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More so than ever before, large datasets are being collected and analyzed throughout

a variety of disciplines. Examples include social networking data, software logs, scientific

data, web clickstreams, sensor network data, and more. As such, there are a wide range

of users interacting with these large datasets, ranging from scientists, to data analysts, to

sociologists, to market researchers. These users are experts in their domain and understand

their data extensively, but are not database experts.

Database systems are scalable and efficient, but are notoriously difficult to use. In this

work, we aim to address this challenge, by leveraging usage history. From usage history,

we can extract knowledge about the multitude of users’ experiences with the database.

Consequently, this knowledge allows us to build smarter systems that better cater to the

users’ needs.

We address different aspects of the database usability problem and develop three com-

plementary systems. First, we aim to ease the query formulation process. We build the

SnipSuggest system, which is an autocompletion tool for SQL queries. It provides on-the-

go, context-aware assistance in the query composition process. The second challenge we

address is that of query debugging. Query debugging is a painful process in part because

executing queries directly over a large database is slow while manually creating small test

databases is burdensome to users. We present the second contribution of this dissertation:





SIQ (Sample-based Interactive Querying). SIQ is a system for automatically selecting a good

small sample of the underlying input database to allow queries to execute in realtime, thus

supporting interactive query debugging. Third, once a user has successfully constructed the

right query, they must execute it. However, executing and understanding the performance

of a query on a large-scale, parallel database system can be difficult even for experts. Our

third contribution, PerfXplain, is a tool for explaining the performance of a MapReduce job

running on a shared-nothing cluster. Namely, it aims to answer the question of why one

job was slower than another. PerfXplain analyzes the MapReduce log files from past runs

to better understand the correlation between different properties of pairs of job and their

relative runtimes.
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Chapter 1

INTRODUCTION

Large datasets are being collected and analyzed throughout a variety of disciplines.

For example, sociologists analyze social networking data to study relationships and how

interactions evolve over time [3, 14, 89], programmers inspect software logs to identify

software bugs that may have otherwise been overlooked [128], astronomers run large-scale

cosmological simulations to explore how structure evolves in the universe over billions of

light years [91], web experts scrutinize clickstreams to understand online behavior and thus

provide more personalized services [52], and companies survey their sensor data that tracks

inventory to optimize their operations [61]. The scale of many datasets being analyzed

is impressive. For example, the Earth Microbiome Project [12] expects to produce 2.4

petabases in their metagenomics effort. As another example, the Venture Development

Corporation [16] predicts that Walmart will generate around seven terabytes of data every

day when RFID tags are used for each item. The upcoming Large Synoptic Survey Telescope

(LSST) [6] is estimated to generate fifteen terabytes of raw data per night, for a total of five

petabytes per year. Meanwhile, social networks such as Facebook [3] and Twitter [14] are

also collecting extensive amounts of data. For example, at the end of the month of March

2012, Facebook had a total of 901 million active users, and 125 billion friend connections,

and Twitter had an average of over 140 millions ‘tweets’ sent per day (as of March 2011) [15].

Traditional database management systems (DBMS) [111, 99, 121, 78], and modern day

large-scale, parallel data analytic systems [45, 123] are designed and built for organizing,

storing, managing, and analyzing large datasets. Over the past 40 years, database systems

have evolved to become scalable and efficient. However, they remain notoriously difficult to

use [83]. Furthermore, as the popularity of large scale, parallel database systems for massive

data analytics increases, there will be increased demand from users for help in using these

systems without the support of a database administrator or some other form of expert team.
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Figure 1.1: Challenges in the data analysis process.

We outline some of the challenges in the data analysis process in Figure 1.1. We partition

the challenges into two types: the one-off challenges that a user faces when trying to start

using a database system, and the repeated challenges that a user faces every time he or she

wants to ask a question over the data. Though both sets of challenges are interesting and

important, we only address the repeated challenges in this thesis work. We still describe

both sets of challenges, and investigate the related literature for both.

The first set of challenges (as pictured in the top half of Figure 1.1) are those faced at

setup time, including but not limited to installing a DBMS, designing a schema, and loading

the data into the database. These tasks are difficult for various reasons. For example,

schema design is difficult as it requires an advanced understanding of the relational model,

normal forms, database optimization, as well as a good understanding of the data itself

before the user is able to explore or analyze the data (since the schema must be created

before the data is loaded into the DBMS). Even though these challenges are faced only

once, they are important to address because they form the initial roadblock to database

technology adoption. There is a concerted effort in the database community to ease these

initial pains. These include projects such as SQLShare [73] that allows users to upload

data files using a web browser (thus avoiding the need to install a DBMS) and execute

queries over the data immediately (before having to design a schema), as well as work

on schema-later approaches [66, 112]. Advances in industry are also eliminating some of
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these one-off challenges. For example, cloud providers such as Amazon [2], VMWare [17],

Salesforce.com [9] are offering Platform as a Service, thus saving users from having to install

their own DBMS.

The second set of challenges, the repeated challenges, are those that the user must face

every time he or she wants to answer a question over the data. The first challenge is in

formulating the query. This is often difficult because SQL is a difficult language to grasp

at first, especially for users who are familiar with imperative programming languages since

SQL is a declarative one. Second, there are many cases where users write queries over

large databases that they neither created nor populated, and thus unfamiliarity with the

schema can make queries difficult to write. Even once the query is formulated, the difficulty

continues. The debugging of queries is not interactive. The feedback loop can be slow if users

execute their partially correct queries over the entire, large-scale database. Furthermore,

as more data analysis moves to MapReduce-type systems, executing and optimizing queries

in such environments requires the user to perform all the tuning, as opposed to traditional

DBMSs, which provide automatic tuning and optimization. Finally, even after executing

the query, often understanding the results of the query also requires a lot of work because

the output itself can be a large dataset.

There is a diverse body of recent work on addressing some of the repeated challenges

in database usage. First, to ease the difficulty of writing SQL queries, many projects have

proposed different querying methods ranging from visual querying, querying by forms, and

keyword-based querying, as well as techniques for summarizing schemas to help users who

are unfamiliar with the schema [27, 35, 76, 101, 85, 26, 29, 74, 105, 104, 106, 131]. Second,

though it is not yet as advanced as in traditional DBMSs [28, 43, 21, 20, 39, 7, 77, 8, 13], there

is significant work on automatic performance tuning in large-scale, parallel data analytic

systems [24, 69, 59, 57, 51, 122]. Third, to help users more easily process and understand

the results of their queries, several efforts are directed toward supporting easier visualization

of data [120, 5] and ranking output tuples [18].

While these projects ease some of the pain of query construction, debugging, and exe-

cution, in this dissertation, we take a radically different approach. We propose to leverage

an increasing trend: collaboration. Namely, an increasingly common database usage pat-
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Figure 1.2: Collaborative environments where users perform their own data analysis tasks
over a shared database.

tern is where some party creates a large database and makes it available to a community of

users. Then, these users all perform their own data analysis and exploration over this shared

database (as depicted in Figure 1.2). For example, the Sloan Digital Sky Survey (SDSS) is

a famous example of this shift toward collaborative, data-intensive analytics [119]. SDSS

has mapped 25% of the sky, collecting over 30 TB of data (images and catalogs), on about

350 million celestial objects. SDSS has had a transformative effect in astronomy not only

due to the value of its data, but because it made that data accessible online through web

forms and SQL queries. To date, astronomers and others have submitted over 20.7 million

SQL queries to the SDSS database. In such settings, if we could utilize the efforts of all

the users of the shared database, we would be able to leverage the collective knowledge and

experience of all past users to help ease the pains of new interactions with the database.

This hypothesis forms the primary focus of this dissertation work. The question is

whether utilizing usage history can indeed speed-up and improve new interactions with the

data. We investigate this question in three different contexts, all related to the usability

challenges in the data analysis lifecycle. Namely, in the query composition, query debugging,

and performance debugging components. We show that via storing, querying and mining
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past usage logs, we can extract knowledge about the multitude of users’ experiences with

the database. Consequently, this knowledge allows us to build smarter systems that cater

better to the users’ needs.

In this thesis work, we investigate three different problems and explore how we can solve

the problems by utilizing database usage history. We build a research system to prototype

our solution for each problem. In the first project, we aim to ease the query formulation

process. We build the SnipSuggest system [88], which is an autocompletion tool for SQL

queries. It provides on-the-go, context-aware assistance in the query composition process.

SnipSuggest recommends possible additions to various clauses in the query using relevant

‘snippets’ collected from a log of past queries. The second challenge we address is that of

query debugging. Query debugging is a painful process in part because executing queries

directly over a large database is slow while manually creating small test databases is bur-

densome to users. The second contribution of this thesis is SIQ (Sample-based Interactive

Querying). SIQ is a system for automatically selecting a ‘good’ small sample of the un-

derlying input database to allow queries to execute in realtime, thus supporting interactive

query debugging. Third, once a user has successfully constructed the right query, they

must execute it. Though this step is fairly simple in a traditional relational DBMS (e.g.,

the user needs to click on the ”play” button), executing and understanding the performance

of a query on a large-scale, parallel database system is difficult even for experts. Our third

contribution, PerfXplain [87], is a tool for explaining the performance of a MapReduce job

running on a shared-nothing cluster. Namely, it aims to answer the question of why one

job was slower than another. PerfXplain analyzes the MapReduce log files from past runs

to better understand the correlation between different properties of pairs of job and their

relative runtimes.

We now outline the goals, challenges, and contributions of SnipSuggest, SIQ, and Per-

fXplain in more detail.

1.1 SnipSuggest

In the first project, we address the problem of helping the increasing population of non-

expert database users, who need to perform complex analysis on their large-scale datasets,
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but have difficulty writing database queries. We build the SnipSuggest system, which is an

autocompletion tool for SQL queries. It provides on-the-go, context-aware assistance in the

query composition process.

As a user types a query, SnipSuggest recommends possible additions to various clauses in

the query using relevant snippets collected from a log of past queries. SnipSuggest’s current

capabilities include suggesting tables, views, and table-valued functions in the FROM clause,

columns in the SELECT clause, predicates in the WHERE clause, columns in the GROUP BY clause,

aggregates, and some support for sub-queries. SnipSuggest adjusts its recommendations

according to the context: as the user writes more of the query, it is able to provide more

accurate suggestions.

We evaluate SnipSuggest over two query logs: one from an undergraduate database class

and another from the Sloan Digital Sky Survey database. We show that SnipSuggest is able

to recommend useful snippets with up to 93.7% average precision, at interactive speed. We

also show that SnipSuggest outperforms näıve approaches, such as recommending popular

snippets.

1.2 SIQ

In this project, we address the problem of query debugging. Query debugging is currently

a painful process for users largely because executing queries directly over a large dataset is

slow. Some users choose to construct a sample dataset, often referred to as a toy database,

with which they interact through the debugging process before executing the query over the

full dataset. However, constructing a good toy database is difficult and cumbersome.

As the second contribution of this dissertation, we present SIQ (Sample-based Interactive

Querying). SIQ is a system for automatically constructing a ‘good’ small toy database in

order to support an interactive query debugging process. The toy database allows all in-

progress queries to execute in realtime, and allows the user to quickly understand the effect

of the modifications that he or she makes to the query.

SIQ leverages a log of past query sessions to generate a toy database that is small, and

illustrative of these past sessions. We evaluated SIQ over a log consisting of queries written

for an undergraduate database class homework. We find that SIQ is able to generate a good
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toy database for a query session without knowing the queries in the query session a priori.

Our results also show that the SIQ system generates toy databases that are up to 85 times

smaller than a union-based technique that generates a sample per past query and takes the

union of all these samples.

1.3 PerfXplain

Once a user has successfully constructed the right query, they must execute it. Though

this step is straightforward in a traditional relational DBMS (e.g., the user needs only to

click the ”play” button), executing and understanding the performance of a query on a

large-scale, parallel database system is difficult even for experts.

As the third component of this thesis, we present PerfXplain, a system that enables users

to ask questions about the relative performances (i.e., runtimes) of pairs of MapReduce

jobs. PerfXplain provides a new query language for articulating performance queries and

an algorithm for generating explanations from a log of past MapReduce job executions

We make several contributions in this PerfXplain work. First, we propose a simple

language, PXQL, for articulating queries about the performance of a pair of MapReduce

jobs. We formally define the notion of an explanation and three metrics relevance, precision,

and generality to assess the quality of an explanation. We develop an approach for efficiently

extracting explanations that have high relevance, high precision, and good generality from a

log of past MapReduce job executions, which is based on techniques related to decision-tree

building. Finally, we evaluate the PerfXplain approach on a log of MapReduce jobs executed

on Amazon EC2. We show that PerfXplain is able to generate explanations with higher

precision than two näıve explanation-generation techniques, and offer a better trade-off

between precision and generality.

1.4 Dissertation Overview

The dissertation is organized as follows. In Chapter 2 we discuss the different aspects of

databases that make them difficult to use, and summarize the recent efforts for addressing

each problem. Then, we present the three projects in chronological order. In Chapter 3

we describe SnipSuggest, a tool for SQL autocompletion. In Chapter 4 we present the
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PerfXplain project, whose aim is to explain MapReduce job performance. Chapter 5 outlines

the SIQ system, which allows users to perform interactive querying based on samples. We

discuss future directions in Chapter 6, and conclude in Chapter 7 with a summary of our

contributions.
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Chapter 2

RELATED WORK

In this chapter, we describe the existing research and tools that address some typical

challenges faced by users when interacting with database systems. We structure the chapter

as follows. In Section 2.1, we begin by summarizing a seminal paper in database usability

by Jagadish et al. [83], which, like this chapter, describes some of the key pain points in

database usability. Following this overview, we then dedicate one section for each of the

areas highlighted in Figure 1.1. We wrap up the chapter by describing a range of work in

other areas, where the underlying technique leverages past usage history.

2.1 The Pain Points of Database Usage

Jagadish et al. [83] provide a comprehensive summary of why databases are difficult to use.

In this paper, the authors discuss five major pain points of using database systems today,

and propose ways in which to address them.

The first challenge is that current, structured query models are powerful but expect

users to fully understand the schema of the database. The authors name this challenge

‘painful relations’. Schema familiarity can be a high expectation to meet because different

users have different ideas of how information should be structured, and thus find the given

schema difficult to understand or remember. Furthermore, due to normalization, most

schemas that start with cohesive tables have them broken into multiple tables that are

often necessary but cumbersome to stitch together. The authors suggest that though a

logical schema provides an abstraction over the physical schema of a database, it is still

not at the right level of abstraction for users, and that there should be yet another level of

abstraction, which the authors call the ‘presentation data model’.

Some of the techniques we describe in Section 2.5, for helping in query composition,

address the painful relations challenge. For example, the work on schema summarization
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helps users that are unfamiliar with the database schema.

The second problem explored in the paper is that database systems often overwhelm

users with too many options. The authors, fittingly, name this the ‘painful options’ problem.

In SQL, the same query can be formulated in multiple ways. If a user does not understand

the difference between the options, this leads to confusion and mistrust in the system. This

point is exemplified by the fact that form-based querying interfaces, which inherently restrict

the space of queries that the user can pose, are extremely popular. On the other hand, forms

are often curated by developers, and this can be a tedious process. Furthermore, they are

not well-suited for end-users who wish to have flexibility in the queries they can write. In

Section 2.5 we describe work on techniques that address some of these shortcomings of

form-based interfaces.

