
Efficient Iterative Processing
in the SciDB Parallel Array Engine

Emad Soroush1, Magdalena Balazinska1, Simon Krughoff2, and Andrew Connolly2

1Dept. of Computer Science & Engineering 2 Astronomy Department
University of Washington, Seattle, USA

{soroush,magda}@cs.washington.edu
{krughoff, ajc}@astro.washington.edu

Abstract
Many scientific data-intensive applications perform iterative
computations on array data. There exist multiple engines
specialized for array processing. These engines efficiently
support various types of operations, but none includes na-
tive support for iterative processing. In this paper, we de-
velop a model for iterative array computations and a series
of optimizations. We evaluate the benefits of an optimized,
native support for iterative array processing on the SciDB
engine and real workloads from the astronomy domain.

1. INTRODUCTION
Science is increasingly becoming data-driven [11]. From

small research labs to large communities [31, 17], scientists
have access to more data than ever before. As a result,
scientists can increasingly benefit from using database man-
agement systems to organize and query their data [15, 30].

Scientific data often takes the form of multidimensional ar-
rays (e.g., 2D images or 3D environment simulations). One
approach to managing this type of array data is to build
array libraries on top of relational engines, but many ar-
gue that simulating arrays on top of relations can be highly
inefficient [4]. Scientists also need to perform a variety of op-
erations on their array data such as feature extraction [14],
smoothing [25], and cross-matching [23], which are not built-
in operations in relational Database Management Systems
(DBMSs). Those operations also impose different require-
ments than relational operators on a DBMS [6].

As a result, many data management systems are being
built to support the array model natively [7, 25, 36]. Addi-
tionally, to handle today’s large-scale datasets, several en-
gines, including SciDB [25], provide support for processing
arrays in parallel in a shared-nothing cluster. Several bench-
mark studies have shown that these specialized array en-
gines outperform both relational engines and MapReduce-
type systems on a variety of array workloads [4, 33].

Many data analysis tasks today require iterative process-
ing [8]: machine learning, model fitting, pattern discovery,
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flow simulations, cluster extraction, and more. As a result,
most modern Big Data management and analytics systems
(e.g., [16, 34]) support iterative processing as a first-class
citizen and offer a variety of optimizations for these types
of computations: caching [3], asynchronous processing [16],
prioritized processing [20, 35], etc.

The need for efficient iterative computation extends to
analysis executed on multi-dimensional scientific arrays. For
example, astronomers typically apply an iterative outlier-
removal algorithm to telescope images as one of the first
data processing steps. Once the telescope images have been
cleaned, the next processing step is to extract sources (i.e.,
stars, galaxies, and other celestial structures) from these im-
ages. The source extraction algorithm is most easily written
as an iterative query as well. As a third example, the simple
task of clustering data in a multi-dimensional array also re-
quires iterating until convergence to the final set of clusters.
We further describe these three applications in Section 2.

While it is possible to implement iterative array computa-
tions by repeatedly invoking array queries from a script, this
approach is highly inefficient (as we show in Figure 10(a)).
Instead, a large-scale array management systems such as
SciDB should support iterative computations as first-class
citizens in the same way other modern data management
systems do for relational or graph data.
Contributions: In this paper, we introduce a new model
for expressing iterative queries over arrays. We develop a
middleware system called ArrayLoop that we implement on
top of SciDB to translate queries expressed in this model
into queries that can be executed in SciDB. Importantly,
ArrayLoop includes three optimizations that trigger rewrites
to the iterative queries and ensure their efficient evaluation.
The first optimization also includes extensions to the SciDB
storage manager. More specifically, the contribution of this
paper are as follows:
(1) New model for iterative array processing (Sec-
tions 3 and 4): Iterating over arrays is different from it-
erating over relations. In the case of arrays, the iteration
starts with an array and updates the cell values of that ar-
ray. It does not generate new tuples as in a relational query.
Additionally, these update operations typically operate on
neighborhoods of cells. These two properties are the foun-
dation of our new model for iterative array processing. Our
model enables the declarative specification of iterative ar-
ray computations, their automated optimization, and their
efficient execution.
(2)Incremental iterative processing (Section 5): In
many iterative applications, the result of the computation



changes only partly from one iteration to the next. As such,
implementations that recompute the entire result every time
are known to be inefficient. The optimization, called incre-
mental iterative processing [8], involves processing only the
part of the data that changes across iterations. When this
optimization is applicable, it has been shown to significantly
improve performance in relational and graph systems [8, 20].
This optimization also applies to array iterations. While it
is possible to manually write a set of queries that process
the data incrementally, doing so is tedious, error-prone, and
can miss optimization opportunities. Our iterative array
model enables the automatic generation of such incremen-
tal computations from the user’s declarative specification of
the overall iterative query. Additionally, while the idea of
incremental iterations has previously been developed for re-
lational systems, its implementation in an array engine is
very different: For an array engine, the optimization can
be pushed all the way to the storage manager with signif-
icant performance benefits. We develop and evaluate such
storage-manager-based approach to incremental array pro-
cessing.
(3) Overlap iterative processing (Section 6): In itera-
tive array applications, including, for example, cluster find-
ing and source detection, operations in the body of the loop
update the value of the array cells by using the values of
other neighboring array cells. These neighborhoods are of-
ten bounded in size. These applications can effectively be
processed in parallel if the system partitions an array but
also replicates a small amount of overlap cells. In the case of
iterative processing, the key challenge lies in keeping these
overlap cells up to date. This optimization is specific to
queries over arrays and does not apply to relational engines.
Our key contribution here lies in new mechanisms for man-
aging the efficient reshuffling of the overalp data across iter-
ations.

A subset of applications that leverage overlap data also
have the property that overlap cells can be updated only ev-
ery few iterations. Examples of such applications are those
that try to find structures in the array data. They can find
structures locally, and need to exchange information only
periodically to stitch these local structures into larger ones.
We extend our overlap data shuffling approach to leverage
this property and further reduce the overhead of synchroniz-
ing overlap data. We call this optimization, mini-iterations.
(4)Multi-resolution iterative processing (Section 7):
Finally, in many applications, the raw data lives in a contin-
uous space (3D universe, 2D ocean, N-D space of continuous
variables) and arrays capture discretized approximations of
the real data. Different data resolutions are thus possible
and scientifically meaningful to analyze. In fact, it is com-
mon for scientists to look at the data at different levels of
detail. In many applications, it is often efficient to first pro-
cess the low-resolution versions of the data and use the result
to speed-up the processing of finer-resolution versions of the
data if requested by the user. Our final optimization au-
tomates this approach. While scientists are accustomed to
working with arrays at different levels or detail, our contri-
bution is to show how this optimization can be automatically
applied to iterative queries in an array engine.
(5) Implementation and evaluation We implement the
iterative model and all three optimizations as extensions to
the open-source SciDB engine and we demonstrate their ef-
fectiveness on experiments with 1 TB of publically-available

synthetic LSST images [24]. Experiments show that Incre-
mental iterative processing can boost performance by a fac-
tor of 4-6X compared to a non-incremental iterative com-
putation. Iterative overlap processing together with mini-
iteration processing can improve performance by 31% com-
pare to SciDB’s current implementation of overlap process-
ing. Finally, the multi-resolution optimization can cut run-
times in half if an application can leverage this technique.
Interestingly, these three optimizations are complementary
and their benefits can be compounded.

