Hybrid Merge/Overlap Execution Technique
for Parallel Array Processing

Emad Soroush
Dept. of Computer Science and Engineering
University of Washington, Seattle, USA
soroush@cs.washington.edu

ABSTRACT

Whether in business or science, multi-dimensional arrays are
a common abstraction in data analytics and many systems
exist for efficiently processing arrays. As dataset grow in
size, it is becoming increasingly important to process these
arrays in parallel. In this paper, we discuss different types
of array operations and review how they can be processed
in parallel using two different existing techniques. The first
technique, which we call merge, consists in partitioning an
array, processing the partitions in parallel, then merging the
results to reconcile computations that span partition bound-
aries. The second technique, which we call overlap, consists
in partitioning an array into subarrays that overlap by a
given number of cells along each dimension. Thanks to this
overlap, the array partitions can be processed in parallel
without any merge phase. We discuss when each technique
can be applied to an array operation. We show that even for
a single array operation, a different approach may yield the
best performance for different regions of an array. Follow-
ing this observation, we introduce a new parallel array pro-
cessing technique that combines the merge and overlap ap-
proaches. Our technique enables a parallel array processing
system to mix-and-match the merge and overlap techniques
within a single operation on an array. Through experiments
on real, scientific data, we show that this hybrid approach
outperforms the other two techniques.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Database Management
———Systems; H.2.8 [Information Systems]: Database
Management———Database applications

General Terms

Design, Performance

Keywords

Parallel Array Processing, Scientific Databases, Overlap Ex-
ecution Strategy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AD 2011, March 25, 2011, Uppsala, Sweden.

Copyright 2011 ACM 978-1-4503-0614-0/11/0003 ...$10.00

Magdalena Balazinska

Dept. of Computer Science and Engineering
University of Washington, Seattle, USA

magda@cs.washington.edu

1. INTRODUCTION

Multidimensional arrays arise as natural data types in
many analytics scenarios from traditional OLAP applica-
tions [19, 28] to scientific data analysis [10, 27]. As a result,
many engines have been developed to efficiently process such
arrays [2, 10, 21, 30]. Additionally, as arrays grow in size,
it is becoming increasingly important to process arrays ef-
ficiently in parallel [2, 21, 27]. In this paper, we propose a
new parallel array processing method for existing array data
management systems.

Some array operations are trivial to parallelize. These are
operations that process array cells independently [27]. For
example, a filter operation [21] copies an input array to the
output but sets all cells that do not satisfy a predicate to
null. To parallelize such an operation, one can simply divide
a large array into multiple subarrays also called chunks [22]
and process these chunks in parallel. Figure 1 illustrates a
2D image divided into four subarrays or chunks. Figure 2
shows how such an array could be processed in parallel (we
come back to both figures later).

Other operations, however, are more challenging to exe-
cute in parallel. These are operations where each output cell
value is based on the value of multiple input cells. These op-
erations include traditional aggregations but also more com-
plex array operations such as smoothing [21], regridding [6],
feature extraction [13], and others. For such operations,
two parallel processing techniques are commonly used. In
the first technique, which we call merge, an array is spilt
into multiple subarrays, each subarray is partly processed in
parallel, and the intermediate results are merged [2, 4, 5, 10,
11, 13, 21]. In the second technique, which we call overlap,
an array is split into multiple subarrays that overlap by a
given number of cells in each dimension. The overlap data
enables the system to handle corner-case cells without a sec-
ond merge phase [21, 23, 24]. We describe these techniques
in greater detail in Section 3.

A key challenge is in deciding which of these two tech-
niques provides the best performance for a given array op-
eration. Indeed, as we show in this paper, the best technique
depends not only on the operation type but also on the data
value distribution in the array.

To address this challenge, we develop a hybrid
merge/overlap array processing technique. With our ap-
proach, an array is partitioned into multiple chunks. Each
chunk can then be processed using either the merge or the
overlap technique, independent of the technique chosen for
the other chunks. As part of our approach, we develop (1)
a simple, three function API that operator developers must

implement in order for their operation to be processed us-
ing our hybrid method, (2) a hybrid parallel array process-
ing technique, and (3) implementation details for supporting
this approach. We do not address the problem of which exe-
cution technique is selected for a given chunk. We leave the
automated selection of the techniques for future work.

Depending on the application, arrays are either dense or
sparse. An array is said to be sparse when most of its cells
do not contain any data. Otherwise, the array is dense.
An example dense array is a 2D image. For example, as-
tronomers commonly operate on 2D telescope images. They
clean, smooth, regrid, combine, and otherwise transform
these images in order to extract observed celestial objects
such as galaxies and stars [6, 16]. An example of a sparse
array is the 3D data from an astronomy simulation [15, 26].
In these simulations, the universe is modeled as a set of
particles. These particles are points in a 3D space and are
simulated over a series of discrete timesteps. The simulator
periodically outputs a 3D array of particles representing the
state of the universe at a given simulation timestep. The
approach that we propose is applicable to both array types
and we use both these examples throughout the paper.

We evaluate our approach on a 3D astronomy simulation
dataset [15]. We show that, in this dataset, different sub-
arrays are most efficiently processed by different techniques
and that the hybrid execution techniques leads to the fastest
overall performance.

2. ARRAY OPERATION TYPES AND
PROPERTIES

Different array processing techniques are applicable to dif-
ferent types of array operations. In this section, we identify
five types of array operations that we classify along two axes
as shown in Table 1.

Along the first axis, we distinguish between three types
of array operations: independent, bounded dependent, and
unbounded dependent:

Independent array operations are those that process each
array cell independently of the others. More precisely:

DEFINITION 2.1. An array operation is said to be inde-
pendent if the value of each output array cell comes from the
value of exactly one input array cell.

Examples of independent operations include filter, apply,
slice, and subsample [21]. Filter applies a predicate to the
attribute values in the input array. The output array has the
same dimensions, size, and content as the input array, except
that cells where the predicate is found false are set to empty.
Apply transforms the content of an array by applying a cal-
culation to individual array cell values. Slice and subsample
are structural operators but they still process each array
cell independently of others. A slice operation projects an
array along a particular index value in a single dimension.
Subsample extracts a subarray from the input array.

