
Gaussian Mixture Models Use-Case:
In-Memory Analysis with Myria

Ryan Maas1, Jeremy Hyrkas1, Olivia Grace Telford2,
Magdalena Balazinska1, Andrew Connolly2, and Bill Howe1

1Department of Computer Science & Engineering, University of Washington
2Astronomy Department, University of Washington

ABSTRACT
In our work with scientists, we find that Gaussian Mixture Mod-
eling is a common type of analysis applied to increasingly large
datasets. We implement this algorithm in the Myria shared-nothing
relational data management system, which performs the computa-
tion in memory. We study resulting memory utilization challenges
and implement several optimizations that yield an efficient and
scalable solution. Empirical evaluations on large astronomy and
oceanography datasets confirm that our Myria approach scales well
and performs up to an order of magnitude faster than Hadoop.

1. INTRODUCTION
Big data analytics is a memory-intensive process because of the

size of the datasets and the growing complexity of modern analytics
(e.g., iterative machine learning algorithms). In addition, the size
of scientific datasets is increasing past the point where in-memory
computation can be done on a single node. Most scientists are
proficient at single-node data analysis environments like Python, but
must move to other tools for large-scale computation.

At the other extreme, Hadoop [10] scales well by breaking the
analysis into small tasks, which can be executed independently.
Analysis problems framed this way can scale to hundreds or thou-
sands of nodes, but the overhead costs of Hadoop on a few nodes are
often not competitive with other methods. Hadoop is also limited in
that intermediate steps are materialized to disk, preventing effective
use of in-memory data processing beyond the boundaries of one
task.

Modern big data analytic engines such as Spark [25], Myria [20],
and others focus on doing the analysis in memory in a shared-
nothing cluster without going to disk. For these systems it is crucial
that the implemented algorithms make efficient use of memory, as
an inefficient implementation could quickly run into the memory
limits of the cluster.

One such algorithm is a well known clustering method in the sta-
tistical literature known as Gaussian Mixture Modeling (GMM) [19],
the implementation of which we explore here. We are motivated by
use-cases in two fields, astronomy and oceanography, where a fast,
in-memory implementation of GMM has immediate applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IMDM ’15, August 31 2015, Kohala Coast, HI, USA

c© 2015 ACM. ISBN 978-1-4503-3713-7/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2803140.2803143

The scientists we work with typically use single-noded systems such
as Python and R to run GMM, but these approaches fail on datasets
large than a few million rows. Two such datasets from both fields
are presented here as use-cases.

In this paper, we implement GMM in the parallel, shared-nothing
data management system Myria, which we choose as representative
of the above in-memory distributed systems. We compare the per-
formance of the Myria implementation with that of a known Python
implementation [21] and a recently published Hadoop implementa-
tion [13].

We discuss several important optimizations and their effect on
memory utilization and overall performance. These include the
following:

• A primitive matrix data type for linear algebra.
• Optimizing the algorithm for efficient memory usage.
• In-memory iteration.

In summary, this paper makes three contributions: (1) We present
the implementation of the GMM algorithm in the Myria system,
where the input data starts from disk but the GMM analysis is
performed in-memory. (2) We discuss the impact of several op-
timizations on the performance of the analysis. (3) We compare
the performance of the implementation against Python and Hadoop
implementations of the same algorithm on two real datasets from
the astronomy and oceanography domains.

2. MOTIVATING APPLICATIONS
Many application domains make use of clustering algorithms such

as Gaussian Mixture Models. This includes astronomy, oceanogra-
phy, topic modeling, and others. We focus on two specific applica-
tions in this paper and describe them here.

2.1 Astronomy application
Large-scale astronomical imaging surveys (e.g., Sloan Digital Sky

Survey [22]) collect databases of telescope images. The key anal-
ysis is to extract sources (galaxies, stars, quasars, etc.) from these
images. While extracting sources is a simple process, classifying
these sources into object types is difficult. An example of this type
of classification is the use of multiple wavelength observations in
separating high redshift quasars (i.e., galaxies powered by a central
black hole) from stars within our Galaxy. Given that both quasars
and stars are point sources (i.e., they cannot be distinguished by data
from a single image alone) and that there are 400-times more stars
than quasars within a data set, the accuracy of this classification de-
termines the success of finding some of the highest redshift sources
within the universe. The GMM algorithm can serve to perform this
classification.

http://dx.doi.org/10.1145/2803140.2803143

The data used in this paper is derived from two astronomical
surveys: the Sloan Digital Sky Survey (SDSS) [22] and the Wide-
field Infrared Survey Explorer (WISE) [24]. These imaging surveys
cover over 10,000 square degrees (about one quarter of the sky)
and have detected 495 million stars, galaxies, and asteroids. The
measurements used to separate stellar from quasar sources are a mix
of measurements at multiple wavelengths including:

• Optical fluxes from SDSS detected sources measured at five
wavelengths from ultraviolet to near-infrared wavelengths (i.e.
the u, g, r, i, and z passbands) with apertures optimized for
point sources.
• Optical fluxes from SDSS detected sources measured at five

wavelengths (i.e. the u, g, r, i, and z passbands) with aper-
tures optimized for extended sources.
• Mid-infrared fluxes measured from the WISE survey (i.e. w1,
w2, and w3) with apertures optimized for point sources