To the best of our knowledge, this paper is the first to de-
sign, implement, and evaluate an approach for iterative pro-
cessing in a parallel array data management system. Given
that array engines have been shown to outperform a variety
of other systems on array workloads [4, 33] and that iter-
ative analytics are common on array data (as we discussed
above), efficient support for iterative query processing in ar-
ray engines is a critical component of the big data engine
ecosystem.

2. MOTIVATING APPLICATIONS
We start by presenting three array-oriented, iterative ap-

plications. We use these applications as examples through-
out the paper and also in the evaluation.

Example 2.1. Sigma-clipping and co-addition in
LSST images (SigmaClip): The Large Synoptic Survey
Telescope (LSST [17]) is a large-scale, multi-organization
initiative to build a new telescope and use it to continuously
survey the visible sky. The LSST will generate tens of TB of
telescope images every night. Before the telescope produces
its first images, astronomers are testing their data analysis
pipelines using realistic but simulated images.

When analyzing telescope images, some sources (a
“source” can be a galaxy, a star, etc.) are too faint to be
detected in one image but can be detected by stacking mul-
tiple images from the same location on the sky. The pixel
value (flux value) summation over all images is called image
co-addition. Figure 1 shows a single image and the corre-
sponding co-added image. Before the co-addition is applied,
astronomers often run a “sigma-clipping” noise-reduction al-
gorithm. The analysis in this case has two steps: (1) out-
lier filtering with “sigma-clipping” and then (2) image co-
addition. Listing 1 shows the pseudocode for both steps.
Sigma-clipping consists in grouping all pixels by their (x,y)
coordinates. For each location, the algorithms computes the
mean and standard deviation of the flux. It then sets to null
all cell values that lie k standard deviations away from the
mean. The algorithm iterates by re-computing the mean
and standard deviation. The cleaning process terminates
once no new cell values are filtered out. Throughout the
paper, we refer to this application as SigmaClip. �

Example 2.2. Iterative source detection algorithm
(SourceDetect): Once telescope images have been cleaned
and co-added, the next step is typically to extract the actual
sources from the images.

The pseudocode for a simple source detection algorithm is
shown in Listing 2. Each non-empty cell is initialized with
a unique label and is considered to be a different object. At
each iteration, each cell resets its label to the minimum label
value across its neighbors. Two cells are neighbors if they
are adjacent. This procedure continues until the algorithm



(a) Single Image (b) Co-added image

Figure 1: Illustrative comparison of a single tele-
scope image and its corresponding co-added image.
Many faint objects become visible after co-addition.

Listing 1 Pseudocode for SigmaClip application
Input: Array A with pixels from x-y images over time.
//Part 1: Iterative sigma-clipping
While(some pixel changes in A)
For each (x,y) location
Compute mean/stddev of all pixel values at (x,y).
Filter any pixel value that is k
standard deviations away from the mean

//Part 2: Image co-addition
Sum all non-null pixel values grouped by x-y

converges. We refer to this application as SourceDetect.
�

Example 2.3. K-means clustering algorithm
(KMeans): In many domains, clustering algorithms
are commonly used to identify patterns in data. Their use
extends to array data. We consider in particular K-means
clustering on a 2D array [12]. K-means clustering works
as follows: It assigns each cell randomly to one of the k
clusters. It computes the centroid of each cluster. It iterates
by re-assigning each cell to its nearest cluster. We refer to
this application as KMeans. �

These applications illustrate two important properties of
iterative computations over arrays. First, the goal of an it-
erative computation is to take an array from an initial state
to a final state by iteratively refining its content. The Sig-

maClip application, for example, starts with an initial 3D
array containing 2D images taken at different times. Each
iteration changes the cell values in this array. The iteration
terminates when no cell changes across two iterations. Sec-
ond, the value of each cell at the next iteration is determined
by the values of a group of cells with some common charac-
teristics at the current iteration. Those characteristics are
often mathematically described for any given cell in the ar-
ray. For SigmaClip those are “all pixel values at the same
(x,y) location”. Interestingly, unlike SigmaClip, where each
group of cells at the same (x, y) location influences many
cell-values at the next iteration, in the SourceDetect algo-
rithm any given cell (x, y) is influenced by a unique group of
cells, which are its adjacent neighbors. These groups of cells
partially overlap with each other, which complicates parallel
processing as we discuss in Section 6.

3. ITERATIVE ARRAY-PROCESSING
MODEL

We start with a formal definition of an array similar to
Furtado and Baumann [9]: Given a discrete coordinate set
S = S1 × . . .× Sd, where each Si, i ∈ [1, d] is a finite totally
ordered discrete set, an array is defined by a d-dimensional
domain D = [I1, . . . , Id], where each Ii is a subinterval of the
corresponding Si. Each combination of dimension values in

Listing 2 Pseudocode for SourceDetect application
Input: Co-added Array A with uniquely labeled pixels from

all the x-y images.
Input: int r, the adjacency threshold.
While(some pixel changes in A)
For each (x,y) location
Compute the minimum label of all pixel values (x’,y’)
with x-r <= x’<= x+r and y-r <= y’<= y+r.
Update (x,y) with the minimum label.
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Figure 2: Iterative array A and its state at each

iteration for the SourceDetect application. {Qf
π,δπ

cells(A) :

∀ci,j ∈ cells(A) i ∈ I1 & j ∈ I2 } where I1 = I2 =
{1, 2, 3, 4} are the sets of dimension values, fπ applies
min() aggregate on each group of cells, δπ simply
stores the aggregated value in each cell ci,j, and π :
(x, y) → [x ± 1][y ± 1]. At each iteration, a sliding
window scans through all the cells.

D defines a cell. All cells in a given array A have the same
type T , which is a tuple. cells(A) is the set of all the cells
in array A and function V : cells(A)→ T maps each cell in
array A to its corresponding tuple with type T . In the rest
of the paper, we refer to the dimension x in array A as A[x]
and to each attribute y in the array A as A.y.

In SciDB, users operate on arrays by issuing declarative
queries using either the Array Query Language (AQL) or the
Array Functional Language (AFL). The select statements
in Algorithm 1 in Section 5 are examples AQL queries. AQL
and AFL queries are translated into query plans in the form
of trees of array operators. Each operator O takes one or
more arrays as input and outputs an array: O : A → A or
O : A×A→ A.

In an iterative computation, the goal is to start with an
initial array A and transform it through a series of opera-
tions in an iterative fashion until a termination condition
is satisfied. The iterative computation on A typically in-
volves other arrays, including arrays that capture various
intermediate results (e.g., arrays containing the average and
standard deviation for each (x, y) location in the SigmaClip

application) and arrays with constant values (e.g., a connec-
tivity matrix in a graph application).

One can use the basic array model to express iterative
computations. The body of the loop can simply take the
form of a series of AQL or AFL queries. Similarly, the termi-
nation condition can be an AQL or AFL query. In Section 5,
the first function in Algorithm 1 illustrates this approach.

To enable optimizations, however, we extend the basic
array model with constructs that capture in greater details
how iterative applications process arrays. We start with
some definitions.

Definition 3.1. We call an array iterative if its cell-values
are updated during the course of an iterative computation.
The array starts with an initial state A0. As the itera-
tive computation progresses, the array goes through a set
of states A1, A2, A3, . . ., until a final state AN . Note that
all Ai have the same schema. In other words, the shape of
an iterative array does not change.