Many array operations, however, are not that simple. Fre-
quently, in order to compute the value of one array cell in the
result array, an operation needs the values of multiple input
array cells. Such neighborhoods of cells are sometimes called
stencils (e.g., [3]). We call these array operations dependent.

DEFINITION 2.2. An array operation is dependent if mul-
tiple input array cells contribute to the value of each output
array cell.

Smoothing [21] and regridding [6] are typical such oper-
ations. A smoothing operation computes for each cell the
weighted average of cell values in the neighborhood of that
cell. Closer cells typically get higher weight. A regrid op-
eration additionally compacts/expands cells, producing an
array with fewer/more cells than the input array. In the rest
of this paper, regrid examples refer to compacting regrid.

As a concrete example, given a telescope image in the form
of a 2D array, astronomers may want to reduce its resolution
such that cells collapse 10:3 [6]. To achieve this goal, a regrid
operation needs to take each group of 10 x 10 cells in the
input array to compute the value of each cell in a 3 x 3 group
in the output array.

Depending on the type of operation, the number of cells
needed to compute the value of an output cell can either be
bounded, or unbounded. More formally, we introduce the
following definition:

DEFINITION 2.3. A dependent array operation is bounded
if the input cells needed to compute the value of an output cell
are within a pre-defined distance §; of the target cell along
each dimension i of the input array. That is, to compute the
value of cell at index [x][y] in the output array, only cells in
the input array that fall in the range: [x—0z, x+0:|[y—dy, y+
0y] must be examined. Otherwise, the dependent operation
is unbounded.

In the case of smoothing or regridding of a dense array,
the number of input cells that contribute to the value of each
output cell is fixed and thus bounded. In the telescope image
example, a group of 10 x 10 cells contributes to each out-
put cell. For other operations, the number of cells may not
be fixed but may still be bounded. For example, consider
an operation that extracts clusters from telescope images,
where a cluster is a connected set of bright pixels and corre-
sponds to a celestial object such as a galaxy or a star. For
each cluster, the operation computes and outputs the cen-
troid. The input to this operation is a 2D array representing
an image. The output is a 2D array with mostly null cells
except for cells that correspond to the centroid of each clus-
ter. To compute each cluster centroid in the output array,
the system needs the values of all pixels contributing to the
cluster. The number of pixels will change for each cluster. It
can be bounded if clusters are known to have a bounded size
or it can be unbounded if clusters are unbounded. Figure 1
illustrates these two cases.

When multiple cells contribute to the value of an output
cell, these values can be aggregated using different functions.
We distinguish two types of functions: algebraic and holistic
and two corresponding types of array operations that we
also call algebraic and holistic. This distinction forms the
second axis of our classification and is based on the OLAP
definitions [12]

DEFINITION 2.4. A dependent array operation is algebraic
if the value of each output cell is computed from the value
of a set of input cells using an algebraic function F [12].
Additionally, the final result array must have a smaller state
than the input array (i.e., fewer cells, fewer non-null cells,
or smaller state inside each cell).

Gray et al. define algebraic functions in the context of
OLAP data cubes as follows: “Aggregate function F() is
algebraic if there is an M-tuple valued function G() and

(a) Unbounded clusters. (b) Bounded clusters

Figure 1: A 2D, 16 x 16 array divided into four
4 X 4 chunks and containing five clusters, which are
groups of connected black cells. (a) Clusters do not
have any bound on their size. A cluster can span the
entire array. (b) Clusters are known to be bounded
in size. A cluster is never larger than 2 cells along
each dimensions.

a function H() such that F({X;;}) = H{G({X:;li =
1,...,IP]j = 1,...,J}. Average(), standard deviation(),
MaxN(), MinN(), center of mass() are all algebraic. For Av-
erage, the function G() records the sum and count of the
subset. The H() function adds these two components and
then divides to produce the global average.” [12]

Hence, a function is algebraic, if it is possible to aggregate
the values of subsets of cells and then combine these partial
results into a final output cell value. For example, if an
operation identifies clusters in a 2D image and extracts their
centroids, the operation can compute the count and sum of
the coordinates of pixels in each of N subsets of a cluster.
It can then average these partial sums to get the cluster
centroid.

In addition to this standard definition of an algebraic func-
tion, however, we add the following requirement: We con-
sider an array operation to be algebraic if the output array
has smaller state than the input array. This extra require-
ment is important for parallel processing because it means
that the state from partial computations can be combined
incrementally and each combination step will reduce the to-
tal state size. Smoothing is an operation that illustrates this
distinction. Consider a 2D array that we want to smooth
by computing for each output cell the average value of its
8 direct neighbors. This function is algebraic in the OLAP
sense since we can sum the values of subsets of neighbors of
a cell and then average these partial sums to compute the
output cell value. The overall operation is not algebraic in
our sense, however, because the final array has the same size
as the original array.

If an array operation is not algebraic, we call it holistic.
Examples of holistic array operations include computing the
medoid of a cluster or returning all cluster data points an-
notated with the cluster identifier. For many holistic array
operations, all input cell values are needed to compute the
output value of a cell. Median, mode, and rank are all ex-
amples of holistic functions.

Table 1 summarizes these five types of array operations.
When an operation processes an input cell to produce one
output cell, we call the operation independent. When an op-
eration consumes multiple input cells, we call the operation
either bounded dependent or unbounded dependent depend-
ing on the number of input cells that it needs. The latter
two types of operations are further divided into either alge-

Output

array B

P REEW

Figure 2: Array A is divided into four chunks I;
through I,. Each chunk I; is given to the indepen-
dent process P as input and generates output chunk
O;. Chunks O; through O, form the output array B.

braic or holistic operations depending on whether they use
an algebraic or holistic aggregation function and whether or
not they produce a smaller output array than the input ar-
ray. The table also shows example applications with each
combination of properties.