2.2 Oceanography application
The SeaFlow [23] cytometer, developed at the University of Wash-

ington, is a novel method for measuring the abundance of phyto-
plankton in oceans. Attached to a vessel, the machine continuously
measures optical properties of microscopic particles in the water for
days or weeks at a time. Measurements are obtained by pushing
particles through a small capillary one-at-a-time, shining a laser
on the particles, and measuring properties such as light scatter and
fluorescence. The resulting data sets consist of millions of mea-
surements of particles in the water. Each particle may be a member
of a population of phytoplankton. The GMM algorithm can serve
to cluster the data and identify these populations. Cluster analy-
sis is a common method for analyzing cytometry data from other
fields. However, SeaFlow data sets are substantially larger than most
other cytometry data sets and therefore require more sophisticated
methods to manage the scale of the data.

Data points in SeaFlow datasets contain a number of measure-
ments. Only four are typically used when classifying the particles
present in the data:

• Forward scatter small (fsc_small): the forward scatter of light
from the laser as it passes over and through the particle. This
measurement is proportional to particle size.
• Perpendicular scatter (fsc_perp): the light that scatters per-

pendicular to the laser. This measurement is somewhat repre-
sentative of the complexity of the cell.
• Chlorophyll small (chl_small): red fluorescence measured

from the particle, which is indicative of chlorophyll content.
• Phycoerythrin (pe): orange fluorescence measured from the

particle, which is indicative of phycoerythrin, a protein found
in some algaes.

For a more in depth description of the data and the challenge of
classification in this application, see [13].

3. THE GMM ALGORITHM
In statistics, complex distributions can often be modeled by a

mixture of canonical distributions, which are well characterized. A
Gaussian mixture model (GMM) [19] is a model of a distribution as
a mixture of K separate multivariate normal distributions, each with
individual parameters represented collectively by θ. The probability
density function of the model given the parameters is thus:

p(x|θ) =
K∑

k=1

αkN (xi|µk,Σk),

0 1 2 3 4 5
w2−w3

0.5

0.0

0.5

1.0

1.5

2.0

w
1−
w

2

Figure 1: An example GMM clustering of astronomical point
sources from the dataset in Section 2.1. Points are colored
by the component of maximum responsibility for that point.
Points clustered in yellow near (0, 0) are likely to be stars, as
opposed to quasars, which are colored in green.

where xi is a D dimensional point,N denotes the normal prob-
ability distribution of an observation, and αk, µk, and Σk are the
amplitude, mean, and covariance matrix of each Gaussian compo-
nent. In this model, each point observed has some probability of
having been generated by each component. These are called the
responsibilities rik of the point xi for each of the K components.
Having fit a GMM to a data set and deriving the responsibilities, a
hard clustering for each point can be found by assigning that point to
the component whose responsibility is highest. The result of running
GMM on a small dataset from Section 2.1 is shown in Figure 1.

There is no analytic solution to estimate the parameters of a
mixture of Gaussians from a sample data set. The standard approach
is to iteratively maximize the likelihood function of the mixture
model in an algorithm called Expectation Maximization (EM). The
algorithm works as follows:

• Choose a number of clustersK and initialize their parameters.
• Expectation step: calculate the responsibility of each point to

each Gaussian component given the current parameters:

rik =
αkN (xi|µk,Σk)∑K

k′ αk′N (xi|µk′ ,Σk′)

• Maximization: using the new responsibilities from the previ-
ous E step, re-estimate the parameters of the components. N
is the number of points:

αk =
1

N

N∑
i

rik =
rk
N

µk =

∑
i rikxi

rk

Σk =

∑
i rikxix

T
i

rk
− µkµ

T
k

• Iterate subsequent EM steps until convergence of the likeli-
hood function.

To implement Gaussian mixture models, one needs the ability to
compute the above linear algebra statements, including the evalua-
tion of a point x at a Gaussian distribution,

p(x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)},

example_python.py Page 1

import numpy as np
from sklearn import GMM

rawData = np.genfromtxt(filename, delimiter=',',
 names=['g', 'i', 'w1', 'w2', 'w3'])

Generate feature vectors from data
features[:,0] = rawData['g'] − rawData['i']
features[:,1] = rawData['i'] − rawData['w1']
...

Create a GMM model with K components
gmm = GMM(n_components=K, n_init=1, n_iter=20)
Fit the model to the feature data
gmm.fit(features)

Get cluster assignments for each point
clusters = gmm.predict(features)

Figure 2: An example of using sklearn.mixture.GMM
to cluster astronomy data. The data is loaded in to memory
with Numpy, then a GMM model object is created. Calling
gmm.fit(features) begins running the EM algorithm, end-
ing either in convergence of after a maximum number of itera-
tions.

and thus take the determinant and inverse of the covariance matrix
Σ.

Typically in the clustering use-cases considered here, the number
of points N is in the tens or hundreds of millions and the dimension-
ality of the data D and the number of clusters K is on the order of
5 to 10. Thus calculating GMM involves millions of linear algebra
operations on small matrices, differentiating it from some other
machine learning algorithms that operate on large matrices.