Figure 2 shows a (4×4) iterative array that represents a
tiny telescope image in the SourceDetect application. In
the initial state, A0, each pixel with a flux value above a
threshold is assigned a unique value. As the iterative com-
putation progresses, adjacent pixels are re-labeled as they
are found to belong to the same source. In the final state
A3, each set of pixels with the same label corresponds to one
detected source.

Iterative applications typically define a termination con-
dition that examines the cell-values of the iterative array:

Definition 3.2. An iterative array A has converged, when-
ever T (Ai, Ai+1) ≤ ε for some aggregate function T . T is
the termination condition. ε is a user-specified constant.

In Figure 2, convergence occurs at iteration 3 when ε = 0
and the termination condition T is the count of differences
between Ai and Ai+1. Our ArrayLoop system represents T
as AQL function.

An iterative array computation takes an iterative array,
A, and applies to it a computation Q until convergence:

A0
Q−→ A1

Q−→ . . .
Q−→ Ai

Q−→ Ai+1 (1)

where Q is a sequence of valid AQL or AFL queries. At
each step, Q can either update the entire array or only some
subset of the array. We capture the distinction with the
notion of major and minor iteration steps:

Definition 3.3. A state transition, Ai
Q−→ Ai+1, is a major

step if the function Q operates on all the cells in A at the
same time. Otherwise it is a minor step.

The array state Ai,j represents the state of the iterative
array after i major steps followed by j minor steps. We
are interested in modeling computations where each major
step can be decomposed into a set of minor steps that can
be evaluated in parallel. That is, a major step Qi can be
expressed as a set of minor steps qi such that σ, Qi = qi,σ1 ·
qi,σ2 . . . qi,σn−1 · qi,σn .

The iterative array computation in Equation 2 includes
(i + 1) major steps. The first line illustrates the transition
of iterative array A in major steps and the second line illus-
trates the possible minor steps that can replace the major
step Qi+1. A termination condition check always occurs be-
tween two states of an iterative array after a major step.

A0
Q1−−→ A1

Q2−−→ . . . Ai−1
Qi−−→ Ai

Qi+1−−−→ Ai+1 (2)︷ ︸︸ ︷
Ai

qi,1·qi,2...qi,j−1·qi,j−−−−−−−−−−−−−→ Ai+1

Figure 2 shows an iterative array computation with only
major steps involved, while Figure 3 presents the same ap-
plication but executed with minor steps.

We further observe from the example applications in Sec-
tion 2 that the functions Q often follow a similar pattern.

First, the value of each cell in iterative array Ai+1 that
is updated by Q only depends on values in nearby cells in
array Ai. We capture this spatial constraint with a function
π that specifies the mapping from output cells back onto
input cells:

Definition 3.4. π is an assignment function defined as π :
cells(A)→ P (cells(A)), where cells(A) is the set of all the
cells in array A and P() is the powerset function.
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Figure 3: Iterative array A and its state after three
minor steps, each of the form: Qi,j = Qf

π,δπ

ci,j where

ci,j is the cell at A[i][j], fπ applies min() aggregate, δ
simply stores the aggregate result as the new value
in cell ci,j, and π : (x, y)→ [x± 1][y ± 1]

Figure 4 illustrates two examples of assignment functions.
Our ArrayLoop system supports two types of assignment
functions: windowed functions such as those illustrated in
Figure 4 and attribute assignment function. The latter oc-
cur in applications such as K-means clustering described in
Example 2.3: π : (x, y) → label where all the cells with the
same label are grouped together.

Definition 3.5. fπ is an aggregate function defined as fπ :
cells(A) → τ . fπ groups the cells of the array A according
to assignment function π, with one group of cells per cell
in the array A. It then computes the aggregate functions
separately for each group. The aggregate result is stored in
tuple τ .

Finally, Q updates the output array with the computed
aggregate values:

Definition 3.6. δπ : (cells(A), fπ) → cells(A) is a cell-
update function. It updates each cell of the array A with
the corresponding tuple τ computed by fπ and the current
value of the cell itself.

These three pieces together define the iterative array com-

putation Qf
π,δπ

C as follows:

Definition 3.7. An iterative array computation Qf
π,δπ

C on
the subset of cells C where C ∈ P(cells(A)) generates subset

of cells C
′
∈ P(cells(A)) such that ∀c ∈ C and c

′
∈ C

′

c
′

= δπ(c, fπ(c)) where c and c
′

are two corresponding cells
in those subsets.

In the example from Figures 2 and 3, which illustrate the
SourceDetect application, the goal is to detect all the clus-
ters in the array A, where each cell p1 = (x1, y1) in a cluster
has at least one neighbor p2 = (x2, y2) in the same cluster
such that |x1 − x2| ≤ 1 and |y1 − y2| ≤ 1, if it is not a
single-cell cluster. In this application, π is the 3X3 window
around a cell. We slide the window over the array cells in
major order. At each minor step, at each cell ci,j at the
center of the window, we apply an iterative array computa-
tion Qi,j = Qf

π,δπ

ci,j where fπ applies a min() aggregate over
the 3x3 window, π, and δπ is a cell-update function that
simply stores the result of the min() aggregate into cell ci,j .
Figure 3 illustrates three steps of this computation. Notice
that the output of the iterative array computation Q0,0 be-
comes the input for Q0,1 and so on. Another strategy is to
have many windows grouped and applied together. In other
words, instead of applying the iterative array computation

per cell, we applyQf
π,δπ

C on a group of cells C ∈ P (cells(A))
in one major step. Note that when using minor steps, the
output of each minor step serves as input to the next step. In
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Figure 4: Two examples of window assignment func-
tions: (a) π1 : (x, y, z)→ [x± 1][y± 1][z± 1], the associ-
ated window is highlighted for the cell at (2, 1, 2). (b)
π2 : (x, y, z) → [x][y], the associated window is high-
lighted for all the cells at (x, y, z) with z = 0.

contrast, when using major steps, the iterative array compu-
tations see the original array state at the beginning of that
iteration. Figure 2 shows the iterative array computation for
the latter strategy. The former strategy has less expensive
steps than the latter strategy, but it requires more steps to
converge.

In our model, we encapsulate all the elements of the model
in a FixPoint operator:

FixPoint(A, π, f, δ, T, ε) (3)

With our model, the user specifies the logic of the iterative
algorithm without worrying about the way it is going to be
executed. Our model can be implemented and executed on
top of various array execution engines. In the rest of the
paper, we describe how the queries specified in our model are
rewritten and efficiently run in the SciDB array engine. The
execution strategy in SciDB uses only major steps. Mini-
step iterations, i.e. asynchronous execution, is left for future
study.

4. ITERATIVE ARRAY PROCESSING
We extend SciDB-Py [27] with a python FixPoint() oper-

ator following the model from Section 3. We also develop an
optimizer module that we name ArrayLoop. The user encap-
sulates its iterative algorithm in the FixPoint() operator.
The ArrayLoop optimizer sits on top of SciDB. ArrayLoop
rewrites a FixPoint(A, π, f, δ, T, ε) operator into the AQL
queries in Listing 3 that it wraps with an internal while loop.
is_window helper function in Listing 3 clarifies whether

the window assignment function translates to a window ag-
gregate or a group-by aggregate. ArrayLoop translates a
window assignment function to a group-by aggregate if map-
ping is from a set of input dimensions to one of its subsets.
If mapping is from a set of dimensions to the same set of
dimensions with additional offsets per dimension, then Ar-
rayLoop translates it to window-aggregate. Supporting win-
dow assignment function that is a combination of group-by
aggregate and window aggregate is left for future work.