3. EXISTING PARALLEL ARRAY PRO-
CESSING TECHNIQUES

In this section, we discuss how the above types of array
operations can be processed in parallel. Table 2 repeats
the array operation taxonomy from the previous section and
indicates, for each type of operation, the applicable array
processing techniques. The table shows three techniques
that we discuss in this section: Independent, Merge, and
Owerlap. All three techniques have previously been proposed
in the literature. Our contribution is to show how two of
these techniques: merge and overlap can be combined into
a new, hybrid strategy that we present in the next section.

3.1 Independent

Array operations that transform each cell of an input array
into one cell in the output array (a.k.a., independent opera-
tions) are trivial to parallelize: the array processing system
can partition the array into chunks as shown in Figure 2
and each chunk can be processed in parallel, independent
of the other chunks, producing one chunk of the result ar-
ray. We call this technique the independent array processing
technique and do not further consider it in this paper.

3.2 Merge

For dependent operations, the above processing strategy
fails: if an array is partitioned into chunks and each chunk
is processed separately from the others, data will be missing
to compute the values of output cells whose input cells are
spread across multiple chunks.

For dependent operations, an alternate parallel process-
ing technique is thus commonly used. The key idea behind
this approach, as shown in Figure 3, is to partition an ar-
ray into chunks, partly process these chunks independently
in parallel, then merge (a.k.a., roll-up or post-process) the
intermediate results to produce the final output [1, 4, 5, 10,
11, 13, 14, 21]. The merge phase serves to compute the value
of array cells whose input crosses chunk boundaries.

In the example of image smoothing, this approach works
as follows: The system partitions the array into chunks and
applies smoothing to all cells within each chunk except those

Table 1: Types of array operations and example applications.

Independent | Bounded Dependent

Unbounded Dependent

Algebraic | N/A

Holistic Filter, Slice

Regrid, Cluster centroids (bounded-size clusters)

Smooth, Cluster medoids (bounded-size clusters)

Cluster centroids (clusters with
no bound on size)
Cluster medoids (clusters with
no bound on size)

Table 2: Array execution techniques. For holistic functions, a naive merge technique can fail.

Independent | Bounded Dependent Unbounded Dependent
Algebraic N/A Merge & Overlap Merge
Holistic Independent Merge* & Overlap Merge*

B @D>
.
D B
array B
w0y
S R,

Figure 3: Array A is divided into four chunks I;
through I,. Each chunk I, is given to the process
operation P as input and generates an intermediate
result /R;. Intermediate results [R; through R4 are
merged hierarchically until they generate the output
array B.

cells near a chunk boundary. To compute the value of the
remaining cells, a second merge phase occurs. During that
phase, the system shuffles data near chunk boundaries such
that all data necessary to compute the value of each bound-
ary cell goes to a single location, where the computation can
occur.

In the cluster extraction application, the input array is
a 2D image of pixels. The operation identifies clusters of
bright pixels and returns either their centroid, their medoid,
or the original data annotated with a cluster identifier. Such
a cluster extraction operation can also be done in two phases.
First, the system partitions the image into chunks and ex-
tracts clusters inside each chunk. Clusters that cross chunk
boundaries are then reconciled during the merge phase.

The exact type of data that must be exchanged between
chunks and reconciled during the merge phase depends on
the type of array operation. For holistic operations —such as
extracting the medoid of a cluster or tagging all input data
points with the identifier of their cluster— the original input
data that contributes to each output cell must be brought
together. For algebraic operations —such as extracting the
centroid of a cluster— partial aggregate values can suffice.
For example, the partial sums of cell coordinates for a cluster
suffice to eventually compute the centroid of the cluster. The
type of the array operation thus determines the size of the
state processed during the merge.

One approach to performing the merge is to send all inter-
mediate data to a single, centralized location. The problem,
however, is that the size of the state to be merged can over-
whelm the node performing the merge operation. Instead,
another approach is to perform the merge hierarchically [13],
where increasingly large neighborhoods of chunks are rec-

Chunk Length overlap
——

>
@

Figure 4: Example of four overlapping chunks A, B,
C, and D. The overlapping region is shaded and the
boundary of chunks are specified by dashed lines.

onciled. This approach works well for algebraic operations
because each merge step should reduce the total size of the
intermediate state. Holistic functions still suffer from the
problem that the state to merge grows as increasingly many
chunks are being reconciled and it is possible that a sin-
gle node may end-up processing a significant fraction of the
input data.

Different strategies are possible to ensure an efficient
merge of holistic functions. One approach is to materialize
to disk as much intermediate data as possible to keep the
merged-state small. For example, when extracting clusters
from a dataset, only data at cluster boundary is necessary
to reconcile clusters across chunks. If the operation is to
also tag the input data with cluster identifiers or extract the
cluster medoids, the cluster data can be set aside during the
merge phase and only processed at the end once the final
clusters are found [13]. We do not implement such opti-
mizations in the paper but our approach could be extended
to include them.

3.3 Overlap

For bounded dependent operations, an alternate process-
ing technique also exists. This approach is based on creat-
ing and using owverlap [21, 23] data between chunks. The
key idea behind this technique is to partition an array into
multiple subarrays that overlap by a certain number of cells
along each dimension as illustrated in Figure 4. Each parti-
tion can then be processed independently of the others be-
cause all needed data is available either in the form of core
or overlap cells. This approach can potentially, though not
necessarily, be faster than the two-phase merge-based ap-
proach. It works especially well when the amount of overlap
data needed is much smaller than a chunk size.

In the example of image regridding from Section 2, we
want to change the resolution of an image by collapsing cells

10:3 . Hence, if we partition the image array with an overlap
of 10 cells along each dimension, the value of each output
cell can be computed using locally available core and overlap
data.

Similarly, in the case of the cluster extraction application,
if clusters are always smaller than a certain maximum size,
we can partition an image array with an overlap equal to
that maximum size. Each partition can then be processed
separately from the others. To avoid duplicates, each cluster
can be reported by the partition that holds its centroid.

