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Abstract— As the datasets used to fuel modern scientific discov-
ery grow increasingly large, they become increasingly difficult to
manage using conventional software. Parallel database manage-
ment systems (DBMSs) and massive-scale data processing systems
such as MapReduce hold promise to address this challenge.
However, since these systems have not been expressly designed
for scientific applications, their efficacy in this domain has not
been thoroughly tested.

In this paper, we study the performance of these engines
in one specific domain: massive astrophysical simulations. We
develop a use case that comprises five representative queries. We
implement this use case in one distributed DBMS and in the
Pig/Hadoop system. We compare the performance of the tools to
each other and to hand-written IDL scripts. We find that certain
representative analyses are easy to express in each engine’s high-
level language and both systems provide competitive performance
and improved scalability relative to current IDL-based methods.

I. INTRODUCTION

Advances in high-performance computing are having a
transformative impact on many scientific disciplines. Advances
in compute power and an increased ability to harness this
power enable scientists, among other tasks, to run simulations
at an unprecedented scale. Simulations are used to model
the behavior of complex natural systems ranging from the
interaction of subatomic particles to the evolution of the
universe. These simulations produce an ever more massive
amount of data that must be analyzed, interacted with, and
understood by the scientist.

While scientists have access to tools and an unprecedented
amount of computational resources to run increasingly com-
plex simulations, their ability to analyze the resulting data
remains limited. The reason is not lack of expertise, but
simple economics. A simulation code is typically used by
very large number of researchers, and it is often in use
for 10 years or more. Data analysis applications, however,
are often unique to individual researchers and evolve much
more quickly. Therefore, while it may be affordable for a
science discipline to invest the time and effort required to
develop highly scalable simulation applications using hand-
written code in languages like Fortran or C, it is often
infeasible for individual researchers to each invest a similar
effort in developing their own scalable hand-written data
analysis applications. Consequently, data analysis is becoming
the bottleneck to discovery: It is not uncommon for scientists

to artificially limit the scale or resolution of their simulations
in order to accommodate inadequate data analysis tools.

Existing parallel database management systems, such as
Oracle [1], DB2 [2], Teradata [3], and Greenplum [4], and
new types of massive-scale data processing platforms, such as
MapReduce [5], Hadoop [6], and Dryad [7], can potentially
facilitate these data analysis tasks. Each system is equipped
with a high-level language (e.g., SQL [8], DryadLINQ [9],
Pig Latin [10], or Sawzall [11]). Programs written in these
languages are compiled into a graph of operators called a plan.
The plan is then executed as a parallel program distributed
across a cluster. However, the ability of these tools to support
realistic scientific analysis is not clear; some argue that these
systems are wholly ill-suited to the task [12]. Although these
systems have limitations, the absence of fully developed
alternatives [12] raises the question: are these systems still
better than the state of the art, which consists of writing custom
scripts and code to carry out the analysis?

In this paper, we strive to answer this question for one
specific domain: astrophysical simulations. DBMSs have not
been previously applied to this data type: DBMSs are used
by observational astronomers to store sky survey images [13],
[14], but not to store astrophysical simulation results.

We explore the emergent data management needs of the
University of Washington’s “N-body Shop” group, which
specializes in the development and utilization of large-scale
simulations (specifically, “N-body tree codes” [15]). These
simulations serve to investigate the formation and evolution of
large scale structures in the universe. The UW N-body Shop
is representative of the current state-of-the-art in astrophysical
cosmological simulation. In 2008, the N-body Shop was the
10" largest consumer of NSF Teragrid [16] time, using 7.5
million CPU hours and generated 50 terabytes of raw data,
with an additional 25 terabytes of post-processing information.
In this paper, we discuss the analysis of the results of three
simulations with snapshots (i.e. a snapshot of the state of the
simulated system at a single instant in time) ranging in size
from 170 MB to 36 GB. The total amount of data generated
by each simulation (i.e., all snapshots together) ranges in size
from 55 GB to a few TB.

We find that the required analysis involves three types of
tasks: filtering and correlating the data at different times in



the simulation, clustering data within one simulated timestep,
and querying the clustered data. In this paper, we focus on the
first group of tasks and study how well two existing types of
tools — a distributed relational DBMS and a MapReduce-like
system with a declarative front-end called Pig/Hadoop [10],
[6] — support this analysis. We implement the use case in
each of the two tools and measure its performance on clusters
of different sizes. We compare the performance and usability
of these two tools to the state-of-the-art manually written
programs and scripts. We report our experimental results and
also discuss our general experience with using these tools in
this specific context including what we find to be some benefits
and limitations of each type of system.

Overall, we find that both types of engines offer a com-
pelling alternative to current scientific data management strate-
gies. In particular, the relational DBMS offers excellent per-
formance when manipulating datasets whose size significantly
outweighs the available memory. On the other hand, the
Pig/Hadoop system offers somewhat more consistent speed-up
and performs as well as the DBMS once the cluster becomes
sufficiently large.

