
Stop That Query!
The Need for Managing Data Use

Prasang Upadhyaya1, Nick Anderson1, Magdalena Balazinska1,
Bill Howe1, Raghav Kaushik2, Ravi Ramamurthy2, and Dan Suciu1

1University of Washington 2Microsoft Research

ABSTRACT
When valuable data is exchanged or bought, it is frequently
encumbered by restrictions on how it may be used. For ex-
ample, clinical data must not be used in such a way as to ex-
pose the patients’ identities. To date, these restrictions are
enforced only contractually and compliance is checked only
manually, if at all. To meet the needs of this growing set of
applications, we present the vision for a Data Use Manager
(DUM). The DUM is a component of a database system
that enables the declarative specification and enforcement
of sophisticated data use policies and provides capabilities
for both their online enforcement and offline audit.

1. INTRODUCTION
Data has value. Traditionally, data management research

and database tools have ignored the value of the data, ex-
cept for ensuring its persistence, and have only focused on
the value, or cost, of query evaluation. As a result, our com-
munity has seen decades of work on query processing and
optimization, but limited work on monitoring and control-
ling how data is used.

The value of data and the need to manage its use occur
in several different scenarios. We identify three:

Copyrighted Data. Navteq [18] sells one of the most
expensive and well-known databases. Their product is a
database of maps used by most commercial GPS navigation
systems and many websites, including maps.bing.com. To
purchase Navteq data, one must contact Navteq, have a face
to face meeting, negotiate, sign paperwork, and, quite often,
involve lawyers in the process. This interaction is needed in
order to reach an agreement about complex restrictions on
data use and determine an appropriate price. The restric-
tions on the data usage are interesting from a data manage-
ment perspective. For example, one restriction is that maps
may only be displayed on a small screen; displaying them
on larger screens commands a higher price. Another exam-
ple is that the buyer is not allowed to join the map data
with any other dataset; joining, too, can be done only if one

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

pays a higher price. These restrictions differ from customer
to customer, and affect the selling price. Navteq’s is not
a unique example; companies have been buying and selling
data through complex bilateral agreements restricting data
usage for many years. Today, we see these usage agreements
pop-up even when data is sold online in web-based data mar-
kets. For example, on the Windows Azure Marketplace [23],
each dataset comes with specific “Publisher Offer Terms”.

Private Data. Another example is the case of sharing
sensitive data between organizations. The HIPAA Privacy
Rule requires HIPAA covered entities (most academic re-
search hospitals and health care systems) to remove or obfus-
cate 18 Protected Health Information (PHI) data elements
from any secondary use of patient datasets so as to reduce
the risk of potential reidentification. However, the removal
of these elements reduces the overall utility of the data and
can lead to “over-sanitizing” the data - potentially rendering
entire classes of patients invisible [17, 4]. In this scenario, it
would be preferable to leave more information in the data
so as to facilitate research but to monitor how the data is
being used to avoid privacy violations: e.g., that only ag-
gregate queries are executed on the data or that the data is
not joined with any other datasets.

Access Controlled Data. In certain dynamic environ-
ments like hospitals, access control policies may be coarsely
defined. For instance, an example policy could enable cer-
tain personnel to access all patients who have been admit-
ted in an emergency. However, consider a scenario where
a celebrity (e.g., Obama) is admitted in an emergency, it
is possible that certain authorized personnel may access his
health records under conditions that are not authorized for
the specific care incidence. Thus, even if access control poli-
cies are in place, it is still crucial to track data access.

Vision: Data Use Manager. In all examples above,
legitimate users have access to a dataset because their or-
ganization bought the data (Ex. 1), otherwise acquired the
data (Ex. 2), or produced the data itself (Ex. 3). Users,
however, are not allowed to manipulate the data in arbitrary
ways either due to dataset utilization terms (Ex. 1) or pri-
vacy concerns (Ex. 2 and 3). The challenge is that these
scenarios go much beyond the standard access control mech-
anisms available in existing DBMSs. Instead of restricting
access to the data, what is needed is a way to monitor and
restrict the operations that users perform on the data.