4. PYTHON IMPLEMENTATION
For the single-threaded Python implementation, we make use

of the scikit-learn module [21]. The sklearn.mixture.GMM
object in this module is an implementation of the expectation-
maximization (EM) algorithm for fitting Gaussian Mixture Models.
The fit method serves to fit a mixture model with a user-specified
number of components to data, and the predict method assigns
a test sample to the Gaussian component to which it most likely
belongs. The Python programs that we consider in this paper use
the default amount of memory for a Linux process, as we describe
further in Section 7. Figure 2 shows a snippet of Python code calling
GMM in our astronomy use case.

The in-memory data representation used by scikit-learn
routines is the Numpy ndarray, which is a wrapper around a
multi-dimensional array in C. In our case, the array of data is N by
D, the number of observations and number of features respectively.
Numpy arrays take up little more memory than the C array they
wrap. For instance, one of our ndarray data objects is 7.78 million
rows and 4 columns, and each entry is an 8 byte float. The minimum
size C array is 237.6 MB, and is equal to the size of our ndarray
while loaded in memory.

5. HADOOP IMPLEMENTATION
GMMs based on Expectation Maximization can be parallelized

and scaled up using a straightforward implementation in the MapRe-
duce programming paradigm. Here, we explore the algorithm sug-
gested by [7]. The algorithm works as follows:

• Map phase: each Mapper handles a subset of the points. Using
the current parameters for all Gaussians, the mapper computes
for each point the responsibility of each Gaussian (rik for all

k Gaussians) and outputs rik as well as the point’s observed
values and observed variance scaled by rik, which are later
used in the M step. The responsibilities are computed us-
ing the logsumexp [1] method to avoid underflow. Matrix
operations are performed using the Jama Matrix library [12].
• Combiner phase: for each Gaussian, the mapper sums up the

scaled point values, scaled variances, and rik values. These
are then passed on to the Reducers.
• Reducer phase: Each reduce phase handles one Gaussian. The

scaled values and variances are summed together, and divided
by the sum of all rik values. This gives each Gaussian its
updated mean and variance. The sum of all rik values is also
divided byN , the number of input particles (this is also passed
through the Map and Combine phases), which gives the new
mixture weight. Each reducer outputs the new parameters for
each Gaussian.

Although [7] only describes the naïve Map and Reduce steps to
implementing EM, we found that writing a Combiner was necessary
for achieving reasonable efficiency, since the naïve implementation
requires sending data from every measurement to all K reducers
(essentially, the size of the data to be reduced is K times larger than
the data to be mapped).

6. MYRIA IMPLEMENTATION
In this section, we present the implementation of the GMM algo-

rithm in the Myria big data system.

6.1 Myria system
Myria [20, 11] is a stack for big data management and analytics

developed by the database group and eScience Institute at the Uni-
versity of Washington. It runs as a production service in the private
cluster of the database group and supports several domain scientists
on the University of Washington campus.

Queries in Myria are expressed as scripts in the MyriaL declara-
tive language [11]. Myria’s optimizer translates these scripts into
MyriaX query plans. MyriaX is Myria’s parallel, shared-nothing
query execution engine. MyriaX uses PostgreSQL internally for
data storage. Once it reads data out of PostgreSQL, however, it per-
forms all subsequent processing in memory. It pipelines data across
operators on the same machine and on different machines. Across
machines, MyriaX uses data shuffling operators to re-hash the data
as necessary. Each operator partition consumes batches of tuples
and output batches of tuples. A TupleBatch object holds one batch
of tuples. It uses an internal representation based on PAX [2], where
each batch is a horizontal partition of a relation with a column-store
internal representation. Myria’s TupleBatch objects do not currently
use compression.

Myria supports both synchronous and asynchronous iterations.
For the GMM application, we use synchronous iterations, as the
output Components table of every EM step must be fed in to the
input of the next step. As these are small tables, we evaluate both
execution models where the data goes to disk after each iteration
and models where data streams from one iteration directly to the
next.

6.2 Data model
Myria is a relational DBMS, and Gaussian Mixture Modeling fits

well into the relational framework. We store the data and model
parameters in two relations: Points and Components.

The Components relation has the following schema:
Components(gid, amp(t), µ(t), σ(t)). It contains one tu-
ple per Gaussian component, whose fields are a unique identifier,

Input size (million points) 0.24 0.48 0.97
Ratio of runtimes:
Matrix type / No type 1.01 1.05 1.03

Table 1: E step runtime performance with Matrix data type.

gid, and the parameters of that component at time (t). These pa-
rameters are the amplitude, mean vector, and covariance matrix of
the Gaussian, stored as individual floating point values in row major
order.

The Points relation has the following schema: Points(pid,
x, r(t)). It contains one tuple per point, whose fields are a unique
point ID, pid, a vector, x, of |x| = D features of the point, and
a vector r(t), of |r(t)| = K responsibilities of that point to each
Gaussian component. Each vector is stored as a sequence of floating
points values. The K responsibility values are part of the mixture
model, but we choose to store them in the data relation because
they are frequently accessed with the feature values in the GMM
use-cases that we consider. Storing the responsibilities together with
the input data avoids this frequent join.

6.3 Linear algebra in Myria
As described in Section 3, the EM algorithm requires operations

on vectors and covariance matrices using linear algebra. Myria does
not yet support a matrix object as a primitive type nor linear algebra
operations natively. Therefore, for our implementation, we create
new, user-defined operators in the Myria source code that utilize the
matrix library Jama [12]. This is the same matrix library used in the
Hadoop implementation, allowing for a fair comparison across the
two systems.

