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ABSTRACT
We address the problem of making online, parallel query
plans fault-tolerant: i.e., provide intra-query fault-tolerance
without blocking. We develop an approach that not only
achieves this goal but does so through the use of differ-
ent fault-tolerance techniques at different operators within a
query plan. Enabling each operator to use a different fault-
tolerance strategy leads to a space of fault-tolerance plans
amenable to cost-based optimization. We develop FTOpt, a
cost-based fault-tolerance optimizer that automatically se-
lects the best strategy for each operator in a query plan
in a manner that minimizes the expected processing time
with failures for the entire query. We implement our ap-
proach in a prototype parallel query-processing engine. Our
experiments demonstrate that (1) there is no single best
fault-tolerance strategy for all query plans, (2) often hybrid
strategies that mix-and-match recovery techniques outper-
form any uniform strategy, and (3) our optimizer correctly
identifies winning fault-tolerance configurations.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance, modeling
techniques; H.2.4 [Database Management]: Systems—
Parallel databases,Query processing

General Terms
Performance

1. INTRODUCTION
The ability to analyze large-scale datasets has become a

critical requirement for modern business and science. To
carry out their analyses, users are increasingly turning to-
ward parallel database management systems (DBMSs) [14,
39, 43] and other parallel data processing engines [10, 15, 20]
deployed in shared-nothing clusters of commodity servers.

In many systems, users can express their data processing
needs using SQL or other specialized languages (e.g., Pig

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

Latin [30], DryadLINQ [45]). The resulting queries or scripts
are then translated into a directed acyclic graph (DAG)
of operators (e.g., relational operators, maps, reduces, or
other [20]) that execute in the cluster.

An important challenge faced by these systems is fault-
tolerance. When running a parallel query at large scale,
some form of failure is likely to occur during execution [9].
Existing systems take two radically different strategies to
handle failures: parallel DBMSs restart queries if failures oc-
cur during their execution. The limitation of this approach
is that a single failure can cause the system to reprocess a
query in its entirety. While this is not a problem for queries
running across a small number of servers and for a short
period of time, it becomes undesirable for long queries us-
ing large numbers of servers. In contrast, MapReduce [10]
and similar systems [15] materialize the output of each op-
erator and restart individual operators when failures occur.
This approach limits the amount of work repeated in the
face of failures, but comes at the cost of materializing all
intermediate data, which adds significant overhead even in
the absence of failures. Furthermore, because MapReduce
materializes data in a blocking fashion, this approach pre-
vents users from seeing results incrementally. Partial results
are a desirable feature during interactive data analysis now
commonly performed with these systems [41].

In this paper, we study the problem of providing users
both the ability to see early results as motivated by online
query processing [17, 18] and achieve a low expected total
runtime. We thus seek to enable intra-query fault-tolerance
without blocking and we want to do so in a manner that min-
imizes the expected total runtime in the presence of failures.
Other objective functions could also be useful (e.g., minimize
runtime without failures subject to a constraint on recovery
time.) We choose to minimize the sum of time under normal
processing and time in failure recovery. This function com-
bines high-performance at runtime with fast failure recovery
into a single objective. We want to minimize this function
while preserving pipelining.

Recent work [41] has also looked at the problem of com-
bining pipelining and fault-tolerance: they developed tech-
niques for increased data pipelining in MapReduce. This
system both pipelines and materializes data between opera-
tors. We observe, however, that data materialization is only
one of several strategies for achieving fault-tolerance in a
pipelined query plan. Other strategies are possible including
restarting a query or operator but skipping over previously
processed data [21, 24] or checkpointing operator states and
restarting from these checkpoints [11, 21]. Additionally, the



most appropriate fault-tolerance method may depend on the
available resources, failure rates, and query plan properties.
For example, an expensive join operator may need to check-
point its state while an inexpensive filter may simply skip
over previously processed data after a failure.

Given these observations, we develop (1) a framework that
enables mixing-and-matching of fault-tolerance techniques in
a single, pipelined query plan and (2) FTOpt, a cost-based
fault-tolerance optimizer for this framework. Our frame-
work enables intra-query fault-tolerance without blocking,
thus preserving pipelining. Given a query plan and infor-
mation about the cluster and expected failure rates, FTOpt
automatically selects the fault-tolerance strategy for each
operator in a query plan such that the overall query runtime
with failures is minimized. We call the resulting configura-
tion a fault-tolerance plan. In our fault-tolerance plans, each
operator can individually recover after failure and it can re-
cover using a different strategy than other operators in the
same plan. In summary, we make the following contribu-
tions:

1. Extensible, heterogeneous fault-tolerance framework.
We propose a framework that enables the mixing and
matching of different fault-tolerance techniques in a
single distributed, parallel, and pipelined query plan.
Our framework is extensible in that it is agnostic of the
specific operators and fault-tolerance strategies used.
We also describe how three well-known strategies can
be integrated into our framework (Section 4).

2. Fault-tolerance optimizer. We develop a cost-based
fault-tolerance optimizer. Given a query plan and a
failure model, the optimizer selects the fault-tolerance
strategy for each operator that minimizes the total
time to complete the query given an expected num-
ber of failures (Section 5).

3. Operator models for pipelined plans. We model the
processing and recovery times for a small set of repre-
sentative operators. Our models capture operator per-
formance within a pipelined query plan rather than in
isolation. They are sufficiently accurate for the fault-
tolerance optimizer to select good plans yet sufficiently
simple for global optimization using a Geometric Pro-
gram Solver [3]. We also develop an approach that
simplifies the modeling of other operators within our
framework thus simplifying extensibility (Section 5.3).

We implemented our approach in a prototype parallel
query processing engine. The implementation includes our
new fault-tolerance framework, specific per-operator fault-
tolerance strategies for a small set of representative opera-
tors (select, join, and aggregate1), and a MATLAB mod-
ule for the FTOpt optimizer. Our experiments demon-
strate that different fault-tolerance strategies, often hybrid
ones, lead to the best performance in different settings: for
the configurations tested, total runtimes with as little as
one failure differed by up to 70% depending on the fault-
tolerance method selected. These results show that fault-
tolerance can significantly affect performance. Additionally,
our optimizer is able to correctly identify the winning fault-
tolerance strategy for a given query plan. Overall, FTOpt

1As in online aggregation [18], aggregates can occur at top
of plans. Our prototype uses a standard aggregate operator
but it could be replaced with an online one.
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Figure 1: Parallel query plan comprising three op-
erators (O1, O2, O3) and one input from disk. Each
operator is partitioned across a possibly different
number of nodes. Data can be re-partitioned be-
tween operators. Fault-tolerance strategies are se-
lected at the granularity of operators.

is thus an important component of parallel data processing,
enabling performance gains similar in magnitude to several
other recently proposed MapReduce optimizations [22, 26].