II. ASTRONOMY SIMULATION APPLICATION DOMAIN

Cosmological simulations are used to study how structure
forms and evolves in the universe on size scales ranging from a
few million light-years to several billion light-years. Typically,
the simulations start shortly after the Big Bang and run the full
lifespan of the universe, roughly 14 billion years. Simulations
provide an invaluable contribution to our understanding of how
the universe evolved, because the overwhelming majority of
matter in the universe does not emit light and is therefore invis-
ible to direct detection by telescopes. Furthermore, simulations
represent our only way to experiment with cosmic objects
such as stars, galaxies, black holes, and clusters of galaxies.
For these reasons, astrophysics was among the first scientific
disciplines to utilize leading-edge computational resources, a
heritage that has continued to the present day.

In the simulations under discussion, the universe is rep-
resented by a set of particles. There are three varieties of
particles: dark matter, gas, and stars. Some properties (e.g.,
position, mass, velocity) are common to all particles. Other
properties (e.g., formation time, temperature, chemical con-
tent) are specific only to certain types. All particles are
points in a 3D space and are simulated over a series of
discrete timesteps. Every few timesteps, the simulator outputs
a snapshot of the state of the simulated universe. Each snapshot
records all properties of all particles at the time of the
snapshot. Simulations of this type currently have between
108 — 109 particles (with approximately 100 bytes per particle)
and output between a few dozen and a few hundred snapshots
per run. Table I shows the names of each simulation used
in our experiments and the sizes of their snapshot files. The
largest run, cosmo25, has a total of a few TB of snapshot files.

For the UW N-body group, the state-of-the-art approach
to data analysis in the absence of relational DBMSs and
MapReduce is to use a combination of many handwritten tools,

TABLE I
SIMULATION DATASETS STUDIED IN THE PAPER.

Name No. Particles  Snapshot Size (binary)
dbtest128g 4.2 million 169 MB
cosmo50 33.6 million 1.4 GB
cosmo25 916.8 million 36 GB

programs, and scripts created over the past 15 years. Since
the simulation code generates one output file per snapshot,
all post-processing tools are written to read this standard
snapshot-based format. Many of these tools generate additional
data, which are then stored in separate files.

Some tools were developed by the N-body Shop, and are
widely used within the astrophysical simulation community.
One such tools is TIPSY [17], an X11-based particle vi-
sualization tool modeled after the Santa Cruz/Lick image
processing package VISTA. There are also several codes,
“group finders” [18], [19], [20], [21] that identify physi-
cally meaningful collections of particles within the simulation
snapshots. Other tools are scripts that are usually written in
interpreted languages such as Python, Perl, or Interactive Data
Language (IDL) [22]. A trait common to these tools is that
they operate in main memory — they require at least one
full snapshot to be read into RAM before any processing can
begin.

Astrophysicists are facing two big challenges in continu-
ing to use existing strategies for data analysis. The first is
scalability: the size of the simulations is growing much faster
than the memory capacity of shared-memory platforms on
which to deploy serial data analysis software. Secondly, the
I/0O bandwidth of a single node has increased little over the
past decade, meaning that simulation snapshots are incurring
an increasingly long delay when loading data into memory.
Consequently, the queries that filter and correlate data from
different snapshots require very large main memories RAM
and become highly I/O constrained.

Scalability in RAM and I/O bandwidth can be achieved
by harnessing large numbers of distributed-memory nodes,
provided one’s data analysis software can scale on such ar-
chitectures. The astrophysical community has investigated the
efficacy of application-specific parallel libraries to reduce the
development time of scalable in-RAM data analysis pipelines.
For example, Ntropy [23], [24] provides a parallel library
for the analysis of massive particle datasets, and Ntropy
applications can scale to thousands of distributed-memory
nodes. The principle disadvantages of Ntropy are that 1) it
still requires a steep learning curve and 2) this knowledge is
not transferable outside of particle-based scientific datasets.

DBMSs and frameworks like Hadoop [6] and Dryad [7]
offer potentially the same scalability as application-specific
libraries, but can also be used across a broad range of science
applications. They may also be easier to learn, especially if the
researcher can utilize the declarative languages built on top of
the frameworks, such as Pig Latin [10] and DryadLINQ [9].
Consequently, we wish to assess the effectiveness of these



TABLE I
ATTRIBUTES DESCRIBING PARTICLES IN A SIMPLE COSMOLOGY SCHEMA

Attribute Description Particles described
iOrder unique identifier all
XY, Z position in Cartesian coordinates all

Ve, Vy, Ve velocity components all

Phi gravitational potential all

Metals proportion of heavy elements gas, stars
Tform formation time stars

Eps gravitational softening radius stars, dark matter
DenSmooth | local smoothed density dark matter
Hsmooth smoothing radius gas

Rho density gas

tools for scientific data analysis in the regime where current
state-of-the-art strategies have become constrained by I/O
bandwidth and shared memory requirements.

III. USE CASE

In order to study how well existing data management sys-
tems support the analysis tasks described above, we develop a
concrete use case comprising a small number of representative
queries.

A. Data Model

Since different species of particles have different properties,
we model the data as three different relations, or tables: one
per type of particle. The attributes for each relation are the
ones shown in Table II. Furthermore, we horizontally partition
each table: Each partition holds the data for one snapshot and
one species of particles.

