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ABSTRACT
We present the design, implementation, and evaluation of
ArrayStore, a new storage manager for complex, parallel
array processing. ArrayStore builds on prior work in the
area of multidimensional data storage, but considers the new
problem of supporting a parallel and more varied workload
comprising not only range-queries, but also binary opera-
tions such as joins and complex user-defined functions.

This paper makes two key contributions. First, it exam-
ines several existing single-site storage management strate-
gies and array partitioning strategies to identify which com-
bination is best suited for the array-processing workload
above. Second, it develops a new and efficient storage-
management mechanism that enables parallel processing of
operations that must access data from adjacent partitions.

We evaluate ArrayStore on over 80GB of real data from
two scientific domains and real operators used in these do-
mains. We show that ArrayStore outperforms previously
proposed storage management strategies in the context of
its diverse target workload.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management
−−−Systems; H.2.8 [Information Systems]: Database
Management−−−Database applications

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
Scientists today are able to generate data at unprece-

dented scale and rate [18, 23]. To support these growing data
management needs many advocate that one should move
away from the relational model and adopt a multidimen-
sional array data model [14, 40]. The main reason is that sci-
entists typically work with array data and simulating arrays
on top of relations can be highly inefficient [40]. Scientists
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Figure 1: (1) The 4x4x4 array A1 is divided into
eight 2x2x2 chunks. Each chunk is a unit of I/O (a
disk block or larger). Each X-Y, X-Z, or Y-Z slice
needs to load 4 I/O units. (2) Array A2 is laid out
linearly through nested traversal of its axes without
chunking. X-Y needs to load only one I/O unit,
while X-Z and Y-Z need to load the entire array.

also need to perform array-specific operations such as fea-
ture extraction [19], smoothing [35], and cross-matching [26],
which are not built-in operations in relational DBMSs. As a
result, many engines are being built today to support multi-
dimensional arrays [4, 14, 35, 42]. To handle today’s large-
scale datasets, arrays must also be partitioned and processed
in a shared-nothing cluster [35].

In this paper, we address the following key question: what
is the appropriate storage management strategy for a par-
allel array processing system? Unlike most other array-
processing systems being built today [4, 11, 14, 42], we are
not interested in building an array engine on top of a re-
lational DBMS, but rather building a specialized storage
manager from scratch. In this paper, we consider read-only
arrays and do not address the problem of updating arrays.

There is a long line of work on storing and indexing mul-
tidimensional data (see Section 6). A standard approach
to storing an array is to partition it into sub-arrays called
chunks [36] as illustrated in Figure 1. Each chunk is typi-
cally the size of a storage block. Chunking an array helps
alleviate “dimension dependency” [38], where the number of
blocks read from disk depends on the dimensions involved
in a range-selection query rather than just the range size.

Requirements. The design of a parallel array storage man-
ager must thus answer the following questions (1) what is the
most efficient array chunking strategy for a given workload,
(2) how should the storage manager partition chunks across
machines in a shared-nothing cluster to support parallel pro-
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Figure 2: Four different chunking strategies ap-
plied to the same rectangular array. Solid lines
shows chunk boundaries of the logical array (sample
chunks shaded). Inner-level tiles are represented by
dashed lines (one tile is textured).

cessing, and (3) how to efficiently support array operations
that need to access data in adjacent chunks possibly located
on other machines during parallel processing? Prior work
examined some of these questions but only in the context
of array scans and range-selection, nearest-neighbors, and
other “lookup-style” operations [7, 8, 16, 24, 25, 28, 29, 34,
36, 38]. In contrast, our goal is to support a more varied
workload as required by the science community [40]. In par-
ticular, we aim at supporting a workload comprising the fol-
lowing types of operations: (1) array slicing and dicing (i.e.,
operations that extract a subset of an array [8, 9, 35]), (2)
array scans (e.g., filters, regrids [40], and other operations
that process an entire array), (3) binary array operations
(e.g., joins, cross-match [26]), and (4) operations that need
to access data from adjacent partitions during parallel pro-
cessing (e.g., canopy clustering [1]). We want to support
both single-site and parallel versions of these operations.

Challenges. The above types of operations impose very
different, even contradictory, requirements on the storage
manager. Indeed, array dicing can benefit from small, finely
tuned chunks [16]. In contrast, user-defined functions may
incur overhead when chunks are too small and processed in
parallel [19] and they may need to efficiently access data in
adjacent chunks. Different yet, joins need to simultaneously
access corresponding pieces of two arrays, and they need a
chunking method that facilitates this task. When processed
in parallel, all these operations may also suffer from skew,
where some groups of chunks take much longer to process
than others [12, 19, 20], slowing down the entire operation.
Binary operations also require that matching chunks from
different arrays be co-located possibly causing data shuffling
and thus imposing I/O overhead.

These requirements are especially hard to satisfy for
sparse arrays (i.e., an array is said to be sparse when most
of its cells do not contain any data) because data in a sparse
array is unevenly distributed, which can worsen skew (e.g.,
in one of our datasets, when splitting an array into 2048
chunks, we found a 25X difference between the chunk with
the most and least amount of data). Common representa-
tions of sparse arrays in the form of an unordered list of
coordinates and values also slow down access to subsets of
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Figure 3: Cumulative distribution function of num-
ber of points (i.e., non-null cells) per chunk for reg-
ular (REG) and irregular (IREG) chunking in as-
tronomy simulation snapshot S92. Both strategies
use 2048 chunks. Large circles for IREG and large
triangles for REG mark the 0% and 100% points in
each distribution.

an array chunk, because all data points must be scanned.
In this paper, we thus focus on sparse arrays. We assume
there are no value indexes on these arrays.

Contributions. We present the design, implementation,
and evaluation of ArrayStore, a storage manager for parallel
array processing. ArrayStore is designed to support com-
plex and varied operations on arrays and parallel processing
of these operations in a shared-nothing cluster. ArrayStore
builds on techniques from the literature and introduces new
techniques. The key contribution of this paper is to answer
the following two questions:

(1) What combination of chunking and array partitioning
strategies lead to highest performance under a varied paral-
lel array processing workload? (Sections 3.1 through 3.3).
As in prior work, ArrayStore breaks arrays into multidi-
mensional chunks, although we consider much larger chunks
than prior work (hundreds of KBs to hundreds of MBs
rather than a single disk block). We study four different
array chunking techniques as summarized in Figure 2: reg-
ular chunks (REG), irregular chunks (IREG), and two-level
chunks (IREG-REG and REG-REG).1 In the case of regu-
lar chunks, the domain of each array index is divided into
uniform partitions. For irregular chunks, we create chunk
boundaries such that each chunk contains the same amount
of data (in bytes), thus reducing possible skew when pro-
cessing data chunks in parallel. Figure 3 illustrates the per-
chunk data distribution differences when applying either the
REG or IREG strategies. Finally, the basic idea behind the
two-level approaches is to split an array into regular or irreg-
ular chunks, and then further divide each chunk into smaller
regular fragments that we call tiles.