2. MODEL AND ASSUMPTIONS
Query Model and Resource Allocation. In paral-

lel data processing systems, queries take the form of di-
rected acyclic graphs (DAGs) of operators that are dis-
tributed across servers in a cluster as illustrated in Figure 1.
Servers are also referred to as nodes. Each operator can
be partitioned and these partitions then execute in parallel
on the same or on different nodes. Multiple operators can
also share the same nodes. In this paper, we focus on non-
blocking query plans, which take the form of trees (rather
than DAGs), where operators are scheduled and executed at
the same time, and where data is pipelined from one opera-
tor to the next, producing results incrementally. We assume
that aggregation operators, if any, appear only at the top
of a plan. Since input data comes from disk, it can be read
and consumed at a steady pace (there are no unexpected
bursts as in a streaming system for example). If a query
plan is too large for all operators to run simultaneously, our
approach will optimize fault-tolerance for pipelined subsets
of the plan, materializing results at the end.

Fault-tolerance choices and resource allocation are in-
tertwined: an operator can perform more complex fault-
tolerance if it is allocated a greater fraction of the compute
resources. In addition to fault-tolerance strategies, our op-
timizer computes the appropriate allocation of resources to
operators. Due to space constraints, however, in this paper,
we assume that each operator is partitioned across a given
number of compute nodes and is allocated its own core(s)
and disk on that node. For the resource allocation details,
we refer the reader to the technical report [42].

Failure Model. In a shared-nothing cluster, different
types of failures occur. Our approach handles a variety of
failures from process failures to network failures. To simplify
the presentation, we first focus on process failures: i.e., we
assume that each operator partition runs in its own process
and that these processes crash and are then restarted (with
an empty state) independently of one another. We come
back to more complex failures in Section 5.5.

To make fault-tolerance choices, our optimizer must know
the likelihood for different types of failures. If ni is the total
number of processes allocated to operator i, we assume that



the expected number of failures during query execution for
that operator is given by: zi = ni

n
Z where n =

P
j∈O nj , O

is the set of all operators in the plan, and Z is the expected
number of process failures for the query. Z can be estimated
from the observed failure rates for previous queries and ad-
ministrators typically know this number [9]. We assume
Z to be independent of the chosen fault-tolerance plan. Z
depends on the query runtime, whose order of magnitude
can be estimated by FTOpt as the total runtime without
fault-tolerance and without failures (we show that results
are robust to small errors in Z’s value in Section 6.6).

Operator Determinism. We assume that individual
operator partitions are deterministic, i.e., an operator par-
tition produces an identical output when it processes the
same input tuples in the same order. This is a common
assumption [20, 44, 36, 2, 35, 23] and most relational opera-
tors are deterministic. In a distributed system, however, the
order in which input tuples reach an operator partition may
not be deterministic. Our approach handles this scenario.

3. RELATED WORK
Fault-Tolerance in Relational DBMSs. Commercial

relational DBMSs provide fault-tolerance through replica-
tion [6, 33, 38]. Similarly, parallel DBMSs [14, 39, 43] use
replication to handle various types of failures. Neither, how-
ever, provides intra-query fault-tolerance [32].

Main-memory DBMSs [25, 34, 28] use a variety of check-
pointing strategies to preserve the in-memory state of their
databases. In contrast, our approach preserves and recovers
the state of ongoing computations.

Fault-Tolerance in MapReduce-type systems. The
MapReduce framework [10] provides intra-query fault-
tolerance by materializing results between operators and
re-processing these results upon operator failures. This
approach, however, imposes a high runtime overhead and
prevents users from seeing any output until the job com-
pletes. In Dryad [20], data between operators can either be
pipelined or materialized. In contrast, we strive to achieve
both pipelining and fault-tolerance at the same time. We
also study how to decide when to materialize or check-
point data. Recent work [44] applies MapReduce-style fault-
tolerance to distributed databases by breaking long-running
queries into small ones that execute and can be restarted in-
dependently. This approach, however, supports only a spe-
cific type of queries over a star schema. In contrast, we
explore techniques that are more generally applicable. Re-
cent work also introduced the ability to partly pipeline data
in Hadoop [41], a MapReduce-type platform. This work is
complementary to ours as it retains the use of materializa-
tion throughout the query plan for fault-tolerance purposes.

Other Fault-Tolerance Strategies. In the distributed
systems and stream processing literatures, several additional
fault-tolerance strategies have been proposed [11, 21, 36].
All these strategies involve replication. One set of tech-
niques is based on the state-machine approach. Here, the
same computation is performed in parallel by two process-
ing nodes [2, 35, 36]. We do not consider such techniques in
this paper because of their overhead: to tolerate even a sin-
gle failure, they require twice the resources. The second set
of techniques uses rollback recovery methods [11, 21], where
the system takes periodic snapshots of its state that it copies
onto stable storage (i.e., into memory of other nodes or onto

disk). We show how to integrate the latter techniques into
our fault-tolerance optimization framework (Section 4.2).

Recently, Simitsis et. al. [37] studied the problem of
selecting fault-tolerance strategies and recovery points for
ETL flows. Similar to us they consider using different fault-
tolerance strategies within a single flow. In contrast to our
work, they do not propose a general heterogeneous fault-
tolerance framework, do not have individually recoverable
operators, and do not optimize for overall latency nor show
how fault-tolerance choices affect processing latencies.

Additional Related Work. Hwang et al. [19] studied
self-configuring high-availability methods. Their approach
is orthogonal to our work as it is based on a uniform check-
pointing strategy and optimizes the time when checkpoints
are taken and the backup nodes where they are saved.

Techniques for query suspend and resume [4, 5] use roll-
back recovery but are otherwise orthogonal to our work.

Phoenix/App [27] explores the problem of heterogeneous
fault-tolerance in the context of web enterprise applications.
This approach identifies three types of software compo-
nents: Persistent, Transactional, and External depending on
the fault-tolerance strategy that each uses (message logging
with checkpointing, transactions, or nothing respectively).
Phoenix/App then defines different “interaction contracts”
for each combination of component types. Each contract
implements a different protocol with different guarantees.
Thus in Phoenix/App, the protocol depends on the fault-
tolerance capabilities of the communicating components. In
contrast, our approach enables the mixing-and-matching of
fault-tolerance strategies without changes to the protocol.

4. FRAMEWORK FOR HETEROGE-
NEOUS FAULT-TOLERANCE

We present a framework for mixing and matching fault-
tolerance techniques. Our framework relies on concepts
from the literature including logging, acknowledging, and re-
playing tuples as previously done in uniform fault-tolerance
settings [21, 36] and “contract-based” methods for query
suspend-resume [4]. Our contribution lies in articulating
how these strategies can be used to enable fault-tolerance het-
erogeneity. We also discuss how three fault-tolerance tech-
niques from the literature can be used within our framework.

4.1 Protocol
To enable heterogeneous fault-tolerance between consec-

utive operators in a query plan, we isolate these operators
by fixing the semantics of their interactions through a set
of four rules. These rules enable each operator to be indi-
vidually restartable without requiring any blocking materi-
alization as in MapReduce and also without requiring that
all operators use the same fault-tolerance strategy.