4. A HYBRID PARALLEL ARRAY PRO-
CESSING TECHNIQUE

The merge and overlap techniques present a fundamental
trade-off in how an array is processed. With the overlap
technique, each array chunk uses up more space on disk
because of the extra overlap data and takes longer to process
for the same reason. In contrast, with merge, individual
chunks are smaller and are processed faster but intermediate
data, which can be large, must later be transferred between
processing nodes and merged. Depending on the type of
array operation and also on the input data, one approach
can thus be faster than the other.

In the case of unbounded operations, only the merge par-
allel processing strategy can safely be applied. However, for
many operations, not all output cells are based on data from
a large number of input cells. For example, most clusters in
an image are likely to be small even though there is no the-
oretical bound on the cluster size. Hence, a large fraction
of an array can successfully be processed using overlap. If
overlap provides higher performance given the operation and
input data, processing part of an array using this technique
can outperform a uniform strategy based on a hierarchical
merge over the entire array.

Motivated by these two observations, we propose a hybrid
approach that enables a system to combine the merge and
overlap strategies while processing a single array. In this
section, we present the API that this hybrid technique ex-
poses to developers. When an array operation implements
all operations in this API, our system can automatically ap-
ply that operation to the array using the hybrid processing
method. We then present the hybrid execution technique,
the back-end implementation necessary to support it, and
an additional full-length example.

4.1 API

In order for an array operation to be processed using a hy-
brid merge/overlap strategy, the operation developer must
implement the three functions shown in Table 3.

Process. The process function performs the core oper-
ation. It takes as input an array chunk (Input_chunk). It
produces two outputs: a Result_chunk and a Merge_chunk.
Either one can be null. The Result_chunk is a chunk of the
output array, possibly in some intermediate state, such that
the final result will be the union of all Result_chunks. The
Merge_chunk contains data for the given input chunk that
needs to be further processed by combining it with adja-
cent Merge_chunks before updating the corresponding Re-
sult_chunks.

In the image smoothing or regridding examples, the pro-
cess function takes as input an array chunk. It computes the
smoothed or regridded values for cells in Result_chunk for

which all input data is locally available. It leaves the other
cells null. The process function then copies all data near the
chunk boundary into the Merge_chunk.

For the application that identifies clusters and labels input
data with cluster identifiers, process outputs the labeled
data in the Result_chunk for all clusters fully contained in
the chunk. It re-copies the data for clusters that span chunk
boundary into the Merge_chunk. Figure 5 illustrates the
output of the process phase for this operation applied to a
4-chunk array.

In the case of the cluster extraction application that com-
putes cluster medoids, the process function identifies clus-
ters inside a chunk. For each cluster fully contained in the
chunk, process registers its medoid in the Result_chunk. If
a cluster spans chunk boundary and cannot be processed lo-
cally, its corresponding, partial input data is copied over to
the Merge_chunk. In contrast, for the cluster extraction op-
eration that computes cluster centroids, Merge_chunk need
not contain all input data. Instead, it needs only hold a
pre-aggregated summary of that data: i.e., sum of cell co-
ordinates and the range of cells at the chunk boundary that
can potentially extend the cluster into an adjacent chunk.

In order to support overlap processing, when implement-
ing the process function, the developer can call two func-
tions:

Range max_overlap()
Chunk get_overlap(range)

Function max_overlap returns a range predicate indicat-
ing the overlap area that is available, if any. Given a
range 7 expressed as a predicate over the array index values,
get_overlap returns the overlap that falls within this range.
The overlap data takes the form of an array chunk with null
cells in the place of the core data.

Merge. The merge function takes as input the output
of a set of process functions executed on adjacent chunks.
It merges intermediate results as needed and updates the
corresponding Result_chunks and Merge_chunks.

In the smoothing and regridding examples, merge com-
bines the data from adjacent Merge_chunks. It uses that
newly combined data to compute the value of the missing
cells in the Result_Chunk.

Similarly, for our running image cluster extraction appli-
cation, merge identifies clusters that span partition bound-
aries. Figure 5 illustrates the merge process for the clus-
ter extraction application that labels the output data with
cluster identifiers. In this example, array A is divided into
4 chunks. Each chunk is given to the process function and
produces a pair of (Result_chunk, Merge_chunk). All the
pairs are fed into the merge phase in order to generate the
final result. In this example, there are two levels of merges.
The first level merges chunks along the X dimension. The
second level merges along the Y dimension. At each step,
merge combines the data from adjacent Merge_chunks. If
it finds a new cluster that is now fully discovered, it out-
puts the corresponding labeled data into the appropriate
Result_chunks. If a cluster is still not fully contained in
the available chunks, its data goes back to the correspond-
ing Merge_chunks.

Filter. The process and merge functions above are suffi-
cient to implement either the merge or overlap techniques.
In order to mix-and-match these techniques, our framework
requires that a user provides one more function. The fil-
ter function takes as input a chunk with intermediate re-

Table 3: Hybrid Execution Technique API

Function Name

Input

Input_chunk
{ (Result_Chunk, Merge_Chunk) }
(Merge_Chunk, Bitmap)

—

Output

(Result_Chunk, Merge_Chunk) process

{ (Result_Chunk, Merge_Chunk) } merge

Merge_Chunk filter
M

DimY

——

-]

Chunk , Chunk , Chunk , Chunk ,
(a) Array A contains five b) Process and merge phases of the cluster extraction operation. The Merge_chunks
clusters shaded in black left) and Result_chunks (right) are shown at each step. As clusters are discovered, the

and is split into four

chunks.

corresponding cells are labeled with a unique identifier and copied over to Result_chunks.

Figure 5: Extracting clusters from array A. The output array is a copy of the input array but the operation
labels each cell inside a cluster with the unique identifier of that cluster. Each of array A’s chunks is going
through the process (clustering) phase and generates intermediate clusters in a Merge_chunk (M;) and final
clusters in a Result_chunk (R;). Results_chunks and Merge_chunks are given to the hierarchical merge. Each M, ;
is a Merge_chunk that contains intermediate results from original chunks M; and M;. Similarly for each R; ;.

sults that need to be merged and a bitmap indicating if the
surrounding chunks in the same array were processed us-
ing either the overlap or merge techniques. This function
filters out all results that do not need to be merged be-
cause an adjacent chunk was processed using overlap data
and already incorporated these results into the final output.
When implementing function filter, developers have access
to the the max_overlap and get_overlap methods described
above. We illustrate how the filter function is used with an
example in Section 4.2.