(2) How to enable an operator to efficiently access data in
neighboring array chunks during parallel processing? (Sec-
tion 3.4) We develop two new techniques to enable an oper-
ator to efficiently access a variable-amount of data in neigh-
boring chunks during parallel processing. The first technique
leverages directly our two-level REG-REG storage layout to

1In this paper, we do not study indexing data within
chunks, which is a complementary technique and could fur-
ther speed-up some operations, nor data compression on
disk.



enable an operator to efficiently read and process as much
overlap data as needed. The second technique stores sepa-
rate materialized views of increasingly distant overlapping
data for each chunk.

We wrap the above techniques with a simple, yet flexible
access method that we present in Section 4.

We implement ArrayStore and a set of representative op-
erators in a standalone C++ system and evaluate the system
on two real datasets from the science domain. The first one
is a 74 GB dataset comprising two snapshots from an as-
tronomy simulation [22] (3D data). The second dataset is
the output of a flow cytometer from the oceanography do-
main [3] (6D data). For the first question, we show that a
two-level REG-REG strategy leads to the best overall per-
formance under a varied workload and requires the least
tuning. Indeed, it provides high-performance for single-site
processing of all operations in our workload and can be or-
ganized to avoid both skew and data shuffling during paral-
lel processing. None of the other techniques simultaneously
achieves all these goals. For the second question, we show
that ArrayStore’s techniques outperform by a factor of 2X
more näıve techniques where either overlap data is not ex-
plicitly supported or a pre-defined amount of overlap data
is stored within or even separately from each chunk.

2. PROBLEM STATEMENT
We start with a more formal problem statement. We de-

fine an array similarly to Furtado and Baumann [16]: Given
a discrete coordinate set S = S1 × . . . × Sd, where each
Si, i ∈ [1, d] is a finite totally ordered discrete set, an ar-
ray is defined by a d-dimensional domain D = [I1, . . . , Id],
where each Ii is a subinterval of the corresponding Si. Each
combination of dimension values in D defines a cell. All cells
in a given array have the same type T , which is a tuple as
in a relational DBMS.

ArrayStore must efficiently support the types of array op-
erations outlined in Section 1, which we formalize by pre-
senting one or more representative operators for each type
of operations. We use these operators throughout the paper.

Array Scan (e.g., filter). Many operators process all
chunks of an array such that each chunk can be processed in-
dependently of other chunks. Filter, A′ = FILTER(A,P ), is
representative of this type of operators (assuming no value-
based indexes). Here, A is an input array and P is a pred-
icate over cell values. The output array A′ has the same
dimensions as A such that if v is a vector of dimension val-
ues, A′ contains A(v) if P (A(v)) returns true, otherwise
it contains null. A parallel filter, A′ = P FILTER(A,P ),
can be computed by partitioning A into N sets of non-
overlapping chunks, with a partitioning strategy R. Second,
FILTER(ni,P ) is applied independently to each partition
ni ∈ N . A′ is the union of the results.

Array Dicing (e.g., subsample). We also want to support
unary range-selection (or dicing) operators. Subsample [40],
A′ = SUBSAMPLE(A,P ), is representative of this type of
operators. Here A is an array and P is a predicate over
A’s dimensions. SUBSAMPLE returns an array A′ that has
the same number of dimensions as A, but a smaller num-
ber of dimension values. In this paper, we study subsample
operators, where P takes the form of a d-dimensional subin-
terval d = [i1, . . . , id], and selects all cells that fall within

this subinterval. Similar to filter, subsample can process
an array’s chunks independently of one another and is thus
trivial to parallelize.

Binary Array Operation (e.g., join). In addition to unary
operators, we need to support binary operators such as
JOIN. As representative operator, we consider a simple ver-
sion of a structural join [35], B = JOIN(A,A′), where A, A′,
and B are defined over the same d-dimensional domain D
and each cell in B is the concatenation of cells in A and A′.
As a concrete example, such a join operator can correlate an
array of temperature values with an array of pressure values,
outputting tuples that comprise both values for each combi-
nation of dimension values. In practice, joins can get more
complex. For example, a cross-match [26] compares cell val-
ues that are near each other in two input arrays rather than
being at the exact same location. However, the key require-
ment of bringing together and processing corresponding ar-
ray chunks remains. It is the key type of operation that we
want to support. To execute a join in parallel, the strategy
that we adopt is to re-partition array A′ such that all cells
corresponding to cells in A get physically co-located. Each
pair of array partitions can then be processed independently
and the results can be unioned.

Overlap Operations (e.g., clustering and volume-
density). Many array operations cannot be computed by
simply partitioning an array, processing its partitions inde-
pendently, and unioning the result. Instead, processing each
array fragment requires access to data in adjacent fragments.
We consider two types of such overlap-based operators: (1)
operators that need to see a fixed amount of adjacent data
and (2) operators that need to see a bounded, though not
fixed, amount of adjacent data. We use canopy clustering as
representative of the former type of operators and a volume-
density application as representative of the latter. We de-
scribe them further in Sections 3.4 and 4.

Non-requirements. Due to space constraints, in this pa-
per, we do not include in our workload iterative operations
nor operations that examine a large number of input cells
stretching across the array to compute the value of an out-
put cell: e.g., data clustering operations where a cluster can
span a large fraction of the array. We discuss the latter
elsewhere [39].

3. ArrayStore STORAGE MANAGER
In this section, we present the design of ArrayStore.

3.1 Basic Array Chunking
As in prior work on storage management for multidimen-

sional data (see Section 6), ArrayStore takes the approach of
breaking an array into fragments called chunks and storing
these chunks on disk. We now present two types of chunking
schemes studied in the literature and the two-level strategy
that we develop in ArrayStore.

Regular Chunks (REG). The first approach of breaking
an array into chunks is to use what are called regular
chunks [13, 16], where all chunks have the same size in terms
of the coordinate space. For example, consider a 3D as-
tronomy simulation snapshot with dimensions (X,Y, Z) such



that X=[−0.5:0.5],Y=[−0.5:0.5], and Z=[−0.5:0.5]. We can
break the array into 256 regular chunks, by splitting each
X, Y , and Z dimension into 8, 8, and 4 respectively. Each
chunk in the array will then have size 0.125 ∗ 0.125 ∗ 0.25.
Regular chunks are commonly used for storing arrays on
disk [8, 15, 29, 36]. Figure 2 illustrates this approach.