For each dataset, we analyzed two snapshots of data.
Snapshots are output from the simulation in TIPSY binary
format. In this binary format, this amounted to 169 MB, 1.4
GB, and 36 GB of data from simulations dbtest128g, cosmo50,
and cosmo25 respectively.

B. Selection and Correlation Queries

The simplest form of analysis that astronomers perform on
the output of a simulation is to look-up specific particles that
match given conditions.

Q1: Return all particles whose property X is above
a given threshold at step SI.

Q1 corresponds to one of the simplest possible filtering
queries: find all gas particles with temperature greater than
150000 K. Gas particles at temperatures at or above 10° K are
categorized as “warm/hot”; these particles are typically found
in the regions between galaxies known as the Intergalactic
Medium (IGM). Astronomers seek to understand properties
of the IGM such as spatial extent and total mass, and a tem-
perature threshold is an effective way to distinguish particles
belonging to the IGM from the rest of the simulation.

These filtering queries correspond in SQL to what is known
as select queries, since they return only selected rows.

Q2: Return all particles of type T within distance
R of point P.

Q2 is another common type of select query that involves
returning particles based upon physical proximity. In contrast
to Ql, Q2 demonstrates the need for spatial operators and
help us assess the expressiveness of the competing tools. A
concrete version of Q2 which we use in our experiments
finds all the stars that lie within the virial radius of the
center of mass of a given halo. A halo is the ensemble of
particles that surrounds a galaxy or cluster of galaxies. The
virial radius is the radius of a sphere, centered on a galaxy,
within which virial equilibrium holds. Virial equilibrium
describes a system in dynamic balance; stars within the virial
radius are gravitationally bound to the system. Astronomers
use the virial radius to consistently define the edge of the halo.

Q3: Return all particles of type T within distance R
of point P whose property X is above a threshold
computed at timestep S1.

Complex calculations can be expressed in a database as
user-defined functions (UDFs). A UDF provides astronomers
a framework for expressing more sophisticated selection con-
ditions based upon data interdependencies.

Our concrete example of Q3 uses a UDF to calculate
the virial temperature from a galaxy’s mass and radius.
An astronomer might ask to return all gas particles whose
temperature is above the virial temperature at a given step
within a given halo. Such particles are considered shocked.
The proportion of shocked gas to total gas tells astronomers
about how the galaxy has been assembled over time.

Q4: Return gas particles destroyed between step Sq
and Ss.

In addition to the select queries discussed above, scientists
often need to correlate information across two snapshots.
In particular, astronomers often want to track the evolution
of particles. For example, a scientist may want to see the
identifiers of all particles destroyed between two snapshots.
Such queries correspond in SQL to what are known as join
queries since they “join” together the information from two
different snapshots.

A join operator finds pairs of tuples, one from each of two
input relations, that share some property. In this query, the
join condition associates identical particles using the unique
identifier, 1Order. Destroyed particles are identified as those
values of iOrder from timestep S; that do not have a
corresponding partner in timestep So.

In these simulations, stars form from gas; each gas particle
can form up to four star particles before it is deleted from
the simulation. For our concrete version of Q4, we select
deleted gas particles, as they indicate regions of vigorous star
formation.

Q5: Return all particles whose property X changes
from Sy to Ss.

Along with tracking how many particles are created or
deleted, astronomers are often also interested in the change



of properties over time. For example, when stars explode in
supernovae, they release heavy elements called metals into the
intergalactic medium. Astronomers are interested in tracking
what happens to the gas that encounters these metals and
becomes enriched. Our concrete version of Q5 selects gas
that starts with zero metal content at one step and has a non-
zero metal content at a later time step so as to return recently
enriched material.

In summary, the simplest form of data analysis can thus be
expressed in the form of select-project-join (SPJ) queries (the
“project” operator simply discards unwanted attributes). The
general class of SPJ queries is considered to be the simplest
non-trivial subset of the full relational algebra, the formal
basis for SQL.

Simple queries such as Q1, Q2, and Q3 admit a trivial
parallel evaluation strategy: partition the data across N nodes,
evaluate the same query on each node, and merge the results.
These search-oriented queries are sometimes amenable to the
use of indexes to quickly locate particles that match a specific
condition. If indexes are not available, the best strategy is to
do an exhaustive scan of every particle as quickly as possible.

Queries Q4 & Q5 can be expensive to compute because
they require correlating two large datasets. A naive algorithm
might build a large data structure in memory for particles in
S1 then probe this data structure for each value from S5. This
algorithm is limited by the available memory of the computer.
Alternatively, relational databases perform a similar algorithm,
but automatically dividing the work into pieces that fit in main
memory — the limiting factor is then the size of the disk rather
than available main memory'. Parallel programming models
such as MapReduce use a similar mechanism to provide
scalability across multiple computers: each computer handles
a particular set of particle identifiers, so no one computer
performs too much work. We evaluate both approaches in
Section VI.

IV. RELATIONAL DBMS IMPLEMENTATION

Relational DBMSs (RDBMSs) have a long history of pro-
viding high performance when querying or updating disk-
resident data [25]. In our experiments, we use a common, com-
mercial RDBMS, which we call Database Z. We performed
no special tuning of Database Z.