4.2 Execution Technique

We now describe how the hybrid parallel execution tech-
nique processes an array. We use Figure 6 as illustrative
example. Figure 6(a) represents a (4 x 16) array A with a
large cluster shaded in black.

First, the array is split into chunks as shown in Figure 6(b)
and each chunk is labeled as either “merge” or “overlap”.
Labeling the chunks can be scheduled as an offline task. An
auxiliary system could derive the right labeling of a given
chunk based on the data distribution of the chunk and its

neighboring chunks. In this paper, we do not address the
problem of how this choice is made. We leave the automated
selection of the techniques for future work.

Second, the process function is applied to each chunk.
For chunks that are to be processed with overlap, over-
lap data is available from within the process function
through calls to max_overlap and get_overlap. Other-
wise, max_overlap returns an empty interval. Maximum
overlap size provided in this example is two cells. As
above, each process function outputs a Merge_Chunk and
a Result_Chunk. Normally, with the overlap approach,
Merge_Chunks are always null because there is no merge
phase. However, because one can use our hybrid strategy
with unbounded dependent operations, overlap processing
may sometimes fail. As shown in Figure 6(c), if a cluster
exceeds the maximum available overlap data, process does
not output anything in the Result_Chunk but instead places
the cluster data into the Merge_Chunk. Furthermore, it only
outputs the core data plus the fully processed overlap data.
For example in Figure 6(c), process function only outputs
core and overlap cells that it labels with C2 and C; into the

(a) Original array A with one cluster
shaded in black.

OVERLAP [MERGE

Cl c2c2c2c203c3

Clc2c2cc203c3

_.CZ c2 c2 c3 ||

CHUNK , CHUNK , CHUNK , CHUNK ,

(b) Array A is divided into 4 chunks. Each is la-
beled with either merge or overlap. Overlap cells
are highlighted.

OVERLAP

OVERLAP

MERGE MERGE

B3 |

Cl c2 c2c2c20C3 C3

Cl c2c2cc20c3 C3

Ll acl

CHUNK , CHUNK ,

CHUNK ,

erge_chunk, Result_chunk

(¢) The result of the process phase in chunks does not extract
any final result cluster because the locally-found cluster possibly
stretches past the overlap region. Instead, the cluster data is

copied into the Merge_Chunk.

bitmap=[0101]

(d) Intermediate cluster in chunks is
removed in filter operation, because
it is entirely inside the overlap region
of the adjacent chunks and already in-
corporated into the final output of this
latter chunk.

Figure 6: Example hybrid execution technique on a 4 x 16 array with a single large cluster.

Merge_chunk. All the overlap cells labeled with C5 need
to be removed from the output cluster. In those cases, a
portion of the overlap processing time is thus wasted. This
waste adds overhead to the hybrid strategy whenever the
choice of overlap v.s. merge is not appropriate.

Third, the output of each process function is pre-
processed with filter. Figure 6(d) illustrates a case where
the intermediate result is filtered out. The process opera-
tion applied to chunk, identifies a cluster that it labels with
C4. This cluster potentially extends into the adjacent chunk
chunks and is thus placed into the Merge_Chunk. The Fil-
ter operation, however, removes all Cy tagged data from the
Merge_Chunk because there is an adjacent chunk, chunks,
that was processed with the overlap method and has al-
ready incorporate the Cy data into its final result. In order
to perform this check, the filter function must access over-
lap data for chunks. Indeed, if Cs data did not exist, Cy
data should not be filtered out.

Finally, intermediate data from neighboring chunks is
merged as in the vanilla merge approach, except that for
all Merge_Chunks, the merge phase must also process any
overlap data possibly output by an earlier process function.

4.3 Back-End

Finally, we present the necessary back-end support for the
above hybrid parallel execution technique. This support is
a set of extensions that must be implemented on top of a
parallel array processing system. We assume a parallel array
processing system such as SciDB [7, 21] that splits an array
into chunks and has the ability to process these chunks in
parallel.

Overlap-enabled storage manager. In order to sup-
port overlap-based processing, an array processing system
must have a storage manager that provides access to over-
lap data for each array chunk. There are several possible
implementations. The storage manager can store overlap
data together with core data [21, 23]. This approach, how-
ever, is inefficient because overlap data must always be read
from disk and processed whether it is necessary for an oper-

L3

y (3

CAd
- . \t}C:i
*
1
*

=

o3

\d

* e
/3

c2

Figure 7: Example of multi-layer overlap in a sparse
array. In this array, extracting cluster C'2 necessi-
tates that the operator loads a small amount of over-
lap data denoted with L1. C3 requires an additional
overlap layer, L2. None of the clusters requires the
third layer L3.

ation or not. Alternatively, the overlap data can be stored
separately. This optimization helps operations that do not
use overlap data. However, operations that need the over-
lap face the problem of having access to a single overlap
region, which must be large-enough to satisfy all queries.
To address both challenges, in recent prior work [24], we
developed a technique where overlap data is stored as a set
of materialized overlap views. These views are defined like
a set of onion-skin layers around chunks: e.g., layers L1
through L3 in Figure 7. A view definition takes the form
(n,w1,...,wq), where n is the number of layers requested
and each w; is the thickness of a layer along dimension i.
Multiple views can exist for a single array. With this ap-
proach, an operator processing a chunk can request exactly
as much overlap data as it needs, which we found to be more
efficient than alternate implementations. In our experiments
we use the overlap processing technique where overlap data
is stored as a set of materialized overlap views.

Overlap-enabled processing. The storage manager
must implement the max_overlap and get_overlap func-
tions described above.

Figure 8: FOF clustering algorithm: A and B are
friends and B and C are friends, but A and C are
not. A and C hold the Friend of Friend relation
(FoF) via B. The FoF relation induces a partition
on the particles: all black points are in one cluster
and all white points are in another cluster.