In our framework, as in any parallel data processing sys-
tem, operators receive input tuples from their upstream
neighbors; they process these tuples and send results down-
stream. For example, in Figure 1, each partition of operator
O2 receives data from each O1 partition and sends data to
all O3 partitions. If an operator partition such as O21 fails,
a new instance of the operator partition is started with an
empty state. To recover the failed state, in our framework,
the new instance can read any state persistently captured by
the operator’s fault-tolerance strategy. It can also ask up-
stream operators to resend (a subset) of their data. To en-



able such replays, tuples must have unique identifiers, which
may or may not be visible to applications, and operators
must remember the output they produced. For this, we de-
fine the following two rules:

Rule 4.1. Each relation must have a key.

Rule 4.2. Producer replay guarantee. Upon request, an
operator, must regenerate and resend in order and without
duplicates any subset of unacknowledged output tuples.

Acknowledgments mentioned in this rule help reduce the
potential overhead of storing old output tuples by bound-
ing how much history must be retained [21, 36]. In our
framework, acknowledgments are optional and are sent from
downstream operators to upstream ones. For example, once
all operator partitions O21 through O2X that have received
an input tuple t from operator partition O11 acknowledge
this tuple, the tuple need no longer be retained by O11.
Upon sending an acknowledgment, an operator promises
never to ask for the corresponding tuple again. Formally,

Rule 4.3. Consumer progress guarantee. If an operator
acknowledges a tuple rx, it guarantees that, even in case of
failure, it will never ask for rx again.

Most parallel data processing systems use in-order com-
munication (e.g., TCP) between operators. In that case, an
operator can send a single message with the identifier of a
tuple rx to acknowledge all tuples up to and including rx.

When a failure occurs and an operator restarts with an
empty state, most fault-tolerance techniques will cause the
operator to produce duplicate tuples during recovery. To en-
sure that an operator can eliminate duplicates before send-
ing them downstream, we add a last requirement:

Rule 4.4. Consumer Durability Guarantee. Upon re-
quest, an operator Od must produce the identifier of the
most recent input tuple that it has received from an upstream
neighbor Ou.

Together, these four rules enable a parallel system to en-
sure that it produces the same output tuples in the same
order with and without failure (the tuples may still be de-
layed due to failure recovery.) They also enable operators
to be individually restartable and the query plan to be both
pipelined and fault-tolerant, since data can be transmitted
at anytime between operators. Finally, the framework is
agnostic of the fault-tolerance method used as long as the
method works within the pre-defined types of interactions.

From the above four rules, only the“Producer replay guar-
antee” rule potentially adds a visible overhead to the system
since it requires that a producer be able to re-generate (part
of) its output.2 A no-cost solution to satisfy this rule is
for an operator to restart itself upon receiving a replay re-
quest. With this strategy, an operator failure can cause a
cascading rollback effect, where all preceding operators in
the plan get also restarted. This approach is equivalent to
restarting a subset of the query plan after a failure occurs
and is no worse than what parallel DBMSs do today. Alter-
natively, an operator could write its output to disk. Finally,

2Our framework also requires unique identifiers for tuples.
In our implementation, we create unique identifiers consist-
ing of 3 integers [42]; for the 512 byte tuples used in our
experiments the space overhead is less than 2.5%.

some operators, such as joins, can also easily re-generate
their output from their state without the need to log their
output. Each of these solutions leads to different expected
query runtimes with and without failures. Our optimizer
is precisely designed to select the correct strategy for each
operator (from a pre-defined set of strategies) in a way that
minimizes the total runtime with failures for a given query
plan as we discuss further below.

4.2 Concrete Framework Instance
We now discuss how three fault-tolerance strategies from

the literature can be integrated into our framework.
Even though the operators in our framework are deter-

ministic (see Section 2), in a distributed setting tuples may
arrive in different interleaved order on different inputs. We
develop a low-overhead method –based on lightweight log-
ging of information about input tuple processing order– to
ensure determinism in this case, but we omit it due to space
constraints and refer the reader to the technical report [42].

Strategy NONE. Within our framework, an operator
can choose to do nothing to make itself fault-tolerant. We
call this strategy NONE. To ensure that it can recover from
a failure, such an operator can simply avoid sending any ac-
knowledgments upstream. Upon a failure, that operator can
then request that its upstream neighbors replay their entire
output. This strategy is analogous to the upstream backup
approach developed for stream processing engines [21].

As in upstream backup, operators such as select or project
that do not maintain state between consecutive tuples (i.e.,
“stateless operators”) can send acknowledgments in some
cases: e.g., if an input tuple r makes it through a selection to
generate the output q and is acknowledged by all operators
downstream, then r can be acknowledged. Unlike upstream
backup, which uses different types of acknowledgments [21],
our approach uses only one type of acknowledgments facili-
tating heterogeneous fault-tolerance. This approach of skip-
ping over input data during recovery has also been used for
resumptions of interrupted warehouse loads [24].

To handle a request for output tuples, a stateless oper-
ator can fail and restart itself to reproduce the requested
data. For stateful operators (i.e., operators such as joins
that maintain state between consecutive tuples), a more ef-
ficient strategy is to maintain an output queue and replay
the requested data [21]. Such a queue, however, can still
impose a significant memory overhead and an I/O overhead
if the queue is written to disk. We observe, however, that
stateful relational operators need not keep such output queue
but, instead, can re-generate the data from their state. We
implement this strategy and use it in our evaluation.

Strategy MATERIALIZE. An alternate rollback re-
covery approach consists in logging intermediate results be-
tween operators as in MapReduce [10]. While CHCKPT
speeds-up recovery for the checkpointed operator itself, MA-
TERIALIZE potentially speeds-up recovery for downstream
operators: to satisfy a replay request, an operator can sim-
ply re-read the materialized data. Since materialized output
tuples need never be generated again, an operator can use
the same acknowledgement and recovery policy as in NONE.

Strategy CHCKPT. This strategy is a type of rollback
recovery strategy where operators’ state is periodically saved
to stable storage. Because our framework recovers operators
individually, it requires what is called uncoordinated check-
pointing with logging [11]. One approach that can directly be



applied is passive standby [21], where operators take periodic
checkpoints of their state, independently of other operators.

Our framework requires that an operator save sufficient
information to guarantee the consumer progress, consumer
durability, and producer replay guarantees. For this, the op-
erator must log its state (e.g., partial aggregates, join hash
tables) and, when applicable, its output queue. The opera-
tor can acknowledge checkpointed input tuples. Upon fail-
ures, the operator restarts from the last checkpoint. As an
optimization, operators can checkpoint only delta-changes
of their state [11]. Other optimizations are also possible [11,
19, 23] and can be used with our framework.

Unlike NONE and MATERIALIZE, with CHCKPT
blocking operators also benefit from fault-tolerance provi-
sioning as they can checkpoint their state periodically and
restart from the latest checkpoint after a failure.3

In summary, while our framework imposes constraints
on operator interactions, all three of these common fault-
tolerance strategies can easily be incorporated into it.

5. FTOpt
FTOpt is an optimizer for our heterogeneous fault-

tolerance framework. FTOpt runs as a post-processing step:
it takes as input (a) a query plan selected by the query
optimizer and annotates it with the fault-tolerance strate-
gies to use. The optimizer also takes as input (b) informa-
tion about the cluster resources and cluster failure model,
and (c) models for the operators in the plan under differ-
ent fault-tolerance strategies. FTOpt produces as output
a fault-tolerance plan that minimizes an objective function
(i.e., the expected runtime with failures) given a set of con-
straints (that model the plan).