Irregular Chunks (IREG). Several schemes have also been
proposed where an array is fragmented in a less regular fash-
ion [16, 9]. In this paper, we call all such strategies irregular
chunking schemes and illustrate them in Figure 2. Irregu-
lar chunking can speed-up range-selection queries when the
chunk size and shape is tuned to the workload [16]. While
our goal is not to tune storage for such specific queries,
we consider irregular chunking, because it may help reduce
skew in parallel array processing. The key idea is to chunk
the array such that each chunk covers a different volume of
the logical coordinate space but holds the same amount of
data [20] as shown in Figure 3.2 One approach that has been
proposed for creating such chunks [20] is to use a kd-tree [6],
which splits a multidimensional space into increasingly small
partitions considering the data distribution to ensure load
balance between partitions. If chunks are irregular, they
must be indexed to support efficient access to subsets of an
array. In our implementation, we index chunks using an R-
tree. Other indexes are possible, but we do not find that the
index lookup time is a bottleneck in our experiments.

Two-level Chunks (REG-REG or IREG-REG). For ei-
ther of the above strategies a question that arises is that
of appropriate chunk size. Large chunks help amortize seek
times when reading data from disk. They also help amor-
tize any potential fixed-costs associated with processing a
data chunk by an operator. However, for arrays containing
sparse data, large chunks increase the amount of process-
ing required if an operator only needs a subset of a chunk
(e.g., subsample or an operator accessing data from adjacent
chunks) because the lack of internal chunk structure forces
the operator to examine all data points within the chunk.

To address these contradictory requirements, an alternate
approach is to create two-level chunks. The basic idea is to
split an array into small, regular chunks but then combine
them together to form larger chunks that are either regular
(REG-REG) or irregular (IREG-REG) as illustrated in Fig-
ure 2. With this approach, the larger chunks are the unit
of disk I/O, while the smaller tiles can be the unit of array
processing. Regular chunks and tiles efficiently support bi-
nary operators on a single-node and across nodes because
they facilitates the co-location and co-processing of match-
ing cells across two arrays. In contrast, irregular chunks can
help smooth-out data skew during parallel processing.

Two-level chunking has been studied before [33, 38], but
only as a container to place multiple chunks on a single disk
block. This approach is a form of IREG-REG, since reg-
ular tiles are grouped into irregular chunks. We push the
idea further by not only using bigger chunks to amortize
seek time overhead (unit of I/O) and operator overhead, but
also by enabling operators to process different granularity of
chunks as needed (see Section 4), by leveraging the two-level
structure to efficiently support overlap processing (see Sec-

2For dense arrays, this approach is identical to regular
chunks.

tion 3.4), and by exploring the regular-regular (REG-REG)
approach as an alternative to IREG-REG. Through experi-
ments (see Section 5), we show that REG-REG is not only
the simpler of the two strategies but also leads to highest
performance under a varied workload.

3.2 Organizing Chunks on Disk
Each array in ArrayStore is represented with one data file

and one metadata file. The data file contains the actual ar-
ray values. The metadata file contains array meta informa-
tion such as number of dimensions, total number of chunks,
and in the case of regular chunking the number of chunks
along each dimension. The metadata file also contains over-
lap information (see Section 3.4). For irregular chunking, a
chunk index is stored in a separate file. In this paper, we
do not study how chunk layout on disk affects performance
as it mostly matters for dicing queries [38]. For sparse ar-
rays, only non-null cells are stored inside chunks and their
order is arbitrary. The only way to access a particular cell
in a chunk is thus to sequentially scan the cells inside the
chunk. This approach avoids the overhead of creating an
index within each chunk and we show that the two-level
REG-REG storage management enables high performance
even without such index.

3.3 Organizing Chunks across Disks
To support parallel array processing, ArrayStore can

spread array chunks across multiple independent process-
ing units or nodes (i.e., physical machines, processes on the
same machine, or other). For this, ArrayStore partitions
an array into N segments, each holding a subset of the ar-
ray chunks, not necessarily contiguous, and distributes each
segment to a node.

We study the performance of several array partitioning
strategies including (1) random (assign each chunk to a
randomly selected segment), (2) round-robin (iterate over
chunks in some order and assign them to each segment in
turn), (3) range (split the array into N disjoint ranges of
chunks and assign all chunks within a range to a segment),
or (5) block-cyclic (split the array into M regular blocks of
N chunks each. Iterate over the chunks of a block in some
pre-defined order and assign them to each of the N seg-
ments in turn). Block-cyclic is thus similar to round-robin
but it helps spread dense array regions across more nodes
(along all dimensions). For example, consider a 2D array
A4×4 which consists of 16 chunks labeled 1 to 16 in row-
major order (first row holds chunks {1, 2, 3, 4}, second row
holds {5, 6, 7, 8}, etc). Block-cyclic partitions chunks in ar-
ray A4×4 on 4 nodes such that chunks labeled {1,3,9,11} are
assigned to the first node, while in round-robin, that node
contains {1,5,9,13}, all the chunks in the first array column.
We do not study hash-partitioning, because it is equivalent
to either random or a form of block-cyclic partitioning.

3.4 Overlap Data Support
When processing an array in parallel, ideally, one would

like to process each array segment (or even chunk or tile)
independently of the others and simply union the results.
Many scientific array operations, however, cannot be paral-
lelized using this simple strategy. Indeed, operations such
as regression or clustering require that an operator considers
data from a range of neighboring cells in order to produce
each output cell. To illustrate the problem and our approach



to addressing it, we use canopy clustering [1] as running ex-
ample. In this section, we assume that the unit of parallel
processing is an array chunk. We come back to tile-based
and segment-based processing in Section 4

Canopy clustering is a fast clustering method typically
used to create preliminary clusters that are then further pro-
cessed by more sophisticated algorithms [1]. Canopy clus-
tering can serve to cluster data points in a sparse array, such
as the 3D astronomy or 6D flow-cytometer datasets. In fact,
data clustering is commonly used in both domains [19].

The canopy clustering algorithm takes as input a distance
metric and two distance thresholds T1 > T2. To cluster
data points stored in a sparse array, the algorithm proceeds
iteratively: it first removes a point at random from the ar-
ray and uses it to form a new cluster. The algorithm then
iterates over the remaining points. If the distance between
a remaining point and the original point is less than T1, the
algorithm adds the point to the new cluster. If the distance
is also less than T2, the algorithm eliminates the point from
the set. Once the iteration completes, the algorithm selects
one of the remaining points (i.e., those not eliminated by the
T2 threshold rule) as a new cluster and repeats the above
procedure. The algorithm continues until the original set of
points is empty. The algorithm outputs a set of canopies
each of them with one or more data points.

Problems with Ignoring Overlap Needs. To run canopy
clustering in parallel, one approach is to partition the array
into chunks and process chunks independently of one an-
other. The problem is that points at chunk boundary may
need to be added to clusters in adjacent chunks and two
points (even from different chunks) within T2 of each other
should not both yield a new canopy. A common approach to
these problems is to perform a post-processing step [1, 19,
20]. For canopy clustering, this second step clusters canopy
centers found in individual partitions and assigns points to
these final canopies [1]. Such a post-processing phase, how-
ever, can add significant overhead as we show in Section 5.