Hybrid parallel array-processing executor. The sys-
tem executor must be extended to take as input an array
divided into chunks and a bitmap indicating which chunks
should be processed with overlap and which chunks should
be processed with merge. For the chunks processed with
overlap, the executor must make overlap data available. For
other chunks, overlap data must be hidden and max_overlap
should return an empty range. The executor must also be
extended to apply the filter function to all Merge_Chunks.
Finally, the filtered Merge_Chunks must be merged and the
corresponding Result_Chunks must be updated through a
hierarchical application of the merge function. Hierarchi-
cal aggregation techniques are commonly used in various
systems, including multidimensional data processing sys-
tems [13, 14].

Overall, the hybrid execution strategy requires only a few
changes to a parallel array processing system and should
thus be reasonably practical to add to any system.

4.4 Additional Example

The Friends-of-Friends (FoF) algorithm (c.f.Davis et al.
1985 [8] and references therein) has been used in cosmol-
ogy for at least 20 years to identify interesting objects and
quantify structure in simulations [25, 20]. FoF is a simple
clustering algorithm that accepts a list of particles (pid; x;
y; z) as input and returns a list of cluster assignment tuples
(pid; clusterid). To compute the clusters, the algorithm ex-
amines only the distance between particles. FoF defines two
particles as friends if their euclidean distance is less than a
certain threshold €, named friendship threshold. Two parti-
cles are friends-of-friends if they are reachable by traversing
the graph induced by the friend relationship. To compute
the clusters, the algorithm computes the transitive closure
of the friend relationship for each unvisited particle. All par-
ticles in the closure are marked as visited and linked as a
single cluster. Figure 8 illustrates this clustering algorithm.
FOF can be implemented in our framework as follows:

First, the implementation of the process operation in
FOF algorithm is straightforward. We run the original im-
plementation of the FOF algorithm on each input chunk
and produce pairs of Result_chunk and Merge_chunk as a
result. The Result_chunk and the Merge_chunk comprise
all the finalized and intermediate FOF clusters, respectively.
FOF cluster is considered as intermediate if it is either close
enough to the chunk boundary (less than the friendship

threshold) or it exceeds beyond the maximum overlap size
for chunks labeled with “overlap”.

Second, the filter function in FOF clustering algorithm
checks whether the intermediate clusters are incorporated
into the result of any adjacent chunk. If the answer is ’yes’,
that cluster is dropped and no further processing is required
for that particular cluster. Three conditions must hold in
order for the filter function to drop a cluster. First, the
cluster must be entirely inside the overlap region of some
adjacent chunk Chunk,. Second, Chunk, must be labeled
with “overlap”. Third, there exists one point in Chunk, that
is friend of at least one point in the examined cluster.

Finally, our implementation of the merge function is simi-
lar to the approach described in [14]. It consists in perform-
ing a hierarchical merge. Each merge function invocation re-
ceives a set of Merge_chunks as inputs and checks whether
any clusters are mergeable. Two clusters are mergeable if
there is a friend relationship between any two points of those
two clusters. If two clusters are mergeable, they are merged
into one cluster. If the newly formed cluster is contained
entirely in the union of the Merge_chunks being processed,
that cluster is processed just like any other cluster and the
result is written into the appropriate Result_Chunk. Other-
wise, the intermediate data for the cluster must be put into
the appropriate Merge_Chunk(s) for further processing.

Because the output of FoF is the list of all input data
points, labeled with the identifiers of the clusters where
they belong, FoF is a holistic function with a potentially
expensive merge phase. One possible optimization for the
merge phase is to only keep inside a Merge_chunk, the points
that are potentially mergeable for a given intermediate clus-
ter [13]. Distance of those points to the chunk boundary
must be less than the friendship threshold. We name those
points boundary points. The rest of the points could be ma-
terialized and added to the final cluster at the end of the
hierarchical merge operation. This optimization makes the
merge phase significantly faster.

FoF is either a bounded or an unbounded dependent op-
eration depending on whether the clusters in the underlying
input data are bounded in size or not.

5. EVALUATION

In this section, we evaluate the performance of the hybrid
strategy on one real dataset from the astronomy simulation
domain. All the experiments are run on a dual quad-core
2.66GHz Intel/AMD OpteronPentium-based machine with
16GB of RAM running RHEL5. The dataset is snapshot S92
from the University of Washington N-body group cosmo25
simulation [15, 26]. The dataset is 37GB in size. The simu-
lation models the evolution of cosmic structure from about
100K years after the Big Bang to the present day. Snap-
shot S92 is an early snapshot in this simulation. The snap-
shot represents the universe as a set of particles in a 3D
space, which naturally leads to the following schema: Array
Simulation {id,vx,vy,vz,mass,phi} [X,Y,Z], where X,
Y, and Z are the array dimensions and id, vx, vy, vz,
mass, phi are the attributes of each array cell. This array
is sparse. Most cells are null, except for cells that contain a
particle. id is a unique particle identifier. It is a signed 8
byte integer while all other attributes are 4 byte floats and
correspond to particle attributes such as velocity and mass.
For the experiments, we partition the array into (16 x 16 x 4)
chunks. For the overlap and hybrid execution techniques, we

700
600

500
400
300
200 I
100
gl 1 | N -

123 456 7 8 91011121314151617 181920

Frequency

Overlap Layer#

B Number of Chunks

Figure 9: Overlap layer histogram for bounded FOF
application.

materialize 20 layers of overlap data for each chunk, which
cover a total of 0.5 of each dimension length. 20 layers is an
arbitrarily chosen large value. Note that this is the maxi-
mum overlap size provided by the system to the developers.

Bounded Dependent Array Operation. We run the
experiment for the bounded version of the FOF algorithm.
In order to make the problem bounded, we choose a small
friendship threshold such that all the final clusters can be
found solely using the overlap execution technique (no clus-
ter exceeds the boundary of maximum range of overlap).
The threshold is approximately Wloo of a dimension length.
Figure 9 shows the count of the number of chunks that
needed a certain number of overlap layers in order to be
processed using the “overlap” technique. The figure shows
that more than 85% of chunks only need 3 out of the 20
layers of overlap, but the maximum overlap required is 18.