FTOpt’s fault-tolerance plans have three parts: (1) a
fault-tolerance strategy for each operator, (2) checkpoint fre-
quencies for all operators that should checkpoint their states,
and (3) an allocation of resources to operators. As indicated
in Section 2, however, we do not discuss resource allocation
in this paper due to space constraints. We assume a given
resource allocation to operators.

For a given query plan, the optimizer’s search space thus
consists of all combinations of fault-tolerance strategies. In
this paper, we use a brute-force technique to enumerate
through that search space and leave more efficient enumera-
tion algorithms for future work. For each such combination,
FTOpt estimates the expected total runtime with failures,
the optimal checkpoint frequencies and, optionally, an allo-
cation of resources to operators [42]. It then chooses the
plan with the minimum total runtime with failures.

5.1 Geometric Model
As it enumerates through the search-space, given a po-

tential fault-tolerance plan, in order to select optimal check-
point frequencies and estimate the total runtime with fail-
ures for the plan, FTOpt uses a geometric programming
(GP) framework. GP allows expressions that model resource
scaling (for resource allocation) and non-linear operator be-
havior, but still finds a global minima for the model [3].

In a geometric optimization problem, the goal is to mini-
mize a function f0(~x), where ~x is the optimization variable

3FTOpt works irrespective of a blocking operator’s place-
ment in a query plan. We focus on online query processing
since FTOpt is especially useful for such plans: it enables
fault-tolerance without creating unnecessary blocking.

vector. The optimization is subject to constraints on other
functions fi(~x) and gi(~x). All of ~x, g(~x), and f(~x) are con-
strained to take the following specific forms:

• ~x = (x1, . . . , xn) such that ∀i xi > 0, xi ∈ R.

• g(~x) must be a monomial of the form cxa1
1 xa2

2 . . . xan
n

with c > 0 and ai ∈ R.

• f(~x) must be a posynomial defined as a sum of one or
more monomials. Specifically, with ck > 0 and aik ∈
R: f(~x) =

Pk=K
k=1 ckx

a1k
1 x

a2k
2 . . . x

ank
n .

The optimization is then expressed as follows:

minimize f0(~x)

subject to fi(~x) ≤ 1, i = 1, . . . ,m

gi(~x) = 1, i = 1, . . . , p

In our case, ~x = ∪i∈O(ci, Ni, x
N
i , x

RD
i , xRS

i ) where O is
the set of all operators in the query plan and ∪ denotes
concatenation. Each operator has a vector of variables that
includes: ci, its checkpoint frequency, Ni, the number of
nodes assigned to it (we assume that it is fixed in this pa-
per), and xN

i , xRD
i , and xRS

i , which capture the average time
between two consecutive output tuples, requested replay tu-
ples, and “units of recovery” (a measure of recovery speed),
respectively. Tables 1 and 2 summarize these parameters
(we come back to the tables shortly).

Our objective function, f0(~x) = Ttotal, is the total time
to execute the query including time spent recovering from
failures. We define it more precisely in Sections 5.2 and 5.3.

Our constraints comprise framework and operator con-
straints. The former constrain how operator models are
composed: (a) the average input and output rates of con-
secutive operators must be equal since the query plan is
pipelined, (b) aggregate input and output rates for opera-
tors cannot exceed the network and processing limits, and
(c) if an operator uses an output queue, it must either check-
point its output queue to disk frequently enough, or must
receive acknowledgements from downstream operators fre-
quently enough to never run out of memory. Individual op-
erators can add further constraints (see Section 5.3).

5.2 Objective Function
FTOpt minimizes the following cost function, that cap-

tures the expected runtime of a query plan:

Ttotal = max
p∈P

 
Tpd +

i=d−1X
i=1

Dpi

!
+
X
i∈O

zi ·Ri (1)

The first term is the total time needed to completely pro-
cess the query including the overhead of fault-tolerance if no
failures occur The second term is the expected time spent
in recovery from failures. Failure recovery can be added on
top of normal processing because, with our approach, when
a failure occurs, it blocks the entire pipeline. Indeed, even
if one operator partition fails, operators upstream from that
partition stop executing normally and take part in the re-
covery. A side-effect of this approach is that recovering a
single operator partition or recovering all partitions yield
approximately the same recovery time.

In more detail, for the first term, P is the set of all paths
from the root of the query tree to the leaves. For a given
path p ∈ P of length d, the root is labeled with p1 and
the leaf with pd; Dpi is the delay introduced by operator pi



Table 1: Functions capturing operator behavior.
Delay to produce the first tuple

DN (Θ) Average delay to output first tuple during normal pro-
cessing (with fault-tolerance overheads).

DRD(Θ) Average delay to produce first tuple requested by a down-
stream operator during a replay.

DRS(Θ) Average delay to the start of state recovery on failure.
Average processing time

xN (Θ) Average time interval between successive output tuples
during normal runtime (with fault-tolerance overheads).

xRD(Θ) Average time interval between successive output tuples
requested by a downstream operator.

xRS(Θ) Average time-interval between strategy-specific “units of
recovery” (e.g., checkpointed tuples read from disk).

Acknowledgement interval, a(Θ), sent to upstream nodes.

Table 2: Operator behavior parameters(Θ).
Query parameters
|Iu| Number of input tuples received from upstream operator u.
|I| Number of tuples produced by current operator.
Operator parameters
tcpu Operator cost in terms of time to process one tuple.

tio The time taken to write a tuple to disk.
Runtime parameters

xN
u Average inter-tuple arrival time from upstream operator u in

normal processing.
F Fault-tolerance strategy.
c Number of tuples processed between consecutive checkpoints.
N The number of nodes assigned to the operator.
Surrounding fault-tolerance context
ad Maximum number of unacknowledged output tuples.

xRD
u Average inter-tuple arrival time from upstream operator u

during a replay.

where the delay is defined as the time taken to produce its
first output tuple from the moment it receives its first input
tuple; and, Tpd is the time taken by the leaf operator to
complete all processing after receiving its first input tuple.
Tpd = Dpd +xN

pd
|I|, where |I| is the number of output tuples

produced by the leaf operator. Dpi and Tpd depend on the
input tuple arrival rate at an operator, which depend on how
fast previous operators are in the pipeline. We capture these
dependencies with constraints as mentioned in Section 5.1.

For the second term, O is the set of all operators in the
tree. For operator i ∈ O, zi is the expected number of fail-
ures during query execution, and Ri is the expected recovery
time from a failure. We estimate zi using an administrator-
provided failure model as described in Section 2.

To adapt Ttotal to be a posynomial, we need to eliminate
the max operator. For this, we introduce a variable T for
Ttotal and decompose the objective to be “minimize T with
a constraint for each path such that: (T )−1× [expected total
time for the path] <= 1”. Since the expected total time (for
a single path) is a posynomial, the constraints are posyno-
mials, and the entire program is a GP.