In a RDBMS, queries are expressed in SQL — a declarative
language in which users describe the result they need, but not
specifically how to go about obtaining it. For example, the
queries in our use case can be expressed in SQL as shown in
Table III. The RDBMS analyzes each such query and decides
on an evaluation strategy, called a query plan. The space of
possible plans is large in part since the underlying formalism
of SQL called the relational algebra admits a variety of
algebraic rewrite rules. Additionally, each logical operator has
many different physical implementations that the system can
choose from. For example, in Q5, the system can choose to

'DBMSs also use other algorithms for joining large relations such as
“nested-loop” and “sort-merge”.

apply the condition metals=0 either before or after joining
timesteps g1 and ¢2. It can then choose from one of several
join algorithms depending on the properties of the input data.
Out of this space of plans, the system selects a good plan
by estimating the cost of the candidates. All modern DBMS
perform this style of cost-based algebraic optimization.

RDBMSs use indexes to reduce the number of I/O opera-
tions in a query plan. An index is a data structure that enables
the DBMS to skip over irrelevant data without reading it into
memory. The two most common indexes used in an RDBMS
are the hash index (amortized constant time access) and the B+
tree index (logarithmic time access with robust performance
on varying data). Indexes may have additional properties that
affect their performance [26].

Declarative queries provide a means to automatically
achieve “disk scalability” — as long as the dataset fits on disk,
the RDBMS is guaranteed to finish every query. A RDBMS
will never crash with an out-of-memory error, and, if config-
ured properly, will never thrash virtual memory. The reason
these guarantees are possible is that the user cannot control
which algorithms are used, and therefore cannot instruct the
RDBMS to anything untoward such as loading the entire
dataset into memory before operating on it. An SQL query
is also frequently far shorter and simpler than an equivalent
implementation in a general-purpose programming language.

Query 1. As shown in Table III, Q1 specifies that we are
interested in the iOrder of all particles inside table gas43,
which represents all gas particles in snapshot 43 of our largest
simulation, cosmo25, with attribute temp above a threshold.
To improve performance, we created a B-tree index on the
temp attribute using a simple CREATE INDEX command.

Query 2. Q2 is an example of query with a spatial predicate
that is awkward to express in plain SQL (though ,any relational
DBMSs now include spatial extensions). Database Z supports
a spatial index but we did not use it in order to study query
performance when all input data must be read, as in the case
of Pig and other MapReduce-like systems.

Query 2 also exhibits an unusual idiom: Multiple relations
referenced in the FROM clause, but no join condition between
them. In this case, SQL generates the cross product of the
relations: every possible pairwise combination of tuples is
produced in the output. In this case, this idiom is used only to
bring just one appropriate tuple into context from the stat43
table, so the number of tuples does not actually increase.

Query 3. Q3 is similar to Q2, but 1) adds an additional con-
dition on the temp attribute, and 2) expresses the temperature
threshold as a calculation involving a user-defined function.
The index on temperature we created for Q1 can potentially
be reused in this query.

Query 4 & 5. Q4 and Q5 both involve joins on the iOrder
attribute, so we create an index on iOrder. In a production
system, iOrder would likely be designated a primary key,
which would enable additional optimizations that we discuss in
Section VI. Q4 could be expressed using either a join or a set
difference operation. We chose the former formulation to test
the general performance of correlation queries. In particular,



we identified particles at one timestep that have no matching
partner in a later timestep, implying that the particle was
destroyed during the course of the simulation.

Distributed query processing. Several RDBMSs [4], [27],
[28] support parallel queries, where data can be partitioned
across several nodes and accessed simultaneously. An RDBMS
can support inter-operator parallelism or intra-operator par-
allelism or both. Inter-operator parallelism refers to the ability
of the query scheduler to map different subplans to different
nodes for simultaneous execution. Intra-operator parallelism
refers to the ability to instantiate multiple copies of one oper-
ator that work in concert to process a partitioned dataset. Both
forms rely crucially on partitioning the data appropriately.

Database Z does not support intra-operator parallelism, but
it does support a robust and thorough form of inter-operator
parallelism. We use the term distributed queries to distinguish
the class of queries supported by this system from those
involving intra-operator parallelism [4], [27], [28], [29], [30].

In the system that we study, remote database servers may
be linked to a head instance of Database Z, allowing them to
be referenced in queries using an extra layer of qualification.
For example, the following query accesses data from a table
named gas43 in the default namespace dbo of a database
named cosmo50 on a remote server named orlando:

SELECT » FROM orlando.cosmo50.dbo.gas43

It would be tedious and error-prone to explicitly reference
every node in the cluster each time one wished to query a
partitioned table. Worse, if the data is reorganized to utilize
more nodes, existing queries would not function until they
were updated. Thankfully, relational databases natively provide
a mechanism for logical data independence in the form of
views. A view is simply a named query that can be referenced
as a table in another query. For example, the following
statement creates a view named gas60_dist computed as the
union of three subqueries, each referencing a different table
on a different node in the cluster. The output of this query is
not pre-computed. The view is like a virtual table.