In the above scenarios, users are not malicious and should
not be considered adversaries. However, we cannot rely
solely on the users to adhere to all constraints for two key
reasons: (1) Heterogeneity of data access requirements: The

maps.bing.com


number of base and derived datasets are growing. If each
dataset comes with its own restrictions, it is difficult for
users to keep track of what they are and are not allowed
to do with the data. (2) Limited range of supported data
access modes: Restrictions and the fear of violating agree-
ments can discourage users from exploring the data, which
may result in missed opportunities for organizations and the
evolving translational science research communities.

To address these challenges, we argue for a new type
of data management utility: A data utilization manager
(DUM). While there are some isolated mechanisms stud-
ied in prior work such as access control and auditing, as
an infrastructure they are incomplete mechanisms. Indeed,
DUMs need to support much richer policies than both ac-
cess control and privacy mechanisms. They must also sup-
port much richer semantics, ranging from online access/deny
semantics, to offline probabilistic detection of misuse.

In this paper, we lay the foundations for a research agenda
centered around building DUMs: We argue that DUMs ought
to support data use policies specified declaratively similar
to how access control rules are specified today in SQL (Sec-
tion 3) and discuss the challenges of articulating their se-
mantics (Section 4). We then discuss the benefits and chal-
lenges for both online monitoring and enforcement of data
utilization policies and post-fact, offline usage trail analy-
sis (Section 5). We start by more precisely articulating the
problem and core challenges (Section 2).

2. DATA USE MANAGEMENT PROBLEM
As our examples illustrate, data use management is mo-

tivated in a wide variety of scenarios. Therefore, instead of
letting each application independently manage data use, it
makes sense to enhance the DBMS infrastructure with this
capability. We envision that the DBMS would incorporate
the DUM since the DBMS is already trusted by the data
owner; to host the DUM outside, we must trust an addi-
tional module of the data management infrastructure.

We call this the data use management (DUM) problem
and define it more precisely as follows:

• Centralized, relational engine. We assume that
all data takes the form of a relational database that
is stored in a single relational DBMS. We do not dis-
cuss alternate architectures in this paper, although the
DUM problem extends beyond the centralized and be-
yond the relational settings.

• Data utilization policies. At the heart of the prob-
lem is a set of data utilization policies. The database
administrator or other key stakeholders specify these
policies, which can come from agreements with the
data provider, from regulations external to the orga-
nization (e.g., HIPAA requirements), or from internal
regulations (e.g., scope of data license or need-to-know
access control policy). Each policy restricts the oper-
ations that users are allowed to perform on the data.

• Users. Users execute queries over the data. There
are three types of users: ordinary users, curious users,
and malicious users. Ordinary users are honest users,
but they can be careless in how they use the data. Cu-
rious users will go beyond the limits of the policies if
the system allows them to do so. However, they will
not try to circumvent protection mechanisms if they
exist. In contrast, malicious users are willing to go to

Fuzzy
semantics:

Privacy Mechanisms [7] Intrusion Detection Sys-
tems [5]

Precise se-
mantics

Access Control [10, 2] Auditing Systems [2, 14,
12, 9]

Online mechanism Offline mechanism

Table 1: Various data management tools related to
Data Usage Management.

great extents in order to violate policies. Protection
against malicious users thus requires a different type
of system than protection against only ordinary and
curious users [8]. In many circumstances, overly re-
strictive access rules are detrimental, as in the case of
research access to clinical data [4], which is why the
data sharing community has focused work on “honest
brokers.” Thus, we argue that DUMs need to focus
primarily on ordinary and curious users.

• Data use management problem. The goal of data
use management is to (1) enable users to easily spec-
ify data utilization policies, (2) observe and record the
queries that users execute on the data in order to de-
tect policy violations either before or after they occur,
(3) support the capability to prevent policy violations
from occurring, and (4) enable post-fact analysis to
detect policy violations that occurred in the past.

• Digital Rights Management. In this paper, we fo-
cus on the problem of monitoring how users operate on
data within a DBMS. The problem of attaching poli-
cies to data when it leaves the DBMS is an interesting
research challenge but we do not discuss it here.

The DUM is related to, and generalizes, several existing
data management tools and techniques that restrict or con-
trol the access to data, shown in Table 1. These systems
can be classified along two axes: type of semantics, and
time of action. Access controls are ubiquitous mechanisms
in database systems and simply restrict access to sensitive
data; their semantics is precise (grant/deny), and their ac-
tion is performed online (at query time). The limitation of
these approaches is that they do not handle the case when
users are allowed to access individual data items but do not
have permission to perform certain operations, such as joins,
on these data items.