5.3 Operator Modeling
To compute the objective function, FTOpt thus requires

that each operator provide expressions that characterize
its delay and processing time during normal operation and
when failures occur. These expressions must be provided
for each fault-tolerance strategy that the operator supports.
Formally, FTOpt needs to be given the functions in Table 1
expressed in terms of the parameters, represented by Θ in
Table 2 (these parameters capture the inter-dependencies
between operators). FTOpt combines these functions to-
gether to derive the overall processing time Ttotal.

In this section, we show how to express such functions in
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Figure 2: Data output curve (comprised of NBout(·)
curve till the “Point of change” and the dashed line
after it) for a symmetric-hash join operator.

our framework. We proceed through an example: we derive
the constraint equations for join (symmetric hash-join). The
models for select and aggregate are similarly derived [42].

5.3.1 Modeling Basic Operator Runtime
To model our problem as a GP, we must (a) derive the

operator output rate (given by the inter-output-tuple delay,
xN ) in the absence of failures, and (b) derive the delay, DN .
The delay, however, is simply either negligible for selects and
the symmetric hash-join that we model or equal to the total
processing time for aggregates.4

The challenge in expressing an operator’s output rate is
that xN can follow a complex curve for some operators such
as certain non-blocking join algorithms as illustrated in Fig-
ure 2. The figure shows the data output curve for a sym-
metric hash-join operator. For this operator, the more tu-
ples that it has already processed, the more likely the join
is to find matching tuples, and thus it outputs tuples at an
increasingly faster rate. As a result, at the beginning of
the computation, the bottleneck is the input data rate (the
NBout(nin) curve) and the operator produces increasingly
more output tuples for each input tuple. Eventually, the
CPU at the join becomes the bottleneck (tcpu

a curve) and
the output rate flattens.

We found that ignoring such effects and assuming a con-
stant output significantly underestimated the total runtime
for the operator. Alternatively, modeling these effects and
exposing them to downstream operators significantly com-
plicated the overall optimization problem. We thus opted
for the following middle-ground: we model the non-uniform
output rate of an operator to derive its total runtime. Given
the total runtime, we compute the equivalent average out-
put rate that we use as a constant input arrival rate for the
next operator. The GP framework is helpful here to express
these non-linear behaviors.

Interestingly, we find that we can automatically derive the
above curve from the following operator properties:

• tcpu
a : Average time to generate one output tuple if all

input is available with no delay.

• NBout(nin): This function provides the total number
of output tuples produced for a given number of tuples
(nin) received across all input streams.

The above functions can easily be derived (hence simpli-
fying optimizer extensibility). Both these functions are ex-
tensions of parameters of standard query optimizers: (a)
tcpu
a corresponds to the standard query optimizer function

for computing an operator’s cost, except that we then di-
vide this cost by the operator output cardinality, and (b)
4To compute total query times, we ignore any partial results
that an online aggregate may produce.



NBout(nin) is similar to computing the cardinality of an
operator output, except that it also captures how that out-
put is produced as the input data arrives. Simple operators
like select or merge join have NBout = σnin, where σ is
the operator selectivity. For blocking operators such as ag-
gregates, after the delay DN (Θ) all the output tuples are
produced at once and hence NBout = |I|. For other non-
blocking operators the relationship can be more complex as
we discuss next using our symmetric hash-join as example.

For the symmetric hash-join operator, define Iutot to be
the set of all tuples received from both upstream input chan-
nels. Hence, |Iutot| = |I1|+ |I2|. For this operator:

tcpu
a = |I|−1 (|Iutot|+ |I|) tcpu

The expression is a product of the average time taken
to process either an input or output tuple (tcpu, obtained
through micro-benchmarks) and the total number of tuples
seen by the operator, including the input tuples (Iutot) and
the output join tuples (I). This number is then divided by
the total number of output tuples (|I|) to get the average
time per output tuple.

To get the NBout function for a symmetric hash-join we
assume that the input tuples from the two input channels
can arrive in any order, each order being equally likely. Let σ̂
(a function of the join selectivity σ, |I1| and |I2| [42]) be the
probability that two tuples from different channels join and
pi be the probability that a tuple belongs to the ithchannel.
In this case, the function NBout(nin) is defined as follows:

NBout(nin) = σ̂p1p2nin(nin − 1) ≈ σ̂p1p2n
2
in

Intuitively, nin(nin−1) is the count of pairs of distinct tuples
to join, p1p2 is the probability that they come from different
channels, and σ̂ is the probability that they join.

We now show how our optimizer translates these functions
into a set of inequalities that characterize the average time
interval between successive output tuples produced by an
operator. For this, we require that the NBout(nin) function
take the form: NBout(nin) = γnk

in, in order to fit into the
GP framework. Thus, for our join operator: γ = σ̂p1p2 and
k = 2. Informally, as the operator sees more input tuples,
the number of the output tuples produced after processing
a single new input tuple should never decrease.

Given the above, the average time interval between con-
secutive output tuples, xN , is given by the following inequal-
ities:

me = γ(xIN )−kktk−1
f

me ≤ (tcpu
a )−1

me ≤ γ
1
k (xIN )−1k|I|1−

1
k

(1− k−1)tf + |I|m−1
e ≤ xN |I|

The above inequalities take xIN as input, which is the time
interval at which input tuples are arriving. xIN depends on
the current execution context. If we are operating normally,
it is the average time interval between tuples produced by
the upstream operators; if we are recovering from a failure,
we might read the input tuples from disk at the maximum
bandwidth possible for the disk.

For the exact derivation of this mode, we refer the reader
to the technical report [42]. Here, we only provide the intu-
ition behind it.

In the above equations, |I| is the output cardinality; γ
and k come from the NBout(nin) function; me is the num-

ber of output tuples produced per second at the instant the
processing ends and tf is the first time at which the output
produces tuples at the rate me. The first equation realizes
this relationship between me and tf . The following inequal-
ity states that the operator can not take less than tcpu

a time
to produce an output tuple, since this is the least amount
of time the processor needs per tuple, given the resources
it has. For the second inequality, its right hand side is the
maximum rate at which output could be produced if the
only bottleneck was the rate of arrival of input tuples. Note
that, since we require the NBout(·) function to have a non-
negative rate of change, the fastest output production rate
will be at the end of the computation and the derivative of
the function NBout(·), with respect to xIN , at the end gives
us this value. Since, in a real computation the processing
cost is positive, the actual observed rate has to be less than
the derivative (the right hand side in the second inequality).
The third inequality states that the total time to process all
tuples (which is equal to the average output rate times the
number of output produced) must be higher than the actual
processing time, which is its left hand side.

To model a different operator, the functions for tcpu
a and

NBout(nin) would change, while the form of the inequalities
and equalities used by the optimizer would remain the same.
They simply use the above as parameters.

We model a partitioned operator as a single operator that
scales linearly with allocated resources. This approach suf-
fices to show the feasibility and impact of fault-tolerance
optimization. We leave extensions to more complex models,
including data skew between partitions, for future work.

5.3.2 Modeling Overhead of Fault-tolerance
Fault-tolerance overhead only affects tcpu

a , the time an op-
erator needs to produce an output. The model depends on
the operator implementation. For MATERIALIZE, our join
writes all output tuples to disk. For CHCKPT, it logs the
incoming tuples to disk incrementally5. The join does not
maintain any output queue.