CREATE VIEW gas43_dist AS
SELECT » FROM orlando.cosmo50.dbo.gas43

UNION ALL

SELECT » FROM newyork.cosmo50.dbo.gas43

UNION ALL
SELECT % FROM beijing.cosmo50.dbo.gas43

This kind of view is referred to as a distributed partitioned
view in the Database Z documentation. The UNION ALL clause
merges the results from two subqueries. This clause is distin-
guished from UNION; the latter checks for and removes any
duplicate tuples, which is an expensive operation that can be
avoided if the partitions are known to be disjoint a priori.

With this view established, we can write the following query
to access data across all three nodes transparently:

SELECT % FROM gas43_dist
WHERE temp > 150000

No explicit knowledge of or reference to the distribution
policy is necessary — the user need not care if this database

is running on a single enterprise-scale server or across many
commodity workstation-class machines.

Since the remote servers are known to support full SQL
queries, the optimizer on the head node that receives the query
is free to reorder operations to push more work down to the
data nodes. For example, in the query above, a naive evaluation
strategy would be to stream all tuples from all nodes back
to the head node, where the filter temp > 150000 would be
applied. A better plan, however, is one found automatically by
Database Z. It pushes the filter down to each node, essentially
generating an equivalent query of the form:

SELECT » FROM orlando.cosmo50.dbo.gas43
WHERE temp > 150000
UNION ALL

SELECT * FROM newyork.cosmo50.dbo.gas43
WHERE temp > 150000

The Database Z optimizer does not actually generate a
new SQL statement; queries are represented internally as
relational algebra expressions. This example simply illustrates
the semantics of the optimization applied.

In our experiments, we partitioned the data across 1, 2, 4 and
8 nodes to assess scalability and performance of distributed
queries in Database Z. We created the appropriate views for
each configuration. We manually adjusted a few of these views
to compel the optimizer to use a more efficient plan.

V. PIG/HADOOP IMPLEMENTATION

MapReduce [5] is a programming model for processing
massive-scale data sets in large shared-nothing clusters. Users
specify a map function that generates a set of key/value pairs,
and a reduce function that merges or aggregates all values
associated with the same key. A single combination of a map
function and a reduce function is called a job. In SQL, a
MapReduce job can usually be expressed as an aggregation
query (i.e., a query involving a GROUP BY clause).

MapReduce programs are automatically parallelized and
executed on a cluster. Data partitioning, scheduling, and
inter-machine communication are all handled by the run-time
system. Note, however, that these systems do not offer any
“smart” partitioning. The input data is simply split into fixed-
size chunks (a recommended 128MB in our experiments) that
are spread across nodes. In contrast, relational DBMSs enable
users to specify how the data should be partitioned and exploit
the partitioning knowledge during query optimization. Overall,
however, MapReduce provides a lightweight alternative to
parallel programming and is becoming popular in variety of
domains.

Hadoop [6] is an open-source implementation of MapRe-
duce written in Java. Because Hadoop has no predefined
schema, data must be repeatedly parsed at the beginning of
each query. However, because the parsing algorithm we used
is extremely straight-forward, this extra step did not introduce
any significant overhead.

The Pig [10] engine provides a high-level language over the
low level map and reduce primitives to simplify programming.
Users write procedural scripts in Pig Latin that are compiled



TABLE III
IMPLEMENTATIONS OF Q1-Q5 IN SQL AND PIG LATIN.

QF SQL

Pig Latin

Ql
SELECT iOrder

FROM gas43

WHERE temp > 150000

// LOAD and STORE statements are only presented for Q1
rawGas = LOAD ’cosmo25cmb.768g.00043_gas.bin’

USING quark.pig.BinCosmoLoad (’gas’);

FOREACH rawGas

GENERATE $0 AS pid:long, $10 AS temp:double;
filteredGas = FILTER gas BY temp > 150000;
filteredGasPid = FOREACH filteredGas GENERATE pid;
STORE filteredGasPid INTO ’'gl_cosmo25.00043_gas’;

gas =

Q2 and Q3

SELECT g.iOrder dark = FOREACH rawDark
FROM gas43 g, stat43 h GENERATE $0 AS pid:long, $2 AS px:double,
WHERE (g.x-(h.Xc-12.5)/25)*(g.x—(h.Xc-12.5)/25) $3 AS py:double, $4 AS pz:double;
+ (g.y—(h.Yc-12.5)/25)*(g.y—(h.Yc-12.5) /25) filteredDark = FILTER dark BY
+ (g.z-(h.Z2c-12.5)/25) % (g.z-(h.Zc-12.5) /25) (px—($XC-12.5) /25) * (px— ($XC-12.5) /25) +
<= (h.Rvir+h.Rvir)/6.25e8 (py—($YC-12.5) /25) x (py— ($YC-12.5) /25) +
AND h.HaloID = 1 (pz—($2C-12.5) /25) * (pz—($2C-12.5) /25)
// The following condition appears only in Q3 <= ($RVIR*$RVIR)/6.25e8
AND g.temp > VirialTemp (h.Rvir, h.Mvir) // The following condition appears only in Q3
AND g.temp > VirialTemp (h.Rvir, h.Mvir)
filteredDarkPid = FOREACH filteredDark GENERATE pid;
Q4 SELECT gl.iOrder star43 = FOREACH rawGas43 GENERATE $0 AS pid:long;
FROM gas43 gl FULL OUTER JOIN gas60 g2 star60 = FOREACH rawGas60 GENERATE $0 AS pid:long;
ON gl.iOrder=g2.iOrder groupedGas = COGROUP star43 BY pid, star60 BY pid;
WHERE g2.iOrder is NULL selectedGas = FOREACH groupedGas GENERATE
FLATTEN ( (IsEmpty (gas43) ? null : gas43)) as s43,
FLATTEN ( (IsEmpty (gas60) ? null : gas60)) as s60;
destroyed = FILTER selectedGas BY s60 is null;
Q35 SELECT gl.iOrder gas43 = FOREACH rawGas43
FROM gas43 gl, gas60 g2 GENERATE $0 AS pid:long, $2 AS px:double,
WHERE gl.iOrder = g2.iOrder $3 AS py:double, $4 AS pz:double,
AND gl.metals = 0 $12 AS metals:double;
AND g2.metals > 0 gas60 = FOREACH rawGas60