Single-Layer Overlap. To avoid a post-processing phase,
some have suggested to extract, for each array chunk, an
overlap area ε from neighboring chunks, store the overlap
together with the original chunk [35, 37], and provide both
to the operator during processing. In the case of canopy clus-
tering, an overlap of size T1 can help reconcile canopies at
partition boundary. The key insight is that the overlap area
needed for many algorithms is typically small compared to
the chunk size. A key challenge with this approach, however,
is that even small overlap can impose significant overhead
for multidimensional arrays. For example, if chunks become
10% larger along each dimension (only 5% on each side) to
cover the overlapping area, the total I/O and CPU overhead
is 33% for a 3D chunk and over 75% for a 6D one!

A simple optimization is to store overlap data separately
from the core array and provide it to operators on demand.
This optimization helps operators that do not use overlap
data. However, operators that need the overlap still face the
problem of having access to a single overlap region, which
must be large-enough to satisfy all queries.

Multi-Layer Overlap Leveraging Two-level Storage. In
ArrayStore, we propose a more efficient approach to sup-

Algorithm 1 Multi-Layer Overlap over Two-level Storage

1: Multi-Layer Overlap over Two-level Storage
2: Input: chunk core chunk and predicate overlap region.
3: Output: chunk result chunk containing all overlap tiles.
4: ochunkSet← all chunks overlapping overlap region.
5: tileSet← ∅
6: for all Chunk ochunki in ochunkSet− core chunk do
7: Load ochunki into memory.
8: tis← all tiles in ochunki overlapping overlap region.
9: tileSet← tileset ∪ tis
10: end for
11: Combine tilesSet into one chunk result chunk.
12: return result chunk.

porting overlap data processing. We present our core ap-
proach here and an important optimization below.

ArrayStore enables an operator to request an arbitrary
amount of overlap data for a chunk. No maximum overlap
area needs to be configured ahead of time. Each operator
can use a different amount of overlap data. In fact, an opera-
tor can use a different amount of overlap data for each chunk.
We show in Section 5, that this approach yields significant
performance gains over all strategies described above.

To support this strategy, ArrayStore leverages its two-
level array layout. When an operator requests overlap data,
it specifies a desired range around its current chunk. In the
case of canopy clustering, given a chunk that covers the in-
terval [ai, bi] along each dimension i, the operator can ask
for overlap in the region [ai − T1, bi + T1]. To serve the
request, ArrayStore looks-up all chunks overlapping the de-
sired area (omitting the chunk that the operator already
has). It loads them into memory, but cuts out only those
tiles that fall within the desired range. It combines all tiles
into one chunk and passes it to the operator. Algorithm 1
shows the corresponding pseudo-code.

As an optimization, an operator can specify the desired
overlap as a a hypercube with a hole in the middle. For
example, in Figure 4, canopy clustering first requests all
data that falls within range L1 and later requests L2. For
other chunks, it may also need L3.

When partitioning array data into segments (for paral-
lel processing across different nodes), ArrayStore replicates
chunks necessary to provide a pre-defined amount of overlap
data. Requests for additional overlap data can be accommo-
dated but require data transfers between nodes.

Multi-Layer Overlap through Materialized Overlap
Views. While superior to single-layer overlap, the above ap-
proach suffers from two inefficiencies: First, when an oper-
ator requests overlap data within a neighboring chunk, the
entire chunk must be read from disk. Second, overlap layers
are defined at the granularity of tiles.

To address both inefficiencies, ArrayStore also supports
materialized overlap views. A materialized overlap view is
defined like a set of onion-skin layers around chunks: e.g.,
layers L1 through L3 in Figure 4. A view definition takes
the form (n,w1, . . . , wd), where n is the number of layers
requested and each wi is the thickness of a layer along di-
mension i. Multiple views can exist for a single array.

To serve a request for overlap data, ArrayStore first
chooses the materialized view that covers the entire range of
requested data and will result in the least amount of extra
data read and processed. From that view, ArrayStore loads
only those layers that cover the requested region, combines



Algorithm 2 Multi-Layer Overlap using Overlap Views

1: Multi-Layer Overlap using Overlap Views
2: Input: chunk core chunk and predicate overlap region.
3: Output: chunk result chunk containing requested overlap data.
4: Identify materialized view M to use.
5: L← layers li ∈M that overlap overlap region.
6: Initialize an empty result chunk
7: for all Layer li ∈ L do
8: Load layer li into memory.
9: Add li to result chunk.
10: end for
11: return result chunk.

L1 
L2 

L3 

C3 

C1 

C2 

Figure 4: Example of multi-layer overlap used dur-
ing canopy clustering. C2 necessitates that the op-
erator loads a small amount of overlap data denoted
with L1. C3, however, requires an additional overlap
layer. So L2 is also loaded.

them into a chunk and passes the chunk to the operator.
Algorithm 2 shows the pseudo-code.

Materialized overlap views impose storage overhead. As
above, a 10% overlap along each dimension adds 33% total
storage for a 3D array. With 20% overlap, the overhead
grows to 75%. In a 6D array, the same overlaps add 75%
and 3X, respectively. Because storage is cheap, however,
we argue that such overheads are reasonable. We further
discuss materialized overlap views selection in Secion 5.3.

4. ACCESS METHOD
ArrayStore provides a single access method that supports

the various operator types presented in Section 2, including
overlap data access. The basic access method enables an
operator to iterate over array chunks, but how that iteration
is performed is highly configurable.

Array Iterator API. The array iterator provides the five
methods shown in Table 4. This API is exposed to operator
developers not end-users. Our API assumes a chunk-based
model for programming operators, which helps the system
deliver high-performance.

Method open opens an iterator over an array (or array
segment). This method takes two optional parameters as
input: a range predicate (Range r) over array dimensions,
which limits the iteration to those array chunks that overlap
with r; the second parameter is, what we call the packing
ratio (PackRatio p). It enables an operator to set the gran-
ularity of the iteration to either “tiles” (default), “chunks”,
or “combined”. Tiles are perfect for operators that bene-
fit from finely-structured data such as subsample. For this
packing ratio, the iterator returns individual tiles as chunks
on each call to getNext(). In contrast, the “chunks” packing
ratio works best for operators that incur overhead with each

Array Iterator Methods
open(Range r, PackRatio p)
boolean hasNext()
Chunk getNext() throws NoSuchElementException
Chunk getOverlap(Range r) throws NoSuchElementException
close()

Table 1: Access Method API

unit of processing, such as operators that work with overlap
data. Finally, the “combined” packing ratio combines into
a single chunk all tiles that overlap with r. If r is “null”,
“combined” returns all chunks of the underlying array (or
array segment) as one chunk. If an array segment comprises
chunks that are not connected or will not all fit in memory,
“combined” iterates over chunks without combining them.
In the next section, we show how a binary operator such as
join greatly benefits from the option to “combine” chunks.

Methods hasNext(), getNext(), and close() have the
standard semantics.