Privacy mechanisms such as differential privacy [7] also
aim to restrict access, but do this in a more fuzzy way,
since they restrict access to individual records while allow-
ing access to aggregate queries. These techniques are also
insufficient for a DUM because they often protect privacy by
limiting data access too much, hence affecting its utility [22].

Newer approaches have migrated the action time from on-
line to offline. For example, auditing systems [2, 14, 12]
check that data has been accessed in a compliant way, but
do this offline rather than online. In contrast, we envision a
DUM as a much more agile tool supporting different man-
agement capabilities that include: an online access control
mechanism; an online warning mechanism; an offline audit-
ing mechanism; and offline fuzzy detection (e.g., “last week
the compliance by customer X was about 85%”).

Some systems cross multiple dimensions, for example Hip-
pocratic Databases control access to private data both using



an online grant/deny mechanism [16] and through an offline
auditing system [1]. These systems support policies that
control access to certain data items by certain users, and
differ from prior auditing work by specifying a richer class
of data-dependent access policy restrictions. But they do
not consider policies that selectively grant access to data for
certain operations (e.g., aggregates) while denying access to
the same data for other prohibited operations (e.g., joins).

Existing commercial databases also support a limited form
of data use monitoring through triggers [19, 20] by specifying
policies to determine when to log events for offline auditing.
But, many data use policies would be awkward to express
directly as a trigger, e.g., a policy that imposes conditions
on the lineage of tuples in the query’s result. Thus, we need
languages specifically designed for data use monitoring.

Hence no system today is sufficient to serve a DUM mech-
anism in a DBMS.

3. DECLARATIVE DATA USE POLICIES
The center piece of the DUM framework is a declarative

Data Usage Policy, in which the system administrator (or
other authorized user) specifies in a declarative way how the
data in the RDBMS may be used. The systems shown in
Table 1 are concerned with access to individual data items.
In contrast, a DUM needs to consider data usage in a much
broader sense. Consider the following data use policies ex-
amples, which we derived from real scenarios:

1. A query may retrieve at most 200 data items. (For
example, if a map is to be displayed only on small
screens, then any query must return only a limited
number of data items.)

2. No query is allowed to join the data with any other
dataset (The Navteq example from Section 1.)

3. Only select-count queries are allowed. Under certain
conditions the counts themselves are obfuscated by
adding or subtracting a random offset (common feder-
ated query approach) [8].

4. Only select-count queries are allowed and each count
result must be at least 10. This rule is a common usage
agreement in exchanging clinical data [21, 3]. It pro-
tects against triangulation attacks when a user needs
to compare patient counts at different institutions.

5. No user may issue sequential queries that converge in a
way that suggests an attempt to reidentify a particular
patient through triangulation of query terms - these
conditions are often spelled out in data access policies,
but can be circumvented by the curious user [15].

6. No query may access both the location and the hob-
bies of the same person in a social network dataset.
(Prevents unauthorized aggregation of personal data.)

The key research challenge is to develop a data model
and query language that are simple yet flexible enough to
enable the specification of policies with the same level of
sophistication as is done today in hand-written agreements.
As the above examples show, the policies refer to several
important entities: the data itself; the query’s answer; the
provenance of each query answer; the log of past queries,
their answers, and the provenance of their answers; user
and time information. The model and query language must
therefore capture these important entities. As a straw-man
example, Figure 1 shows a possible declarative specification

P6: CHECK EXISTS
(SELECT *
FROM LogQuery x, LogQueryAnswer y,

LogQueryLineage z1, LogQueryLineage z2
WHERE x.query_id = y.query_id AND y.answer_id = z1.answer_id
AND y.answer_id = z2.answer_id
AND z1.table_name = ‘Location’ AND z2.table_name = ‘Hobbies’)

Figure 1: Example of a declarative data-use policy.

for the last example policy. As the figure shows, the policy
is expressed in SQL and assumes a specific data model with
relations storing information about queries, query results,
and result provenance. Additionally, the policy is expressed
in the form of a constraint. If the check condition returns
true, the policy is violated. This is one approach to the
problem that we are pursuing.

4. SEMANTICS
The simplest data use policies in the DUM have deter-

ministic semantics: every policy is a predicate, and if the
predicate evaluates to true, there is a policy violation.