GENERATE $0 AS pid:long, $2 AS px:double,
$3 AS py:double, $4 AS pz:double,
$12 AS metals:double;
gas43 = FILTER gas43 BY metals == 0.0;
gas60 = FILTER gas60 BY metals > 0.0;
gasGrouped = COGROUP gas43 BY pid, gas60 BY pid;
filteredGas = FILTER gasGrouped BY NOT IsEmpty (gas43)
AND NOT IsEmpty (gas60);
filteredGasPid = FOREACH filteredGas GENERATE group;

into a network of MapReduce jobs. Each query in our astron-
omy use case can be encoded as a Pig Latin script, as shown
in the right-hand column of Table III. We explain these scripts
in more detail in the remainder of this section.

Query 1. Q1 is a simple selection query. Here, the LOAD
command specifies which file the system should read and how
that file should be parsed. We chose to split the particle into
files based on type, just as we used separate tables in the
RDBMS implementation. Since Hadoop is not aware of the
schema of the data before it loads it and because it provides
no indexing capability, the system must load and process files
in their entirety.

The two FOREACH-GENERATE commands simply project
out unnecessary attributes to reduce the data volume. FILTER
performs the actual selection. Finally STORE dumps the result
into a new HDFS file. There is no other way for users to get
output data in Pig/Hadoop.

Since this query requires no grouping, the entire query is
performed in one MapReduce job comprising only map tasks.
Query 2. Q2 is similar to Q1 with a more complex predicate.
Query 3. The third query, the “select-project with UDF” query,

is syntactically similar to Q2 and Q1, but uses a UDF called
VirialTemp as additional filtering condition. Pig Latin posed
no difficulty registering and calling a custom Java function.
Query 4. This query is most naturally expressed with a
relational-style join operator. In the current version of Pig,
a full outer join can be written in two steps. First, the two
joined relations are COGROUPed by join attribute (pid). For
each distinct pid value, the COGROUP operator generates
a tuple comprised of two bags® containing tuples from each
relation sharing a common pid. The following FOREACH
statement transforms the output of COGROUP into a standard
full outer join output by substituting nulls for empty bags>.
Finally, a FILTER is used to select destroyed particles by
examining null value in s60 field.

This query is converted into a single MapReduce job with
both map and reduce tasks. The map step loads the data and
sends tuples to the reduce job based on their pid values. The
reduce job performs the join and filter operations. Different

2A bag is a collection that allows duplicates, in contrast to a set.
3In Q4, each bag contains at most one element because pid is unique in
each input.
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reduce tasks process tuples with different sets of pid values.
Query 5. This join query is similar to Query 4 and thus our
implementation is also similar. For Q5, we load the input data
into two bags because the selection conditions differ. As with
Query 4, this script compiles into a single MapReduce job.

Overall, we found it quite natural to express our use case
queries in the Pig Latin scripting language. We note that
most of our queries only touch a few columns/variables in the
dataset, and as such, a column-store system [31] [32] might
have a significant advantage over a traditional RDBMS or
Hadoop. We leave the study of CStore DBMSs in the context
of astrophysical simulation analysis for future work.

VI. EVALUATION

In this section, we present results from running all five
queries on both systems and different cluster configurations.
Given the relatively manageable size of our data, we use
a cluster of only eight nodes. We measure two primary
values: performance on a single node and speedup achieved
by increasing the cluster size.

For all Database Z and Pig/Hadoop tests, each node had two
quad-core Intel Xeon E5335 processors running at 2.0 GHz, 16
GB RAM, and two 500 GB SATA disks in RAID 0. The IDL
platform was an SGI Altix with 16 Opteron 880 processors
running at 2.4 GHz, 128 GB RAM, and 3.1 TB of RAID 6
SATA disk. The IDL system was thus significantly different
from the Database Z and Hadoop platforms, and therefore the
runtimes are not directly comparable.

A. Single-Node Query Performance

Figure 1 shows the single-node query latencies for three of
the five queries for three datasets and three engines: Database
Z, Pig/Hadoop, and IDL. The latter runs the original analysis
script used by the astronomers. The figure shows the average
of three executions of each query. The variance is too small
to be seen. Between executions, we restarted the machine to
clear all caches. Figure 2 highlights the same results for the
largest dataset on a linear scale.