While Jama implements linear algebra routines entirely within
Java, we also tested a linear algebra library, which calls out to
LAPACK[15] libraries outside of the Java environment. One such
library is jblas [14]. We compared jblas to Jama by measuring the
cost of a matrix inversion, which is by far the most expensive matrix
operation in the GMM algorithm. We found that, for matrices with
dimension less than 5 by 5, Jama was faster for this key operation.
Since our use-cases use covariance matrices of dimension 4 by 4,
we decided to use the Jama libary.

We also explore whether a primitive matrix type in Myria would
provide increased performance as opposed to unrolling the cells of a
matrix in relational format. We implement a MyriaMatrix type,
which is a wrapper around the Jama Matrix object, and use that type
to pass vectors and matrices in the intermediate relations. Runtime
analysis on the optimized Myria implementation shows that the
Matrix wrapper type does not have a significant effect on runtimes.
Serializing Jama matrices into arrays of floats and back is simply
not a bottleneck operation in this computation. Additionally, our
Myria Matrix type does not perform any compression, which could
reduce the total amount of data shuffled. In fact, the extra steps of
wrapping each Jama array in a Myria matrix object when passing
between operators slightly adds to the runtime, as shown in Table 1.
Nonetheless, a primitive matrix type makes the implementation
significantly easier to write.

6.4 Naïve implementation
Similar to the MapReduce implementation, the EM algorithm for

GMM can be expressed naturally with relational operators. Our first
implementation seeks to change as little as possible from the stan-
dard relational algebra, adding only the functionality required for
the linear algebra functions inside user-defined aggregate operators.
Figure 3 shows the query plan for one iteration, which proceeds as
follows from timestep (t):

 M step:

Use responsibilities to re-estimate

the parameters of the components

Points(pid, x, r(t))

Components(gid, amp(t+1), mu(t+1), sig(t))

Cross Join

Group by Points and Aggregate (E Step)

Points(pid, x, r(t+1))

Components(gid, amp(t), mu(t), sig(t))

Cross Join

Group by Components and Aggregate (M Step)

 E step:

Evaluate each point at each

Gaussian (get the responsibility)

Components(gid, amp(t), mu(t), sig(t))

Figure 3: Query plan showing the naïve implementation of an
EM algorithm for GMM in Myria. The relations are repre-
sented by sharp cornered boxes, and the operators by rounded
boxes. This query plan performs one EM step, updating the pa-
rameters of the Gaussian components from time (t) to (t+ 1).

E step:

• Cross product between the Points and Components re-
lations to produce a relation with one tuple for every point-
component pair.
• Group-by aggregate to evaluate each point at each component

and aggregate the result by point ID. Return a new Points
relation with the updated responsibilities for time (t+ 1).

M step:

• Cross product between the updated Points and original
Components relations to produce a relation with one tuple
for every point-component pair, with the new responsibilities.
• Group by gid and aggregate to recompute the parameters of

the Gaussian components using the updated responsibilities
for each point.

The output of the query plan is the Components relation at time
(t+1), representing one iteration of the EM algorithm. The interme-
diate output of the E step can also serve to obtain the responsibility
values from each point to each Gaussian. The query plan can be
executed an arbitrary number of times to get as many iterations of
the algorithm as desired.

6.5 Memory utilization challenges and opti-
mizations

The cross products in the naïve query plan pose obvious problems
for resource utilization. The number of tuples generated before the
aggregates is equal to N ·K, where N is the number of data points
and K is the number of components in the mixture model. While
K is generally less than 10 in our applications, any multiplier is
significant because the Points relation is in the tens to hundreds
of millions. This overhead costs more in CPU than memory be-
cause these intermediate tuples are directly aggregated as they are
produced. The group-by aggregate over Points, however, uses a
large amount of memory because each point in Points has its own
group and its own aggregate. The sum of the memory utilization
of this group-by aggregate can easily cause out-of-memory errors.
Overall, these cross products thus cost significantly in both CPU
and memory.

In our evaluation of the naïve algorithm, these problems became
immediately apparent. As we increased the input data size, a 16-
node cluster running the naïve algorithm quickly dropped in points
processed per second, and failed to process the full astronomy data
due to out-of-memory errors. The results are shown in Section 7.1.

Our solution to this problem is to rewrite the join and aggregate
operators, taking advantage of what we know about the EM algo-
rithm. The result, described in the next section, is closer to the
MapReduce style implementation of Hadoop.

6.6 Optimized implementation
The first observation is that the join followed by the group-by

aggregate in the E step together produce one output Point tuple
per input Point tuple. Since K < 10, the components table is less
than 10 tuples. We already use a broadcast join in the naïve plan,
but now we can write the join and aggregate as a single operator to
avoid generating the large intermediate result.

The second observation of the EM algorithm is that no Point
data needs to be shuffled between workers, only partial results of
the M step calculation of Gaussian parameters. The calculations of
means and covariance matrices are associative, so their partial results
can be computed on local data and then aggregated by Gaussian
component. This is similar to the combiner optimization discussed
in the Hadoop implementation.