For brevity, we use the notation that IN , IM and IC are 1 if
NONE, MATERIALIZE or CHCKPT is the chosen fault tol-
erance option, respectively, and are 0 otherwise. Although
we need one equation per fault-tolerance strategy we repre-
sent them as a single one.

tcpu
a = |I|−1

“
tcpu(|Iutot|+ |I|) + ICtio|Iutot|+ IM tio|I|

”
Here tio is the time to write a tuple to disk and is also
obtained through micro-benchmarks.

5.3.3 Modeling Replay Request Times
FTOpt also needs to know the average rate at which out-

put tuples are produced to satisfy a replay request and the
delay in generating the first requested tuple. The replay
rate may depend on when, during the course of the query,
the downstream fails. For example, if the replay behaves
as during normal operations for the symmetric hash-join, it
might be slower if the downstream fails early on and be faster
later. To approximate the recovery rate we find the time it
takes to replay all output tuples and divide that number by

5Out of simplicity, our join checkpoints input tuples as they
arrive rather than checkpointing the hash table. When it
rebuilds the hash table from a checkpoint, the operator does
not redo the join.



the total number of output tuples. During this replay phase,
the operator has no fault-tolerance overheads.

As before, the exact model depends on the implementa-
tion details. Our join implementation uses its in-memory
hash table to regenerate outputs and hence the delay is neg-
ligible. But it could be significant for a join that can not use
either its state or its output to answer tuple requests.

To get the average output rate, we reuse the framework
we developed in the previous section. Thus we only need to
specify tcpu

a and NBout(nin) for the replay mode.
Since, during replay, we only reprocess the inputs without

any fault tolerance overhead: tcpu
a = |I|−1 (|Iutot|+ |I|) tcpu.

The form of the NBout(·) remains the same as for the nor-
mal processing. Also, during reprocessing the input tuples
are already in memory, hence the inter-tuple arrival time of
inputs xIN is at least tcpu and we take xIN = tcpu.

5.3.4 Modeling Recovery Time
To compute the total time to recover from a failure, we

need to know the average rate at which recovery proceeds.
As before, the exact recovery model depends on the imple-

mentation. For our join, upon failure the MATERIALIZE
and the NONE options have to request all the input from
the upstream nodes and rebuild the hash table exactly as it
was before (using Rule 4.2 and operator determinism [42]),
while CHCKPT rebuilds it from the input tuples logged to
disk.

In all cases, during recovery, no output is produced when
the input tuples are processed to remake the hash table.
Thus, tcpu

a = tcpu since we look at each input tuple once.
To define the function NBout(nin) we think of the hash

table being rebuilt as the desired “output” and the input
tuples as the inputs. Since all the input tuples are used
to generate the “output” hash table: NBout(nin) = nin.
For MATERIALIZE and NONE, xIN is the average time
interval in which requested tuples from the upstream nodes
arrive. For CHCKPT, since we directly read tuples from the
disk: xIN = tio.

The delay in getting the first input is negligible if we use
CHCKPT and is equal to the delay of the upstream tuples
in the case of NONE and MATERIALIZE.

We approximate the expected hash table size to recover
to be 1

2
|Iutot|. Thus, the expected time to recover is the

sum of (1) the delay to receive the first input tuple, and (2)
the product of the expected hash table size and the average
time per tuple spent in adding a tuple to that hash table.

In summary, compared to existing cost models for paral-
lel query runtime estimation [13, 12] and fault-tolerance in
streaming engines [21], our models capture the dynamic op-
erator interactions in pipelined queries, which we observed
to affect runtime predictions and fault-tolerance optimiza-
tion. For example, a fast operator following a slow one in a
pipeline will produce its output slowly. At the same time,
we do not require that an operator’s output tuples be uni-
formly spread across the entire execution time of the oper-
ator [16, 46]. Indeed, because we use a GP framework, we
support simple types of non-uniform outputs such as that
of asymmetric hash-join. Of course, our GP framework may
not cover all cases. In particular, for multi-phase operators
(e.g., a symmetric hash-join that spills state to disk), we may
still need to split the operator into multiple sub-operators
for more accurate modeling of each phase.

5.4 Approach Implementability
Our approach consists of (1) a protocol that enables het-

erogeneous fault-tolerance in a parallel query plan and (2)
an optimizer that automatically selects the fault-tolerance
strategy that each operator should use. We now discuss the
difficulty of implementing this approach in a parallel data
processing system.

To implement our approach, developers need to (a) imple-
ment desired fault-tolerance strategies for their operators in
a manner that follows our protocol. In Section 4.2, however,
we showed, how to efficiently implement three well-known
fault-tolerance strategies for generic stateless and stateful
operators. Existing libraries can also help with such imple-
mentation (e.g., [23]). Developers must also (b) model their
operator costs within a pipelined query plan. To simplify
this latter task, we develop an approach that requires only
that developers specify well-known functions under different
fault-tolerance strategies and during recovery: an operator
cost function and a function that computes how the output
size of an operator grows with the input size. Our opti-
mizer derives the resulting operator dynamics automatically.
For parallel database systems [39, 14] and MapReduce-type
systems such as Hive [1] or Pig [30], which come with pre-
defined operators, the above overhead needs only be paid
once and we thus posit that it is a reasonable requirement.

For user-defined operators (UDOs), the above may still
be too much to ask. In that case, the simplest strategy
is to treat UDOs as if they could only support the NONE
or MATERIALIZE strategies (depending on the underlying
platform) without ever producing acknowledgments. With
this approach, UDO writers need not do any extra work
at all, yet the overall query plan can still be optimized and
achieve higher performance than without fault-tolerance op-
timization as we show in Section 6.4.

Finally, our approach relies on a set of parameters includ-
ing IO cost (expressed as the time tio spent in a byte sized
disk IO), per-operator CPU cost (expressed as the time tcpu

spent processing each tuple), and total network bandwidth.
Commercial database systems already automate the collec-
tion of such statistics (e.g., [31]), though tcpu is typically
expanded into a more detailed formula.

Other necessary information includes the expected num-
ber of failures for the query (see Section 2), operator selectiv-
ities (standard optimizer-provided metric), and an estimate
of the total checkpointable state. As shown in Section 6.6,
our optimizer is insensitive to small errors in these estimates.

Overall, the requirements of our fault-tolerance optimiza-
tion framework are thus similar to those of existing cost-
based query optimizers.

5.5 Handling Complex Failure Scenarios
So far, we have focused on process failures. However, our

approach also handles other types of failures.
Our approach still works when entire physical machines

fail (e.g., due to a disk failure, a power failure, or a net-
work failure). To support such failures, checkpoints must be
written to remote nodes instead of locally [19], which adds
network and CPU costs that must be taken into account by
the optimizer. Given that the optimizer knows the size of
these checkpoints, it can take that cost into account. Sec-
ond, when a physical machine fails or becomes disconnected,
the number of nodes in the cluster is reduced by one, which
must also be taken into account by the optimizer.
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Figure 3: Query plans used in experiments. σ, ./, γ
denote Select, Join, and Aggregation, respectively.
All numbers are in millions.