Method getOverlap(Range r) returns as a single chunk
all cells that overlap with the given region and surround
the current element (tile, chunk, or combined). Because
overlap data is only retrieved at the granularity of tiles or
overlap layers specified in the materialized views, extra cells
may be returned. Overlap data can be requested for a tile,
a chunk, or a group of tiles/chunks. However, ArrayStore
supports materialized overlap views only at the granularity
of chunks or groups of chunks. The intuition behind this
design decision is that, in most cases, operators that need to
process overlap data would incur too much overhead doing
so for individual tiles and ArrayStore thus optimizes for the
case where overlap is requested for entire chunks or larger.

Example Operator Algorithms. We illustrate Array-
Store’s access method by showing how several representative
operators (from Section 2) can be implemented.

Filter processes array cells independently of one another.
Given an array segment, a filter operator can thus call
open() without any arguments followed by getNext() un-
til all tiles have been processed. Each input tile serves to
produce one output tile.

Subsample. Given an array segment, a subsample oper-
ator can call open(r), where r is the requested range over
the array, followed by a series of getNext() calls. Each call
to getNext() will return a tile. If the tile is completely in-
side r, it can be copied to the output unchanged, which is
very efficient. If the tile partially overlaps the range, it must
be processed to remove all cells outside r.

Join. As described in Section 2, we consider a structural
join [35] that works as follows: For each pair of cells at
matching positions in the input arrays, compute the output
cell tuple based on the two input cell tuples. This join can
be implemented as a type of nested-loop join (Algorithm 3).
The join iterates over chunks of the outer array, array1 (it
could also process an entire outer array segment at once),
preferably the one with the larger chunks. For each chunk, it
looks-up the corresponding tiles in the inner array, array2,
retrieves them all as a single chunk (i.e., option“combined”),
and joins the two chunks. In our experiments, we found
that combining inner tiles could reduce cache misses by half,
leading to a similar decrease in runtime.

All three operators above can directly execute in parallel
using the same algorithms. The only requirement is that
chunks of two arrays that need to be joined be physically



Algorithm 3 Join algorithm.

1: JoinArray
2: input: array1 and array2, iterators over arrays to join
3: output: result array, set of result array chunks
4: array1.open(null, “chunk”)
5: while array1.hasNext() do
6: Chunk chunk1 = array1.getNext()
7: Range r = rectangular boundary of chunk1

8: array2.open(r,“combined”)
9: if array2.hasNext() then

10: Chunk chunk2 = array2.getNext()
11: result chunk = JOIN(chunk1, chunk2)
12: result array = result array ∪ result chunk
13: end if
14: end while
15: return result array

co-located. As a result different array partitioning strategies
yield different performance results for join (see Section 5).

Canopy Clustering. We described the canopy cluster-
ing algorithm in Section 3.4. Here we present its imple-
mentation on top of ArrayStore. The pseudo-code of the
algorithm is omitted due to the space constraints. The al-
gorithm iterates over array chunks. Each chunk is processed
independently of the others and the results are unioned.
For each chunk, when needed, the algorithm incrementally
grows the region under consideration (through successive
calls to getOverlap()) to ensure that, every time a point
xi starts a new cluster, all points within T1 of xi are added
to the cluster just as in the centralized version of the algo-
rithm. The maximum overlap area used for any chunk is
thus T1. Points within T2 < T1 of each other should not
both yield new canopies. In our implementation, to avoid
double-reporting canopies that cross partition boundaries,
only canopies whose centroids are inside the original chunk
are returned.

Volume-Density algorithm. The Volume-Density al-
gorithm is most commonly used to find what is called a
virial radius in astronomy [21]. It further demonstrates the
benefit of multi-layer overlap. Given a set of points in a mul-
tidimensional space (i.e., a sparse array) and a set of cluster
centroids, the volume-density algorithm finds the size of the
sphere around each centroid such that the density of the
sphere is just below some threshold T . In the astronomy
simulation domain, data points are particles and the sphere

density is given by: d = Σmass(pi)
volume(r)

, where each pi is a point

inside the sphere of radius r. This algorithm can benefit
from overlap: Given a centroid c inside a chunk, the algo-
rithm can grow the sphere around c incrementally, request-
ing increasingly further overlap data if the sphere exceeds
chunk boundary.

5. EVALUATION
In this section, we evaluate ArrayStore’s performance on

two real datasets and on eight dual quad-core 2.66GHz In-
tel/AMD OpteronPentium-based machines with 16GB of
RAM running RHEL5.

The first dataset comprises two snapshots, S43 and S92,
from a large-scale astronomy simulation [22] for a total
of 74GB of data. The simulation models the evolution
of cosmic structure from about 100K years after the Big
Bang to the present day. Each snapshot represents the
universe as a set of particles in a 3D space, which nat-
urally leads to the following schema: Array Simulation

{id,vx,vy,vz,mass,phi} [X,Y,Z], where X, Y , and Z are
the array dimensions and id, vx, vy, vz, mass, phi are
the attributes of each array cell. id is a signed 8 byte inte-
ger while all other attributes a 4 byte floats. We store each
snapshot in a separate array. Since the universe is becoming
increasingly structured over time, data in snapshot S92 is
more skewed than in S43. In Figure 3, the largest regular
chunk has 25X more data points than the smallest one. The
ratio is only 7 in S43 for the same number of chunks.

The second dataset is the output of a flow cytometer [3].
A flow cytometer measures scattered and fluoresced light
from a stream of water particles. Similar microorganisms
exhibit similar intensities of scattered light. In this dataset,
the data takes the form of points in a 6-dimensional space,
where each point represents a particle or organism in the
water and the dimensions are the measured properties. We
thus use the following schema for this dataset: Array Cy-

tometer {day, filenumber, row, pulseWidth, D1, D2}

[FSCsmall, FSCperp, FSCbig, PE, CHLsmall, CHLbig],
where all attributes are 2-byte unsigned integers. Each
array is approximately 7 GB in size. Join queries thus run
on 14 GB of 6D data.

Table 2 shows the naming convention for the experimental
setups. ArrayStore’s best-performing strategy is highlighted

5.1 Basic Performance of Two-Level Storage
First, we demonstrate the benefits of ArrayStore’s two-

level REG-REG storage manager compared with IREG-
REG, REG, and IREG when running on a single node
(single-threaded processing). We compare the performance
of these different strategies for the subsample and join oper-
ators, which are the only operators in our representative set
that are affected by the chunk shape. We show that REG-
REG yields the highest performance and requires the least
tuning. Figures 5 and 6 show the results. In both figures,
the y-axis is the total query processing time.

Array dicing query. Figure 5(a) shows the results of a
range selection query, when the selected region is a 3D rect-
angular slice of S92 (we observe the same trend in S43).
Each bar shows the average of 10 runs. The error bars
show the minimum and maximum runtimes. In each run,
we randomly select the region of interest. All the randomly
selected, rectangular regions are 1% of the array volume. Se-
lecting 0.1% and 10% region sizes yielded the same trends.
We compare the results for REG, IREG, REG-REG, and
IREG-REG.