In addition, ArrayLoop also implements a set of query re-
writing tasks in order to leverage a series of optimizations
that we develop: incremental iterative processing, overlap it-
erative processing, and multi-resolution iterative processing.

ArrayLoop acts as a pre-processing module before exe-
cuting the iterative query in SciDB. Currently the majority
of the ArrayLoop implementation is outside the core SciDB
engine. As future work, we are planning to push the Array-
Loop python prototype into the core SciDB engine. Array-
Loop relies on SciDB for features such as distributed query

Listing 3 Pseudocode for rewriting FixPoint operator
Input:

FixPoint(A,pi,f,delta,T,epsilon)
Output:

While (T(A,A_prev) < epsilon)
// Termination function T is also AQL function.
// Compute the new aggregates from the current iterative array.
If (is_window(pi))

G = SELECT f FROM A WINDOW PARTITIONED BY pi
else

G = SELECT f FROM A GROUP BY pi
// Combine the new aggregate with the old value of the cell.
S = SELECT * FROM G JOIN A ON <matching dimensions>
A_new = SELECT delta(S) FROM S
A_prev = A
A = A_new

(a) (b) (c) (d)

Figure 5: Snapshots from the first 3 iterations
of the SigmaClip application with the incremental-
processing optimization on the LSST dataset.
Green-colored points are the ones that change across
iterations. (a) Original Image (b) Iteration-1 (c)
Iteration-2 (d) Iteration-3.

processing, fault-tolerance, data distribution, and load bal-
ancing. In the following sections, we describe each of the
three optimizations in more detail.

5. INCREMENTAL ITERATIONS
In a wide range of iterative algorithms, the output at each

iteration differs only partly from the output at the previ-
ous iteration. Performance can thus significantly improve
if the system computes, at each iteration, only the part of
the output that changes rather than re-computing the entire
result every time. This optimization called incremental it-
erative processing [8] is well-known, e.g. in semi-naive data-
log evaluation, and has been shown to significantly improve
performance in relational and graph systems. ArrayLoop
leverages the iterative computation model from Section 3
to automatically apply this optimization when the seman-
tics of the applications permit it. The SigmaClip applica-
tion described in Section 2.1 is an example application that
can benefit from incremental iterative processing. Figure 5
shows multiple snapshots of running the sigma-clipping al-
gorithm using incremental iterative processing, on a subset
of the lsst dataset. Green-colored points are the ones with
changed values across two consecutive iterations. As the it-
erative computation proceeds, the number of green-colored
points drops dramatically and consequently the amount of
required computation at that step.
sigma-clipping() and incr-sigma-clipping() modules

in Algorithm 1 show the original implementation and the
manually-written incremental version of the implementa-
tion, respectively. In the sigma-clipping() module, the
avg() and stdv() aggregate operators are computed over
the whole input at each iteration, which is inefficient. In
incr-sigma-clipping(), the user rewrites the avg() and
stdv() aggregate operators in terms of two other aggre-
gate operators count() and sum() (Algorithm 1, Lines 18
and 24). The user also needs to carefully merge the current
partial aggregates with the aggregate result of the previous



Algorithm 1 SigmaClip application followed by image co-
addition
1. function sigma-clipping(A,k) . Näıve sigma-clip
2. Input: Iterative Array A <float d>[x,y,t]
3. Input: k a constant parameter.
4. while (some pixels A[x, y, t] are filtered) do

5. T [x, y] = select avg(d) as µ, stdv(d) as σ from A group by x, y

6. S[x, y, t] = select * from T join A on T.x = A.x and T.y=A.y
7. A[x, y, t] = select d from S where µ − k × σ ≤ d ≤ µ + k × σ
8. end while
9. end function

10. function incr-sigma-clipping(A,k) . Incremental sigma-clip
11. Input: Array A <float d>[x,y,t].
12. Input: k: a constant parameter.

13. Local: Array C <int c,float s,float s2>[x,y].
14. Local: Collect ← φ . Collects all the filtered points.
15. Local: Remain ← A . Keeps track of remaining points.
16. ∆A ← A
17. while (∆A is not empty) do

18. T1[x, y] ← select count(d) as c, sum(d) as s, sum(d2) as s2 from ∆A group
by x, y

19. if (first iteration) then
20. C ← T1[x, y]
21. else

22. ∆C[x,y] ← select C.c − T1.c as c , C.s − T1.s as s , C.s2 − T1.s
2 as s2

from C join T1 on T1.x = C.x & T1.y=C.y

23. end if

24. T [x, y] ← select C.s
C.c

AS µ,
2
√
C.s2
C.c

− (C.s
C.c

)2 AS σ from ∆C

25. S[x, y, t] ← select A.d, T.µ, T.σ from T join Remain on T.x =
A.x and T.y=A.y

26. ∆A ← select d from S where d ≤ µ − k × σ or d ≥ µ + k × σ

27. Remain ← πd(S)-∆A . Updates Remain.

28. Collect ← ∆A . Adds the filtered points to Collect.

29. end while

30. A ← A-Collect . Produces the final state for A.

31. end function

co-addition phase:
32. R[x, y] ← select sum(A.d) as coadd from A group by x, y

iteration (Algorithm 1, Line 22). As shown in Algorithm 1,
writing an efficient incremental implementation is not a triv-
ial task. It is painful for users if they need to rewrite their
algorithms to compute these increments and manage them
during the computation. Ideally, the user wants to define the
semantics of the algorithm and the system should automat-
ically generate an optimized, incremental implementation.
Additionally, as we show in the evaluation, if the system is
aware of the incremental processing, it can further optimize
the implementation by pushing certain optimizations all the
way to the storage layer.

5.1 Rewrite for Incremental Processing
In ArrayLoop, we show how the incremental processing

optimization can be applied to arrays. As shown in Al-
gorithm 2, with ArrayLoop, the user provides a FixPoint

operator in ArrayLoop-sigma-clipping function. Array-
Loop automatically expands and rewrites the operation into
an incremental implementation as shown in the ArrayLoop-

incr-sigma-clipping function. The rewrite proceeds as
follows. If the aggregate function f is incremental, Array-
Loop replaces the initial aggregation with one over Delta A-
or Delta A+ or both. For example, for ArrayLoop-incr-

sigma-clipping, only negative delta arrays are generated
at each iteration(there is no ∆A+). So the rewrite pro-
duces a group-by aggregate only on ∆A− (line 16). Next,
ArrayLoop merges the partial aggregate values with the ag-
gregate results from the previous iteration (lines 20 through
22). The aggregate rewrite rules define that merge logic for
all the aggregate functions. In this example, ArrayLoop will
generate one merge statement per aggregate function com-

Algorithm 2 ArrayLoop version of the SigmaClip application
followed by image co-addition
1. function ArrayLoop-sigma-clipping(A,k) . SigmaClip algorithm with

FixPoint operator provided by the user.
2. Input: Iterative Array A <float d>[x,y,t],
3. Input: k a constant parameter.
4. π : [x][y][z] → [x][y].
5. δ : “A.d ≥ µ − k × σ and A.d ≤ µ + k × σ?A : null”
6. f : {avg() as µ, stdv() as σ}
7. FixPoint(A, π, f, δ, count(), 0)
8. end function

9. function ArrayLoop-incr-sigma-clipping(A,k) . ArrayLoop incremental
rewriting of the SigmaClip.

