 nodes. However, this cost-savings
breaks down at the scales beyond 128 GB. For example, it is not possible to find sym-
metric multiprocessing systems (SMPs) with 1TB of RAM. At this scale, certain ven-
dors offer systems with physically distributed memory that share a global address space
(“Non-Uniform Memory Access” or “NUMA” systems), but these are generally more
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expensive than building a cluster of distributed-memory nodes from commodity hard-
ware. Furthermore, the ostensible advantage of the shared-nothing architecture over a
large, shared-memory system is the scalability of I/O.

Consequently, our goal is to achieve competitive performance with the astrophysics
FoF running on the shared-memory system with our Dryad version running on the
shared-nothing cluster (i.e., 64 GB of total RAM — just barely large enough to fit
the problem in memory). If we do this, then we have demonstrated that the MapReduce
paradigm is an effective means of utilizing cheaper distributed-memory platforms for
clustering calculations at scales large enough to have economic impact.

In order to normalize serial performance, we ran the existing astrophysics FoF ap-
plication on a smaller dataset on both the shared-memory system and our cluster. The
dataset was small enough to fit completely into RAM on a single cluster node. The
shared-memory platform took 61.4 seconds to perform the same analysis that required
34.8 seconds on a cluster node excluding I/O. We do not include I/O in our normaliza-
tion because the system’s storage hardware is still representative of the current state-
of-the-art; only its CPUs are dated. In the following results, we normalize the timings
of the CPU portion of the test on shared-memory system to the standard of the Dryad
cluster hardware.

Running the astronomy FoF algorithm in serial on the shared-memory system for
our test dataset S43 (with the same parameters as our cluster runs) took 5202 seconds in
total — only 1986 of this was actual FoF calculation, the rest was I/O. In comparison,
our Dryad version would likely have taken an estimated 30,000 seconds, as extrapolated
from our optimized Dryad 2-node run assuming ideal scalability. However, since we do
not actually know the serial runtime of Dryad on this dataset, it is difficult to compare a
parallel Dryad run directly to our serial FoF implementation, since there is undoubtedly
parallel overhead induced by running Dryad on more than one node.

The runtime comparisons are much more interesting for S92. The particle distribu-
tion in S92 is more highly clustered than S43, meaning that the clusters are larger on
average, and there are more of them. In this case, the astrophysics FoF takes quite a
bit longer: 16763 seconds for the FoF computation itself and 19721 for the entire run
including I/O, compared to roughly 30,000 seconds for a serial Dryad run of the same
snapshot. The OpenMP implementation still wins, but the difference is smaller than for
S43.

One can also see the effect of S92’s higher clustering on the OpenMP scalability.
The OpenMP version is not efficient for snapshots with many groups spanning multiple
thread domains. This limitation is because multiple threads may start tracking the same
group. When two threads realize they are actually tracking the same group, one gives up
entirely but does not contribute its already-completed work to the survivor. While this
is another optimization that could be implemented in the OpenMP version, astronomers
have not yet done so. This effect can be seen in Figure 9.

Since our Dryad version performed similarly on both snapshots, we conclude that
our methodology achieves scalability in both computational work and I/O. The advan-
tage of our implementation can be seen when we run on more nodes. This advantage
allows us to match the performance of the astrophysics code on S43 (3513 seconds vs.
4141 seconds) and to substantially outperform it for S92 (11763 seconds vs. 4293 sec-
onds). This idea is in keeping with the MapReduce strategy: We employ a technique
that may be less than optimally efficient in serial, but that scales very well. Conse-
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quently, we have achieved our goal of reducing time-to-solution on platforms that offer
an economic advantage over current shared-memory approaches at large scales.

7 Conclusion

Science is rapidly becoming a data management problem. Scaling existing data analysis
techniques is very important to expedite the knowledge discovery process. In this paper,
we designed and implemented a standard clustering algorithm to analyze astrophysical
simulation output using a popular MapReduce-style data analysis platform. Through
experiments on two real datasets and a small eight-node lab-size cluster, we show that
our proposed dFoF algorithm achieves near-linear scalability and performs consistently
regardless of data skew. To achieve such performance, we leverage non-uniform data
partitioning based on sampling and introduce an optimized spatial index approach. An
interesting area of future work, is to extend dFoF to the DBSCAN algorithm.
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