For both single-level techniques (REG and IREG), larger
chunks yield worse performance than smaller ones because
more unnecessary data must be processed (chunks are mis-
aligned compared with the selected region). When chunk
sizes become too small (at 262144 chunks in this experi-
ment), however, disk seek times start to visibly hurt perfor-
mance. In this experiment, the best performance is achieved
for 65536 chunks (approximately 0.56 MB per chunk).

The disk seek time effect is more pronounced for REG
than IREG simply because we used a different chunk layout
for REG than IREG (row-major order v.s. z-order [38])
and our range-selection queries were worst-case for the REG
layout. Otherwise, the two techniques perform similarly.
Indeed, the key performance trade-off is disk I/O overhead
for small chunks v.s. CPU overhead for large chunks. IREG



Notation Description
(REG,N) One-level, regular chunks. Array split into N chunks total.
(IREG,N) One-level, irregular chunks. Array split into N chunks total.

(REG-REG, N1-N2) Two-level chunks. Array split into N1 regular chunks and N2 regular tiles.
(IREG-REG,N1-N2) Two-level chunks. Array split into N1 irregular chunks and N2 regular tiles.

Table 2: Naming convention used in experiments.
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(a) Performance of array dicing query on 3D slices that are 1%
of the array volume on S92. Two-level storage strategy yields
the best overall performance and also the most consistent
performance for different parameter choices.

Type I/O time (Sec) Proc. time (Sec)
(REG,4096) 28 115

(REG,262144) 46 51
(REG,2097152) 90 66

(REG-REG,4096-2097152) 28 64

(b) Same experiment as above but on 6D dataset. The two-
level strategy dominates the one-level approach again.

Figure 5: Array dicing query on 3D and 6D datasets.

only keeps the variance low between experiments since all
chunks contain the same amount of data.

The overhead of disk seek times rapidly grows with the
number of dimensions: for the 6D flow cytometer dataset
(Figure 5(b)), disk I/O increases by a factor of 3X as we in-
crease the number of chunks from 4096 to 2097152 while pro-
cessing times decreases by a factor of 2X. Processing times
do not improve for the smallest chunk size (2097152) be-
cause our range-selection queries pick up the same amount
of data, just spread across a larger number of chunks.

Most importantly, for these types of queries, the two-level
storage management strategies are clear winners: they can
achieve the low I/O times of small but not too small chunk
sizes and the processing times of the smallest chunk sizes.
The effect can be seen for both the 3D and 6D datasets. Ad-
ditionally, the two-level storage strategies are significantly
more resilient to suboptimal parameter choices, leading to
consistently good performance. The two-level storage thus
requires much less tuning to achieve high performance com-
pared with a single-level storage strategy.

Join query. Figure 6(a) shows the total query runtime re-
sults when joining two 3D arrays (two different snapshots or
same snapshot as indicated). Figure 6(c) shows the results
for a self-join on the 6D array.

We first consider the first three bars in Figure 6(a). The
first bar shows the performance of joining two arrays, each
using the IREG storage strategy. The second bar shows

what happens when REG is used but the array chunks are
misaligned: That is, each chunk in the finer-chunked array
overlaps with multiple chunks in the coarser-chunked array.
In both cases, the total time to complete the join is high
such that it becomes worth to re-chunk one of the arrays to
match the layout of the other as shown in the third bar. For
each chunk in the outer array, the overhead of the chunk
misalignment comes from scanning points in partly overlap-
ping tiles in the inner array before doing the join only on
subsets of these points.

The following two bars (A4 and A5) show the results of
joining two arrays with different chunk sizes but with aligned
regular chunks. That is, each chunk in the finer-chunked ar-
ray overlaps with exactly one chunk in the coarser-chunked
array. In that case, independent of how the arrays are chun-
ked, performance is high and consistent. We tried other
configurations, which all yielded similar results.

Interestingly, the overhead of chunk misalignment (always
occurring with IREG and occurring in some REG configu-
rations as discussed above) can rapidly grow with array di-
mensionality. The processing time of non-aligned 3D arrays
is 3.5X that of aligned ones, while the factor is 6X for 6D
arrays (Figure 6(c)).

Finally, the last three bars in Figure 6(a) show the results
of joining two arrays with either one-level REG or two-level
IREG-REG or REG-REG strategies. In all cases, we se-
lected configurations where tiles were aligned. The align-
ment of inner tiles is the key factor to achieving high perfor-
mance and thus all configurations result in similar runtimes.

Summary The above experiments show that IREG array
chunking does not outperform REG on array dicing queries
and can significantly worsen performance in the case of joins.
In contrast, a two-level chunking strategy, even with regu-
lar chunks at both levels can improve performance for some
operators (dicing queries) without hurting others (selection
queries and joins). The latter thus appears as the winning
strategy for single-node array processing.

5.2 Skew-Tolerance of Regular Chunks
While regular chunking yields high performance for single-

threaded array processing, an important reason for consid-
ering irregular chunks is skew. Indeed, in the latter case,
all chunks contain the same amount of information and thus
have a better chance of taking the same amount of time to
process. In this section, we study skew during parallel query
processing for different types of queries and different storage
management strategies. We use a real distributed setup with
8 physical machines (1 node = 1 machine). To run parallel
experiments, we first run the data shuffling phase and then
run ArrayStore locally at each node. During shuffling, all
nodes exchange data simultaneously using TCP. Note that
in the study of data skew over multiple nodes, REG-REG
and IREG-REG converge to REG and IREG storage strate-
gies, respectively because we always partition data based on
chunks rather than tiles.
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(a) Join query performance on 3D array. Tile
alignment is the key factor for the performance
gain.

A1 (IREG,512) (IREG,2048) (92,43)
A2 (REG,512) (REG,400) (92,92)
A3 Rechunk(A2) + (REG,512) (REG,2048) (92,92)
A4 (REG,512) (REG,2048) (92,92)
A5 (REG,65536) (REG,262144) (92,92)
A6 (IREG-REG,256-262144) (REG,2048) (92,43)
A7 (REG-REG,256-262144) (REG-REG,2048-262144) (92,43)
A8 (REG,256) (REG,2048) (92,43)

(b) Notation.

Type I/O time Proc. time
(REG,REG) NONALIGNED 6D 205 6227

(REG,REG) ALIGNED 6D 221 988
(REG-REG,REG-REG) ALIGNED 6D 222 993

(c) Join query performance on 6D array. Processing time
of non-aligned configuration is 6X that of the aligned one.

Figure 6: Join query on 3D and 6D arrays.

Parallel Selection. Figure 7 shows the total runtime of
a parallel selection query on 8 nodes with random, range,
block-cyclic, and round-robin partitioning strategies. All
these scenarios use regular chunks. The experiment shows
results for the S92 dataset (our most highly skewed dataset).
The figure also shows results for IREG and random parti-
tioning, one of the ideal configurations to avoid data skew.
On the y-axis, each bar shows the ratio between the max-
imum and minimum runtime across all eight nodes in the

cluster (i.e., MAX/MIN = max(ri)
min(rj)

where i, j ∈ [1, N ] and

ri is equal to the total runtime of the selection query on
node i). Error bars show results for different chunk sizes
from 140 MB to 140 KB.