Our approach does not currently handle failures that af-
fect a large number of machines. Indeed, such failures can
cause the temporary loss of input data or checkpointed data.
In such cases, the query needs to be restarted in its entirety
once the input data becomes available again. In general,
however, large-scale rack and network failures are infrequent,
while single machine failures are common. For example,
Google reports 5 average worker deaths per MapReduce job
in March 2006 [9], but only approximately 20 rack failures
per year (and similarly few network failures) [8].

Even though our approach does not handle large-scale fail-
ures that cause the loss of input or checkpointed data, it does
handle multiple operators failing at the same time. The only
requirement in such cases is that operators be restarted from
downstream to upstream, ensuring that each operator knows
where to start recovering from before asking upstream neigh-
bors to replay data.

6. EVALUATION
We evaluate FTOpt by answering the following questions:

(1) Does the choice of fault-tolerance strategy for a parallel
query matter? (2) Are there configurations where a hybrid
plan, where different operators use different fault-tolerance
techniques, outperforms uniform plans? (3) Is our optimizer
able to find good fault-tolerance plans automatically? (4)
How do user-defined operators affect FTOpt? (5) What is
the scalability of our approach? (6) How sensitive is FTOpt
to estimation errors in its various parameters?

We answer these questions through experiments with a va-
riety of queries in a 17-node cluster. Each node has dual 2.5
GHz Quad Core E5420 processors and 16 GB RAM running
Linux kernel 2.6.18 with two 7.2K RPM 750 GB SATA hard
disks. The cluster runs a simple parallel data processing en-
gine that we wrote in Java. The implementation includes
our new fault-tolerance framework and specific per-operator
fault-tolerance strategies for a small set of representative op-
erators. All fault-tolerance strategies were moderately opti-
mized (see Section 4.2). We implemented the optimizer in
MATLAB using the cvx package [7].

The query plans that we use in the experiments are shown
in Figure 3. They include an SJJJ and SJJA query (we also
test a more complex query later in this section). For both
queries we have 8 partitions per operator with 2 cores and
1 disk per partition. Partitions of the same operator run on
different machines. The input data is synthetic and without
skew. Tuples are 0.5 KB in size. The schema consists of 4
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Figure 4: Runtime without failures for various two-
operator queries. X-axis labels show the fault-
tolerance strategy chosen: N for NONE, M for MA-
TERIALIZE, C for CHCKPT with a total of 10
checkpoints, and c for CHCKPT with 1K check-
points.

attributes used to hash-partition tuples for each operator, a
5th attribute for grouping the aggregates, and a 6th one for
the join predicates. A separate producer process generates
input tuples. For a given plan, we get the expected recovery
time by injecting a failure midway through the time the
plan takes to execute with no failures. We inject exactly one
failure per run and show the recovery time averaged over all
distinct operators in the plan.

6.1 Model Validation Experiments
FTOpt requires the tcpu and the tio values for each opera-

tor. It also requires the network bandwidth for each machine
in the cluster. Through micro-benchmarks, we find that the
average time to read a tuple from disk (sequential read) is
tio = 13.0 µs for a 0.5 KB tuple. This number is equivalent
to a disk throughput of 37 MBps. For select and aggregate
operators, we measure tcpu to be 1.82µs. The join operator,
internally, works in two parts: (1) hashing the input tuple
and storing it in one of the tables for a cost of t1 = 8µs
and (2) joining the hashed input tuple to the corresponding
tuples from the other table for a cost of t2 = 1µs. We use
t1, t2, and the operator’s selectivity to estimate its tcpu. Fi-
nally, we measure the network I/O time per 0.5 KB tuple
to be 4.7µs, which is equivalent to a network bandwidth of
109.4 MBps and is close to the theoretical maximum of 1
Gbps network bandwidth for each machine in the cluster.

These parameters along with our operator models enable
FTOpt to predict the runtime for an entire query plan.
Figure 4 shows the runtime without failure for a few two-
operator queries. While the median percentage difference
between real and predicted runtime is 9.5%, this error is
small given the overall differences in runtime between var-
ious configurations. We measure the sensitivity of our ap-
proach to the benchmarked parameter values in Section 6.6.

6.2 Impact of Fault-Tolerance Strategy
The first question that we ask is whether a fault-tolerance

optimizer is useful: how much does it really matter what
fault-tolerance strategy is used for a query plan?

Figures 5 through 7 show the actual and predicted run-
times for Queries 1 through 3 from Figure 3 with 8 partitions
per operator. Note that, each join receives input from two
sources: its upstream operator in the plan and a producer
process. In all our experiments, an equal number of tuples
was received from each source. Whenever FTOpt selects
CHCKPT as a strategy, it also chooses the checkpoint fre-
quency (Query 3). In other cases, we use 100 checkpoints, a
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Figure 6: Query 2 (SJJJ with lower selectivities)

manually selected value that we found to give high perfor-
mance in these experiments.

The most important result from these experiments is that,
while these queries are all similar to each other, each one re-
quires a different fault-tolerance plan to achieve best perfor-
mance. For Query 1, a uniform NONE strategy is best. For
Query 2, uniform MATERIALIZE wins. Finally, for Query
3, uniform CHCKPT outperforms the other options.

Second, restarting a query is at most 50% slower than a
strategy with more fine-grained fault-tolerance. The fine-
grained strategy gains the most when it reduces recovery
times with minimal impact on runtime without failures.
For some queries, the appropriate choice of fault-tolerance
gets close to this theoretical upper bound. For Query 2,
RESTART is 31% worse than the best strategy while for
Query 3, restarting is 44% slower than the best strategy.
Achieving such gains, however, requires fault-tolerance op-
timization. Indeed, different strategies win for different
queries and a wrong fault-tolerance strategy choice leads to
much worse performance than restarting a query. Overall,
the differences between the best and worst plan are high:
58% for Query 1, 31% for Query 2, and 72% for Query 3.

Finally, in all cases, FTOpt is able to identify the winning
strategy! Predicted runtimes do not always match the ob-
served ones exactly. Most of the difference is attributable to
our simple model for the network and FTOpt’s predictions
are thus more accurate when either CPU or disk IO is the
bottleneck in a query plan and less accurate when it is the
network. While we could further refine our models, to pick
the optimal strategy, we only need to have correct relative
order of predicted runtimes for different plans. As shown
in Figures 4 through 8, FTOpt preserves that order when
runtime differences are large. When two configurations lead
to very similar runtimes, FTOpt may not find the best of
these plans but the choice of plan matters less in such a case
and FTOpt always suggests one of the good plans.

In summary, the correct choice of fault-tolerance strategy
can significantly impact query runtime and that choice is
not obvious as similar query plans may require very different
strategies. FTOpt can automatically select a good plan.

6.3 Benefits of Hybrid Configurations
We now consider a query (Query 4), similar to Query
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Figure 7: Query 3 (SJJA query)
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Figure 8: Query 4 (SJJA with more expensive joins).
The hybrid strategy is to materialize after select, do
nothing for joins, and checkpoint the aggregate

3, but with the joins processing and producing much more
data, making checkpointing expensive. Figure 8 shows that
a hybrid strategy that materializes the select’s output, does
nothing for the joins, and checkpoints the aggregate’s state
for a total of 40 checkpoints (value selected by the opti-
mizer), yields the best performance. The uniform strate-
gies are 15% slower at best and 21% slower at worst while
RESTART is 35% slower.