The final observation is that the M step does not require the
Component parameters from time (t) to calculate them for time (t+
1), only the Point data and responsibilities are required. In the naïve
plan, we use a cross product to replicate the Point data for each
component before doing an aggregate. Since the Point relation
contains the responsibilities, we can replace the cross product with
a local group by and aggregate that outputs partial results of the M
step, followed by a global group-by and aggregate to get the final,
global result. The partial results get shuffled across machines but
they represent a small amount of data.

The query plan for the optimized algorithm is shown in Figure 4,
and the algorithm proceeds as follows from timestep (t):

E step:

• Broadcast Component to all workers and perform a local
join with the local partition of the Points relation. For each
point tuple, evaluate it at every component and aggregate the
results directly, returning a new point tuple with the updated
responsibilities.

M step:

• Aggregate the Points relation grouping by component ID
locally, producing a tuple of partial results for each compo-
nent.
• Group by component ID globally and combine the partial

results for every component to calculate the final values of
the parameters.

7. EVALUATION
We comparatively evaluate the three GMM implementations

(Python, Hadoop, and Myria) on datasets from the astronomy and
oceanography domains. We run all experiments on Amazon EC2
using m1.large instances. We measure the runtime of the Python
implementation on only one instance and the performance of Myria
and Hadoop deployments up to 16 instances. In all tests, the number
of clusters is fixed (K = 7) and, unless otherwise noted, the runtime
is measured for one iteration of GMM. In all distributed cases, the
data is horizontally partitioned evenly across nodes.

 M step:

Use responsibilities to re-estimate

the parameters of the components

Points(pid, x, r(t))

Components(gid, amp(t+1), mu(t+1), sig(t+1))

Join Aggregate over Points (E Step)

Points(pid, x, r(t+1))

Components(gid, amp(t), mu(t), sig(t))

Group by Components and Aggregate(M Step 2)

 E step:

Evaluate each point at each

Gaussian (get the responsibility)

Compute Partial Component Sums (M Step 1)

PartialSumComponents(gid, part_amp(t+1), part_mu(t+1), part_sig(t+1))

Figure 4: Query plan showing the optimized implementation of
an EM algorithm for GMM in Myria. The relations are repre-
sented by sharp cornered boxes, and the operators by rounded
boxes. This query plan performs one EM step, updating the pa-
rameters of the Gaussian components from time (t) to (t+ 1).

In all experiments, the Python and Myria results are the median
of three runs. Runtimes have negligible variance across the three
runs. The Hadoop experiments are executed once.

Astronomy Classification Experimental Setup We make use
of photometric data from the Sloan Digital Sky Survey (SDSS)
and the Wide-field Infrared Survey Explorer (WISE). Only objects
that are detected in both surveys are selected, giving a total of 495
million data points in the initial catalog. We then perform a standard
quality cut and select objects within a range of r-band magnitude:
15 < r < 20 to produce a high quality sample of 197 million
points. We calculate four colors for each object: g − i, i − w1,
w1−w2, and w2−w3; these are the features input into the GMM
clustering analysis. We initialize the Gaussian components by the
default method for scikit-learn, which is to assign random
responsibilities to the points and perform one M step. This produces
a set of initial Gaussian parameters, which we use in our experiments
on all datasets. This calculation is done offline and not included in
the experimental runtimes.

SeaFlow Classification Experimental Setup We analyze the
Thompson 11 data set, one of three carefully curated SeaFlow data
sets available [13]. The data set consists of approximately 22.6
million data points, each measured in four dimensions.

Before clustering, the data is filtered by one column represent-
ing chlorophyll content; this represents a real step in the analysis
pipeline where oceanographers drop data points that they believe do
not correspond to phytoplankton. The filter leaves approximately
15 million data points to cluster using GMMs. Since the filtering
step is part of the full pipeline that the oceanographers follow to
classify SeaFlow data, we present runtimes for both filtering the
SeaFlow data set and for running one iteration of GMM on the
filtered data set. Filtering the data in Myria is trivial and equivalent
to a selection query (SELECT * FROM thompson_11 WHERE
chl_small < (const)). A Hadoop implementation is only
slightly more work. Only a Mapper is needed, which materializes
a row and passes it along if the chlorophyll column is below the
threshold. The default IdentityReducer in Hadoop is used to pass
values through.

We initialize the GMM components on the filtered SeaFlow data
set using a method similar to the k-means++ algorithm [3]. This
initialization was done offline on a pre-filtered Thompson 11 data

0 5 10 15 20 25 30 35

Millions of rows

0.00

0.05

0.10

0.15

0.20

0.25
T

h
ro

u
g

h
p

u
t

(M
il

li
o
n

s
o
f

p
o
in

ts
 /

 s
e
co

n
d

)
16 nodes, Naive vs. Optimized Myria

Optimized

Naive

Figure 5: Throughput of naïve and optimized GMM implemen-
tations on a single Myria instance for varying dataset sizes.

set, so no runtime for computing these initial points is included in
the evaluation.

7.1 Naïve vs. Optimized Myria Implementa-
tion

We first compare the performance of the naïve algorithm, which
uses cross products, and the optimized algorithm, which eliminates
the cross products and performs the other optimizations described in
Section 6.6. We first note that, on 16 nodes, the largest dataset that
we can process with the naïve algorithm contains 30 million rows
(1.5 GB). Any larger data sets fails due to memory errors. Figure 5
shows the number of points processed per second (throughput) as a
function of input size, for both the naïve and optimized algorithms on
16 nodes. The plot shows that the throughput of the naïve algorithm
peaks at 400,000 points/sec (24 MB), and subsequently drops for
all larger datasets. In contrast, the throughput of the optimized
algorithm shows no falloff for the largest datasets. On the largest
dataset the optimized algorithm achieves 13 times higher throughput
than the naïve one.