Figure 10 illustrates the performance of “overlap”,
“merge”, and “hybrid” execution techniques. The figure
shows the total time for each technique as the sum of pro-
cessing times of all process, merge, and filter invocations,
which is equivalent to running all operations in series. Be-
cause we picked a small friendship threshold, most clusters
are small, and the merge phase is relatively cheap. It is
interesting to observe that although “overlap” produces an
overall worse performance than “merge”, “hybrid” outper-
forms “merge” in total processing time. In order to under-
stand why “hybrid” is a better approach than “merge”;, we
need to look at the time at a finer granularity. Figure 11
reveals the reason why “hybrid” is outperforming “merge”.
Although “merge” performs better overall, “overlap” outper-
forms “merge” for 235 out of 1145 chunks, which is almost
20% of the total chunks processed. Intermediate clusters
keep track of meta information such as cluster boundaries
in order to do the merge operation during the next phase.
When multiple clusters need to be merged, it is quickly more
expensive to create and merge intermediate clusters than
process some extra overlap data. This is the main reason
why in a portion of chunks “overlap” technique is superior
to the “merge” technique.

Figure 12 illustrates the result of running FOF with two
techniques “overlap” and “merge” on different array slices.
Black cells represent chunks where “overlap” outperforms
“merge” and white cells are the ones where “merge” out-
performs “overlap”. It is interesting to see that “overlap”

w
1=}
=)

N
a
o

N
=]
=)

Total time (minutes)
= .
(=] 1%
o o

[
=)

o

overlap merge hybrid

Excecution Techniques

mi/0 @EcPU

Figure 10: Total time for different execution tech-
niques to run FOF algorithm.

18

16

14

12 236
1

0.8

Overlap/Merge

0.6
0.4
0.2

0
0 200 400 600 800 1000 1200

Number of Chunks

Figure 11: Difference in total time to pro-
cess and load each chunk between “overlap”
and “merge” techniques. y-axis plots At =
(time(overlap)/time(merge)). Chunks are sorted by in-
creasing At value. “overlap” outperforms “merge”
for 20% chunks

technique is outperforming in more than half of the chunks
in the X-Y slice when Z=1. “Merge” is dominating in the
X-Y slice when Z=2 and in the rest of the sample slices we
observe a mix trend. We thus see clusters of chunks where
each technique wins depending on the data distribution in
these portions of the array.

6. RELATED WORK

Many engines are being built today to support multidi-
mensional arrays [2, 4, 5, 10, 11, 21, 30]. Many of them sup-
ports parallel array processing [2, 4, 5, 10, 11, 21]. A well-
studied approach for processing array operations in parallel
is to divide the original array into multiple subarrays and
run the operation independently on each subarray. If neces-
sary, the results from local computations are post-processed
(a.k.a., “rolled-up” or “merged”) to obtain the final output [2,
4,5, 10, 13, 14, 21]. Additionally a few engines [21] also have
the ability to run queries with overlap and potentially avoid

[

=

: -

z
I

10 12 14 16 2 4 [8 10 12 14 16

2 4 [8 10 12 14 15 2 4 [

(a) X-Y slice of the array with Z=1.

16 14 1z 10 g 6 4 2

(d) Y-Z slice of the array with X=8.

8

(b) X-Y slice of the array with Z=2.

- N W B
- W e

(¢) X-Y slice of the array with Z=4.

(e) X-Z slice of the array with Y=8.

Figure 12: Different kinds of slices of the 3D array A with (16 x 16 x 4) chunks. Black cells represent chunks
where “overlap” outperforms “merge”. Vice versa for white cells. Any shading between white and black means
At = (overlap-merge) is less than 1 second. In 12(a) “overlap” dominates, in 12(b) “merge” dominates, and

the rest is a mix.

the merge processing overhead, but none of the previous ap-
proaches has considered a hybrid strategy.

Traditional MOLAP systems store data in multidimen-
sional arrays [19, 28]. Their workload comprises primarily
aggregate queries. Aggregate queries can be processed with
a two-phase, merge-style approach [11, 12]. To the best of
our knowledge, however, none of the MOLAP systems sup-
ports overlap processing.

SciDB [21] is a multidimensional array system which sup-
ports overlap processing. However, overlap data is co-
located with core data and each function is executed either
with overlap usage or without it on a given array. SciDB
does not have the capability to execute a non-consecutive
portion of the array with overlap and the rest without over-
lap.

Loebman et al. [15] study the performance of parallel
databases versus data processing systems such as MapRe-
duce [9] in one specific scientific application: massive astro-
physical simulations. Their use case comprises five repre-
sentative selection and join queries. However, they do not
study overlap processing and how this execution strategy
would affect the overall performance.

Parallel programming languages such as UPC [29], Global
Arrays [17], and Co-Array Fortran [18] faciliate the task of
coding parallel array processing applications. Those parallel
languages provide flexible access to remote array partitions
providing the abstraction of a shared memory address space.
They target applications where a given local chunk may need
to access an arbitrary set of remote chunks. In contrast, we
study “overlap”, “merge”, and “hybrid” execution techniques,
which provide more loosely coupled parallelism for applica-
tions where the computation of a given chunk is restricted
to its adjacent chunks in the context of shared nothing ar-
chitectures.

Seamons and Winslett [23] studied different array stor-
age strategies. They propose to store overlap data either

separately or together with core data. However, their im-
plementation, similarly to SciDB [21], only considers the
co-located option. In prior work, we introduced a storage
manager for complex, parallel array processing called Ar-
rayStore [24]. ArrayStore efficiently supports overlap array
processing through materialized overlap views. ArrayStore
enables operators to efficiently access data from adjacent
array fragments during parallel processing. In that prior
work, we showed that an efficient overlap strategy could sig-
nificantly outperform approaches that do not use overlap,
but we did not study hybrid execution techniques.