10. Input: Iterative Array A <float d>[x,y,t],
11. Input: k: a constant parameter.

12. Local: Iterative Array C <int c,float s,float s2>[x,y],
13. Local: Array S <float σ,float µ>[x,y],

14. ∆A− ← A
15. while (∆A− is not empty) do

16. T [x, y] ← select count(d) as c, sum(d) as s, sum(d2) as s2 from ∆A− group
by x, y

17. if (first iteration) then
18. C ← T [x, y]
19. else

20. merge(C,T ,C.c − T.c)

21. merge(C,T ,C.s − T.s)

22. merge(C,T ,C.s2 − T.s2)

23. end if

24. S[x, y] ← select T.s
T.c

AS µ,
2
√
T.s2
T.c

− (T.s
T.c

)2 AS σ FROM ∆+C

25. merge(A, S, S.µ − k × S.σ ≤ A.d ≤ S.µ + k × S.σ?A : null)

26. end while
27. end function

co-addition phase:
28. R[x, y] ← select sum(A.d) as coadd from A group by x, y

puted earlier. Finally, on Line 24, ArrayLoop does the final
computation to generate the final aggregate values for this
iteration. Note that finalize phase in the aggregate compu-
tation is always done on positive delta arrays (∆C+), which
generates the same result as computing on negative delta
array ∆C− followed by a subtract merge plus computing
on positive delta array ∆C+ followed by an addition merge.
Line 25 leverages the δ function to generate the ∆A− of the
next iteration.

Currently the decision whether the application seman-
tics permit incremental iterative processing is left to the
user. Given the FixPoint operator, ArrayLoop performs
two tasks: (1) it automatically rewrites aggregate functions,
if possible, into incremental ones and (2) it efficiently com-
putes the last state of the iterative array using the updated
cells at each iteration. The automatic rewrite is enabled by
the precise model for iterative computations in the form of
the three functions π, f , and δ. Given this precise specifica-
tion of the loop body, ArrayLoop rewrites the computation
using a set of rules that specify how to replace aggregates
with their incremental counter-parts when possible. To ef-
ficiently compute incremental state updates, we introduce a
special merge operator. We now describe both components
of the approach.

(1) Automatic aggregate rewrite: ArrayLoop trig-
gers the incremental iterative processing optimization if any
aggregate function in the FixPoint operator is flagged as
incremental. The Data cube paper [10] defines an aggre-
gate function F () as algebraic if there is an M-tuple valued
function G() and a function H() such that: F ({Xi,j}) =
H({G({Xi,j}|i = 1, . . . , I})|j = 1, . . . , J}). ArrayLoop
stores a triple (agg, {G1, . . . , Gk}, H) for any algebraic func-
tion in the system and rewrites the aggregate query in
terms of G() and H() functions during the query rewrit-
ing phase. For example, ArrayLoop records the triple
(avg(),{sum(),count()},sum/count) and rewrites the al-



gebraic average function avg() using the combination of
sum() and count() to leverage incremental iterative pro-
cessing.

(2) Incremental state management: ArrayLoop pro-
vides an efficient method for managing array state and incre-
mental array updates during the course of an iterative com-
putation. We observe that, during incremental processing, a
common operation is to merge the data in two arrays, which
do not necessarily have the same number of dimensions. In
our example application, merging happens when the partial
aggregates are combined with the aggregate result of the
previous iteration, line 22 in incr-sigma-clipping() func-
tion. This operation merges together two 2D arrays where
the merge logic is inferred from the incremental aggregate
function f . Such merging also happens when the results
of the aggregate function are used to update the iterative
array, lines 25 and 26 in incr-sigma-clipping() function.
In this case, the application merges the data in a 2D array
with the data in a 3D array by sliding or extruding the 2D
array through the 3D array. The δ cell-update function de-
fines the logic of the merge operation in this case. The π
assignment function pairs-up cells from the intermediate ag-
gregation array and the iterative array that merge together
and thus determines whether merging will occur between
arrays with the same number of dimensions or not.

In the manual implementation, shown in the incr-sigma-

clipping() function, the user implements the merge logic
manually using join and filter queries, which is inefficient.1

To remove this inefficiency, given the FixPoint operator, Ar-
rayLoop automatically generates queries with explicit merge
points that leverage a new merge operator that we add to
SciDB: merge(Array source, Array extrusion, Expres-

sion exp).
The new merge operator is unique in a sense that it not

only specifies the merge logic between two cells via a math-
ematical expression, exp, but it also automatically figures
out which pairs of cells from the two arrays merge together
by examining their common dimensions. ArrayLoop merges
two cells from the source array and extrusion array if they
share the same dimension-values in those dimensions that
match in dimension-name. One cell in the extrusion array
can thus merge with many cells in the source array. Figure 6
illustrates the merge operator for queries in lines 25 and 26
in Algorithm 1. As the figure shows, the extrusion array
slides through the source array as the merging proceeds.

5.2 Pushing Incremental Computation into
the Storage Manager

We observe that increments between iterations translate
into updates to array cells and can thus be captured with
two auxiliary arrays: a positive delta array and a negative
delta array. At each iteration, the positive delta array ∆A+

records the new values of updated cells and the negative
delta array ∆A− keeps track of the old values of updated
cells. Delta arrays can automatically be computed by the
system directly at the storage manager level.

As a further optimization, we extend the SciDB storage

1From an engineering point of view, the new merge oper-
ator, unlike a join, can also leverage vectorization where
instead of merging one pair of matching cells at a time, Ar-
rayLoop merges group of matching cells together, potentially
improving query runtime, especially when the number of di-
mensions in the two input arrays is different.

t 

x y

(a) step 1 (b) step 2 (c) step 3 (d) step 4

Figure 6: merge(A, T, T.µ − k × T.σ ≤ A.d ≤ T.µ + k ×
T.σ?A : null) in SigmaClip application. This is the
core filtering step where the outliers are removed.
The 3D source array A <float d>[x,y,t] and the 2D
extrusion array (highlighted) T <float µ,float σ>[x,y]
share the first two dimensions. (a), (b), (c), and (d)
show how the cells in the extrusion array slide into
the source array at runtime.

manager to manage simple merge operations such as ad-
dition/subtraction found in Lines 20, 21, and 22 of Algo-
rithm 2. ArrayLoop uses naming conventions as a hint to
the storage manager about the semantics of the merge op-
eration. For example A(−) ← B, asks the storage manager
to subtract array B from array A and store the result of the
(A − B) operation as the new version of array A. In case
array A is iterative, the new values and the old values of
updated cells are stored in ∆+A and ∆−A, respectively.

Typically, the user need not worry about these annota-
tions and processing details since ArrayLoop automatically
generates the appropriate queries from the FixPoint specifi-
cation. However, the user can leverage these optimizations
manually as well. For example, the queries in the incr-

sigma-clipping() function at Lines 27, 28, and 30 (queries
with red box frames) can all be pushed into the storage
manager.

To achieve high performance, the storage manager keeps
chunks of the result array A together on disk with the corre-
sponding chunks from the auxiliary ∆A+ and ∆A− arrays.
As we showed in previous work on array versioning [32], the
space overhead of delta arrays taken between similar array
versions is typically insignificant compared with the size of
the original array.

We extend the Scan() and Store() operators to read and
write partial arrays ∆A+ and ∆A−, respectively. With
those optimizations, the user does not need to explicitly
write a user-defined diff() function or, as shown in the
incr-sigma-clipping() example, a sequence of join() and
filter() queries in order to extract delta arrays from the
output of the last iteration.