The third problem discussed by Jagadish et al. is called ‘unexpected pain’, and it explains

that too often after a query has executed, the user is unable to understand why a tuple is

included in or excluded from the output. The authors propose that database systems be

able to explain why or why not a tuple exists or does not exist in the output of a query. The

research area related to provenance, which we discuss in Section 2.8, is a good candidate

for addressing this pain point.

The fourth pain point discussed is that the current querying procedure often involves

the user spending time constructing the query, followed by a significant time waiting for

the query to execute, and finally seeing the output only to find that the query was wrong.

This long feedback loop problem is called ‘unseen pain’. Most users prefer to directly see

and directly manipulate the data. The problem is that current database systems do not

provide a what-you-see-is-what-you-get (WYSIWIG) form of interaction. We discuss query

techniques that are more WYSIWIG in Section 2.5, tools for predicting the execution time

of a query in Section 2.6, and query debugging techniques that shorten the feedback loop

in Section 2.8.

Finally, the fifth problem is called the ‘birthing pain’, and refers to the pain of schema

design for creating new databases and the burden of learning the schema before being able

to add data to it. We devote Section 2.3 to exploring the challenge of schema design and

the research that eases this pain.
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2.2 DBMS Installation

Before a user can explore and analyze a dataset, he or she must first install and configure

a database system. Though this is a challenge with traditional DBMS’s, this step is mostly

bypassed by many cloud providers that offer Platform as a Service. Examples include

Amazon’s AWS service [2], VMWare [17], and Salesforce.com [9].

The SQLShare [11] project also removes the DBMS installation obstacle for users. It is a

tool, built over a cloud platform, for scientists that allows its users to upload their data, write

queries over it, and share the data. It actually addresses all three of the one-off challenges

as outlined in Figure 1.1 (i.e., DBMS installation, schema design and data loading) by

providing web browser access (i.e., no installation required), supporting data upload in a

single button click, and allowing users to execute queries on their data immediately after

uploading it without having to first design a schema.

2.3 Schema design

Next, the user must design a schema for their data. Schema design is a difficult process, re-

quiring a good understanding of the relational model, normal forms, database optimization,

and more. It is unreasonable to expect knowledge of any of the above from a non-expert

database user. Furthermore, the user is also expected to design the schema prior to being

able to explore or analyze the data (i.e., the schema must be designed and created before

the data is loaded).

The schema-later approach [36, 66, 112] and the pay-as-you-go paradigm from the DataS-

paces work [66], are a good step toward easing this challenge. In this work, the authors

present a new abstraction called a DataSpace, which is a collection of data sources and

relationships between them. The goal of a DataSpace is to accept all data, regardless of

its format, location or whether it has a schema, and provide best-effort services on top of

that data. The pay-as-you-go paradigm refers to how it requires no up-front cost to use

the platform. Additionally, the DataSpace learns from users’ interaction with the data, to

discover semantic relationships between data items and perhaps even infer schemas, as well

as identify and streamline common information tasks.
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The CRIUS [112] project also provides a schema-later approach. CRIUS is a system

that allows end-users to create and modify their schema on-the-go, as new data arrives that

does not fit the current schema. The system supports nested data. The CRIUS system

allows schema modifications in the form of dragging and dropping column headers. It is

able to support all the schema modifications that the nested relational algebra supports.

Such an approach allows the user to start with a simple schema, and evolve it one-step-at-

a-time as the need arises. Additionally, CRIUS extracts and incrementally maintains a set

of functional dependencies, that are satisfied by the existing data. This allows CRIUS to

help in two ways. First, it can auto-complete parts of new entries. Second, it can prevent

errors. For example, suppose the current table contains a row (Alice, 4259843545, 1234

Crius Ave) and one of the functional dependencies inferred is name→ phone. If the user

were to insert a new row, and had typed Alice into the name column, then CRIUS would

automatically fill in the phone column with 4259843545. Now consider if the user modifies

Alice’s phone number in only one of these rows. At this point, CRIUS asks the user whether

she would like to update the other Alice row, or to force the update, thus invalidating the

inferred name → phone functional dependency. In summary, CRIUS allows end users to

rapidly design and easily refine schemas, thus largely eliminating the challenge of schema

design.

2.4 Loading data

Loading data into a database is known to be a painful task, despite its conceptual simplicity.

First, the data must be transformed into files that adhere to the DBMS’s strict formatting

restrictions. Second, copying the data into the database can take a long time, especially if

the data is not bulk-loaded in.

Several commercial DBMS’s now support “external” tables, allowing users to query flat

files without loading them into the database. They have not yet adapted optimization

algorithms for external tables, thus leading to slow query processing on these tables. A

recent paper [80] argues for new DBMSs which better support these “external” tables, thus

solving the problems of when and how to load different parts of the data, how to store the

data that has been loaded, as well as how to access each data part. The paper is a vision
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paper, and thus does not provide any algorithms to solve the challenges. However, they

do investigate a few simple techniques, including adaptive loading (where the system stops

parsing a row, as soon as it has extracted the required columns from it, or determined that

the row does not pass a predicate), dynamic file partitioning, and more.

As discussed in Section 2.2, SQLShare also addresses the data loading problem by pro-

viding a simple mechanism for loading data through a web interface.

2.5 Query Composition

Once the data is in the database, users can finally pose queries over it. We overview projects

that aim to ease the SQL composition process.

Visual query tools. One reason why SQL is difficult to write is because it is a non-visual

programming language. To address this problem, several systems offer visual querying [27,

35, 76, 101]. Query-by-example [133] is also an example of a visual querying language.

Furthermore, there is a large body of work on visual mashup constructors, including Google

Mashup [62], Popfly [100], and Yahoo! Pipes [129]. A mashup is an application that

combines data from multiple sources to create a new service. Though a mashup is not

exactly a SQL query, some of the techniques could potentially be applied to constructing

SQL queries. More recent work presents AppForge [130], a system for building applications

in a WYSIWYG environment. It extends the mashup editors above by supporting stateful

applications (where the developer can save state to a backend database), as well as by

supporting a more closely integrated, WYSIWYG development and execution environment.

Visualizations. A natural method for making sense of a large dataset is to visualize it.

In a sense, creating a visualization, is equivalent to writing a query over the data. In fact, it

is often the case that the visualization system represents the visualization as a SQL query in

the background. There are thousands of research projects and commercial products, which

focus on visualizing different kinds of data, and hence we do not attempt to summarize the

area here. As an example though, Tableau [120] allows users to interactively and rapidly

construct visualizations, and hence the underlying query via a graphical interface. Google

Fusion Tables [5] also provides this functionality.

Other projects that generate SQL queries to describe visualizations include work by
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Heer et al. [68], the DEVise system [94], the Visual Query Environment work [46], and

Improvise [126]. In these projects, the user graphically selects a set of items, and the

system generates a matching SQL query. For example, Heer et al. [68] use this translation

from visualization into SQL, followed by a relaxation of the query in order to allow the user

to interactively generalize their selection.

Forms. Because SQL is difficult to write, many applications provide a form-based

interface for accessing databases. However, these forms are usually built by application

developers and not the end-users. Additionally, they are usually very restrictive in the type

of queries they support. Thus, they are not well-suited for users who want to execute ad-

hoc queries that evolve frequently. To address this problem, Jayapandian and Jagadish [85]

present an algorithm for automatically constructing query forms given a database schema

and content. The algorithm proceeds by first selecting the “useful” schema elements (based

on the schema and data), and then constructing forms from these elements.

Keyword-based querying. Search engines have provided a simple interface for querying

the web via keyword search. Their usability is a key factor contributing to their widespread

success. Several research projects aim to provide keyword-based querying capabilities over

relational databases [26, 29, 74, 105, 104, 106] and XML databases [64].

Nandi et al. [105] present a technique for phrase autocompletion for keyword search over

structured databases. A similar tool [104] allows users to construct search queries without

knowledge of the underlying schema. As the user types in the search box, the tool starts

suggesting elements of the schema, followed by fragments of text from the database content.

This tool supports standard conjunctive attribute-value queries.

In the Qunits project [106], Nandi and Jagadish introduce the notion of a ‘qunit’, which is

a ‘basic, independent semantic unit of information in a database’. Qunits are not constrained

to the schema of the database or the relational model. Instead, they fit the user’s mental

model of how the database is organized. For example, if the user views the Internet Movie

Database (IMDb) as a collection of movies and their casts, then each qunit can represent

this concept (ignoring the underlying schema which breaks the database into a Movies

table, an Actors table, and a Casts table). Using qunits, the database is now modeled

as a heterogeneous collection of independent qunits. Consequently, standard information
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retrieval techniques, that typically run over collections of heterogenous documents, can be

applied.

Li et al. [93] address the problems of keyword search, form-based search, and SQL-

based search usability in a single system they call DBease. It provides a search-as-you-type

capability, through the use of Trie structures. In addition, to support SQL, as a user types

in keywords, DBease recommends relevant SQL queries on-the-fly. At this point, the user

can select a specific SQL query and execute it.

Query by output. Sometimes it is easier to describe the output of a query, rather than

writing the query itself. Given the output of a query and the underlying database, the

Query-by-Output project [125] is able to automatically construct a query that produces the

specified output. The paper considers the case where the original query is known, in which

case it generates an ‘instance-equivalent’ query, as well as the case where the original query

is not known. In the context of composing queries, the techniques from the latter case could

be used to design a new form of querying where the user specifies the approximate output

that she desires, and the system automatically constructs the query to produce this output.

SQL to English. A common way that non-expert database users formulate queries is

through copying and pasting queries written by other users or even sample queries found

on the web. The user starts with the existing query and modifies it until they reach their

desired query. The challenge here is that sometimes SQL queries are difficult to understand.

Annotating a query with a description can increase its understandability, but users can not

be expected to annotate every query they write. Koutrika et al. [90] present methods for

automating this process. Namely, they present an algorithm for translating SQL into natural

language.

Querying an unfamiliar database. There are many examples of large databases that

domain experts interact with daily. In the sciences, for example, consider the Sloan Digital

Sky Survey (SDSS), a 30 TB database which consists of 88 tables, 51 views, 204 user-defined

functions, and 3440 columns! Other examples include the Incorporated Research Institu-

tions for Seismology (IRIS) [82], and soon the Large Synoptic Survey Telescope (LSST) [6].

To give an idea for the scale of these projects, the LSST is estimated to generate fifteen

terabytes of raw data per night [6] for a total of five petabytes per year.
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In the above cases, the users are writing queries over databases that they did not create,

and therefore may be unfamiliar with. Combined with the difficulty of writing SQL, unfa-

miliarity with the underlying database makes the query formulation process more difficult,

and even insurmountable at times.

Two projects address this problem by providing summarizations of the underlying schema.

Yang et al. [131] automatically generate a summary of a large database based on its schema

and data content. In this work, summarization involves identifying the most important

tables, and then clustering all the tables into groups of related tables. In [132], the authors

also perform schema summarization, but in the context of XML databases.

Another paper [37] addresses this problem by recommending SQL queries for database

exploration. QueRIE [37] analyzes a user’s query log, finds other users who have executed

queries over similar parts of the database, and recommends new queries to retrieve relevant

data. This work helps users who have had significant interactions with the database, but

may not yet be familiar with other portions of the schema.

2.6 Query Optimization and Execution

After formulating the query, sometimes the user will need to perform tuning to ensure the

efficient execution of the query. Though many traditional DBMS’s provide automatic tuning

and optimization, in many of the new parallel data-analytic services, the user still needs to

perform all the tuning herself.

Database performance tuning. Many existing database management systems provide

tools to examine and tune the performance of SQL queries including Teradata [28], Ora-

cle [43], SQL Server [21, 20, 39], MySQL [7], DB2 [77], Postgres [8, 13], and others. These

tools focus primarily on tuning the physical and logical designs of a database, and are aimed

at database administrators.

More recent work has focused on MapReduce tuning and optimizations [69, 47, 86,

116, 84]. Many of these techniques address the problem from a different perspective from

traditional database optimizers. Consider Xplus [69] as an example. Given a query, whereas

existing database optimizers search for a plan first, and then execute the plan, Xplus tries

to find a better plan by running a small set of plans proactively, collecting monitoring data
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from these runs, and iterating until it finds a better plan.

Autonomic databases. Another line of work strives to make database systems self-

configurable, self-tuning, or autonomic, including MapReduce systems [24, 70]. A key

project in this space is the Auto-Admin project, which aims to make DBMS’s self-administrating [40,

38, 22, 19]. This includes automatically selecting indexes and materialized views [40, 22],

and allowing a DBA to explore hypothetical configurations [38]. Research on autonomic

databases includes work on automating failure diagnosis [50].

2.7 Understanding Query Results

Queries over large datasets can lead to results consisting of millions of rows, or more.

Understanding and extracting knowledge from such large results can be difficult and time-

consuming.

Visualizations. As discussed in Section 2.5, visualizations can significantly reduce the

time to understand a dataset, including the results of a query. We refer the reader back to

Section 2.5 for more details of projects related to visualizations.

Ranking output tuples. An alternative approach to making sense of a query’s result is to

rank the output tuples. Agrawal et al. [18] provide a good summary of how to apply ranking

techniques used in information retrieval to ranking the output tuples of a SQL query.

2.8 Query Debugging

Query debugging usually occurs amidst the query composition process, but we address it

on its own in this section. Query debugging is especially difficult when the query is over a

large dataset, and each execution of the query can take minutes, or hours.

Debugging with sample data. As a user constructs a query, it is often too expensive to

execute the query after each modification, because each execution takes a significant amount

of time. To address this problem, many users choose to create a sample data set, and test

their queries on this dataset. However, constructing such a sample dataset is a difficult

and tedious task, because selective operators (such as selective filters or joins) can lead to

empty results over the sample. In [107], Olston addresses the problem, specifically for

debugging Pig [109, 60] programs. Given a Pig program, Olston proposes a novel technique
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for automatically generating small sample datasets that are illustrative of each operator’s

semantics.

The problem of synthetic data generation has been studied for decades [96, 32, 23, 30, 95].

Besides Olston’s work, the goals of this line of work vary from generating data to test new

database system components, database application testing, and benchmarking.

Mannila et al [96] study the problem of query-aware data generation. In this work, the

goal is to generate a small, test database that is illustrative and complete for a Select-Join-

Project (SPJ) query. A test database is illustrative if every operation has a direct effect on

the output, and is complete if it distinguishes the query at hand from all other queries in

the language of queries (SPJ queries in this case).

A seminal paper in this area is by Bruno and Chaudhuri [32], and it introduces a gen-

eral language called the Data Generation Language (DGL) for specifying distributions for

synthetic databases. For example, using DGL, one can specify that the number of lineitems

per order follows a Zipfian distribution and that customers make purchases from vendors

only in their nation.

Similar to Mannila et al [96], the QAGen [30] and MyBenchmark [95] projects explore the

problem of query-aware data generation for DBMS testing. As input, the QAGen project

takes a query plan annotated with cardinality constraints on each operator node. As output,

it produces a synthetic dataset that satisfies these constraints. Overall, it starts with a sym-

bolic database, which is similar to a traditional databases except that instead of constants,

they have variables as values. Using symbolic query processing, the algorithm then applies

the constraints from the query plan to the symbolic database. Finally, the authors use an

out-of-the-box constraint satisfaction program (CSP) to instantiate the symbolic database

with real values. The MyBenchmark project extends the algorithm to generate synthetic

databases for sets of query plans. The input to MyBenchmark is a set of annotated query

plans, and the output is a set of database instances that satisfies the annotation constraints.