For REG, block-cyclic data partitioning exhibits almost
no skew with results similar to those of IREG and random
partitioning. Runtimes stay within 9% of each other for all
chunk sizes. Runtimes in round-robin also stays within 14%
for all chunk sizes. Performance is a bit worse than block-
cyclic as the latter better spreads dense regions along all di-
mensions. For random data partitioning, skew can be elimi-
nated with sufficiently small chunk sizes. The only strategy
that heavily suffers from skew is range partitioning.

Parallel Dicing. Similarly to selection queries in parallel
DBMSs, parallel array dicing queries can incur significant
skew when only some nodes hold the desired array fragments
as shown in Figure 8. In this case, the problem comes from
the way data is partitioned and is not alleviated by using
an IREG chunking strategy. Instead, distributing chunks
using the block-cyclic data partitioning strategy with small
chunks can spread the load much more evenly across nodes.
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Figure 7: Parallel selection on 8 nodes with different
partitioning strategies on REG chunks. We vary
chunk sizes from 140 MB to 140 KB. Error bars show
the variation of MAX/MIN runtime ratios in that
range of chunk sizes. Round-Robin and Block-Cyclic
have the lowest skew and variance. Results for these
strategies are similar to those of IREG.
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Figure 8: Parallel subsample with REG or IREG
chunks distributed using range partitioning across 4
nodes. Subsample runs only on a few nodes causing
skew, independent of the chunking scheme chosen.

We measure a MAX/MIN ratio of just 1.11 with 4 nodes
and 65536 chunks with a std deviation of 0.036 (figure not
shown due to space constraints).

Parallel Join. Array joins can be performed in parallel us-
ing a two-phase strategy. First, data from one of the arrays is
shuffled such that chunks that need to be joined together be-
come co-located. During shuffling, all nodes exchange data
simultaneously using TCP. In our experiments, we shuffle
the array with the smaller chunks. Second, each node can
perform a local join operation between overlapping chunks.

Table 3 shows the percent data shuffled in an 8-node con-
figuration. Shuffling can be completely avoided when ar-
rays follow the same REG chunking scheme and chunks
are partitioned deterministically. When arrays use differ-
ent REG chunks, the same number of chunks are shuffled
for all strategies. The shuffling time, however, is lowest for
range and block-cyclic thanks to lower network contention.
With range partitioning, each node only sends data to nodes
with neighboring chunks. Block-cyclic spreads dense chunks
better across nodes than round-robin and assigns the same
number of chunks to each node unlike random. Range par-



Partitioning Strategy Type Shuffling
Same chunking strategy, chunks are co-located, no shuffling.

Block-Cyclic (REG-2048,REG-2048) (00.0%,0)
Round-Robin (REG-2048,REG-2048) (00.0%,0)

Range (same dim) (REG-2048,REG-2048) (00.0%,0)
Different chunking strategies for two arrays, shuffling required.

Round-robin (REG-2048,REG-65536) (87.5%,1498)
Random (REG-2048,REG-65536) (87.6%,1416)

Block-Cyclic (REG-2048,REG-65536) (87.5%,1326)
Range (same dim) (REG-2048,REG-65536) (00.0%,0)

Range (different dim) (REG-2048,REG-65536) (87.5%,1313)
IREG-REG chunks, shuffling required.

Random (TYPE1,TYPE2) (62.0%,895)
Round-Robin (TYPE1,TYPE2) (73.0%,836)

Range (same dim) (TYPE1,TYPE2) (11.0%,210)
Block-Cyclic (TYPE1,TYPE2) N/A

Table 3: Parallel join (shuffling phase) for differ-
ent types of chunk partitioning strategies across 8
nodes. TYPE1=(IREG-REG,2048-262144) in S43
and TYPE2= (IREG-REG,2048-262144) in S92.
Each value in “Shuffling” column is a pair of
(Cost,Time(sec.)).

Technique: Random Round-robin Range Block-cyclic
Avg 1.24 1.08 1.18 1.06

Max - Min 1.56-1.16 1.08-1.08 1.18-1.18 1.06-1.06

Table 4: “Local join phase” with regular chunks par-
titioned across 8 nodes. The values in the table are
the ratios of total runtime between the slowest and
fastest parallel nodes. The table shows the Avg,
Min, and Max ratios across 10 experiments. Block-
cyclic has the least skew, (6%) compared to other
techniques.

titioning, however, exhibits skew in the ”local join phase”
(Table 4), leaving block-cyclic as the winning approach.

Table 3 also shows the shuffling cost with IREG-REG
chunks. Irregular chunks always suffer from at least some
shuffling overhead. The best strategy, range partitioning,
still shuffles 11% of data even when both arrays are ranged
partition along the same dimension.

Summary. The above experiments show block-cyclic with
REG chunks as the winning strategy: For parallel selection,
block-cyclic has less than 9% skew for all regular chunk sizes.
For parallel dicing, it also effectively distributes the work-
load across nodes. Finally, for parallel join block-cyclic can
avoid data shuffling and offers the best performance for the
local join phase. Irregular chunks can smooth out skew for
some operations such as selections, but they hurt join per-
formance both in the local join and data shuffling phases.

5.3 Performance of Overlap Storage
We present the performance of ArrayStore’s overlap pro-

cessing strategy. We compare four options: ArrayStore’s
multi-layered overlap implemented on top of the two-level
storage manager, ArrayStore’s materialized multi-layer over-
lap, single-layer overlap, and no-overlap.

In all experiments, we use (REG-REG,2048-262144) for
the 3D arrays and (REG-REG,4096-2097152) for the 6D ar-
rays. In ArrayStore, we assume that the user knows how
much overlap his queries need (e.g., canopy threshold T1)
and he creates sufficiently large materialized overlap views
to satisfy most queries within storage space constraints. The
width of overlap layers is tunable, but we find its effect to
be less significant. Hence, we expect that a single view with
thin layers should suffice for most arrays. In our experi-
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Figure 9: Canopy Clustering algorithm with or
without overlap on the 3D dataset. Single-layer
overlap does not perform well because of a large
maximum overlap-size chosen. Both multi-layer
overlap techniques outperforms no-overlap by 25%.

ments, we materialize 20 thin layers of overlap data for each
chunk, which cover a total of 0.5 and 0.2 of each dimension
length in 3D and 6D, respectively. The choice of 20 layers
is arbitrary. The single-layer overlap is the concatenation of
these 20 layers. Experiments are on a single node.