Overall, IDL shows the most consistent numbers across
queries. We find that its execution time is completely dom-
inated by load times. As noted previously, IDL loads all data
into memory before it operates on it (which is why it needs to
run with the 128 GB of RAM!). In Q1 - Q3, IDL had to read
in one snapshot, while in Q4 and Q5 it had to read in two.

Interestingly, the Hadoop runtime in Figure 2, although
presumably also dominated by load times, shows significantly
more variance than IDL. This is because the IDL system had
enough RAM to completely fit two snapshots of cosmo25, but
a Hadoop node only had 16GB of RAM, enough for only half
of a single snapshot.

Database Z performs better than Hadoop under the same
limited memory conditions. To see why, consider Q2. The
performance of all engines is most similar on Q2, where
the RDBMS, like the other engines, simply scans the input
data and filters it. On this query, Pig/Hadoop shows a higher
overhead compared with Database Z. One reason for this is the
query startup cost; Hadoop must start several new processes
on remote nodes to execute a query.

Now consider Q1, where the benefits of indexing are appar-
ent. While the performance of Pig/Hadoop and IDL remain
approximately the same as for Q2, the query time for the
DBMS is significantly reduced relative to Q1. The reason is
that the DBMS uses the index to identify exactly those pages
on disk that must be reads and only reads those. In general,
the performance benefit of an index is sensitive to properties
of the data, the index, and the optimizer and is therefore not
generally predictable [26].

Our results for Q1 do not exploit covering indexes, an
optimization that would typically be available in practice.
Consider an index over two attributes (temp, iOrder). In
this case, the DBMS does not need to use the index to
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look up pages in the original table — all the data needed
to answer the query are available in the index itself. This
optimization produces remarkable performance benefits — Q1
can be evaluated in under 100 ms!

Q3 shows a similar effect as Q1 because the UDF to
compute VirialTemp does not prevent the use of the index
on temperature.

The improved performance of the RDBMS is especially
clear on the two queries involving joins, Q4 and Q5. The
RDBMS is once again able to exploit indexes. For Q4, the
DBMS can answer the whole query using the (covering) index.
This index was also sorted on iOrder, allowing sequential I/O
instead of random I/O during the evaluation of the join.

In these experiments, we cleared all caches between runs.
In practice, query times could go down for all systems thanks
to caching. This would lead to the most significant runtime
improvement for the IDL approach that runs on a system with
128 GB RAM and can thus cache entire snapshots at the time.
To exploit such a cache, however, a scientist would need to
access the same snapshot repeatedly.

In summary, in contrast to IDL, on a single node, both
Pig/Hadoop and Database Z give a researcher the ability to
analyze datasets that are significantly larger than the RAM of
that node, and do so in a time comparable to or better than IDL
on a much more expensive system with enough RAM to hold
the dataset in memory. The RDBMS is especially efficient in
its memory management.

B. PFarallel Query Processing Performance

We evaluate speedup through experiments on the largest of
the three datasets. Speedup refers to improved query execution
time when using additional nodes to process the same dataset.
For perfect speedup, given a data set and a query, the execution
time for a cluster of N nodes should be equal to %, where
T, is the query execution time on a single node. Figures 3
through 6 show the results. Overall, both Pig/Hadoop and the
RDBMS offer adequate speedup. Hadoop exhibits the most
consistent speedup for all 5 of our queries. In the worse case,
(Q1) speedup is still over 80% linear on 8 nodes, with most
of the other queries achieving over 90% linearity on 8 nodes.
While Database Z was faster on the single node experiments,

its speedup is inconsistent on some queries, especially Q2.
The speedup limitations of Database Z stem from a parallel
execution model that involves funneling results back to a head
node, a bottleneck for scalability. We expect this problem to
become more apparent as the number of nodes increases. For
our test dataset, Hadoop seems to be at least as fast as Database
Z on 8 nodes, and in Q2 it is significantly faster.

More specifically, Figure 3 compares performance for both
Q1 and Q2. For Q1 (squares), we see smooth speedup in both
Hadoop and Database Z. Both systems exhibit diminishing re-
turns as the number of nodes increases. An index on the temp
attribute and a relatively small query result size minimizes the
overhead of streaming all result tuples back to the head node,
so Database Z outperforms Hadoop easily.

In Q2 (circles), Hadoop exhibits a smooth speedup with
some diminishing returns. Database Z however is erratic —
additional nodes do not always reduce elapsed time. This result
is consistently reproducible: two nodes are slower than one
node, and eight nodes are more expensive than four nodes.
This result demonstrates the overhead of providing parallel
processing. Although it is difficult to ascertain exactly where
the additional costs are incurred, it is clear from the other
queries that there is some cost to coordinating a distributed
query. Query latency improves only when this overhead is
outweighed by the time savings in processing each data
partition much faster.

In Figure 4, we see that Q3 exhibits similar characteristics to
Q2: the overhead of managing a distributed query is apparent
in the slope between the 1-node case and the 2-node case,
but the parallelism still pays off in this case. Once again, 4
nodes appears to be the “sweet spot.” Speedup and overall
performance between Hadoop and Database Z are comparable
for this query.