Arasu et al. [23] work on a similar problem as the MyBenchmark project, except that as

output they aim to generate a single database. Additionally, as input, Arasu et al. take a

set of queries together with cardinality constraints. A cardinality constraint specifies that

the output of a query over the generated dataset must have a specific cardinality. They



19

show that cardinality constraints can be expressed using annotated query plans and vice

versa.

Provenance. When debugging a SQL query, users often ask “why is this tuple in my

output?” and “why is this tuple not in my output?”. To answer these questions, recent

research efforts propose storing, maintaining, and querying the provenance of output tuples.

Several projects focus on defining and modeling provenance [33, 41]. In general, prove-

nance is split into three types of provenance: how, why, and where provenance. Green et

al. [63] find a model for representing many types of provenance through the use of semirings.

Recent work has focused on explaining why a certain tuple is not in the output. Some work

presents the provenance of non-answers [75]. Another project, Artemis [71], focuses on how

to tweak the data (via insertions, edits, or deletions) to yield the missing tuples. Tran et

al. [124] investigate how to tweak the query to yield the missing tuples. Meliou et al. [97, 98]

propose causality as a unified framework for explaining both the answers and non-answers

of queries.

2.9 Utilizing Usage History

So far, we have described various projects related to database usability. We now discuss a

potpourri of projects related to reusing the past efforts of users.

Many projects aim to collect and reuse user actions, usually in a collaborative setting.

For example, CoScripter [42] is a web-based system for recording, automating and sharing

web browser processes. Users can automate and share tasks such as printing photos online,

checking flight departure times, etc. Also, many web mashup editors [62, 79, 100, 129]

enable users to construct and store mashups of data from different sources on the web, and

later share these mashups with the public.

In the scientific realm, there are many systems for managing scientific workflows, with the

goal of saving the time and effort of users through reuse. For example, the MyExperiment

project [115] focuses on community oriented sharing and common workflow platform for

many science and engineering disciplines while Scriptome [118] focuses on sharing well-

curated script templates for computational biologists. The VisTrails project is one of the

most advanced such workflow management systems. In some recent work, they demonstrate



20

advanced capabilities of the system such as query-by-example and query-by-analogy with

visualizations [117].

In addition to only managing past usage history, many projects actually mine usage

history. For example, in the web search community, many projects analyze keyword search

logs [31, 48, 49, 92], for goals ranging from predicting the next user action to designing a

taxonomy of searches.
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Chapter 3

SNIPSUGGEST: AN AUTOCOMPLETION SYSTEM FOR SQL

SQL is having a transformative effect on science. Authoring SQL queries, however,

remains a challenge for the vast majority of scientists. Scientists are highly-trained profes-

sionals, and can easily grasp the basic select-from-where paradigm, but to conduct advanced

scientific research, they need to use advanced query features, including group-by’s, outer-

joins, user defined functions, functions returning tables, or spatial database operators, which

are critical in formulating their complex queries. At the same time, they have to cope with

complex database schemas. For example the Sloan Digital Sky Survey schema has 88 tables,

51 views, 204 user-defined functions, and 3440 columns [119]. One of the most commonly

used views, PhotoPrimary, has 454 attributes! The learning curve to becoming an expert

SQL user on a specific scientific database is steep.

As a result, many scientists today leverage database management systems only with the

help of computer scientists. Alternatively, they compose their SQL queries by sharing and

re-using sample queries. In a small-scale survey that we performed among scientists, we

found that 86% of scientists have looked at other users’ queries to help them compose their

own. The SDSS website provides a selection of 57 sample queries, corresponding to popular

questions posed by its users [10]. Similarly, SQLShare provides a “starter kit” of SQL

queries, translated from English questions provided by researchers. Scientists who write

complex SQL today do this through cut and paste. The challenge with sample SQL queries

is that users either have access to a small sample, which may not contain the information

that they need, or they must search through massive logs of past queries (if available), which

can be overwhelming.

Assisting users in formulating complex SQL queries is difficult. Several commercial

products include visual query building tools [27, 35, 76, 101], but these are mostly targeted

to novice users who struggle with the basic select-from-where paradigm, and are not used
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by scientists. More recent work [131] has proposed a method for clustering and ranking

relations in a complex schema by their importance. This can be used by an automated

tool to recommend tables and attributes to SQL users, but it is limited only to the most

important tables/attributes. Scientists are experts in their domain, they learn quickly the

most important tables. Where they truly need help are precisely the “advanced” features,

the rarely-used tables and attributes, the complex domain-specific predicates, etc. Some

new systems, such as QueRIE [37], recommend entire queries authored by other users with

similar query patterns. These, however, are designed for users who have already written

multiple queries, and wish to see past queries that touch a similar set of tuples.

In this project, we take a radically different approach to the problem. We introduce

SnipSuggest, a new SQL autocomplete system, which works as follows. As a user types a

query, she can ask SnipSuggest for recommendations of what to add to a specific clause

of her query. In response, SnipSuggest recommends small SQL snippets, such as a list of

k relevant predicates for the WHERE clause, k table names for the FROM clause, etc.

The key contribution is in computing these recommendations. Instead of simply recom-

mending valid or generally popular tables/attributes, SnipSuggest produces context-aware

suggestions. That is, SnipSuggest considers the partial query that the user has typed so

far, when generating its recommendations. Our key hypothesis is that, as a user articulates

an increasingly larger fragment of a query, SnipSuggest has more information on what to

recommend. SnipSuggest draws its recommendations from similar past queries authored by

other users, thus leveraging a growing, shared, body of experience.

This simple idea has dramatic impact in practice. By narrowing down the scope of the

recommendation, SnipSuggest is able to suggest rarely-used tables, attributes, user-defined

functions, or predicates, which make sense only in the current context of the partially

formulated query. In our experimental section, we show an increase in average precision

of up to 144% over the state-of-the-art (Figure 3.5(c)), which is recommendation based on

popularity.

More specifically, our project makes the following contributions:

1. We conduct a small-scale survey to understand how scientists use DBMSs today. We
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study various aspects of their database usage, including how often they write queries,

and how they learn from others’ queries. We report our findings in Section 3.1.

2. We introduce query snippets and the Workload DAG, two new abstractions that enable

us to formalize the context-aware SQL autocomplete problem. Using these abstrac-

tions, we define two metrics for assessing the quality of recommendations: accuracy

and coverage (Section 3.4).

3. We describe two algorithms SSAccuracy and SSCoverage for recommending query

snippets based on a query log, which maximize either accuracy or coverage (Sec-

tions 3.4.4, 3.4.5).

4. We devise an approach that effectively distinguishes between potentially high-quality

and low-quality queries in a log. We use this technique to trim the query log, which

drastically reduces the recommendation time while maintaining and often increasing

recommendation quality (Section 3.5).

5. We implement the above ideas in a SnipSuggest prototype and evaluate them on two

real datasets (Section 3.6). We find that SnipSuggest makes recommendations with

up to 93.7% average precision, and at interactive speeds, achieving a mean response

time of 14ms per query.

3.1 Small-scale Survey of Database Usage among Scientists

To better understand how scientists use DBMSs today and, in particular, how they query

these databases, we carried out a small-scale, informal, online survey. Our survey included

37 questions, mostly multiple-choice ones and took about 20 minutes to complete. We

paid respondents $10 for their time. Seven scientists from three domains responded to our

survey (four graduate students, one postdoc, and two research scientists); these scientists

have worked with either astronomical, biological, or clinical databases.

Of interest to this chapter, through this survey, we learned the following facts. All

respondents had at least one year experience using DBMSs, while some had more than
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three years. Three scientists took a database course, whereas the other four were self-

taught DBMS users. Four participants have been working with the same dataset for over

a year, while three of them acquired new datasets in the past six months. The data sets

ranged in size from less than one gigabyte (one user), to somewhere between one gigabyte

and one terabyte (five users), to over a terabyte (one user). The reported database schemas

include 3, 5, 7, 10, 30, and 100 tables. One respondent did not report the number of tables

in his/her database. All respondents reported using a relational DBMS (some used other

alternatives in addition).

More interestingly, three participants reported writing SQL queries longer than 10 lines,

with one user reporting queries of over 100 lines! All users reported experiencing difficulties

in authoring SQL queries. Two participants even reported often not knowing which tables

held their desired data.

Five respondents reported asking others for assistance in composing SQL queries. All

but one reported looking at other users’ queries. Five participants reported looking “often”

or even “always” at others’ queries, whereas all participants either “often” or “always” look

for sample queries online. Three participants mentioned sharing their queries on a weekly to

monthly basis. Finally, all but one user save their own queries/scripts/programs primarily

in text files and reuse them again to write new queries or analyze different data.

The findings of this informal survey thus indicate that many scientists could potentially

benefit from tools to share and reuse past queries.

3.2 Motivating example

In this section, we present an overview of the SnipSuggest system through a motivating

scenario based on the SDSS query log.

Astronomer Joe wants to write a SQL query to find all the stars of a certain brightness

in the r-band within 2 arc minutes (i.e., 1
30th of 1◦) of a known star. The star’s coordinates

are 145.622 (ra), 0.0346249 (dec). He wants to group the resulting stars by their right

ascensions (i.e., longitudes). This is a real query that we found in the SDSS query log. Joe

is familiar with the domain (i.e., astronomy), but is not familiar with the SDSS schema. He

knows a bit of SQL, and is able to write simple select-from-where queries.
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It is well known that PhotoPrimary is the core SkyServer view holding all the primary

survey objects. So, Joe starts off as follows: SELECT * FROM PhotoPrimary.

Joe is interested in only those objects that are near his coordinates. Browsing through

the 454 attributes of the PhotoPrimary table’s schema fails to reveal any useful attributes

over which to specify this condition. Joe suspects that he needs to join PhotoPrimary with

some other table, but he does not know which one. Joe thus turns to SnipSuggest for help

and asks for a recommendation of a table to add to his FROM clause.

SnipSuggest suggests the five most-relevant snippets for this clause: SpecObj, Field,

fGetNearbyObjEq(?,?,?), fGetObjFromRect(?, ?, ?, ?), and RunQA. (All the suggestions in

this section are real suggestions from SnipSuggest.)

In this example, fGetNearbyObjEq is what Joe needs. There are several challenges with

showing such a recommendation. First, the recommended snippet is not a table, it is a user-

defined function. Second, the desired tables, views, or UDFs are not necessarily popular by

themselves. They are just frequently used in the context of the query that the user wrote so

far. Finally, all recommendations must be done at interactive speed for the user to remain

focused.

Additionally, upon seeing a recommendation, a user can be confused as to how to use

the recommended snippet. To address this challenge, SnipSuggest can show, upon request,

either documentation related to the suggested snippet, or real queries that use it.

After this first step, Joe’s query thus looks as follows:

SELECT *

FROM PhotoPrimary P,fGetNearbyObjEq(145.622,0.0346249,2) n

WHERE

Joe would now like to restrict the objects to include only those with a certain redness

value. Encouraged by his early success with SnipSuggest, instead of browsing through

documentation again, he directly asks SnipSuggest for recommendations for his WHERE clause.

First is the missing foreign-key join p.objId = n.objId. Once added, SnipSuggest’s next

recommendations become: p.dec<#, p.ra>#, p.dec>#, p.ra<#, and p.r≤#. These predicates

are the most popular predicates appearing in similar past queries. After a quick glance
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at p.r’s documentation, Joe picks the last option, and adds the following predicate to his

query: p.r < 18 AND p.r > 15. This example demonstrates the need for the query log.

With the exception of foreign-key joins, it is not possible to determine useful predicates for

the WHERE clause using the database schema alone. Past queries enable SnipSuggest to select

the relevant predicates among the large space of all possible predicates.

Now, his query looks as follows:

SELECT *

FROM PhotoPrimary P,fGetNearbyObjEq(145.622,0.0346249,2) n

WHERE p.objID = n.objID AND p.r < 18 AND p.r > 15

In a similar fashion, SnipSuggest can help Joe to add a second predicate (i.e., keep only

objects that are stars: p.type = 6), and to write the SELECT and GROUP BY clauses.

In summary, the challenges for SnipSuggest are to

1. recommend relevant features without knowledge of the user’s intended query,

2. leverage the current query context to improve the recommendation quality, and

3. produce recommendations efficiently.

3.3 System Architecture

SnipSuggest is a middleware-layer on top of a standard relational DBMS as shown in Fig-

ure 3.1. While users submit queries against the database, SnipSuggest’s Query Logger

component logs these queries in a Query Repository. Upon request, SnipSuggest’s Snippet

Recommender uses this query repository to produce SQL-autocomplete recommendations.

Finally, SnipSuggest’s Query Eliminator periodically prunes the query log to improve rec-

ommendation performance by shrinking the Query Repository. We now present these three

components and SnipSuggest’s algorithms.

3.3.1 Query Logger and Repository

When the Query Logger logs queries, it extracts various features from these queries. Infor-

mally, a feature is a specific fragment of SQL such as a table name in the FROM clause (or
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Figure 3.1: SnipSuggest system architecture.

view name or table-valued function name), or a predicate in the WHERE clause. The Query

Logger is implemented on top of the existing infrastructure for query logging offered by

most DBMSs.

The Query Repository component stores the details of all the queries logged by the Query

Logger, along with the features which appear in each query. It comprises three relations:

Queries, Features, and QueryFeatures, with the following schemas:

1. Queries(id, timestamp, user, database name, query text, running time, output size)

2. Features (id, feature description, clause)

3. QueryFeatures(query, feature)

The first relation, named Queries, stores the details of each logged query. The second rela-

tion, Features, consists of all the features that have been extracted from these queries. Note

that feature descriptions are parameterized if there is some constant involved (e.g., the predi-

cate PhotoPrimary.objID = 55 is translated into the parameterized predicate PhotoPrimary.objID

= #). Finally, the third table, QueryFeatures, maintains the information about which feature

appears in which query. The query and feature columns are foreign keys into the Queries

and Features tables, respectively.

Features Supported

The current implementation of SnipSuggest supports the following classes of features:
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1. F from
T for every table, view and table-valued function T in the database, representing

whether T appears in the FROM clause of the query.

2. F select
C , Fwhere

C , and F groupby
C , for every column C in the database, representing whether

this column appears in the SELECT, WHERE, or GROUP BY clause of the query, respectively.

3. F select
aggr(C1,...Cn)

, for every aggregate function and list of columns, representing whether

this aggregate and list of columns appear in the SELECT clause.

4. Fwhere
C1 op C2

for every pair of columns C1, C2, and every operator which appears in the

database, representing whether this predicate appears in the WHERE clause of the query.

5. Fwhere
C op for every column C in the database, and for every operator, representing

whether there is a predicate of the form C op constant in the WHERE clause of the query.

6. F subquery
ALL , F subquery

ANY , F subquery
SOME , F subquery

IN , and F subquery
EXISTS representing whether there

is a subquery in the WHERE clause, of the form ALL(subquery), ANY(subquery), SOME(subquery),

IN(subquery), EXISTS(subquery), respectively.

3.4 Snippet Recommendation

While a user composes a query, she can, at any time, select a clause, and ask SnipSuggest

for recommendations in this clause. At this point, SnipSuggest’s goal is to recommend k

features that are most likely to appear in that clause in the user’s intended query.