We also take memory profiles of the worker nodes during the EM
steps of both algorithms, including the specific workers that run out
of heap space and fail in the naïve algorithm. As expected, for the
naïve algorithm, the worker’s memory usage quickly reaches the
maximum heap size for large datasets. When the garbage collector
can no longer make space, the worker fails and halts the EM step.

On datasets that the naïve algorithm can process, the main dif-
ference between the two implementations is that the optimized
algorithm garbage-collects more evenly than the naïve algorithm.
Workers in the optimized algorithm rarely do more than one garbage-
collection per second, while the naïve algorithm must do more fre-
quent garbage collections even on the datasets for which it achieves
maximum throughput.

7.2 Quantitative Evaluation
Our quantitative evaluation comprises three categories for each

system: How runtime grows with input size, how runtime drops
with the number of worker nodes, and how runtime grows with
number of iterations of the algorithm. Where possible, we evaluate
all systems on the astronomy and oceanography datasets. However,
the oceanography data set (15 million rows, 472 MB) is too large
for the Python implementation to run in memory, so for Python we

0 1 2 3 4 5 6 7 8

Millions of rows

0

2

4

6

8

10

12

14

R
u

n
ti

m
e
 (

m
in

u
te

s)

Single Iteration Astronomy, Myria vs. Python

Myria

Python

Figure 6: Runtime of GMM algorithm on a single node using
either the Myria or Python implementations. Runtimes are sim-
ilar with Myria slightly out-performing Python and displaying
overall better scalability.

only compare on astronomy results.
First we consider a single iteration of the algorithm and vary

the input size. The Python implementation only runs on a single
node, so we compare that to the Myria implementation on a single
node. Figure 6 shows the runtimes for the Myria implementation
and the Python implementation as a function of input size in rows.
For all sizes of input, Myria is faster than Python for one iteration.
The Myria runtimes also scale linearly, while the Python runtimes
plateau between one and two million rows before continuing to
increase. We believe this is due to the Python in-memory data
structures fitting into the CPU cache. The data in Python is an N
by D array, where N is the number of points and D is the number
of dimensions. Whether that array can fit into the cache when first
loaded will determine how long it takes to process the entire data
set. On the other hand, in Myria each point is processed one by one,
with no concept of a data array.

The Hadoop implementation scales to as many nodes as desired,
though presumably Hadoop should be more efficient the more nodes
it uses. We compare the runtime of Myria and Hadoop on 16 nodes
as a function of input size in Figure 7. Myria’s runtimes scale
near perfectly linear. Hadoop’s runtimes plateau between 5 and
20 million rows, then continue to increase. In this case it appears
that for smaller input sizes the cost of Hadoop’s startup is the main
source of overhead. Beyond 20 million rows (50 MB per worker),
the computation cost begins to dominate and runtimes start to grow
linearly with input data size.

Next, we examine how runtime scales as the number of worker
nodes increases. Figures 8 and 9 show runtimes plotted for varying
numbers of nodes for the astronomy and oceanography datasets
respectively. Table 2 summarizes the speedup of Myria and Hadoop
on each dataset. Hadoop was only run on two nodes or more, so
its speedup is normalized with respect to two nodes. Both systems
show close to linear speed-ups on both datasets.

Finally, we examine runtimes of the algorithm for more than
one iteration. Since Hadoop is significantly slower than Myria
already for one iteration, we focus our evaluation on the comparison
between Python and Myria. In the real astronomy and oceanography
use-cases, the GMM algorithm needs to be run for upwards of 10
iterations before convergence.

We consider the astronomy use case of 7 million points (374

0 20 40 60 80 100 120 140

Millions of rows

0

10

20

30

40

50

60

70
R

u
n

ti
m

e
 (

m
in

u
te

s)
Single Iteration 16 nodes, Myria vs Hadoop

Myria 16 nodes

Hadoop 16 nodes

Figure 7: Runtime of GMM algorithm on astronomy datasets
and a 16-node Hadoop or Myria cluster as we vary the input
data size.

Number of nodes 2 4 8 16
Myria Astronomy 1.97 3.97 7.91 15.72
Hadoop Astronomy N/A 4.47 8.02 17.16
Myria Oceanography 1.93 3.90 7.36 15.27
Hadoop Oceanography N/A 3.77 6.23 16.32

Table 2: Speed-ups for Myria and Hadoop on astronomy and
oceanography data.

MB), the largest data set which Python could fit in memory before
crashing. Both the Myria and Python runtimes grow linearly with
the number of iterations, as expected for a synchronous iterative
algorithm. While Python is slower than Myria in the first iteration,
Python is faster in subsequent iterations because Myria must repeat-
edly scan the Points table. As a result, on a single node Python is
faster for more than a few iterations. To achieve better times than
Python, more Myria nodes can be used. For ten EM steps on the 7
million point data set, Python takes 16.4 minutes, single node Myria
takes 79.2 minutes, and 16 node Myria takes 5.3 minutes.