In prior work [22], we demonstrated a prototype imple-
mentation of the SigmaClip application together with the
incremental iterative processing optimizations in the con-
text of the AscotDB system that we built. AscotDB results
from the integration of ASCOT, a Web-based tool for the
collaborative analysis of telescope images and their meta-
data, and SciDB, a parallel array processing engine. The
focus of the demonstration was on this system integration
and on the impact of the optimizations on the application.
AscotDB shows that average users who use graphical inter-
faces to specify their analysis also benefit from optimized
iterative processing provided by lower layers of the analysis
stack.

6. ITERATIVE OVERLAP PROCESSING
To process a query over a large-scale array in parallel,



SciDB (and other engines) break arrays into sub-arrays
called chunks, distribute chunks to different compute nodes
(each node receives multiple chunks), and process chunks in
parallel at these nodes. For many operations, such as fil-
ter for example, one can process chunks independently of
each other and can union the result. This simple strategy,
however, does not work for many scientific array operations.
Frequently, the value of each output array cell is based on
a neighborhood of input array cells. Data clustering is one
example. Clusters can be arbitrarily large and can go across
array chunk boundaries. A common approach to computing
such operations in parallel is to perform them in two steps:
a local, parallel step followed by an aggregate-type post-
processing step [13, 14, 18] that merges partial results into a
final output. For the clustering example, the first step finds
clusters in each chunk. The second step combines clusters
that cross chunk boundaries [13]. Such a post-processing
phase, however, can add significant overhead. To avoid a
post-processing phase, some have suggested to extract, for
each array chunk, an overlap area ε from neighboring chunks,
store the overlap together with the original chunk [25, 28],
and provide both the core data and overlap data to the op-
erator during processing [6]. This technique is called overlap
processing. Figure 7 showsn an example of array chunks with
overlap. We refer the interested reader to our ArrayStore
paper [6] for a more detailed discussion of efficient overlap
processing techniques. These techniques, however, do not
address the question of how best to update the overlap data
during an iterative computation. Our contribution in this
paper is to tackle this specific question.

6.1 Efficient Overlap Processing
Array applications that can benefit from overlap process-

ing techniques are those that update the value of certain ar-
ray cells by using the values of neighboring array cells. The
SourceDetect application described in Section 2.2 is an ex-
ample application that can benefit form overlap processing.
Other example applications include “oceanography particle
tracking”, which follow a set of particles as they move in a
2D or 3D grid. A velocity vector is associated with each cell
in the grid and the goal is to find a set of trajectories, one
for each particle in the array. Particles cannot move more
than a certain maximum distance (depending on the maxi-
mum velocity of particles) at each step. These applications
can be effectively processed in parallel by leveraging overlap
processing techniques.

The challenge, however, is to keep replicated overlap cells
up-to-date as their values change across iterations. To effi-
ciently update overlap array cells, we leverage SciDB’s bulk
data-shuffling operators as follows: SciDB’s operator frame-
work implements a bool requiresRepart() function that
helps the optimizer to decide whether the input array re-
quires repartitioning before the operator actually executes.
The partitioning strategy is determined by the operator se-
mantics. For example, WindowAggregate operator [26] in
SciDB requires repartitioning with overlap in case the input
array is not already partitioned in that manner. We extend
the SciDB operator interface such that ArrayLoop can dy-
namically set the returned value of the operator’s requires-
Repart() function. To update overlap data, ArrayLoop sets
the requiresRepart() return value to true. ArrayLoop has
the flexiblity to set the value to true either at each itera-
tion or every few iterations as we discuss further below. In
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Figure 7: Illustration of the mini-iteration optimiza-
tion. ∆i

m represents local changes at iteration i of
mini-iteration m and ∆i is the global change at iter-
ation i.

case an operator in SciDB is guided by ArrayLoop to re-
quest repartitioning, the SciDB optimizer injects the Scat-

ter/Gather [26] operators to shuffle the data in the input
iterative array before the operator executes.

A benefit of using SciDB’s existing Scatter/Gather op-
erators, is that they shuffle array data one chunk (i.e., sub-
array) at a time. Chunk-based data shuffling is faster com-
pared with the method that shuffles overlap data one cell
at a time. The downside of using SciDB’s Scatter/Gather

general operators is the relative higher cost of data shuffling
when only a few overlap cells have changed.

6.2 Mini-Iteration Processing
Keeping overlap cells updated at each iteration requires

reading data from disk, shuffling it across the network, and
writing it to disk. These are all expensive operations. Any
reduction in the number of such data synchronization steps
can yield significant performance improvements.

We observe that a large subset of iterative applications
have the property that overlap cells can be updated only ev-
ery few iterations. These are applications, for example, that
try to find structures in the array data, e.g. SourceDetect
application. These applications can find structures locally
and eventually need to exchange information to stitch these
local structures into larger ones. For those applications, Ar-
rayLoop can add the following additional optimization: Ar-
rayLoop runs the algorithm for multiple iterations without
updating the replicas of overlap cells. The application iter-
ates over chunks locally and independently of other chunks.
Every few iterations, ArrayLoop triggers the update of over-
lap cells, and continues with another set of local iterations.
The key idea behind this approach is to avoid data move-
ment across array chunks unless a large enough amount of
change justifies the cost.

We call each series of local iterations without overlap cell
synchronization mini iterations. Figure 7 illustrates the
schematic of the mini iteration optimization.

An alternative approach is for the scheduler to delegate
the decision to shuffle overlap data to individual chunks,
rather than making the decision array-global as we do in this
paper. We leave this extra optimization for future work.

ArrayLoop includes a system-configurable function
SIGNAL-OPT() that takes as input an iteration number and
a delta iterative array, which represents the changes in the
last iteration. This function is called at the beginning of
each iteration. The output of this function defines if the
overlap data at the current iteration needs to be shuffled. A
control flow diagram of this procedure is shown in Figure 8.



Select	  Itera*ve	  Array	  Ai	  	  

If	  assignment	  
func*on	  π	  needs	  

overlap	  

Call	  Sca:er/Gather	  Operator	  
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NO 

Call	  δ	  update	  func*on	  	  
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SIGNAL-‐OPT(i,	  ∆Ai)	  
NO 

Figure 8: Control flow diagram for mini-iteration-
based processing in ArrayLoop.

There exists an optimization opportunity to exploit: Do we
exchange overlap cells every iteration? Or do we wait until
local convergence? Or something in between these two ex-
tremes? We further examine those optimization questions
in Section 8.

7. MULTI-RESOLUTION OPTIMIZATION
In many scientific applications, raw data lives in a con-

tinuous space (3D universe, 2D ocean, N-D space of contin-
uous variables). Scientists often perform continuous mea-
surements over the raw data and then store a discretized
approximation of the real data in arrays. In these scenarios,
different levels of granularity for arrays are possible and sci-
entifically meaningful to analyze. In fact, it is common for
scientists to look at the data at different levels of detail.

As discussed earlier, many algorithms search for struc-
ture in array data. One example is the extraction of celes-
tial objects from telescope images, snow cover regions from
satellite images, or clusters from an N-D dataset. In these
algorithms, it is often efficient to first identify the outlines
of the structures on a low-resolution array, and then refine
the details on high-resolution arrays. We call this array-
specific optimization multi-resolution optimization. This
multi-resolution optimization is a form of prioritized pro-
cessing. By first processing a low-resolution approximation
of the data, we focus on identifying and approximating the
overall shape of the structures. Further processing of higher-
resolution arrays helps extract the more detailed outlines of
these structures.