However, formally defining a predicate can be challenging.
Consider the policy that stipulates that a query may retrieve
at most 200 data items. First, even for this intuitive policy,
it is non-trivial to define when a data item is “retrieved.”
An item might be considered as retrieved if it is read off the
database during query execution. However, if we intend to
relate the data items to the query’s output, then if the query
filters away an item, it should not be considered as retrieved
even after being read; to capture this intent, a data item
may count as retrieved only if it contributes to the query
output’s lineage. Second, if policies refer to data items that
are composed of multiple tuples (e.g., a book might be the
title along with the set of all authors), existing literature [6,
11] on lineage is inadequate since they only consider lineage
in terms of individual records; and it is unclear if such com-
posite data items should be considered used if only a few of
their constituent tuples have been used.

Further, in some scenarios, data use violations may only
be detected statistically, and hence the policies may addi-
tionally require probabilistic semantics. Consider a large
social network, which allows applications to query informa-
tion about its members. One application may be allowed to
access the members’ current-location, but not their hob-

bies; while another application may only access the hob-

bies, but not the current-location. If the two applications
collude and aggregate their individual data, they can gain
information that neither was authorized to. To detect such
violations, a DUM may occasionally mine the query logs
looking for multiple correlations between the sets of users
accessed at about the same time by the two applications:
when found, such correlations may suggest a potential vio-
lation. Probabilistic semantics, thus, allow a DUM to model
policies where some of the operations in a user’s workflow
are not known to the DUM. This permits a richer class of
policies to be specified and probabilistically verified.

Thus, defining correct abstractions and semantics to con-
struct predicates, along with a probabilistic interpretation
of those predicates is a crucial step in the design of a DUM.

5. ENFORCING POLICIES
Policy enforcement systems must support both online en-

forcement as well as post-fact auditing. In an online deploy-



ment, the DUM monitors every query and rejects those that
violate any policy. For offline deployment, every query is
executed and logged (possibly with its output and/or prove-
nance) and the policies are verified offline; any violations
may be reported to the data owner. The implementation of
such a system, however, raises several important challenges.

In the online setting, data monitoring will incur a perfor-
mance overhead that the DUM must minimize. Consider the
policy that stipulates that queries may retrieve at most 200
data items; enforcing it involves computing each query’s out-
put’s lineage. Except for policies where each data item is a
single record and for select-project-join queries, computing
lineage can be an order of magnitude slower than plain query
execution [11]. Thus, newer techniques are needed that can
exploit additional structure in the policies (and not just the
queries) such as the fact that they are boolean or that they
only refer to a subset of the query’s provenance.

Alternatively, in an offline setting, logging enough infor-
mation to check policies offline can be expensive during
query evaluation while logging too little information can in-
crease auditing time. Since we expect policy violations to
be rare, it is difficult to amortize such high overheads.

In fact, the optimal solution might use online checks for
some queries and offline checks for the rest; or may use ap-
proximations that may yield false positives during online
checks, which can subsequently be verified offline. Navi-
gating the online-offline tradeoff is a significant challenge in
order to make data monitoring efficient.

Finally, to efficiently enforce policies, we need extensions
to the query engine stack. While isolated mechanisms like
persisting query results [13] (for offline audits), query hints
(to control the number of results), and triggers [19, 20] (to
track updates) exist, there is no comprehensive mechanism
that can implement the policies from Section 3. Here too,
rethinking both the interfaces to the query optimizer (in or-
der to restrict plans based on certain properties of operators
derived from the policies) as well as developing new query
execution mechanisms (e.g., light-weight schemes to check
the policies during query execution) are interesting direc-
tions for future work.

6. CONCLUSION
In this paper, we presented the need for a Data Use Man-

ager (DUM) as a new component of a DBMS. The DUM
enables the declarative specification of sophisticated data
use policies and provides capabilities for both their online
enforcement and offline audit. We presented the require-
ments for a DUM and the research challenges associated
with satisfying them.

7. ACKNOWLEDGEMENTS
This work is partially supported by the National Science

Foundation and Microsoft through NSF CiC grant CCF-
1047815 and NSF grant IIS-0915054, additional gifts from
Microsoft Research, and Balazinska’s Microsoft Research Fac-
ulty Fellowship.