We also experiment with chaining together multiple EM steps in
the same query plan, keeping the intermediate Components table
results in memory. The result is that runtimes were approximately
equal to the tests where Components tables were saved to disk.
This is because with each iteration the Points table must still
be scanned from disk, which is orders of magnitude larger in size
than Components. Even though multiple iterations are chained
together in this method, we do not see the speedup one might expect
from the Points table being cached in memory. The difference in
speed per iteration represents the tradeoff of our Myria implementa-
tion versus Python. Multiple iterations of Python will be faster than
Myria on a single node, but Myria’s streaming scan of the data lets
it process hundreds of millions of points on a single node.

The full power of the Myria implementation is in taking advantage
of multiple nodes and the largest datasets. On the 128 million row
dataset in Figure 8, 25 iterations on a single Myria node would take
approximately three days, but on sixteen nodes would complete in
just over four hours.

7.3 Qualitative Evaluation
The GMM implementation in the scikit-learn package is

approximately 800 lines of code, though in practice scientists would

2 4 6 8 10 12 14 16

Number of nodes

0

1

2

3

4

5

6

7

8

9

R
u

n
ti

m
e
 (

h
o
u

rs
)

Single Iteration Astronomy, 128 million points 8 GB

Myria

Hadoop

Figure 8: Runtime of GMM algorithm on astronomy data for
varying cluster sizes using Hadoop or Myria.

2 4 6 8 10 12 14 16

Number of nodes

0

2

4

6

8

10

12

14

16

R
u

n
ti

m
e
 (

m
in

u
te

s)

Single Iteration Oceanography 15 million points - 470 MB

Myria

Hadoop

Figure 9: Runtime of GMM algorithm on oceanography data
for varying cluster sizes using Hadoop or Myria.

not write their own implementation. Using the prepackaged algo-
rithm involves a significant number of data-munging steps, since
the data must be manually loaded from csv files and code must be
written to extract the features.

In Myria, the data from the astronomy use-case was processed
through a series of MyriaL queries to produce the features used by
the algorithm. Running these queries in Myria is trivial, while for
Python and Hadoop the data needed to be processed separately be-
fore running the GMM algorithm. Myria’s query language, MyriaL,
does not yet support GMM as a primitive operator, so queries must
be sent directly to the query execution backend in the form of JSON
physical query plans. We plan to expose the GMM algorithm at the
language layer in future work, both as a convenience for users and
to allow for interaction with Myria’s query optimizer.

The Myria implementation comprises three hand-coded operators
in the database system, each with approximately 1000 lines of code.
While this would seem daunting for a user to write, these operators
are just modified versions of standard database operators join, apply,
and group-by aggregate. The actual lines of code added and modified
total approximately 500 lines across all three operators. In future
work, we plan to extend MyriaL to allow the same code to be written

by users without modifying the source code of the system.
Our Hadoop implementation of GMMs contains Mapper, Com-

biner, and Reducer classes as described in Section 5. In addition, we
implement a Gaussian class to evaluate points in the distribution and
keep track of the Gaussian parameters, a class to represent each row
of data (the input to the mappers), and a class to represent the input
to the Reducers. This is a simple, if inefficient, implementation. In
addition, the current parameters for each Gaussian must be added
to the cache path of every Mapper so they can construct Gaussian
classes. Each application has a driver class to setup the Hadoop jobs
and run them. All things considered, the amount of code for the
Hadoop implementation is only slightly above 1000 lines of code.
The EM evaluation of GMMs maps nicely to the MapReduce pro-
gramming paradigm, and no mathematical/programmatic difficult
arose other than those that would be common to any implementation
of GMM.

Comparing the implementation of the three algorithms qualita-
tively, the Python implementation is the most straightforward adap-
tation of the EM equations in Section 3: The primitive operations
in the language resemble linear algebra. The Hadoop implementa-
tion requires the most original code because of the many classes
that must be hand-written. The Myria implementation requires less
code than the Hadoop implementation and is simpler to understand
because of its adaptation of relational operators.

8. RELATED WORK
There has been a significant amount of work on distributed an-

alytic systems. These systems provide tools for writing machine
learning algorithms, often including linear algebra. Apache Mahout
[17] is a library of machine-learning algorithms implemented in
Hadoop and Spark. While some of the linear algebra functionality
needed for GMM exists, as of Mahout 0.10.0 there is no implemen-
tation of Gaussian Mixture Modeling.

SciDB [6] is built around an array data model, and supports dis-
tributed linear algebra through calls to ScaLAPACK [5]. No GMM
implementation is currently available in SciDB, though we initially
experimented with implementing the algorithm in that system. At
that time, we found that SciDB’s linear algebra support was best
suited for large matrices with dimensions upwards of hundreds or
thousands, whereas our algorithm requires millions of linear algebra
operations on small matrices of around 5 dimensions.

GraphLab [16] is a graph-based engine, which contains imple-
mentations for clustering algorithms such as k-means. Gaussian
Mixture Modeling is not yet supported, though the linear algebra
routines needed to support the algorithm are currently being added
to the GraphChi version of the system.