Figure 9 presents the performance results for the canopy
clustering algorithm. T1 is set to 0.0125 (20% of the di-
mension length). We set T2 = (0.75)T1. Note that in
the no-overlap case, a post processing phase is required to
combine locally found canopies into global ones [1]. As
the figure shows, both multi-layer overlap strategies out-
perform no-overlap and single-layer overlap by 25% and
35% respectively. The performance of single-layer overlap
varies significantly depending on the overlap size chosen. In
this experiment, the single-layer overlap is large to empha-
size the drawback of inaccurate settings for this approach.
In contrast, with multi-layered overlap, we can choose fine
grained overlap layers (using views or small-size tiles), and
get high-performance without tuning the total overlap size.
Additionally, different applications can use different over-
lap sizes without hurting each other’s performance, which is
not the case for the single-layer overlap approach. We ran
the canopy application on the 6D dataset with the same T1
and T2 settings as in the 3D experiment and observed 16%
improvement in total runtime for multi-layer overlap using
materialized view compared with no-overlap. When leverag-
ing the two-level storage, the improvement was 11%, mainly
because of I/O overhead due to loading entire chunks.

Figure 10 shows the results from the volume-density ap-
plication described in Section 4 on the 3D dataset. As shown
in the figure, the multi-layer overlap strategy through mate-
rialized overlap views outperforms no-overlap by a factor of
almost two! Indeed, in order to compute the volume-density
of the points close to the boundary, without overlap, we may
need to load and process up to 3N − 1 neighboring chunks,
where N is the number of dimensions (e.g., 26 chunks for
the 3D dataset). In contrast, the multi-layer strategy loads
and processes only thin layers of overlap data as needed.
We observe the same trend on the 6D dataset which is not
shown due to space constraints.

In this experiment, materialized views also outperform
multi-layer using the two-level storage because views can
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Figure 10: Volume-density application on 3D
dataset with and without overlap. Multi-layer over-
lap outperforms no-overlap by almost 2X.

load overlap layers thinner than tiles. Similarly, single-
layer overlap loses because it does not have this flexibility
in choosing the overlap granularity to load and process. For
completeness, in this experiment, we also show the perfor-
mance when overlap data is stored directly inside chunks as
suggested in related work [35, 37]. The performance in this
case is even worse than no-overlap. The reason is that the
no-overlap case loads and processes neighboring chunks only
when required, but when overlap data is stored inside the
chunk, we are forced to process unnecessary overlap data.

Multi-layer overlap can outperform single-layer overlap
even when overlap size is perfectly tuned. Indeed, in the
volume-density application, we find that 90% of chunks only
need 3 out of the 20 layers of overlap, but the maximum
number of layers required is 10. This large difference be-
tween the average and maximum amount of overlap required
is the key reason why multi-layer overlap can outperform
single-layer overlap even for a single application (even if we
ignore varying overlap needs of different operators).

6. RELATED WORK
MOLAP systems store data in multidimensional ar-

rays [31, 41], but they focus on unary aggregation and se-
lection queries, while we consider a broader set of opera-
tions. Today’s business intelligence (BI) suites utilize closed
source, proprietary MOLAP engine solutions such as Oracle
Database OLAP Option [27], Cognos PowerPlay [10], and
others to analyze large datasets. To the best of our knowl-
edge, Palo [30] is the only open source memory-based MO-
LAP engine, which is specifically developed for spreadsheet
data storage and analysis. However, Palo is not designed for
large databases.

Many existing array-processing systems [8, 13, 15, 35] use
regular tiling for data storage. Others support user-defined
irregular tiles [9]. None of these systems, however, studies
the impact of different tiling strategies on query processing
performance, although they do consider different tile layouts
on disk [8] and across disks [8, 25] for range-selection queries.

RasDaMan [14] is a multidimensional array DBMS im-

plemented on top of a relational DBMS. Furtado and Bau-
mann [16] studied the performance of different tiling strate-
gies in RasDaMan (including regular and irregular tiles).
Their study, however, was limited to scans and different
types of array dicing operations. Their conclusions are thus
different from ours since they find that arbitrary tiling tuned
to a specific workload outperforms regular tiling. Reiner et
al. [33] studied hierarchical storage support for large-scale
multi-dimensional arrays in RasDaMan. Their approach
is analogous to the two-level, IREG-REG, chunking strat-
egy. However, their study is constrained to range-selection
queries.

Shimada et al. [38] propose a chunking scheme for sparse
arrays, where multiple chunks are compressed and stored in
a single physical page. This approach is analogous to the
two-level, IREG-REG, storage system that we study. Shi-
mada et al., also introduce “extended chunks”, which are
similar to IREG. Again, however, this earlier study was lim-
ited to range-selection queries.

Prior work studied the tuning of chunk shape, size, and
layout on disk for a given workload and for regular chunk-
ing [29, 36]. This work is orthogonal to ours since we com-
paratively study regular v.s. irregular v.s. two-level chunk-
ing schemes and support for overlap data.

Seamons and Winslett [37] examine different storage man-
agement strategies for regularly-tiled arrays. In particular,
they propose that data from multiple arrays be either stored
separately or be interleaved on disk. This strategy is orthog-
onal to those we study in this paper. They also consider stor-
age strategies for overlap data mentioning both the option to
store overlap data together with or separately from the core
data. Their implementation and evaluation, however, only
examine the co-located scenario, similarly to SciDB [35].

There exist many data structures for indexing multi-
dimensional data including the R-Tree [17] and its vari-
ants [2, 5], the KD-Tree [6], the KDB-Tree [34], the Gam-
maSLK [24], the Pyramid technique [7], the Gamma strat-
egy [28], RPST [32], and more. All these indexes orga-
nize a raw dataset into a multi-dimensional data struc-
ture to speed-up range-, containment-, and nearest-neighbor
queries. In contrast, we study storage management tech-
niques for more varied array operations.

7. CONCLUSION
We presented the design, implementation, and evaluation

of ArrayStore, a storage manager for complex, parallel array
processing. For efficient processing, ArrayStore partitions
an array into chunks and we showed that a two-level chunk-
ing strategy with regular chunks and regular tiles (REG-
REG) leads to the best and most consistent performance
for a varied set of operations both on a single node and in
a shared-nothing cluster. ArrayStore also enables operators
to access data from adjacent array fragments during paral-
lel processing. We presented two new techniques to support
this need: one leverages ArrayStore’s two-level storage lay-
out and the other one uses additional materialized views.
Both techniques significantly outperform approaches that
do not provide overlap or provide only a pre-defined single
overlap layer. The overall performance gain was up to 2X
on real queries and real data from two science domains.

ArrayStore’s design focuses on the workload from Sec-
tion 2. It does not consider iterative operations nor array
updates, which may be poorly served by our regular-tiled,



read-only store. It also does not consider operations that ex-
amine input cells across the array to compute the value of an
output cell. Such operations do not benefit from overlap and
some of them may be difficult to code with a chunk-based
API. Finally, we did not study the impact of indexing data
inside chunks, which could further accelerate some opera-
tions. All these considerations are interesting future work.
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