Q4 and QS5 are the most expensive queries for both systems
(Figure 5 and Figure 6). In both cases, Database Z significantly
outperforms Hadoop, though the effect is diminished as the
number of nodes increases. Interestingly, the speedup curve
for Database Z is quite flat. Although this is generally a bad
sign, the comparison with Hadoop shows that the flatness is
better attributed to the strong performance of the single node
case than simply poor speedup.

It is important to point out that these experiments do not
properly represent the operational performance of Database
Z — the database was unfairly penalized by not allowing it to
exercise some of its most important features such as caching.
We also did almost no physical database tuning (selecting
views to materialize, which is a form of caching, changing
properties of indexes, etc.).

However, this strength also illustrates a well-known weak-
ness of relational databases: they are complicated pieces of
software that require significant experience to operate properly.
A typical research lab cannot afford a Database Administrator
on staff, so the full potential of a RDBMS may be difficult to
realize in practice. This problem is well-known in the database
community, who are studying self-managing and self-tuning
enhancements to databases to simplify the cognitive load.
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Hadoop is also somewhat unfairly represented. Hadoop is
designed for massive parallelism — hundreds or thousands
of nodes. Testing on such few nodes means that important
features such as intra-query fault tolerance are never exercised.
The overhead of having central coordination of a distributed
query is also not evident with only eight nodes.

In summary, on these larger cluster configurations, Database
Z outperforms Hadoop on join queries and one of the selection
queries. This makes sense as our queries are /O dominated,
and Database Z minimizes I/O whereas Hadoop must read in
the entire dataset.

VII. RELATED WORK

Parallel query processing in a shared-nothing architecture
has a long history [33], [34], [35], [36], [37], [38], [39]
and many high-end commercial products are on the market
today [4], [27], [28], [29], [30]. Recently, a new generation of
systems have been introduced for massive-scale data process-
ing. These systems include MapReduce [5], [40] and similar
massively parallel data processing systems (e.g., Clustera [41],
Dryad [7], and Hadoop [6]) along with their specialized lan-
guages [9], [10], [11], [42]). All these systems, however, have
not been designed specifically for scientific workloads and
many argue that that they are ill-suited for this purpose [12].
Our goal in this paper was to evaluate how well two examples
of such systems, one of each type, could be used for scientific
data analysis in astronomy simulation research.

There is little published work that compares the perfor-
mance of different parallel data processing systems. Recently,
Pavlo et al. [31], comparatively benchmarked a parallel rela-
tional DBMS, Hadoop [6], and Vertica [28], a column-store
parallel DBMS. The goal of their work was to evaluate the
performance of these three systems in general. The study
thus used synthetic data. In contrast, our goal is to measure
how suitable such systems are for scientific data analysis
and, in particular, astronomy simulation analysis. Hence, our
work focuses on real queries important in the astronomy
domain and uses real data from that domain. Additionally,
we compared the DBMS to Pig, which brings a declarative
layer to Hadoop. For these reasons (and also due to differences
in settings and relational DBMS used), some of our findings
differ from those in this previous study. In particular, in our
setting, we did not find that the relational DBMS consistently

Query 4 parallel speedup.
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Fig. 6. Query 5 parallel speedup.

outperformed Hadoop. Instead, different engines performed
better on different queries.

Benchmarks demonstrating the performance of relational
DBMSs [25], Hadoop [43], or Pig [44] have previously
been published. These benchmarks, however, evaluate these
systems in finely tuned environments, using synthetic data,
and synthetic tasks such as sorting. In contrast, we evaluated
these systems within the context of a specific application and
without extensive tunings.

Cary et al. [45] studied the applicability of MapReduce to
spatial data processing workloads and confirmed the excellent
scalability of MapReduce in that domain. In contrast, our work
focuses on data from a different domain, experiments with
a different engine (Pig instead of raw MapReduce) and also
compares the performance with that of a RDBMS.

The Sloan Digital Sky Survey [46] has successfully used
relational DBMSs to store and serve astronomy data. Their
data, however, comes from telescope imagery rather than
large-scale simulations.

Palankar et al. [47] recently evaluated Amazon S3 [48] as
a feasible and cost effective alternative for hosting scientific
datasets, particularly those produced by large community col-
laborations such as LSST [49]. This work is orthogonal to ours
since S3 is purely a storage system. It does not provide any
data management capabilities beyond storing and retrieving
objects based on their unique keys [48].

There are several ongoing efforts to build new types of
database management systems for sciences [12], [50]. Evaluat-
ing the applicability of these systems to astronomy simulation
or other scientific analysis tasks is an area of future work.

VIII. CONCLUSION

In this paper, we evaluated the performance of a commercial
RDBMS and Hadoop on astronomy simulation analysis tasks.
We found that it was natural and concise to express the
required analysis tasks in these tools’ respective languages.
On small-to-medium scale clusters (<10 nodes), we found the
modern RDBMS to offer a powerful platform for organizing
data and an excellent constellation of features for improving
performance: indexes, distributed queries, cost-based algebraic
optimization, and logical data independence. Our tests also
indicate that overall a RDBMS outperforms Hadoop and IDL
for representative I/O-dominated queries in the astronomy



domain. However, we acknowledge that Hadoop is designed
for scalability to hundreds or thousands of nodes, and is likely
to outperform a RDBMS in this context.
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