To produce its recommendations, SnipSuggest views the space of queries as a directed

acyclic graph (DAG) 1 such as that shown in Figure 3.2 (which we return to later). For this,

it models each query as a set of features and every possible set of features becomes a vertex

in the DAG. When a user asks for a recommendation, SnipSuggest, similarly, transforms the

user’s partially written query into a set of features, which maps onto a node in the DAG.

Each edge in the DAG represents the addition of a feature (i.e., it links together sets of

1Note that the DAG is purely a conceptual model underlying SnipSuggest. The user never interacts with
it directly.
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features that differ by only one element). The recommendation problem translates to that

of ranking the outgoing edges for the vertex that corresponds to the user’s partially written

query, since this corresponds to ranking the addition of different features.

The query that the user intends to write is somewhere below the current vertex in the

DAG, but SnipSuggest does not know which query it is. It approximates the intended query

with the set of all queries in the Query Repository that are descendants of the current vertex

in the DAG. We refer to such queries as the potential goals for the partial query. For now, we

assume that the set is not empty (and discuss the alternative at the end of Section 3.4.4).

Given this set of potential goals, there are several ways to rank the features that could

possibly be added to the user query. We investigate two of them in this project. The first

approach is simply to recommend the most popular features among all those queries. The

problem with this approach is that it can easily lead to k recommendations all leading to

a single, extremely popular query. An alternate approach is thus to recommend k features

that cover a maximal number of queries in the potential goals set.

We now describe the problem and our approach more formally.

3.4.1 Definitions

We begin with the definition of features.

Definition 1 A feature f is a function that takes a query as input, and returns true or

false depending on whether a certain property holds on that query.

Some examples are fFROMPhotoPrimary, representing if the PhotoPrimary table appears in the

query’s FROM clause, fWHEREPhotoPrimary.objID=Neighbors.objID, representing whether the predicate

PhotoPrimary.objID = Neighbors.objID appears in the WHERE clause, or fdistinct represent-

ing whether the distinct keyword appears anywhere in the query. A feature can have a

clause associated with it, denoted clause(f). For example, clause(fFROMPhotoPrimary) = FROM.

Through this project, we use the notation f cs to denote the feature that string s appears in

clause c.

Definition 2 The feature set of a query q, is defined as:

features(q) = {f |f(q) = true}
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When SnipSuggest ‘recommends a snippet’, it is recommending that the user modify the

query so that the snippet evaluates to true for the query. For example, when it recommends

fFROMPhotoPrimary, it is recommending that the user add PhotoPrimary to the FROM clause.

Definition 3 The dependencies of a feature f , dependencies(f), is the set of features

that must be in the query so that no syntactic error is raised when one adds f .

e.g., dependencies(fWHEREPhotoPrimary.objID=Neighbors.objID)={fFROMPhotoPrimary, f
FROM
Neighbors}. SnipSuggest only suggests a

feature f for a partial query q if dependencies(f) ⊆ features(q). In the workload DAG,

feature sets have parent-child relationships defined as follows:

Definition 4 A feature set F2 is a successor of a feature set F1, if ∃ f where F2=F1∪{f}

and dependencies(f)⊆F1.

A successor of a feature set F1 is thus a feature set F2 that can be reached by adding a

single, valid feature.

Additionally, recommendations are based on feature popularity that is captured by either

marginal or conditional probabilities.

Definition 5 Within a workload W , the marginal probability of a set of features F

is defined as

P (F ) =
|{q ∈W |F ⊆ features(q)}|

|W |
i.e. the fraction of queries which are supersets of F . As shorthand, we use P (Q) for

P (features(Q)), and P (f) for P ({f}).

Definition 6 The conditional probability of a feature f given a feature set F is

defined as

P (f |F ) =
P ({f} ∪ F )

P (F )

We are now ready to define the workload DAG. Let F be the set of all features (including

those that do not appear in workload).

Definition 7 The workload DAG T = (V,E,w, χ) for a query workload W is con-

structed as follows:
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Figure 3.2: Example of a workload DAG.

1. Add to V , a vertex for every syntactically-valid subset of F . We refer to each vertex

by the subset that it represents.

2. Add an edge (F1, F2) to E, if F2 is a successor of F1. Denote the additional feature

of F2 by addlFeature((F1,F2)) = f, where F2 = F1 ∪ {f}.

3. w : E → [0, 1] is the weight of each edge. The weights are set as: w((X,Y )) =

P (addlFeature((X,Y ))|X). If P (X) = 0, then set to unknown.

4. χ : V → {blue, white} is the color of each vertex. The colors are set as: χ(q) = blue

if q ∈W , otherwise white.

Figure 3.2 shows an example workload DAG for 30 queries. The queries correspond to

the blue nodes, and are summarized at the bottom. Ten are of the form SELECT * FROM

PhotoPrimary, eight are SELECT * FROM PhotoPrimary WHERE objID = #, etc. For simplicity,

we exclude, from the figure, features in the SELECT clause, and nodes that are not reachable

from the root along edges of weight > 0, with the exception of node u. We use the acronyms
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fGN, PP, SO, and PO to represent fFROMfGetNearbyObjEq, f
FROM
PhotoPrimary, f

FROM
SpecObjAll, and fFROMPhotoObjAll,

respectively. The edge ({PP}, {PP, SO}) indicates that if a query contains PhotoPrimary,

there is 33% chance that it also contains SpecObjAll.

Every syntactically-correct partial query appears in the workload DAG since there is a

vertex for every valid subset of F . Consider a partial query, and its corresponding vertex q.

Given q, SnipSuggest’s goal is to lead the user towards their intended query q∗ (also a vertex

in the DAG), one snippet at a time. We assume that there is a path from q to q∗, i.e., that

the user can reach q∗ by adding snippets to their query. Since SnipSuggest suggests one

snippet at a time, the recommendation problem becomes that of ranking the outgoing edges

of q. Note that recommending an edge e corresponds to recommending addlFeature(e).

For example, suppose Anna has written: SELECT * FROM PhotoPrimary. This puts her at

vertex v in Figure 3.2. Then, she requests snippets to add to the FROM clause. At v, we see

that she can add fGetNearbyObjEq(), SpecObjAll, or PhotoObjAll. Remember, Figure 3.2 is

not showing the whole DAG. In fact, the full workload DAG contains an outgoing edge from

v for each of the 342 tables, views, and table-valued functions in the SDSS schema. The

job of SnipSuggest is to recommend the edges that are most likely to lead Anna towards

her intended query.

3.4.2 Näıve Algorithms

We present three techniques that we compare against SnipSuggest in Section 3.6. The most

näıve, the Random recommender, ranks the outgoing edges randomly. The second ap-

proach, Foreign-key-based, used only for suggesting snippets in the WHERE clause, exploits

the schema information to rank the features. It suggests predicates for foreign-key joins

before other predicates. The third approach, the Popularity-based technique actually

leverages the past workload. It considers f = addlFeature(e) for each outgoing edge from

q, and ranks them by P (f), the marginal probability of f . Even this simple technique,

outperforms the above two algorithms by up to 449%.

The problem with these approaches is that they do not exploit the rich information

available in the workload DAG; the weighted edges can tell us which features are likely to
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appear in the intended query, given the current partial query. SnipSuggest’s algorithms aim

to better recommend snippets by leveraging such information.

3.4.3 Context-Aware Algorithms

In this section, we introduce the two algorithms that SnipSuggest uses to recommend sug-

gestions based on the current context (i.e., the current partial query). We describe the

algorithms in more detail in the subsequent sections (Section 3.4.4 and Section 3.4.5).

First, we need one more notion, and a precise definition of the problem that each algo-

rithm aims to solve.

Definition 8 Given a workload DAG and a vertex q, define:

potential goals(q) = {v|v is blue and reachable from q}.

The potential goals of q is the set of queries that could potentially be the user’s intended

query, if it appears in the workload. Sometimes, potential goals(q) is the empty set.

We consider two variations of the Snippet Suggestion Problem. Given a workload DAG

G, and a partial query q, recommend a set of k outgoing edges, e1, . . . , ek, from q that:

1. Max-Accuracy Problem: maximizes

k∑
i=1

P (addlFeature(ei)|q)

2. Max-Query-Coverage Problem: maximizes

P (addlFeature(e1) ∨ . . . ∨ addlFeature(ek)|q)

Max-Accuracy aims to maximize the number of features in the top-k that are helpful

(i.e., appear in the intended query), whereas Max-Query-Coverage aims to maximize the

probability that at least one feature in the top-k is helpful.

Consider the earlier example. Suppose SnipSuggest recommends the top-2 snippets to

add to the FROM clause. If the goal is Max-Accuracy, then it suggests SO and PO. This

corresponds to the two outgoing edges from q, with the highest conditional probabilities. If
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the aim is Max-Query-Coverage, then it suggests SO and fGN. The reasoning is as follows:

if Anna’s intention is the rightmost blue query, then suggesting SO covers this case. If

her intention is not that query, then rather than PO, it is better to suggest fGN because it

increases the number of potential goals covered.

It is infeasible to build the workload DAG as it can have up to 2n vertices, where n = |F |.

Thus, SnipSuggest implements two algorithms, which simulate traversing parts of the DAG,

without ever constructing it: SSAccuracy and SSCoverage.

3.4.4 SSAccuracy

Given a partial query q and a query workload W , the goal of the SSAccuracy algorithm is

to suggest the k features with the highest conditional probabilities given q. If q’s features

have previously appeared together in past queries, SSAccuracy is able to efficiently identify

the features with the highest conditional probabilities, with a single SQL query over the

QueryFeatures table, as shown in Figure 3.3. By setting m to |features(q)|, the first half

of the query finds potential goals(q), i.e. the queries which have all the features of q. It then

orders all the features which appear in these SimilarQueries, by their frequencies within

this set of queries. Note that each qf.feature f corresponds to one outgoing edge from q

(i.e. the edge e where addlFeature(e) = f). Additionally, if we divided count(s.query) by

|potential goals(q)|, we would find P (f |q). Thus, this query returns a list of edges, ordered

by weight (i.e., the conditional probability of the feature given q).

What if the partial query q does not appear in the workload? Every partial

query q appears in the DAG, but it can happen that all incoming edges have weight 0, and

all outgoing edges are unknown. This happens when potential goals(q) = ∅. An example of

this, in the context of the workload DAG in Figure 3.2, is if Bob has written q = SELECT

* FROM SpecObjAll, fGetNearbyObjEq(143.6,0.021,3), and requests suggestions in the FROM

clause (which is represented by vertex u in the figure).

In this case, SnipSuggest traverses up the DAG from q until it reaches the vertices whose

marginal probability is not zero (i.e., there exists an incoming edge with weight > 0). This

corresponds to finding the largest subsets of features(q) that appear in the workload. In the
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WITH SimilarQueries (query) AS --finds potential_goals

(SELECT query

FROM QueryFeature

WHERE feature IN features(q)

[AND NOT EXISTS ( --used only by SSCoverage

select * from QueryFeature q

where q.query=query and q.feature in( previous))]

GROUP BY query

HAVING count(feature) = m)

SELECT qf.feature --popular features among SimilarQueries

FROM QueryFeature qf, SimilarQueries s

WHERE qf.query = s.query AND qf.feature NOT IN features(q)

GROUP BY qf.feature

ORDER BY count(s.query) DESC

Figure 3.3: Finds the most popular features among queries that share m features with
partial query q. NOT EXISTS clause is included for SSCoverage, but omitted for SSAccuracy.

above example, SnipSuggest traverses up to the vertices {SO} and {fGN}. Then, it suggests

the most popular features among the queries under these vertices. This can be achieved by

executing the SQL query shown in Figure 3.3. First, SnipSuggest sets m to |features(q)|,

thus looking at potential goals(q). If fewer than k features are returned, then it sets m

to |features(q)| − 1, thus considering queries that share |features(q)| − 1 features with q.

It repeatedly decrements m until k features are returned. Note that SnipSuggest executes

the query in Figure 3.3 at most |features(q)| times. In other words, SnipSuggest will not

iterate through every subset of features(q). Instead, it considers all subsets of size m all

at once, and it does this for m = n, n− 1, n− 2, . . . , 0, where n = |features(q)|.

This process can cause some ambiguity of how to rank features. For example, if it

is the case that P (f1|{SO, fGN}) = 0.8 and P (f2|{SO}) = 0.9, it is not clear whether
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Algorithm 1 SnipSuggest’s Suggestion Algorithm.

Input: query q, number of suggestions k, clause c, technique t

Output: a ranked list of snippet features

1: i← |features(q)|

2: suggestions← []

3: while |suggestions| < k : do

4: if t = SSAcc then

5: S ← execute Figure 3.3 query (m← i, exclude NOT EXISTS clause)

6: else if t = SSCov then

7: S ← execute Figure 3.3 query (m← i, previous← suggestions)

8: end if

9: for all s ∈ S do

10: if s /∈ suggestions and clause(s) = c then

11: suggestions← suggestions, s

12: end if

13: end for

14: i← i− 1

15: end while

16: return suggestions

f1 or f2 should be ranked first. Heuristically, SnipSuggest picks f1, because it always

ranks recommendations based on more similar queries first. Algorithm 1 outlines the full

SSAccuracy algorithm (if we pass it t = SSAcc). In Section 3.6, we show that SSAccuracy

achieves high average precision, and we now describe two simple optimizations.

Simple Optimizations

SnipSuggest materializes the following two relations to improve the SSAccuracy algorithm’s

recommendation time.

1. MarginalProbs(featureID, probability)
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2. CondProbs(feature1, feature2, probability)

The first table stores the marginal probability for each feature across the whole workload.

The second contains the conditional probability of feature1 given feature2, for every pair

of features that have ever appeared together. We now discuss how these tables are used.

The first is MarginalProbs, which contains P (f) for every feature f . When the user’s

partial query q is the empty query (i.e., features(q) = ∅), or if q consists of only features

that have never before appeared in the workload, SnipSuggest can execute an order by

query over MarginalProbs, instead of the more complex SQL in Figure 3.3. (When q

contains only unseen features, SnipSuggest traverses up to the root vertex since it is the

largest subset of q that appears in the workload. So, SnipSuggest makes its suggestions for

∅, and thus exploits MarginalProbs.)

The second is CondProbs, which contains the conditional probability P (f1|f2) for every

pair of features f1, f2. It is indexed on the f2 column. It is leveraged when the user’s partial

query q contains just one feature f , or it contains multiple features, but only one feature f

has appeared in the workload. In these cases, SnipSuggest can execute a simple query over

CondProbs with filter f2 = f , and order by the conditional probability, instead of executing

the slower SQL in Figure 3.3.

3.4.5 SSCoverage

The Max-Query-Coverage problem is to suggest the features f1, . . . , fk that maximize the

probability that at least one suggestion is helpful. The goal is to diversify the suggestions,

to avoid making suggestions that all lead toward the same query. It turns out that the

problem is NP-hard. Instead of an exact solution, we propose an approximation algorithm,

SSCoverage, which is a greedy, approximation algorithm for Max-Query-Coverage. We prove

at the end of this section that Max-Query-Coverage is NP-hard and that SSCoverage is the

best possible approximation for it. We show this by proving that Max-Query-Coverage is

equivalent to the well-known Maximum Coverage problem [54]. Our equivalence proof is

sufficient because it is known that the Maximum Coverage problem is NP-hard, and that

the best possible approximation is the greedy algorithm [54], achieving an approximation
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factor of 1− 1
e .