7. CONCLUSION

In this paper, we presented a hybrid parallel array process-
ing technique. Our approach enables an array data manage-
ment system to combine two existing processing methods,
merge and overlap, into one by selecting either option for
any subset of an array. As part of this hybrid processing
approach, we introduced an API, an execution method, and
the back-end implementation necessary to support the ap-
proach. Through experiments on a real dataset from the
astronomy simulation domain, we showed that the hybrid
technique outperforms either uniform one.

Future work includes evaluation of the “hybrid” execution
technique on unbounded parallel array operations along with
the effort to address the problem of automated selection of
the execution techniques.

8. ACKNOWLEDGEMENTS

The astronomy simulation dataset was graciously supplied
by Tom Quinn and Fabio Governato of the University of
Washington Department of Astronomy. The simulation was
produced using allocations of advanced NSF-supported com-
puting resources operated by the Pittsburgh Supercomput-
ing Center, NCSA, and the TeraGrid. We thank Jeffrey P.

Garner and YongChul Kwon for their help with the astron-
omy simulation data and the FoF algorithm. We thank the
SciDB team for insightful discussions and the anonymous
reviewers for helpful comments on drafts of this paper. This
work is partially supported by NSF CDI grant OTA-1028195,
gifts from Microsoft Research, and Balazinska’s Microsoft
Research New Faculty Fellowship.

9.

[1]
2]

3]

REFERENCES

http://mahout.apache.org/.

Ballegooij et. al. Distribution rules for array database
queries. In 16th. DEXA Conf., pages 55—64, 2005.

G. Berti. A calculus for stencils on arbitrary grids
with applications to parallel PDE solution. In Proc. of
GAMM Workshop “Discrete Modelling and discrete
Algorithms in Continuum Mechanics”, pages 37-46,
2001.

Chang et. al. T2: a customizable parallel database for
multi-dimensional data. SIGMOD Record,
27(1):58-66, 1998.

Cohen et. al. Mad skills: new analysis practices for big
data. vldbj, 2(2):1481-1492, 2009.

P. Cudre-Mauroux, H. Kimura, K-T. Lim, J. Rogers,
S. Madden, M. Stonebraker, S. Zdonik, and P. Brown.
SS-DB: A standard science DBMS benchmark. Under
submission.

Cudre-Mauroux et. al. A demonstration of scidb: a
science-oriented dbms. In Proc. of the 35th VLDB
Conf., pages 1534-1537, 2009.

M. Davis, G. Efstathiou, C. S. Frenk, and S. D. M.
White. The evolution of large-scale structure in a
universe dominated by cold dark matt er. Astroph J,
292:371-394, May 1985.

Jeffrey Dean and Sanjay Ghemawat. MapReduce:
simplified data processing on large clusters. In Proc. of
the 6th OSDI Symp., 2004.

Baumann et. al. The multidimensional database
system RasDaMan. In Proc. of the SIGMOD Conf.,
pages 575577, 1998.

S. Goil and A. Choudhary. Parsimony: An
infrastructure for parallel multidimensional analysis
and data mining. Journal of Parallel and Distributed
Computing, pages 285 — 321, 2001.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,

D. Reichart, M. Venkatrao, F. Pellow, and

H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. dmkd, 1(1):29-53, 1997.

Y. Kwon, M. Balazinska, B. Howe, and J. Rolia.
Skew-resistant parallel processing of feature-extracting
scientific user-defined functions. In Proc. of SOCC
Symp., June 2010.

Y. Kwon, D. Nunley, J.P. Gardner, M. Balazinska,

B. Howe, and S. Loebman. Scalable clustering
algorithm for N-body simulations in a shared-nothing

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]
(30]

cluster. In Proc of 22nd SSDBM, 2010.

S. Loebman, D. Nunley, Y. Kwon, B. Howe,

B. Balazinska, and J.P. Gardner. Analyzing massive
astrophysical datasets: Can Pig/Hadoop or a
relational DBMS help? In Proceedings of the
Workshop on Interfaces and Architectures for
Scientific Data Storage, 2009.

LSST data management: DC3b processing flow.
http://dev.1lsstcorp.org/trac/wiki/
DC3bProcessingFlow.

J. Nieplocha, R.J. Harrison, and R.J. Littlefield.
Global arrays: a nonuniform memory access
programming model for high-performance computers.
J. Supercomput., June 1996.

R.W. Numrich and J Reid. Co-array fortran for
parallel programming. SIGPLAN Fortran Forum,
August 1998.

Pedersen et. al. Multidimensional database technology.
IEEE Computer, 34(12):40-46, 2001.

Reed et. al. Evolution of the mass function of dark
matter haloes. Monthly Notices of the Royal
Astronomical Society, 346:565-572, December 2003.
J. Rogers, R. Simakov, E. Soroush, P. Velikhov,

M. Balazinska, D. DeWitt, B. Heath, D. Maier,

S. Madden, J. Patel, M. Stonebraker, S. Zdonik,

A. Smirnov, K. Knizhnik, and Paul G. Brown.
Overview of SciDB: Large scale array storage,
processing and analysis. In Proc. of the SIGMOD
Conf., 2010.

Sarawagi et. al. Efficient organization of large
multidimensional arrays. In Proc. of the 10th ICDE
Conf., pages 328-336, 1994.

Seamons et. al. Physical schemas for large
multidimensional arrays in scientific computing
applications. In Proc of 7th SSDBM, pages 218-227,
1994.

E. Soroush, M. Balazinska, and D. Wang. Arraystore:
A storage manager for complex parallel array
processing. In Proc. of the SIGMOD Conf., 2011.
Springel et. al. Simulations of the formation, evolution
and clustering of galaxies and quasars. NATURE,
435:629-636, June 2005.

J. G. Stadel. Cosmological N-body simulations and
their analysis. PhD thesis, University of Washington,
2001.

Stonebraker et. al. Requirements for science data
bases and SciDB. In Fourth CIDR Conf.
(perspectives), 2009.

Tsuji et. al. An extendible multidimensional array
system for MOLAP. In Proc. of the 21st SAC Symp.,
pages 503-510, 2006.

http://upc.1lbl.gov/.

Zhang et. al. RIOT: I/O-efficient numerical computing
without SQL. In Proc. of the Fourth CIDR Conf.,
2009.