We observe similar gains for a longer query (Query 5)
with eight operators. Figure 9 shows that the hybrid plan
(chosen by the optimizer) materializes both selects’ outputs,
does nothing for joins and takes 20 checkpoints of the aggre-
gate. The best and worst uniform strategies and RESTART
are 16%, 23% and 36% slower, respectively. Manually, we
found that checkpointing the first two joins in the hybrid
plan led to another hybrid plan that was 2% faster. While
the optimizer did not choose this better plan, the plan it
chose performs similarly. Further, both the observed and
predicted best plans are hybrid.

The experiments thus show that hybrid fault-tolerance
strategies can be advantageous and the best strategy for an
operator depends not only on the operator but on the whole
query plan: the same operator can use different strategies
in different query plans: e.g., select in Queries 3 and 4.

Note that we inject only one failure per experiment. Thus,
our graphs show the minimum guaranteed gains. Additional
failures amplify differences between strategies.

6.4 Performance in Presence of UDOs
We look at the applicability of heterogeneous fault-

tolerance when an operator is a user-defined function with
limited fault-tolerance capabilities. We experiment with
Query 3, but treat its last operator, the aggregate, as a
UDO that can only restart from scratch if it fails. Note that
Rule 4.2 and operator determinism [42] allow restarting a
UDO in isolation without restarting the entire query.

Figure 10 shows the results. Previously, the best fault-
tolerance strategy, with a single failure, was to checkpoint
every operator (“With CKPT”) and checkpointing aggregate
provided significant savings in recovery time. Now that the
aggregate can use NONE as sole strategy, we find that ma-
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Figure 10: Impact of aggregate becoming a UDOs
without fault-tolerance capabilities on Query 3. The
optimal strategy is to materialize after select and do
nothing elsewhere.

terializing the first operator’s output and using NONE for
the remaining operators outperforms uniformly materializ-
ing, none and RESTART by 48%, 12%, and 24%, respec-
tively. The hybrid strategy is itself 16% slower than the
optimal strategy for Query 3 (“With CKPT”).

Hence even in the presence of fault-tolerance agnostic
UDOs, FTOpt can generate significant runtime savings.

6.5 Scalability
FTOpt currently uses a brute force search algorithm, but

we find that simple heuristics can significantly prune the
search space. Indeed, we observe that the best hybrid plans
use the NONE strategy for many operators and using an-
other strategy in place of NONE will always increase the
runtime without failures. Thus, if the runtime without fail-
ure for a plan exceeds the runtime with failures for another
plan, we can prune the former plan. Hence, evaluating plans
in the decreasing order of the number of operators that use
the NONE strategy can prune significant fractions of the
search space. For example, with this heuristic, the optimizer
examines only 28 out of 81 configurations for Query 4. In
addition, the search essentially computes the least costly of
a set of independent optimization problems and all of these
problems can be optimized in parallel.

FTOpt’s MATLAB implementation uses the cvx pack-
age, which offers a successive approximation solver using
SDPT3 [40]. In our prototype, the average time to solve the
optimization problem per plan is around 25s for the 4 oper-
ator plans in the previous sections. However, an optimized
solver can solve a larger problem in a sub millisecond [29].
The behavior of an operator for a fault-tolerance strategy
is modeled using at most 12 inequality and 4 equality con-
straints of 11 variables. Thus, a query with n operators can
be modeled using 11n variables, 13n + 1 inequality and 4n
equality constraints. Further, all but one of the constraints
are sparse: they depend on just a few variables indepen-
dent of n. For example, with 4 operators, our models use
44 variables, 16 equalities, and 53 inequalities. The existing
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Figure 11: Observed and predicted runtimes for
Query 3, sorted on the predicted runtime, for all
81 fault-tolerance plans for the query.

Table 3: Real rankings of top 5 plans from perturbed
configurations.

Perturbation Rankings

Failing thrice instead of once 1 2 3 4 5
IO cost 2.0x of true value 1 6 8 9 18
IO cost 0.5x of true value 2 1 3 4 5
IO cost 10x of true value 6 18 20 21 24
IO cost 0.1x of true value 2 28 31 30 29

Selectivity of all operators 1.1x 1 2 3 4 5
Selectivity of all operators 0.9x 1 2 3 4 5
Selectivity of all operators 2.0x 1 2 3 4 5
Selectivity of all operators 0.5x 56 1 66 67 10

optimized solvers can solve a problem of 140 variables, 120
equalities, and 60 inequalities in 0.425 ms on average [29].

To sum up, with an optimized solver, and a parallelized
heuristic search algorithm, FTOpt could be scalable enough
to handle larger query plans within a few seconds.

6.6 Optimizer Sensitivity
We evaluate FTOpt’s sensitivity to inaccuracies in param-

eter estimates. We experiment with Query 3 since it is most
sensitive to wrong choices: Figure 11 shows that runtimes
vary from about 250s to 400s depending on the chosen plan.

To evaluate the sensitivity for a given parameter, we re-
run FTOpt, feeding it a perturbed parameter value. We
only perturb a single parameter at a time while keeping the
other parameters at their true values. We then compute the
top 5 plans with the perturbed value and report the ranks of
these plans in FTOpt’s original ranking (Figure 11). Table 3
shows the results. As an example, in this table, when IO cost
increases to 2X its true value, the second best plan identified
by FTOpt was ranked 6th with the real IO costs.

Table 3 shows that FTOpt is very robust to small errors in
the number of failures and it is fairly robust to even large er-
rors in IO cost: a 10x change still leads to a good plan (with
true rank 6) being chosen, though the subsequent plans have
poor true rankings. FTOpt is least robust to cardinality esti-
mation errors. In our experiments, we varied the selectivities
of all the operators in tandem (and with the join always pro-
cessing the same number of tuples from both streams). In
this scenario, our predictions were unchanged for changes of
1.1x, 2x and 0.9x in selectivity but for a 0.5x change, the top
choice’s true rank was 56 with an observed runtime about
70% worse than that of the best configuration possible.

The robustness to I/O cost errors and failure errors can be
explained by the fact that the effect of these errors is mostly
linear on the optimizer. However, imprecise selectivity es-
timates have an exponential effect (the further an operator
is from the beginning, the less data it processes and it pro-



duces even less output) on FTOpt. Thus, the optimizer is
more sensitive to perturbations in selectivity estimates.

7. CONCLUSION
In this paper, we presented a framework for heterogeneous

fault-tolerance, a concrete instance of that framework, and
FTOpt, a latency and fault-tolerance optimizer for parallel
data processing systems. Given a pipelined query plan, a
shared-nothing cluster, and a failure model, FTOpt selects
the fault-tolerance strategy for each operator in a query plan
to minimize the time to complete the query with failures. We
implemented our approach in a prototype parallel query pro-
cessing engine. Our experimental results show that different
fault-tolerance strategies, often hybrid ones, lead to the best
performance in different settings and that our optimizer is
able to correctly identify a winning strategy.
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