The SSCoverage algorithm proceeds as follows. To compute the first recommenda-

tion f1, it executes the SQL query in Figure 3.3, with the NOT EXISTS clause and previous

← ∅. This is equivalent to SSAccuracy’s first recommendation because the Max-Accuracy

and Max-Query-Coverage formulas are equivalent when k = 1. For its second suggestion,

SSCoverage executes the Figure 3.3 query again, but with previous ← {f1}. This effec-

tively removes all the queries covered by f1 (i.e., potential goals(q ∪ {f1})), and finds the

feature with the highest coverage (i.e., conditional probability) in the remaining set. In

terms of the workload DAG, this step discards the whole subgraph rooted at f1, and then

finds the best feature among the remaining DAG. It repeats this process k times in order

to collect k features. Algorithm 1 describes SSCoverage in detail (if we pass it t = SSCov).

Max-Query-Coverage Related Proofs

In this section, we show that the Max-Query-Coverage problem is NP-hard, and that the

SSCoverage algorithm is the best possible approximation algorithm for it (up to lower order

terms).

Remember, the Max-Query-Coverage problem, as presented in Section 3.4.3, is defined

as follows. Given a workload DAG G and a partial query q, recommend a set of k outgoing

edges, e1, . . . , ek, from q that maximizes

P (addlFeature(e1) ∨ . . . ∨ addlFeature(ek)|q)

For shorthand, denote by fi the feature addlFeature(ei). To make our next step easier,

we want to show that the features f1, . . . , fk that maximize the formula above are the ones

that maximize the number of queries covered, under the q vertex.

Consider P (f1 ∨ . . . ∨ fk|q). If we select some random query whose feature set is a

superset of features(q) (i.e. any query in potential goals(q)), then this is the probability

that it also has feature f1, f2, . . ., or fk. So, P (f1 ∨ . . . ∨ fk|q) can be written as:

∑
u∈potential goals(q)

Pr(f1 ∨ . . . ∨ fk|q ∧ u) · Pr(u|q)
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Pr(f1 ∨ . . . ∨ fk|q ∧ u) is 1 if u contains f1, f2, . . ., or fk, and 0 otherwise (because q

does not contain any of f1, . . . , fk either).

Hence this is equal to: ∑
u∈potential goals(q):(f1∈u∨...∨fk∈u)

Pr(u|q)

Therefore, we can now rewrite the Max-Query-Coverage problem to maximize:

∑
v∈ U

P (v|q), where U =
k⋃

i=1

potential goals(q ∪ {fi})

Next, we define the Maximum Coverage Problem, which is known to be NP-hard [54].

Definition 9 Given a set of elements U , a number k and a set of sets S = S1, . . . Sn, where

each Si ⊆ U , the maximum coverage problem is to find a subset of sets S′ ⊆ S such

that |S′| ≤ k and the following is maximized:

|
⋃

Si∈S′

Si|

i.e., the number of elements covered is maximized.

In his paper [54], Feige proves the following theorem.

Theorem 1 The maximum coverage problem is NP-hard to approximate within a factor of

1− 1
e + ε, for any ε > 0.

Moreover, the greedy algorithm achieves an approximation factor of 1− 1
e . The analysis of

the greedy algorithm was well-known, and is reproved in Feige’s paper [54].

We prove our results by showing Max-Query-Coverage’s equivalence to the Maximum

Coverage Problem.

Theorem 2 The Max-Query-Coverage is equivalent to the Maximum Coverage problem.

In particular, there are polynomial time reductions between the two problems, which

preserve the values of all solutions. With this theorem, and the known results described

above, we can conclude that Max-Query-Coverage is NP-hard to approximate within any

factor substantively better than 1− 1
e , and that SnipSuggest’s greedy algorithm, SSCoverage,

achieves this bound.
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Proof 1 (of Theorem 2) We show two mappings. First, we show that an instance of

the Maximum Coverage Problem can be mapped to an instance of the Max-Query-Coverage

problem, and that there is a bijection between the set of solutions to each. Second, we show

the reverse.

Consider an instance I1 of the Maximum Coverage Problem, where U is the set of

elements and S = S1, . . . , Sm is the collection of sets. We translate I1 into an instance I2 of

the Max-Query-Coverage problem as follows. U is the set of queries, S is the set of features.

Denote by fT the feature that corresponds to the set T . T represents the set of queries which

contain the feature fT . For a given element/query q ∈ U , features(q) = {fT : q ∈ T}. The

input partial query is the empty query, and so the problem is to suggest the top-k features

given the empty query. Next, we show that there is a bijection between the solutions for I1

and I2.

Given any solution S′ = {S′1, . . . , S′k} to I1 (not necessarily an optimal solution), the

equivalent solution in I2 is to suggest the features F ′ = {fS′
1
, . . . , fS′

k
}. Of course, conversely,

given a solution F ′ = {f ′1, . . . , f ′k} to I2, the equivalent in I1 is S′ = {S′i : f ′Si
∈ F ′}. Clearly,

the number of elements of U covered by S′ is the same as the number of queries covered by

F ′ (which is the mass covered by F ′ multiplied by |W |).

Now, consider an instance I1 of the Max-Query-Coverage problem, where the query

workload is W , the set of all features is F , and the partial query is q. We translate this into

the Maximum Coverage Problem as follows. Scan through W to find potential goals(q) (i.e.,

all the blue vertices under q). For each potential goal q′, if it is a leaf node, add P (q′)×|W |

elements to U . If it is not a leaf, add (P (q′) −
∑

f∈F P (q′ ∪ {f})) × |W | elements. This

represents the number of queries in the workload that have exactly this set of features. Note

that the number of elements added to U is at most the number of queries in W . Add to

S, one set per feature f ∈ F , consisting of all queries that contain f . Let’s denote this by

queries(f).

Given any solution F ′ = {f1, . . . , fk} to I1 (not necessarily optimal), the equivalent

solution in I2 is to select the sets S′ = {queries(f1), . . . , queries(fk)}. Conversely, a solu-

tion S′ = {S′1, . . . , S′k} to I2 can be translated to the following solution for I1: F ′ = {f ′i :

queries(f ′i) = S′i}. If we consider the number of queries covered by F ′, this is equal to the
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number of elements of U covered by S′.

We have shown that we can translate an instance of the Maximum Coverage Problem

into an instance of the Max-Query-Coverage problem, and the reverse, in time polynomial

in |W |. We’ve also shown that given an instance of one problem, and its corresponding

instance in the other, there is a bijection between the solutions for the two instances.

3.5 Query Elimination

All queries, correct or incorrect, are logged by the Query Logger. This is problematic

for SnipSuggest because a large workload can deteriorate its response time. The Query

Eliminator addresses this problem; it periodically analyzes the most recent queries and

drops some of them. The goal is to reduce the workload size, and the recommendation

time, while maintaining recommendation quality.

For the Query Eliminator, we introduce the notion of a query session.

Definition 10 A query session (or session for short) is a sequence of queries q1, . . . , qn

written by the same user as part of a single task. We refer to the last query qn as the target

query.

The Query Eliminator eliminates all queries, except those that appear at the end of a

session. Intuitively, queries that appear near the end of the session are of higher quality,

since the user has been working on them for longer. Since many users write a handful of

queries before reaching their intended one, this technique eliminates a large fraction of the

workload. We show in Section 3.6.3 that the Query Eliminator reduces the response time,

while maintaining, and often improving, the average precision.

SnipSuggest extracts query sessions in two phases (as shown in Figure 3.4). First,

SnipSuggest segments the incoming query log. It does so by monitoring changes between

consecutive queries in order to detect starts of new revision cycles. A revision cycle is the

iterative process of refining and resubmitting queries until a desired task is complete. When

it detects a new cycle, SnipSuggest labels, as query segment, the set of all queries since the

beginning of the previous cycle. We call this phase segmentation. We describe segmentation

in more detail in Section 3.5.1. Second, SnipSuggest stitches multiple segments together, if
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Stitching 

(a) Query log 

(b) Session  
      segments 
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     sessions 

Figure 3.4: Extracting query sessions from the query log.

they are part of a single, larger revision cycle. For example, when a user is stuck on a difficult

task A, they often move to a different task B and later return to A. In this scenario, A

will produce multiple query segments, because the queries for task B will separate the later

queries of A from the earlier ones. Via stitching, the segments are concatenated together to

create a large session for A. We present the details of the stitching phase in Section 3.5.2.

Both phases require an expert to provide some training data, in the form of a query

log with labeled sessions. SnipSuggest leverages machine learning techniques to learn the

appropriate thresholds for the segmentation and stitching.

3.5.1 Segmentation

The goal of the segmentation phase is to take a pair of consecutive queries P , Q, and

decide whether the two queries belong to the same query session or not. The algorithm

proceeds in three steps. First, it constructs the Abstract Syntax Tree (AST) for each query

and transforms it into canonical form, which includes, for example, removing any constants,

and alphabetically ordering the list of tables in the FROM clause (this process is also used by

the Query Logger). Second, it extracts a set of segmentation features from P and Q as well

as extra information such as timestamps of queries and the query output of the preceding

query P . Unlike SnipSuggest features, the segmentation features capture the difference

between two queries. Some examples include the time interval between the queries, the

cosine similarities between their different clauses, and the relationship between ASTs. In
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the third step, using these segmentation features, our technique uses a perceptron-based

classification algorithm to decide whether the queries belong in the same segment. For this

final step, as training data, SnipSuggest requires some labeled data in the form of queries

labeled with the identifier of the task that the queries are intended for.

The most significant segmentation feature is AST inclusion type. This feature represents

whether the relationship between the two queries’ ASTs is the Same, Add, Delete, Merge,

Extract or None. This feature captures the following intuition. Within a query segment,

the user incrementally adds or removes terms from the query after seeing the query result

of the previous query. Such incremental edits are captured by the values Same, Add, or

Delete. Occasionally, the user may introduce a subquery written in the past or copied

from some sample query to compose a more complex query. The user may also pull-out a

subquery to debug or analyze unexpected results. In both these cases, the user may start

to work towards a different purpose when the change involves subqueries; this signals a new

query segment. Merge and Extract captures such changes involving subqueries. Table 3.1

summarizes these five AST inclusion types.

Although the AST inclusion type may be a strong indicator of continuing or breaking

a query segment, it does not capture the amount of change. Thus, the other segmentation

features that we described above, which capture the degree of change, are necessary for

better accuracy.

Label Description Expect a new segment?

Same Q is canonically the same as Q No

Add Q is based on P and has more terms No

Delete Q is based on P and has fewer terms No

Merge P is a subquery of Q Yes

Extract Q is a subquery of P Yes

None All other types of changes Unknown

Table 3.1: Summary of AST inclusion types. Each feature value has an expected decision on
segmentation discussed in the text. P and Q denote preceding query and following query,
respectively.
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3.5.2 Stitching

Query segments are useful because of the coherency among the queries in the same segment.

However, in order to extract more complete query sessions, SnipSuggest often needs to stitch

together multiple segments.

The stitching phase tests whether two segments create a single revision cycle, smooth

transitions via small changes, when they are concatenated in time order. To perform stitch-

ing, SnipSuggest iterates over each segment s in the input and all its time-wise successor

segments. It runs the core of the segmentation algorithm between the last query of s and

the first query of a time-wise successor segment t, with a modification. Since SnipSuggest

is now considering segments that are separated by multiple segments, the time interval be-

tween the queries becomes less meaningful. Thus, the algorithm treats the time interval as

a missing attribute. Then, if the segmentation algorithm outputs that the last query of s

and the first query of t belong in the same segment and this does not contradict to value of

AST inclusion type, SnipSuggest concatenates the two segments.

3.6 Evaluation

We evaluate SnipSuggest over two datasets. The first consists of queries from the Sloan

Digital Sky Survey. The SDSS database logs all queries submitted through public interfaces

including web pages, query forms, and a web services API. Thus, query authors vary from

bots, to the general public, and real scientists. We downloaded 106 million queries from 2002

to 2009. Removing queries from bots, ill-formed queries, and queries with procedural SQL

or proprietary features, left us with approximately 93 million queries. For our evaluation,

we use a random sample of 10,000 queries, in which there are 49 features for tables, views

and table-valued functions, 1835 columns and aggregates, and 395 predicates.

The second dataset consists of SQL queries written by students in an undergraduate

database class, which were automatically logged as they worked on nine different problems

for one assignment. All queries are over a local copy of the Internet Movie Database (IMDB),

consisting of five tables and 21 columns. To evaluate, we use a sample consisting of ten

students’ queries, which results in a total of 1679 queries. For each student, we manually
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label each query with the assignment problem number that it was written for, which gives

us ground truth information about query sessions and thus serves as training data for the

Query Eliminator.

We aim to answer four questions: Is SnipSuggest able to effectively recommend relevant

snippets? Does its recommendation quality improve as the user adds more information to

a query? Can it make suggestions at interactive speeds? Is the Query Eliminator effective

at reducing response times, while maintaining recommendation quality? We evaluate the

first three questions on both datasets. The fourth is answered on only the IMDB dataset

because we do not have the ground truth for the SDSS query sessions.

3.6.1 Evaluation Technique

Neither query log includes “partial queries”; they only include full SQL queries that were

submitted for execution. Therefore, in order to evaluate SnipSuggest on a given query, we

remove some portion of the query, and the task is to recommend snippets to add to this

new partial query. We denote by fullQuery(q), the full SQL query from which the partial

query q was generated. For this setting, we define correctness for a partial query q, and

feature f .

Definition 11 For a given partial query q, a suggested snippet feature f is correct if and

only if f /∈ features(q) and f ∈ features(fullQuery(q)).

To measure the recommendation quality of SnipSuggest, we use a measure called average

precision [25]. It is a widely-used measure in Information Retrieval for evaluating ranking

techniques. SnipSuggest returns a ranked list of snippets, Lq, for query q.

Definition 12 The average precision at k for the suggestions Lq is

AP@k(q, Lq) =

∑k
i=1(P (q, Lq, i) · rel(q, Lq[i]))

|features(fullQuery(q))− features(q)|

where P (q, Lq, k) is the precision of the top-k recommendations in Lq and rel(q, Lq[i]) =

1 ifLq[i] is correct, and 0 otherwise. Precision is defined as P (q, Lq, k) =
∑k

i=1 rel(q,Lq [i])
k
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This measure looks at the precision after each correct snippet is included, and then takes

their average. If a correct snippet is not included in the top-k, it contributes a precision of

zero. The benefit of using this approach, instead of recall or precision, is that it rewards

the techniques that put the correct snippets near the top of the list.

Consider the following toy example of the Average Precision measure in action. The

aim is to give the reader a better understanding of Average Precision.

Suppose that Carol has an empty query, and has requested the top-5 suggestions for the

FROM clause. Her intended query includes two features in the FROM clause: PhotoPrimary and

fGetNearbyObjEq(). Suppose that SnipSuggest has suggested the following snippets, in this

order: PhotoPrimary, SpecObjAll, fGetNearbyObjEq(), PhotoObjAll, Columns.

Consider the following table, which will help us calculate the Average Precision of these

suggestions.