In the rest of this section we describe how ArrayLoop
automates this optimization for iterative computations in
SciDB. We use the KMeans application described in Sec-
tion 2.3 and the SourceDetect application described in Sec-
tion 2.2 as our illustrative examples.

To initiate the multi-resolution optimization, ArrayLoop
initially generates a series of versions, Ai, Ai+1, . . . , Aj , of
the original iterative array A. Each version has a differ-
ent resolution. Ai is the original array. It has the highest
resolution. Aj is the lowest-resolution array. Figure 9 illus-
trates three pixelated versions of an lsst image represented
as iterative array A0 in the context of the SourceDetect ap-
plication. The coarser-grained, pixelated versions are gen-
erated by applying a sequence of grid followed by filter

operations represented together as gridp(), where p is the
predicate of the filter operator. The size and the aggregate

Array A0 

Array A1 

   grid() 

   xgrid() 

Figure 9: Illustration of the multi-resolution opti-
mization for the SourceDetect application. There is a
sequence of three grid operations initiated from the

original lsst image A0: A0 gridp(A
0,2,2)

−−−−−−−−−→ A1 gridp(A
1,2,2)

−−−−−−−−−→

A2 gridp(A
2,2,2)

−−−−−−−−−→ A3. The more pixelated versions only
retain the main structure of the image.

function in the grid operator are application-specific and are
specified by the user. The SourceDetect application has a
grid-size of (2× 2) and an aggregate function count with a
filter predicate that only passes grid blocks without empty
cells (in this scenario all the grid blocks with count=4). This
ensures that cells that are identified to be in the same cluster
in a coarsened version of the array, remain together in finer
grained versions of the array as well. In other words, the out-
put of the iterative algorithm on the pixelated version array
Aj should be a valid intermediate step for Aj−1. ArrayLoop
runs the iterative function Q on the sequence of pixelated
arrays in order of increasing resolution. The output of the
iterative algorithm after convergence at pixelated version Ai

is transformed into a finer-resolution version using an xgrid

operator (inverse of a grid operator). It is then merged with
Ai−1, the next immediate finer-grained version of the itera-
tive array. We represent both operations as xgridm(). The
xgrid operator [26] produces a result array by scaling up
its input array. Within each dimension, the xgrid operator
duplicates each cell a specified number of times before mov-
ing to the next cell. The following equations illustrate the
ordered list of operators called by ArrayLoop during multi-
resolution optimizations:

A0 gridp()−−−−−→ . . . Ai
gridp()−−−−−→ Ai+1 gridp()−−−−−→ . . . Aj

Aj
Q−→ A∗j xgridm(A∗j)−−−−−−−−−→ Aj−1

x

. . . (4)

A1
x
Q−→ A∗1 xgridm(A∗1)−−−−−−−−−→ A0

x

A0
x
Q−→ A∗0

where A∗i is the output of the iterative algorithm Q on
pixelated array Ai, and Aj−1 is replaced with Aj−1

x as the
new input for the iterative computation at pixelated version
(j − 1).

By carefully merging the approximate results with the in-
put array at the next finer-grained level, ArrayLoop skips a
significant amount of computation.

The K-means clustering algorithm on points in a continu-
ous space is another example application that benefits from
this optimization. The KMeans application can use an arbi-
trary grid size. It also uses count as the aggregate function
with a filter predicate that passes grid blocks that have at
least one non-empty cell. It is easy to observe that in case
of K-means clustering, Aj−1

x is a valid labeling for the next
pixelated array Aj−1. Basically, K-means clustering on Aj



produces a set of centroids for the k-means algorithm on
Aj−1 that lead to a faster convergence than a random set of
initial centroids.

The advantage of applying the multi-resolution optimiza-
tion goes beyond better query runtime performance. This
optimization can also help when the original iterative ar-
ray changes, which is described as the following additional
optimization:

Input Change Optimization. If ArrayLoop materializes
the outputs A∗i for all the pixelated versions of the original
array A, then there is an interesting optimization in case
the original iterative array A is modified. Unlike the Naiad
system [20] that materializes the entire state at each itera-
tion to skip some computation in case of change in the input
data, ArrayLoop takes a different strategy. When changes
in the input occur, ArrayLoop re-generates the pixelated ar-
rays Ais in Equation 4, but only runs the iterative algorithm
Q for those arrays Ais that have also changed in response
to the input array change. If Ai did not change for some i,

ArrayLoop skips the computation Ak
Q−→ A∗k ∀k ≥ i and

uses the materialized result A∗i from the previous run to
produce Ai−1

x . The intuition is that, if there are only a few
changes in the input array, it is likely that changes are not
carried over to all the pixelated versions of the array and
our system reuses some results of the previous run for the
current computation as well.

8. EVALUATION
In this section, we demonstrate the effectiveness of Ar-

rayLoop’s native iterative processing capabilities including
the three optimizations on experiments with 1TB of LSST

images [24]. Because the LSST will only start to produce
data in 2019, astronomers are testing their analysis pipelines
with synthetic images that simulate as realistically as possi-
ble what the survey will produce. We use one such synthetic
dataset. The images take the form of one large 3D array (2D
images accumulated over time) with almost 44 billion non-
empty cells. The experiments are executed on a 20-machine
cluster. (Intel(R) Xeon(R) CPU E5-2430L @ 2.00GHz) with
64GB of memory and Ubuntu 13.04 as the operating sys-
tem. We report performance for two real-scientific applica-
tions SigmaClip and SourceDetect described in Sections 2.1
and 2.2, respectively. SigmaClip runs on the large 3D array
and SourceDetect runs on the co-added 2D version of the
whole dataset.

8.1 Incremental Iterative Processing
We first demonstrate the effectiveness of our approach

to bringing incremental processing to the iterative array
model in the context of the SigmaClip application. Fig-
ure 10(a) shows the total runtime of the algorithm with dif-
ferent execution strategies. As shown, the non-incremental

“sigma-clipping”algorithm performs almost four times worse
than any other approach. The manual-incr approach is
the incr-sigma-clipping function from Section 5, which
is the manually-written incremental version of the “sigma-
clipping” algorithm. This approach keeps track of all the
points that are still candidates to be removed at the next
iteration and discards the rest. By doing so, it touches the
minimum number of cells from the input dataset at each it-
eration. Although manual-incr performs better than other
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Figure 10: Runtime of the SigmaClip application
with and without incremental processing. Constant
k = 3 in all the algorithms.
approaches at later stages of the iterative computation, it
incurs significant overhead during the first few iterations
due to the extra data points tracking (Lines 25 to 28 in
incr-sigma-clipping() function). manual-incr also re-
quires a post-processing phase at the end of the iterative
computation to return the final result. efficient-incr and
efficient-incr+storage are the two strategies used by Ar-
rayLoop (ArrayLoop-incr-sigma-clipping function from
Section 5). efficient-incr represents ArrayLoop’s query
rewrite for incremental state management that also lever-
ages our merge operator. efficient-incr+storage further
includes the storage manager extensions. Figure 10(b) shows
the total runtime in each case. ArrayLoop’s efficient ver-
sions of the algorithm are competitive with the manually
written variant. They even outperform the manual version
in this application. All the incremental approaches beat the
non-incremental one by a factor of 4 − 6X. Interestingly,
our approach to push some incremental computations to the
storage manager improves efficient-incr by an extra 25%.