MLlib is a machine learning library for the Spark engine [18],
an in-memory system built on the MapReduce framework. Very
recently a GMM algorithm was added to MLlib, though not at the
time of writing of this paper. Preliminary results comparing the
GMM algorithm of MLlib show that the Spark implementation is
faster but overall comparable to Myria on a 16-node cluster for one
iteration. Myria is faster on smaller data sizes because it leverages
all nodes of the cluster for the smallest data sizes. Spark is faster for
multiple iterations because the data is only read into main memory
once. A more in-depth comparison would be valuable future work.

There also exist frameworks for parallelizing workflows in ex-
isting analytic systems such as Python and R. Distributed R [8]
is one such system. Generally, these frameworks do not include
implementations of specific algorithms such as GMM. Without re-
implementing GMM, we were not able to test the efficiency of those
frameworks. However, if the goal is to write the fastest implemen-
tation of GMM regardless of system, these would be a reasonable

starting point for future work.
In short, few distributed analytics systems implement support for

GMM, which is unusual given its utility. We expect to see more sys-
tems provide GMM out-of-the-box in the future. Most commonly,
GMM is implemented in analytic engines on a single node. In this
paper, we use scikit-learn [21], and other implementations can be
found in the R programming language [9] [4].

9. CONCLUSION
We implemented Gaussian Mixture Modeling (GMM) in the

Myria shared-nothing relational data management system, and evalu-
ated the performance on real use-cases from astronomy and oceanog-
raphy. We compared the distributed in-memory results to a Python
implementation on a single node, and Hadoop. We presented both
naïve and memory-efficient implementations of GMM, and saw how
optimizations for in-memory processing enabled Myria to process
much larger data sets than Python, even on a single node.

Acknowledgments
This work is supported in part by NSF IGERT grant DGE-1258485,
NSF grant IIS-1247469, the Intel Science and Technology Center
for Big Data, and a gift from Amazon.

10. REFERENCES
[1] R. Adams. Computing log-sum-exp, Jan. 2013.
[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving relations for

cache performance. In Proc. of VLDB, pages 169–180, 2001.
[3] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In

Proc. of SODA, pages 1027–1035, 2007.
[4] T. Benaglia, D. Chauveau, D. R. Hunter, and D. Young. mixtools: An R

package for analyzing finite mixture models. Journal of Statistical Software,
32(6):1–29, 2009.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. ScaLAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1997.

[6] P. G. Brown. Overview of scidb: large scale array storage, processing and
analysis. In Proc. of SIGMOD, pages 963–968, 2010.

[7] C. Chu et al. Map-reduce for machine learning on multicore. In Proc. of NIPS,
pages 281–288, 2006.

[8] HP Distributed R. http://www.distributedr.org.
[9] C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis and

density estimation. Journal of the American Statistical Association,
97:611–631, 2002.

[10] Apache Hadoop. http://hadoop.apache.org.
[11] D. Halperin et al. Demonstration of the Myria big data management service. In

Proc. of SIGMOD, pages 881–884, 2014.
[12] J. Hicklin, C. Moler, P. Webb, R. F. Boisvert, B. Miller, R. Pozo, and

K. Remington. Jama: A Java matrix package. URL: http://math. nist.
gov/javanumerics/jama, 2000.

[13] J. Hyrkas, D. Halperin, and B. Howe. Time-varying clusters in large-scale flow
cytometry. In Proc. of AAAI, pages 4022–4023, 2015.

[14] jblas: Linear Algebra for Java. http://jblas.org.
[15] LAPACK :âĂL’ Linear Algebra PACKage. http://www.netlib.org/lapack.
[16] Y. Low et al. Distributed GraphLab: A framework for machine learning in the

cloud. PVLDB, 5(8):716–727, 2012.
[17] Apache Mahout. http://mahout.apache.org.
[18] Spark Machine Learning Library (MLlib). http://spark.apache.org/mllib.
[19] K. P. Murphy. Machine Learning : A Probabilistic Perspective. The MIT Press,

2012.
[20] Myria: Big Data as a Service. http://myria.cs.washington.edu.
[21] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12:2825–2830, 2011.
[22] Sloan Digital Sky Survey III: DR 10. http://www.sdss3.org/dr10/.
[23] J. Swalwell, F. Ribalet, and E. Armbrust. Seaflow: A novel underway

flow-cytometer for continuous observations of phytoplankton in the ocean.
Limnology & Oceanography Methods, 9:466–477, 2011.

[24] Wide-field Infrared Survey Explorer.
http://www.nasa.gov/mission_pages/WISE/main/index.html.

[25] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proc. of USENIX, pages 15–28, 2012.

http://www.distributedr.org
http://hadoop.apache.org
http://jblas.org
http://www.netlib.org/lapack
http://mahout.apache.org
http://spark.apache.org/mllib
http://myria.cs.washington.edu
http://www.sdss3.org/dr10/
http://www.nasa.gov/mission_pages/WISE/main/index.html

	Introduction
	Motivating Applications
	Astronomy application
	Oceanography application

	The GMM algorithm
	Python Implementation
	Hadoop Implementation
	Myria Implementation
	Myria system
	Data model
	Linear algebra in Myria
	Naïve implementation
	Memory utilization challenges and optimizations
	Optimized implementation

	Evaluation
	Naïve vs. Optimized Myria Implementation
	Quantitative Evaluation
	Qualitative Evaluation

	Related Work
	Conclusion
	References