Rank Suggestion Correct? Precision

1 PhotoPrimary true 1.0

2 SpecObjAll false 0.5

3 fGetNearbyObjEq() true 0.67

4 PhotoObjAll false 0.5

5 Columns false 0.33

The Precision column at rank i indicates the precision of the first i suggestions. With

this table, we collect the ranks where the suggestion is correct. In this example, these

are ranks 1 and 3. Then, we take the sum of the precisions at these ranks and divide

by two (i.e., the number of ground truth features). For this example, the Average Preci-

sion is (1.0+0.67)
2 = 0.83. Note how this measure rewards correct suggestions that appear

early in the ranking more than those that appear later. For example, if fGetNearbyObjEq()

had appeared second in the ranking, then the average precision would be (1.0+1.0)
2 = 1.0.

Whereas if fGetNearbyObjEq() appeared fourth in the ranking, the Average Precision would

be (1.0+0.5)
2 = 0.75.

Now, suppose Carol’s intended query also includes the RunQA table, but that SnipSuggest

still suggests the recommendations listed above. In this case, the Average Precision drops
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down to (1.0+0.67)
3 = 0.56. We divide by 3 (instead of 2) because the number of ground truth

features is now 3.

3.6.2 SDSS Dataset

We first evaluate SnipSuggest on the real SDSS dataset.

Quality of Recommendations

We evaluate several aspects of SnipSuggest: its ability to recommend relations, views and

tables-valued functions in the FROM clause, predicates in the WHERE clause, columns and

aggregates in the SELECT clause, and columns in the GROUP BY clause. We evaluate only the

SSAccuracy algorithm here because it is able to achieve an interactive response time, and

it is the algorithm that aims to solve the Max-Accuracy problem, which corresponds to

achieving high average precision. We compare the SSAccuracy and SSCoverage algorithms

in the last subsection of Section 3.6.2.

We do a 10-fold cross-validation, with the queries ordered randomly; we use 90% of

the queries as the past query workload and test on the remaining 10%. We repeat the

experiment 10 times, each time selecting a different set of test queries, so that all queries

are part of the test set exactly once. We measure the mean average precision for each of

the ten experiments at top-1 through top-10.

Figures 3.5(a) - (c) show the results for predicting snippets in the FROM clause. For this

experiment, we consider queries with at least three tables, views or table-valued functions in

the FROM clause. Figure 3.5(a) shows how accurately SnipSuggest recommends snippets, if

an empty query is presented. It achieves the same average precision as the Popularity-based

algorithm (and thus, SnipSuggest’s points are not visible in the graph). This is expected,

because with no information, SnipSuggest recommends the most popular snippets across all

queries. As soon as the user adds one table to the query (out of three), SnipSuggest’s AP@5

jumps from 0.339 to 0.77 (nearly a 60% increase). In contrast, the other two techniques’

average precisions degrade, because once we add one table to the query, the number of

correct snippets has decreased from 3 snippets per query, to only 2 snippets per query. The
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Figure 3.5: Average Precision for recommending tables/views/table-valued functions in FROM

clause given an empty query, 1 table, or 2 tables (a-c), recommending predicates in WHERE

clause, for queries with > 0 predicates, or > 1 predicates (d-e), recommending columns in
GROUP BY clause, given the FROM clause, or given both the FROM and WHERE clauses (f-g). In
(a), SnipSuggest’s average precision is equal to Popularity’s.
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Popularity approach’s average precision, for example, drops from 0.339 to 0.336. This trend

continues when we add two tables to the FROM clause. SnipSuggest’s average precision jumps

to 0.90 (an 84% increase from 0 tables), and Popularity drops to 0.332 (a 16% decrease from

0 tables). In brief, Figures 3.5(a)-(c) show that SnipSuggest’s average precision improves

greatly as the user makes progress in writing the SQL query, whereas the other two techniques

degrade.

Figures 3.5(d) - (e) show how accurately SnipSuggest recommends predicates in the

WHERE clause, for queries with at least one predicate (d), and with at least two predicates

(e). In our sample, 75% of the queries have exactly one predicate, and 23% have more.

We see that the Popularity approach performs well (AP@5 = 0.81). This is because all

the techniques recommend only valid snippets, and so the Popularity approach restricts its

recommended predicates to only those which reference tables that are already in the partial

query, and then suggests them in popularity order. Many predicates are join predicates, but

the ForeignKey approach still lags because many of the join predicates involve table-valued

functions, and thus are not across foreign-key connections. SnipSuggest remains the top

approach, achieving an average precision (AP@5) of 0.94. Once we consider the less common

case, when the query has multiple predicates, Figure 3.5(e) shows a larger difference between

the techniques. The ForeignKey technique’s performance degrades drastically because we

are now looking at mostly non-join predicates. The Popularity approach and SnipSuggest’s

average precisions also drop (because the queries contain rarer predicates), but now there is

a significant discrepancy between the two. In summary, Figures 3.5(d)-(e) show that both the

Popularity and SnipSuggest approaches recommend predicates with high average precision.

However, if we consider only queries with multiple predicates, SnipSuggest outperforms the

Popularity approach by 29%.

Figures 3.5(f) - (g) show SnipSuggest’s performance for recommending columns in the

GROUP BY clause, given the FROM clause (f) and given both FROM and WHERE clauses (g). We

see a similar trend to recommending snippets in the FROM and WHERE clauses. SnipSuggest,

once again, outperforms the Popularity approach, with AP@5 = 0.86 versus 0.55. We also

see that SnipSuggest’s AP@5 increases from 0.74 to 0.86 between Figures 3.5(f) and (g).

From Figures 3.5(f)-(g), we learn that, for suggesting snippets in the GROUP BY clause, Snip-
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Figure 3.6: Average times to recommend snippets.

Suggest’s average precision increases by 16% when the WHERE clause is provided in addition

to the FROM clause, and that SnipSuggest outperforms, by 56%, the Popularity approach.

For suggesting columns in the SELECT clause (not shown), we learn that the Popularity

and SnipSuggest approaches perform similarly because most queries select many columns

(the average number of columns selected is 12.5), and that the benefit of leveraging the

WHERE clause, in addition to the FROM clause, is small.

Efficiency

Past research shows that a response time of up to 100ms is considered interactive [34].

In the experiments above, SnipSuggest achieves a mean response time of 14ms, and an

interactive response time for 94.21% of the partial queries. Figure 3.6 shows the mean

response time for different numbers of features in the partial query. The response time can

not be determined by the number of features alone; the popularity of the features plays

a large role. If the features are popular, there are more relevant queries, and thus more

data to process. Therefore, there is no clear trend in the results. We see, however, that

the response time increases when we reach 9-10 features. This is because there are often

no queries in the workload which contain all 9-10 features, and thus SnipSuggest needs to

run the SQL in Figure 3.3 multiple times. We exclude partial queries with over 10 features,
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because there are fewer than 25 such queries in our SDSS query log.

SSAccuracy versus SSCoverage

Now, we compare the SSAccuracy and SSCoverage algorithms. We use a small dataset of

only 2000 queries because the SSCoverage algorithm is slow. Since the aim of SSCoverage

is different, we use a different measure to evaluate recommendation quality. We define the

utility of a ranked list of suggestions to be 1 if there is any correct suggestion in the top-

k, and 0 otherwise. We report the mean utility across the queries. This is equal to the

percentage of queries for which there is a correct suggestion in the top-k.

Figure 3.7 shows the results for predicting columns in the SELECT clause, given the FROM

clause. The difference in the percentage between i and i+1 represents the average additional

coverage provided by the i+1th suggestion. We see that this difference is monotonically

decreasing in Figure 3.7, which indicates that SSCoverage suggests the features with the

most additional coverage earlier in its ranking. Figure 3.7 shows that the mean utility of

SSCoverage is 15.13% higher than SSAccuracy at the top-5.

The trend continues for the FROM and WHERE clauses, though not to the same extent. For

the FROM clause, given an empty query, SSCoverage achieves a 2% improvement for top-5.

Most queries have only one or two tables in the FROM clause, so SSAccuracy is guaranteed

to suggest features from different queries in the top-5, thus already achieving high coverage.

For the WHERE clause, SSCoverage outperforms SSAccuracy by 3% in the top-3 (75% of

queries contain only one predicate). For queries with multiple predicates, the difference

increases to 4%. Although these differences appear small, SSAccuracy already achieves

87% utility at top-3 for the FROM clause, and 96% for the WHERE clause. Given the little room

for improvement, these increases are significant.

3.6.3 IMDB Dataset

We utilize the IMDB dataset for three tasks. First, we study the Query Eliminator’s effect

on the response time and average precision. Second, we evaluate SnipSuggest over a second

dataset. Third, we measure the Query Eliminator’s ability to correctly detect end-of-session
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Figure 3.7: SSAccuracy vs. SSCoverage.

Task Decrease in Time Increase in AP@3

FROM → WHERE 74.49% 8.12%

∅ → FROM 9.17% 4.67%

1 table in FROM → FROM 79.76% 0.74%

2 tables in FROM → FROM 79.47% -0.71%

FROM → SELECT 88.87% 15.80%

FROM, WHERE → SELECT 79.37% 2.72%

FROM → GROUP BY 77.04% 7.11%

FROM, WHERE → SELECT 60.91% 5.37%

Table 3.2: The benefits and drawbacks of the Query Eliminator.

queries.

Benefits and Drawbacks of Query Eliminator

We summarize the benefits and drawbacks of the Query Eliminator in Table 3.2. From 1679

queries, the Query Eliminator maintains only 7%, or a total of 117 queries. The goal here

is to decrease the response time, while maintaining a similar average precision. Table 3.2

shows that the technique decreases the response time by up to 89%. For this dataset, it

also increases the average precision (AP@3) for all tasks but one. Even in the worst case,

the average precision decreases by less than 1%!
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Recommendation Quality

First, for SnipSuggest’s recommendation quality over this IMDB dataset, we see similar

patterns as the SDSS dataset. Namely, the SnipSuggest approach outperforms the other

approaches (e.g., by 5 to 20% in average precision in the top-3, in comparison to the Popular-

ity approach), and the recommendation quality improves as the user gives more information

(e.g., if there are no tables in the FROM clause, SnipSuggest is able to recommend a correct

table with 0.62 average precision in the top 2, which increases to 0.91 after a table is added).

Although, the general trends still hold, the benefit of the SnipSuggest approach is less sig-

nificant in the IMDB dataset simply due to the magnitude difference in the schema size

(and thus the number of possible features). This schema consists of only five tables and 21

columns.

Query Eliminator Accuracy

We study the session extraction accuracy for only the IMDB dataset. We were able to

manually label the session information for this dataset because we have the ground truth in

the form of problem numbers from the course assignment. In other words, we can determine

which problems (from the assignment) that queries are written for.

Segmentation To quantify the segmentation algorithm’s performance, we measure the

precision and recall with which it identifies segment boundaries. We compare its perfor-

mance against using only the time interval between queries. The time interval technique is a

common method for extracting sessions from web search logs [31, 48, 49, 92]. The procedure

is to set a threshold for the time interval, say 30 minutes, and consider a query to be part of

a new session if the time interval between it and the last query is more than the threshold.

Figure 3.8 shows the average precision-recall for the two different segmentation algo-

rithms. We show the average results across 10-fold cross validation. Overall, for SnipSug-

gest’s approach, the area under the curve is 0.930. It is only 0.580 for the time-interval based

technique. Our approach significantly outperforms the time-based segmentation technique.
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Figure 3.8: Average precision-recall for the Query Eliminator algorithm versus the time
interval based algorithm.

Stitching As mentioned above, the most significant segmentation feature for session ex-

traction, is what we call the AST inclusion type. This feature represents whether the

relationship between the two queries’ ASTs is the Same, Add, Delete, Merge, Extract

or None (as defined in Table 3.1). We said that two queries are in the same session if

this feature has a value of Same, Add, or Delete, with some threshold on the amount

of change. We examine how this threshold can affect the performance of the stitching al-

gorithm. Table 3.3 shows the results. µ is the mean difference amount in the training

data, among those queries that lie on a session boundary, while σ is the standard deviation.

We see that, as expected, smaller thresholds yield better precision while larger thresholds

yield better recall. The F-measure, however, remains approximately constant. The mean

threshold already recalls 80% of session boundaries, while achieving a precision of 70.7%.
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Threshold µ µ+ σ µ+ 2σ ∞

Precision 0.707 0.656 0.628 0.578

Recall 0.801 0.893 0.934 1.000

F-measure 0.751 0.756 0.751 0.733

# of Edges 714 896 993 1165

Table 3.3: Precision-recall of stitched edges for different thresholds.

3.7 Conclusion

In this chapter, we presented SnipSuggest, a context-aware, SQL-autocomplete system.

SnipSuggest is motivated by the growing population of non-expert database users, who

need to perform complex analysis on their large-scale datasets, but have difficulty with

SQL. SnipSuggest aims to ease query composition by suggesting relevant SQL snippets,

based on what the user has typed so far. We have shown that SnipSuggest is able to make

helpful suggestions, at interactive speeds for two different datasets. We view SnipSuggest

as an important step toward making query composition easier for both non-expert database

users, as well as expert users who are unfamiliar with the database schema.
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Chapter 4

PERFXPLAIN: EXPLAINING THE PERFORMANCE OF
MAPREDUCE JOBS

Increasingly, users who write MapReduce programs [44, 65], Pig Latin scripts [110],

or declarative queries (e.g., HiveQL [72] or SQL) to analyze vast volumes of data are not

experts in parallel data processing, but are experts in some other domain. They need to ask

a variety of questions on their data and these questions keep changing. For these users to

be successful, they need to be self-sufficient in their data analysis endeavors. They cannot

rely on administrators or distributed systems experts to help them debug and tune their

analysis workloads, because there simply are not enough experts.

While most users already have tools to test and debug the correctness of their SQL

queries or MapReduce programs before running them at massive scale, there are limited

tools to help understand, diagnose, and debug any performance problems. The performance

of parallel programs can be challenging to understand. As an example, when a user runs a

MapReduce job and the job seems to take an abnormally long time, the user has no easy way

of knowing if the problem is coming from the cluster (e.g., high load or machine failures),

from some configuration parameters, from the job itself, or from the input data.

In this chapter, we present PerfXplain, a system that assists users in debugging the

performance of MapReduce applications in a shared-nothing cluster. PerfXplain lets users

formulate performance queries in its own language called the PerfXplain Query Language

(PXQL). A PXQL query identifies two MapReduce jobs or tasks. Given the pair of jobs

(tasks), the query can inquire about their relative performances: e.g., Why did two MapRe-

duce jobs take the same amount of time even though the second one processed half the

data? Why was the last task in a MapReduce job faster than any of the other tasks in that

job?

Given a query in PXQL, PerfXplain automatically generates an explanation for this
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query. Informally, an explanation consists of two predicates that hold true about the pair of

identified executions. The first predicate, which we refer to as the despite clause, maximizes

the probability of seeing the expected behavior. Meanwhile, the second predicate, called

the because clause, maximizes the probability of the observed behavior. For example, if

a user asks “why was the last task in this MapReduce job faster than any of the other

tasks”, an explanation might be: “even though the last task processed the same amount

of data as the other tasks (despite clause), it was faster most likely because the overall

memory utilization on the machine was lower (because clause) when it executed”. When

the predicate in the despite clause is true, a pair of tasks typically has the same runtime.

Within that context, the because clause then explains why the user observed a performance

different than anticipated. The despite clause thus helps ensure that the explanation given

by the because clause is relevant to the identified pair of tasks, rather than just producing

a generally-valid argument.