8.2 Overlap Iterative Processing
In Section 6, we describe overlap processing as a tech-

nique to support parallel array processing. In the case of
an iterative computation, the challenge is to keep the over-
lap data up-to-date as the iteration progresses. The solu-
tion is to efficiently shuffle overlap data at each iteration.
An optimization applicable to many applications is to per-
form mini-iteration processing, where the shuffling hap-
pens only periodically. Figure 11(a) shows the effectiveness
of this optimization in the context of the SourceDetect ap-
plication, which requires overlap processing. T1 refers to
the policy where ArrayLoop shuffles overlap data at each
iteration, or no mini-Iteration processing. As expected
this approach incurs considerable data shuffling overhead,
although it converges faster in the SourceDetect applica-
tion (Figure 11(b)). At the other extreme, we configure
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(a) SourceDetect application: T1, T5, and T10
refer to policies where ArrayLoop shuffles over-
lap data every iteration, every 5 iterations, and
every 10 iterations, respectively. converge is the
strategy where ArrayLoop shuffles data only after
local convergence occurs.

T1 T5 T10 converge
Mini# 51 57 60 94
Major# 51 11 6 3

(b) Number of major and mini iterations. Major# is the number
of times that overlap data is reshuffled and Mini# is the total
number of iterations.

Figure 11: SourceDetect application: Iterative over-
lap processing with mini-iteration optimization.

ArrayLoop to only shuffle overlap data after local conver-
gence occurs in all the chunks. Interestingly, this approach
performs worse than T1. Although this approach does a
minimum number of data shuffling, it suffers from the long
tail of mini-iterations (Figure 11(b): 94 mini-iterations). T5
and T10 are two other approaches, where ArrayLoop shuffles
data with some constant interval. We find that T10, which
shuffles data every ten iterations, is a good choice in this
application. The optimal interval is likely to be application-
specific and tuning that value automatically is beyond the
scope of this paper. The other interesting approach is to in-
struct ArrayLoop to initiate overlap data shuffling when the
number (or magnitude) of changes between mini-iterations
is below some threshold. We simply pick a constant number
to determine the overlap data shuffling interval in the con-
text of the SourceDetect application. More sophisticated
approaches are left for future study.

8.3 Multi-Resolution Optimization
The multi-resolution optimization is a form of prior-

itized processing. By first processing a low-resolution ap-
proximation of the data, we focus on identifying the over-
all shape of the structures. Further processing of higher-
resolution (larger) arrays then extracts the more detailed
outlines of these structures. Figure 12(a) shows the ben-
efits of this approach in the context of the SourceDetect

application. We generate four lower-resolution versions of
the source array A0 by sequentially calling the grid() op-
erator with a grid-size of (2×2). We operate on these multi-
resolution versions exactly as described in Equation 4. The
performance results are compared to those of T10 from
Figure 11(a) as we pick the same overlap-processing pol-
icy to operate on each multi-resolution array. Interestingly,
the multi-resolution optimization cuts runtimes nearly in
half. Note that most of the saving comes from the fact that
the algorithm converges much faster in A0 compared to its
counterpart T10 (Figure 12(b)) thanks to the previous runs
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T10	   A0	   A1	   A2	   A3	   A4	  

(a) SourceDetect application: T10 refers to
the strategy where ArrayLoop shuffles overlap
data every 10 iterations. A0, A1, A2, A3, and
A4 are five versions of the same array with dif-
ferent resolutions, where A0 is the same reso-
lution as the original array and A4 is the most
pixelated version. The grid-size is (2×2).

T10 A0 A1 A2 A3 A4
iter# 60 35 12 12 6 10

(b) Iteration# that converges at each resolution.

Figure 12: SourceDetect application: Multi-
resolution Optimization.

over arrays A1 through A4, where most of the cell-points
are already labeled with their final cluster values.

In Section 7, we described a potential optimization in case
of input data changes in the original array. As an initial
evaluation of the potential of this approach, we modify the
input data by dropping one image from the large, 3D array.
This change is consistent with the LSST use-case, where a
new set of images will be appended to the array every night.
We observe that the new co-added image only differs in a
small number of points from the original one. Additionally,
these changes do not affect the pixelated array A1. This
gives us the opportunity to re-compute the SourceDetect

application not from the beginning, but from the pixelated
version A1. Although the performance gain is not major
in this scenario, it demonstrates the opportunity for further
novel optimizations that we leave for future work.

9. RELATED WORK
Several systems have been developed that support itera-

tive big data analytics [3, 8, 16, 29, 35]. Some have explicit
iterations, others require an external driver to support itera-
tions, but none of them provides native support for iterative
computation in the context of parallel array processing.

Twister [5], Daytona [1], and HaLoop [3] extend MapRe-
duce to add a looping construct and preserve state across
iterations. HaLoop takes advantage of the task scheduler to
increase local access to the static data. However, our system
takes advantage of iterative array processing to increase lo-
cal access to the dynamic data as well by applying overlap
iterative processing.

PrIter [35] is a distributed framework for fast iterative
computation. The key idea of PrIter is to prioritize iter-
ations that ensure fast convergence. In particular, PrIter
gives each data point a priority value to indicate the im-
portance of the update and it enables selecting a subset of
data rather than all the data to perform updates in each it-



eration. ArrayLoop also supports a form of prioritized pro-
cessing through multi-resolution optimization. ArrayLoop
initially finds course-grained outlines of the structures on
the more pixelated versions of the array, and then it refines
the details on fine-grained versions.

REX [21] is a parallel shared-nothing query processing
platform implemented in Java with a focus on supporting
incremental iterative computations in which changes, in the
form of deltas, are propagated from iteration to iteration.
Similar to REX, ArrayLoop supports incremental iterative
processing. However REX lacks other optimization tech-
niques that we provide.

A handful of systems exist that support iterative com-
putation with focus on graph algorithms. Pregel [19] is a
bulk synchronous message passing abstraction where ver-
tices hold states and communicate with neighboring vertices.
Unlike Pregel, ArrayLoop relieves the synchronization bar-
rier overhead by including mini-iteration steps in the itera-
tive query plan. Unlike ArrayLoop, Pregel does not priori-
tize iterative computation.

GraphLab [16] develops a programming model for iter-
ative machine learning computations. The GraphLab ab-
straction consists of three main parts: the data graph, the
dynamic asynchronous computation as update functions,
and the globally sync operation. GraphLab has configurable
consistency levels and update schedulers, making it power-
ful, but with a low-level programming abstraction. Similar
to our overlap iterative processing technique, GraphLab has
a notion of ghost nodes. However, the granularity of com-
putation is per node, while ArrayLoop supports overlap it-
erative processing per chunk. Our system also supports pri-
oritization through the novel multi-resolution iterative pro-
cessing.

Prior work also studies array processing on in-situ data [2].
While this work addresses the limitation that array data
must first be loaded into an array engine before it can be
analyzed, it does not provide any special support for iter-
ative computation. SciDB and our extensions are designed
for scenarios where loading times amortize over a sufficiently
large amount of data analysis.

10. CONCLUSION
In this paper, we developed a model for iterative process-

ing in a parallel array engine. We then presented three opti-
mizations to improve the performance of these types of com-
putations: incremental processing, mini-iteration overlap
processing, and multi-resolution processing. Experiments
with a 1TB scientific dataset show that our optimizations
can cut runtimes by 4-6X for incremental processing, 31%
for overlap processing with mini-iterations, and almost 2X
for the multi-resolution optimization. Interestingly, the op-
timizations are complementary and can be applied at the
same time, cutting runtimes to a small fraction of the per-
formance without our approach.
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