8. REFERENCES
[1] R. Agrawal, R. J. B. Jr., C. Faloutsos, J. Kiernan,

R. Rantzau, and R. Srikant. Auditing compliance with

a hippocratic database. In VLDB, pages 516–527,
2004.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.
Hippocratic databases. In VLDB, pages 143–154, 2002.

[3] N. Anderson, A. Abend, A. Mandel, E. Geraghty,
D. Gabriel, R. Wynden, M. Kamerick, K. Anderson,
J. Rainwater, and P. Tarczy-Hornoch. Implementation
of a deidentified federated data network for
population-based cohort discovery. Journal of the
American Medical Informatics Association, 2011.

[4] N. Anderson and K. Edwards. Building a chain of
trust: using policy and practice to enhance
trustworthy clinical data discovery and sharing. GTIP
’10, pages 15–20, New York, NY, USA, 2010. ACM.

[5] S. Axelsson. Intrusion Detection Systems: A Survey
and Taxonomy. Technical Report 99-15, Chalmers
University, Mar. 2000.

[6] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance
in Databases: Why, How, and Where, volume 1.
Foundations and Trends in Databases, 2009.

[7] C. Dwork. A firm foundation for private data analysis.
Commun. ACM, 54(1):86–95, 2011.

[8] K. Emam El, E. Jonker, L. Arbuckle, and B. Malin. A
systematic review of re-identification attacks on health
data. PLoS One, 6(12), 2011.

[9] D. Fabbri and K. LeFevre. Explanation-based
auditing. PVLDB, 5(1):1–12, 2011.

[10] E. Ferrari. Access Control in Data Management
Systems. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2010.

[11] B. Glavic and G. Alonso. The perm provenance
management system in action. SIGMOD ’09, pages
1055–1058, New York, NY, USA, 2009. ACM.

[12] R. Hasan and M. Winslett. Efficient audit-based
compliance for relational data retention. In ASIACCS,
pages 238–248, 2011.

[13] http://www-01.ibm.com/software/data/db2/
linux-unix-windows/time-travel-query.html.

[14] R. Kaushik and R. Ramamurthy. Efficient auditing for
complex sql queries. In SIGMOD Conference, pages
697–708, 2011.

[15] C. Kushida, D. Nichols, R. Jadrnicek, R. Miller,
J. Walsh, and K. Griffin. Strategies for
de-identification and anonymization of electronic
health record data for use in multicenter research
studies. Medical Care, 50:S82–S101, 2012.

[16] K. LeFevre, R. Agrawal, V. Ercegovac,
R. Ramakrishnan, Y. Xu, and D. J. DeWitt. Limiting
disclosure in hippocratic databases. In VLDB, pages
108–119, 2004.

[17] B. Malin. A computational model to protect patient
data from location-based re-identification. Artificial
Intelligence in Medicine, 40(3):223–39, 2007.

[18] http://www.navteq.com.
[19] http://www.oracle.com/technetwork/database/

security/index-083815.html.
[20] http://wiki.postgresql.org/wiki/Audit_trigger.
[21] M. SN, W. G, M. M, G. V, C. HC, and C. S. Serving

the enterprise and beyond with informatics for
integrating biology and the bedside (i2b2). Journal of
the American Medical Informatics Association, 17(2),
2011.

[22] G. Weber, S. Murphy, A. McMurry, D. MacFadden,
D. Nigrin, S. Churchill, and I. Kohane. The shared
health research information network (shrine): a
prototype federated query tool for clinical data
repositories. Journal of the American Medical
Informatics Association, 16(5):624–630, 2009.

[23] https://datamarket.azure.com/publishing.

http://www-01.ibm.com/software/data/db2/linux-unix-windows/time-travel-query.html
http://www-01.ibm.com/software/data/db2/linux-unix-windows/time-travel-query.html
http://www.navteq.com
http://www.oracle.com/technetwork/database/security/index-083815.html
http://www.oracle.com/technetwork/database/security/index-083815.html
http://wiki.postgresql.org/wiki/Audit_trigger
https://datamarket.azure.com/publishing

	1 Introduction
	2 Data Use Management Problem
	3 Declarative Data Use Policies
	4 Semantics
	5 Enforcing Policies
	6 Conclusion
	7 Acknowledgements
	8 References