Hence, unlike prior work, which focused on predicting relational query performance [56,

58], predicting MapReduce job performance [55, 102, 103], automatically tuning MapReduce

jobs [24, 47, 69, 70, 84] or relational queries [19, 22, 38, 40], and automatically diagnosing

failures [50], the goal of PerfXplain is to explain the performance similarity or difference

between pairs of MapReduce job or task executions. In this project, we focus on explaining

runtimes, but our approach can directly be applied to other performance metrics. Addi-

tionally, while our implementation and evaluation focus on MapReduce jobs, PerfXplain

represents the execution of a single job or task as a vector of features, where each configu-

ration parameter and runtime metric is a feature. As such, the approach is more broadly

applicable.

PerfXplain uses machine learning to generate explanations. All performance queries in

PerfXplain take the following form: the user specifies what behavior he or she expected

(e.g., “I expected the last task to take the same amount of time as the others”), optionally

why the user expected that behavior (e.g., “all tasks executed the same join algorithm”),

and what behavior the user observed (e.g., “the last task was faster than the others”).

To produce its explanations, PerfXplain utilizes a log of past MapReduce job executions

along with their detailed configuration and performance metrics. Given a PXQL query,
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PerfXplain, identifies positive examples (pairs of jobs/tasks that performed as the user

expected), and negative examples (pairs of jobs/tasks that performed as the user observed).

From these examples, PerfXplain learns both the most likely reason why the pair should

have performed as expected and, within that context, the most likely cause why the pair

performed as observed. PerfXplain generates explanations from these two models. The key

challenge for generating these explanations is to ensure that every explanation is highly

precise, and at the same time as general as possible so that the user can apply this newly

acquired knowledge to other scenarios. Overall, we make the following contributions:

1. We propose a simple language, PXQL, for articulating queries about the performance

of a pair of MapReduce jobs or tasks (Sections 4.2.1 and 4.2.2).

2. We formally define the notion of a performance explanation and three metrics rele-

vance, precision, and generality to assess the quality of an explanation (Section 4.2.3).

3. We develop an approach for efficiently extracting performance explanations that have

high relevance, high precision, and good generality from a log of past MapReduce job

executions (Section 4.3).

4. We evaluate the approach using a log of MapReduce jobs executed on Amazon EC2 [1].

We show that PerfXplain is able to generate explanations with higher precision than

two näıve explanation-generation techniques, and offer a better trade-off between pre-

cision and generality (Section 4.5).

4.1 Motivation and Overview

We start with a motivating scenario that illustrates the need for PerfXplain. We then

present the key types of performance queries that PerfXplain is designed to answer.

4.1.1 PerfXplain Motivation

Parallel data processing systems, such as MapReduce, can exhibit wildly varying perfor-

mances when executing jobs. Indeed, the performance of a given MapReduce job depends
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on the following aspects:

1. the details of the computation to perform,

2. the volume of data that must be processed and its characteristics (such as the dis-

tribution of values in the input data, which can cause imbalance in processing times

between tasks),

3. the current load, hardware configuration, and health of the cluster where the compu-

tation is being carried out, and

4. the configuration parameters for the cluster and for the job (block size, number of

reducers, amount of memory allocated to the combiner [65], etc.).

Today, it is difficult for users to understand and fix any performance problems associated

with their MapReduce computations. Working with scientists at the University of Wash-

ington, we have seen numerous cases of these problems. We have even faced such challenges

ourselves.

As an example, consider a user who executes a MapReduce job on a 32GB dataset in a

cluster with 150 machines. The job takes 30 minutes to run but produces a wrong answer.

To debug her job, the user decides to execute it on a smaller, 1GB, dataset. By reducing

the size of the dataset, the user hopes to speed-up her debug cycle. However, the smaller

dataset also takes 30 minutes to run. Today, the user has limited tools to figure out why

both datasets took the same amount of time to process, while the user expected a significant

runtime improvement.

PerfXplain’s goal is to help users debug this type of performance problem. In this case,

the user would pose the following query:

I expected job J2 to be much faster than job J1. Why did it take the same amount of time

to run?

In this scenario, the explanation is: “because the block size is large”. Indeed, because

the block size was set to a recommended value of 128 MB, the 32 GB dataset was split
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into 256 blocks and the 1 GB dataset was split into 8 blocks. Each machine can run two

concurrent map and two concurrent reduce tasks (i.e., each machine has two map and two

reduce slots), and thus neither the small nor large dataset used the full cluster capacity.

The processing time was the time it takes to process one block of data, which is the same

for both datasets.

Given such an explanation, the user can then take action. For example, she can reduce

the block size or perhaps choose to debug the query locally on the 1GB dataset.

4.1.2 Types of Performance Queries

PerfXplain is designed to answer a variety of queries related to MapReduce application

performance. Queries about runtimes refer to two MapReduce jobs or to two MapReduce

tasks. The reasoning for this is that a user’s expectation for how long a job should take, in

general, comes from past experience. This is why we require the user to identify another

job as a point of reference. Similarly, tasks have abnormal runtimes only in relation to the

runtime of other tasks. By identifying the second job or task, the user clarifies where his

runtime expectations come from. We identify two basic types of queries that users may

have about the duration of a MapReduce job or task. The first type of queries ask why

runtimes were different. The second type asks why runtimes were the same. We illustrate

this classification with the following examples:

Example 1 Different durations. I expected job J2 to be much faster/slower than job J1.

However, they have almost the same durations. Why?

Example 2 Same durations. I expected job J1 and J2 to have a similar duration. How-

ever, J2 was much faster/slower than J1. Why?

Additionally, performance queries can either be general queries as above or can be con-

strained queries by the addition of a despite clause. Constrained queries can help produce

more relevant explanations as we demonstrate in Section 4.5.

Example 3 Different durations (constrained). Despite having less input data, job J2

had the same runtime as J1. I expected J2 to be much faster. What is the explanation?
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Example 4 Same durations (constrained). Despite having a similar input data size

and both using the same number of instances, J2 was much slower than J1. I expected both

to have a similar duration. What is the explanation?

Finally, similar types of queries can be asked both for jobs and for tasks. Task runtimes

can be compared within and across jobs.

Example 5 I expected all map tasks to have similar durations since they processed the same

amount of data. However, task T2 was faster than the other tasks, e.g., T1. Why was this

the case?

4.2 Performance Queries

We introduce PerfXplain’s data model and language.

4.2.1 Data Model

Job and Task Representation: To generate its explanations, PerfXplain assumes that

it has access to a log of past MapReduce job executions. PerfXplain models job executions

using the following schema for jobs:

Job(JobID,feature1,. . .,featurek,duration)

and the following schema for MapReduce tasks:

Task(TaskID,JobID,feature1,. . .,featurel,duration).

The features for MapReduce jobs include configuration parameters (e.g., DFS block size,

number of reduce tasks), system performance metrics (e.g., metrics collected by Ganglia [4]),

data characteristics (e.g., input data size), and application-level details (e.g., the relational

operator corresponding to the MapReduce job if the job was generated from HiveQL or Pig

Latin). In our current implementation, the features for tasks include all features that are
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collected in the MapReduce log files (e.g. the task type, map input bytes, map output bytes),

the MapReduce job it belongs to, as well as all the system performance metrics collected

by Ganglia during the task execution. PerfXplain comes configured with collecting these

specific features but can easily be extended to use additional features.

Throughout the chapter, we will refer to job and task executions with their JobID or

TaskID, respectively. To refer to the value of a feature f for a specific job J, we will use the

notation J.f.

Representation of Examples: Because PerfXplain answers queries about pairs of

jobs (or tasks), all the examples that it learns from come in the form of pairs of jobs. We

refer to a pair of jobs as a training example. A training example consists of 4 · k features,

where k is the number of features that we collect for a single job or task (we call these the

raw features).

Table 4.1 lists the features that we compute for each training example. The left column

enumerates the set of features (which we refer to as F), and the right column specifies the

domain for each feature. We assume that we know the domains of the raw features. We

denote the domain of a feature f with dom(f).

The computed features (i.e., those listed in Table 4.1) encode the relationship between

the two jobs for each raw feature, at varying levels of resolution. The first set of features,

which are of the form fi isSame, are binary features that represent whether the two jobs have

the same value for featurei. The second set of features, of the form fi compare, represent

whether J1’s value for featurei is much less than (LT), similar to (SIM) 1, or much greater

than (GT) J2’s value for featurei. This feature is appropriate only for numeric features and

thus the value of the feature is set to be missing for nominal features. Similarly, the third set

of features, which are of the form fi diff represent the change in value for featurei. This

feature is computed only for nominal features, and is thus set to be missing if a feature is

numeric. For example, if the value for pigscript for J1 is filter.pig and for J2 is join.pig,

then the value of pigscript diff is (filter.pig, join.pig). We refer to these three sets

of features as comparison features, because they compare the raw features of the two jobs

1In the current implementation, two values are considered to be similar if they are within 10% of one
another.
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(or tasks). Finally, the fourth set of features are directly copied from the jobs if the jobs

have the same value for that feature. Namely, feature fi is set to the value J1.featurei if

J1.featurei = J2.featurei. Otherwise, the feature is labeled as missing. We refer to these

features as the base features.

The key intuition behind the above feature choice is that they span the range from

general features (i.e., isSame features) to specific features (i.e., base features). The general

features help abstract details when they are not important, which has two implications.

First, explanations can become more generally applicable. Second, pairs of jobs that have

very different raw features can become comparable. For example, if a task had a different

runtime than another because the load on the instance was different, PerfXplain can generate

an explanation of the form “CPU utilization isSame = false” rather than “CPU utilization

when running task 1 was X while CPU utilization when running task 2 was Y”. At the

same time, detailed features are sometimes needed to get precise explanations when details

matter. For example, the reason why a job took the same amount of time as another even

though it used more instances could be “because the block size was larger than or equal to

128MB”.

4.2.2 PXQL Syntax

PXQL allows users to formulate queries over the performance of either MapReduce jobs or

tasks. To simplify the presentation, we focus only on jobs in this section.

A PXQL query consists of a pair of jobs and three predicates over their features. The

first two predicates describe the observed behavior for the two jobs and the reason why

the user is surprised by this behavior. The third predicate specifies what behavior the user

expected. Every predicate takes the form φ1 ∧ . . .∧ φm, where each φi is of the form f op c

where f is a feature from Table 4.1, c is a constant, and op is an operator. The set of

operators supported by PerfXplain include =, 6=, <,≤, > and , ≥.

Definition 13 A PXQL query Q comprises a pair of jobs (J1, J2) and a triple of pred-

icates (des,obs, exp), where des, obs and exp are predicates over J1 and J2’s features.
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Feature Domain

f1 isSame {T, F}

. . .

fk isSame {T, F}

f1 compare {LT, SIM, GT}

. . .

fk compare {LT, SIM, GT}

f1 diff dom(feature1) × dom(feature1)

. . .

fk diff dom(featurek) × dom(featurek)

f1 dom(feature1)

. . .

fk dom(featurek)

Table 4.1: Set of features that define a training example. The features are computed for a
pair of jobs (tasks), and encode the relationship between the two jobs (tasks) for each raw
feature, at varying levels of resolution.

Additionally, des(J1, J2) = true, obs(J1, J2) = true, but exp(J1, J2) = false. Furthermore,

it must be the case that obs � ¬exp.

We refer to (J1, J2) as the pair of interest, and the predicates as the despite, ob-

served, and expected clauses, respectively.

We use the following syntax for PXQL queries.

FOR J1, J2 WHERE J1.JobID = ? and J2.JOBID = ?

DESPITE des OBSERVED obs

EXPECTED exp

Informally, a PXQL query Q = (des,obs, exp) over the pair of jobs J1, J2 can be read as

“Given jobs J1 and J2, despite des, I observed obs. I expected exp. Why?” PerfXplain’s

goal is to then reply with an explanation of the form:
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1. OBSERVED duration compare = SIM

EXPECTED duration compare = GT

2. OBSERVED duration compare = LT

EXPECTED duration compare = SIM

3. DESPITE inputsize compare = GT

OBSERVED duration compare = SIM

EXPECTED duration compare = GT

4. DESPITE inputsize compare = SIM ∧

−−−−−numinstances isSame = T

OBSERVED duration compare = LT

EXPECTED duration compare = SIM

5. DESPITE inputsize compare = SIM ∧

−−−−−jobID isSame = T

OBSERVED duration compare = GT

EXPECTED duration compare = SIM

Figure 4.1: Example PXQL queries.

DESPITE des′

BECAUSE bec

where des′ is a an extension of the user’s despite clause and bec is a predicate over

the features of the MapReduce jobs that appeared in the query.

Figure 4.1 shows how each example from Section 4.1 translates into a PXQL query.

We omit the FOR clause. For example, the first query asks why the two jobs had a similar

duration (duration compare = SIM) and that the user expected that J1 would be slower than

J2 (duration compare = GT). As illustrated in the first two examples, the despite clause is
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optional. Omitting the clause is equivalent to setting des to true. Example 5 shows that

the same query language that we use for jobs serves to ask performance queries over tasks.

4.2.3 PXQL Semantics

Given a PXQL query, PerfXplain must present the user with an explanation.

Definition 14 For a query Q = (des,obs, exp) over a pair of jobs (J1, J2), a candidate

explanation E is a pair of predicates (des′,bec). The predicates are referred to as the

despite and because clauses, respectively.

For instance, for Example 1, a candidate explanation is E = (des′,bec), where des′ =

(inputsize compare = GT) and bec = (blocksize >= 128MB ∧ numinstances ≥ 100).

The first requirement from an explanation is that it holds true for the pair of jobs that

the user is asking about. For example, explanation E above says that the reason why the

durations of J1 and J2 were similar is because the two jobs both had a large block size and

a large number of instances. However, this explanation would not make sense if J1 and J2

did not satisfy these conditions. In such a case, we say that E is not applicable to (J1, J2).

Definition 15 A candidate explanation E = (des′,bec) is applicable to a pair of jobs

(J1, J2) if des′(J1, J2) = true and bec(J1, J2) = true.

The applicability requirement for an explanation is a hard requirement. Every explana-

tion generated by PerfXplain must be applicable. Additionally, we define three metrics of

the quality of an explanation for a given log of MapReduce job executions.

Definition 16 The relevance, Rel(E), of an explanation E = (des′,bec) given a PXQL

query (des,obs, exp) is the following conditional probability:

Rel(E) = P (exp|des′ ∧ des). (4.1)

Intuitively, an explanation with high relevance identifies (through the des′∧des clause)

the key reasons why the pair of jobs should have performed as expected. For example, if
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we consider our explanation E from above, it has a high relevance because its des clause

specifies that it consider only pairs of jobs where inputsize compare = GT. Indeed, given

that the input size of J1 is greater than J2, we would expect that J1 be slower than J2.

By considering only pairs of jobs that satisfy the des′ ∧ des clause, the explanation given

by the bec clause is more relevant because it focuses on circumstances that are specific to

the user query. In our example, the bec clause identifies why pairs of jobs where one job

consumes a much greater input still can have the same runtime. This explanation is more

relevant to the query than one which would have explained why a job can have the same

runtime as another job, in general.

Definition 17 The precision, Pr(E), of an explanation E = (des′,bec) given a PXQL

query (des,obs, exp) is the following conditional probability:

Pr(E) = P (obs|bec ∧ des′ ∧ des). (4.2)

A precise explanation tries to identify why, in the context of des′ and des, did the pair

in question most likely perform as it did instead of as expected. For example, consider

E′ = (des′,bec′), where bec′ = blocksize >= 128MB. This is a shorter version of E from

above. E′ has most likely a lower precision than E because it is rarely the case that two

jobs have a similar runtime just because they have the same large block size. On the other

hand, if the two jobs also executed in a large cluster, then it is likely that neither used the

full cluster capacity and the runtime was determined by the time to process one large block

of data.

Though precision is necessary, an explanation with high precision may still be unde-

sirable. Consider the following because clause: start time = 1323158533 ∧ instance url

= 12-31-39-E6.compute-1.internal:localhost/127.0.0.1. Such an explanation can have a

precision of 1.0, yet it is still not a good explanation. A good explanation is one that can

apply to more than one setting. In fact, we posit that the more settings where an explana-

tion applies, the better the explanation, because it identifies more general patterns in job

performance. We measure this third property with the following metric.
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Definition 18 The generality, Gen(E), of an explanation E = (des′,bec) given a PXQL

query (des,obs, exp) is the following conditional probability:

Gen(E) = P (bec|des′ ∧ des). (4.3)

Note that precision and generality are closely related to the data mining concepts of

confidence and support, respectively. The only difference is that our terms explicitly refer to

the various clauses of the explanation. Namely, precision is the confidence that the because

clause leads to observed behavior in the context of the despite clause, and generality is the

support of the because clause in the context of the despite clause.

Given a PXQL query, PerfXplain’s goal is to generate an applicable explanation that

achieves high precision, relevance and generality. However, as in the example above, preci-

sion and generality are usually in direct conflict with one another. Thus, a helpful explana-

tion must strike a good balance between the two metrics.

Finally, PerfXplain orders the predicates in the despite and because clauses so that

the important predicates appear first. A predicate is more important than another if it

achieves higher marginal relevance (in the despite clause) or higher marginal precision (in

the because clause).

4.3 PXQL Query Evaluation

In this section, we describe how PerfXplain generates explanations for PXQL queries. We

begin with a few definitions.

4.3.1 Terminology

Given a PXQL query and a pair of jobs in the log, we first say that the pair of jobs is related

to a query if it satisfies the des clause and either the expected or observed clauses.

Definition 19 A pair of jobs (J1, J2) is related to a PXQL query Q = (des,obs, exp) if

des(J1, J2) = true ∧ (exp(Ji, Jj) = true ∨ obs(Ji, Jj) = true).

Further, we say that a related pair of jobs performed as expected or as observed with

respect to the query depending on whether it satisfied the expected or observed clause.
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More formally:

Definition 20 A pair of jobs (Ji, Jj) performed as expected with respect to a PXQL

query Q = (des,obs, exp) if des(Ji, Jj) = true ∧ exp(Ji, Jj) = true.

Similarly,

Definition 21 A pair of jobs (Ji, Jj) performed as observed with respect to a PXQL

query Q = (des,obs, exp) if des(Ji, Jj) = true ∧ obs(Ji, Jj) = true.

4.3.2 Approach

Given a query Q, PerfXplain generates an explanation in the form of a pair of des’ and

bec clauses. The constructions of these two clauses is symmetrical. We first explain how

PerfXplain generates the bec clause.

Overview of bec clause generation. The bec clause generation takes two inputs.

The first input is the log of past MapReduce job executions. Each pair of jobs in the

log forms a training example, which is represented by a combined vector of features as

shown in Table 4.1. These job pairs and their features serve as the basis for generating the

explanation. The second input is the PXQL query itself. The query comprises the pair of

jobs of interest, (J1, J2) and the three predicates: (des,obs, exp).

The key idea behind performance explanation is to identify the conditions why the

pair of interest performed as observed rather than performing as expected. This condition

takes the form of a predicate on the job-pair features (i.e., those listed in Table 4.1). As

discussed in the previous section, we want an explanation that is both precise and general:

an explanation is precise if whenever a pair of jobs satisfies it, that pair is likely to perform

as observed. At the same time, an explanation is general if it applies to many pairs of jobs

in the log.

Detailed algorithm for bec clause generation. Algorithm 2 shows the detailed

bec clause generation approach. The algorithm takes as input a PXQL query, the pair of

interest (J1, J2), the set of all jobs J , and the desired explanation width w. The width is

the number of atomic predicates in the explanation.



70

Lines 1-2: Construct training examples. The first step in the explanation generation

process (i.e., constructTrainingExamples) identifies the related pairs of jobs in the log.

Only pairs that satisfy the des predicate and either the obs or exp predicates are used

to generate an explanation for the given query. The obs and exp predicates also serve to

classify job pairs as performing either as observed or as expected. Next, the algorithm keeps

just a sample of this set. We further discuss sampling in Section 4.3.3.

Given these training examples, the algorithm generates the explanation as a conjunction

of atomic predicates. It grows the explanation by adding atomic predicates in a greedy

fashion. To select each atomic predicate, the algorithm identifies (a) the “best” predicate

for each feature, and then (b) selects the “best” predicate across features.

Line 5: Construct best predicate for each feature. An atomic predicate is of the form

f op c. Thus, given a feature f , in order to find the best predicate, PerfXplain must select

the best op and constant c pair. For nominal attributes, the only operator it considers is

equality. For numeric attributes, it considers both equality and inequality operators.

In order to select the best predicate for a feature, PerfXplain identifies the predicate

with the highest information gain, which is defined as:

Information Gain(P, φ) = H(P )−H(P |φ)

where φ is the predicate, P is the pairs of jobs in consideration, and H(P ) is the information

entropy of P . When we consider φ, we think about the two partitions that φ creates: the

pairs that satisfy φ and the pairs that do not. By maximizing the information gain, we want

to find the predicate that leads to two partitions where the partitions each have a lower

entropy (or higher “purity”) than the entropy of the full set of pairs.

As an example, consider Figure 4.2. The leftmost box represents the full set of training

examples we are considering. The training examples are depicted with either a + (if an

example performed as observed) or with a − (if it performed as expected). Suppose for

a feature f , we are considering two predicates. For example, for blocksize we may be

considering blocksize > 64MB and blocksize ≤ 256MB. The two predicates are illustrated

by the second (A) and third (B) boxes in Figure 4.2. The grey area represents where a
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Figure 4.2: Example of information gain. The training examples are depicted with either a
+ or a −. The leftmost box represents the full set of training examples. A achieves higher
information gain than B.

training example satisfies the predicate. Now, if we consider the two predicates, clearly A

is a better predicate than B, because it is doing a better job of separating the +’s from

the −’s. The information gain metric captures exactly this intuition. Entropy is defined

as H(P ) = −plog2(p) − (1 − p)log2(1 − p) where p is the fraction of +’s. In our example,

p = 0.6 for the full sample. Thus, our original entropy is 0.97. The entropy of the sample in

A is 0.1, which is calculated by taking the weighted average of the entropies of both the grey

side and the white side (the two partitions created by the predicate). Thus, the information

gain for A is 0.87. For B, the entropy is 0.97, which is an information gain of 0. Therefore,

the predicate depicted in A is better than the predicate depicted in B.

Lines 6-15: Identify the best cross-feature predicate. For each of the above per-feature

predicates, the algorithm computes its precision and generality. Both precision and general-

ity are measured over the set of job-pairs (P in Algorithm 2) that are related to the PXQL

query and satisfy the explanation constructed so far. We compute precision as the number

of jobs-pairs that satisfy the predicate and perform as observed, divided by the number of

job-pairs in that satisfy the predicate. Generality is the fraction that satisfies the predicate.

The score of a predicate then becomes a weighted average of its precision and its generality

scores (line 13). In the current implementation, we use a weight of w = 0.8 (thus favoring

precision over generality).

Note, however, that the score is not simply a weighted average over the raw precision

and generality scores. Instead, it calculates a relative score for each. Consider the precision
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score, or precScore, as an example. To calculate it, PerfXplain computes the precisions

of all the predicates, ranks them, and replaces the precision values with the percentile

ranks. PerfXplain does the same transformation for the generality score. In our earlier

implementation, we had not included this step, and we found that because the generality

scores tended to be much lower than the precision scores (especially as the explanation grew

in width), the generality was not having enough impact on the predicate score. Therefore,

we introduced this step to normalize the two scores before taking their weighted average.

Finally, the predicate with the highest score is added to the explanation.

Lines 16-18: Extend explanation and continue. To further refine the explanation,

PerfXplain iterates and adds additional atomic predicates. At each iteration, PerfXplain

considers only those job pairs that satisfy the bec predicate generated so far. Some of the

job pairs still performed as expected in that set. PerfXplain then identifies an additional

atomic predicate that isolates these job pairs from the others while correctly classifying the

pair of interest. The resulting extended predicate forms a more precise explanation for why

the pair of jobs performed as observed rather than performing as expected. The algorithm

stops once a clause of width w has been generated.

The result of the algorithm is an explanation consisting of a bec clause with w atomic

predicates.

Generating the des’ clause. Given a PXQL query, the bec predicate strives to

capture a precise yet general reason why some jobs performed as observed rather than

performing as expected. The bec predicate is restricted to hold for the pair of interest

identified in the query. In spite of this constraint, we found that it was often the case

that the explanation would produce overly generic reasons why a pair of jobs performed as

observed rather than performing as expected. For example, consider the case where a user

asks why two jobs had the same runtime instead of one job being faster than the other.

In the absence of a des clause, a general and precise explanation of width 1 says that the

two jobs executed on the same number of instances. Instead, if the system generates the

explanation not by using the entire log but by only considering the subset of job pairs where

one job processed a significantly larger amount of data than the other, the most precise and

general explanation changes. For this subset of jobs, the explanation becomes about block
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size and cluster size. The latter explanation is more relevant to the pair of interest. The

des clause captures this intuition in a principled fashion.

In the current implementation, by default, PerfXplain generates only the bec clause in

an explanation, and the user must explicitly request a des clause. An easy modification is

to set a relevance threshold r. If the user’s des clause achieves a relevance score less than r,

then PerfXplain will extend the clause automatically until its score reaches this threshold

or it can not further be improved.

Conveniently, the des’ clause generation technique is symmetric to the bec clause gener-

ation. In order to generate the des’ clause, PerfXplain uses the same algorithm as shown in

Algorithm 2. However, it changes line 6 to measure relevance P (exp|p) instead of precision

P (obs|p).

Once PerfXplain has generated a sufficient des’ clause, PerfXplain verifies the clause

with the user. If the user approves this clause, it is added to the user’s PXQL query, and

PerfXplain can proceed to generating the bec clause, and thus a full explanation.

Comparison to other machine-learning techniques. Explanation generation is

related to classification problems in machine learning. In particular, our approach is related

to decision trees [113] since both identify predicates over features that separate examples

into two classes (observed and expected in our case). There are however several important

distinctions. First, unlike a decision tree, performance explanation must ensure that the

pair of interest is always correctly classified as performing as observed. Second, performance

explanation need not categorize all pairs of jobs in the log. Instead, it must generate a

predicate that yields a relevant, precise, and general explanation given the pair of interest.

In order to achieve this goal, performance explanation must construct a des’ clause before

generating the bec clause. Additionally, it must consider the precision and generality

metrics during the construction of each of these two clauses.

While we cannot apply decision trees directly to the performance explanation problem,

we still re-use the notion of information gain for constructing the best predicate for each

feature. In our prototype, we use the C4.5 [113] technique for finding the predicate that

maximizes the information gain metric.
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4.3.3 Sampling

To maintain a low response-time for the explanation generation, PerfXplain samples the

training examples related to the current query (line 2 of Algorithm 2). Sampling also

helps balance the number of positive and negative examples that will contribute to the

explanation. A balanced sample is one in which there is approximately the same number

of examples labeled as observed and as expected. A highly unbalanced sample can cause

PerfXplain to believe that a trivial explanation is sufficient. For example, if a sample

consists of pairs where 99% performed as observed, PerfXplain will decide that the empty

explanation is good as it will achieve a precision of 99%.

The sampling method operates as follows. It iterates through each training example. If

the desired sample size is m and T is the set of all training examples, then the sampling

technique keeps a training example t with probability:

p =

 m/(2 · |{x ∈ T : obs(x) = true}|) if obs(t) = true

m/(2 · |{x ∈ T : exp(x) = true}|) if exp(t) = true

For instance, consider a set of training examples that consists mostly of pairs labeled with

observed and very few with expected. In this case, a training example labeled with observed

will have a lower probability of being selected for the sample than a training example labeled

with expected. In our current implementation, we use a sample size of 2000.

Currently, PerfXplain randomly samples training examples, which already yields high-

quality explanations as we show in Section 4.5. Biasing the samples in some way, such as

ensuring that priority is given to executions that correspond to a varied set of jobs, could

possibly improve explanation quality further. We leave this question open for future work.

4.4 Alternative Approaches

In this section, we describe two näıve techniques for constructing explanations. Though at

first glance, both techniques seem like they may be sufficient for generating good explana-

tions, we see that both fall short in different ways. We compare the PerfXplain approach

to these techniques in Section 4.5.
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4.4.1 RuleOfThumb Approach

This technique first identifies which features of a job have a high impact on the runtime

of a job in general. Then it points to differences in these features as the explanation.

This identification of important features is executed only once, and is not performed per

PXQL query. Once the user issues a PXQL query along with a pair of interest (J1, J2),

RuleOfThumb returns the top-w features that the two jobs disagree on (where w is the width

of the explanation desired). The features are ranked by their importance as determined in

the step described above.

Consider the following example. Suppose that the initial stage identifies that numinstances,

inputsize, and num reduce tasks are the most important features for determining the du-

ration of a job, respectively. Suppose the user has asked why job J1 is slower than job J2,

and that both jobs agree on the number of instances, but disagree on the input data size

and on the number of reduce tasks. In this case, the explanation generated would be:

inputsize isSame = F ∧ num reduce tasks isSame = F.

Any standard feature selection algorithm can be used to determine the most important

features. In our implementation, we use the Relief technique [114] because it is able to

handle both numeric and nominal attributes, as well as missing values.

The RuleOfThumb algorithm works well for some PXQL queries. For example, it may

be appropriate for queries that ask for an explanation of why the runtime of two jobs

is different because the technique always points to differences in important features and

differences in features usually lead to differences in the runtime. However, this approach

completely ignores the PXQL query, and will therefore, fail to satisfactorily answer many

queries.

4.4.2 SimButDiff Approach

Unlike the previous technique, the SimButDiff algorithm actually considers the PXQL query

when generating its explanation. It first finds all training examples that are similar to the

pair of interest, with respect to its isSame features. Among these similar pairs, for each

feature fi, it measures the fraction of pairs that performed as expected and disagreed on
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this feature to the number of pairs that disagreed on this feature. In essence, it performs

‘what-if’ analysis on each feature fi to check the following: if this feature had been different,

how likely is it that the pair would have performed as expected. For example, if the pair

of interest agree on numinstances, it finds all pairs that were similar to the pair of interest,

but disagreed on the numinstances to see if that generally leads to pairs that performed as

expected. It measures this fraction for each feature, and the features that have the highest

fractions constitute the explanation.

Algorithm 3 shows the details of this approach. In addition to the PXQL query, the pair

of interest, the set of all jobs, and the desired width, the algorithm also takes as input a

similarity threshold s between 0 and 1. In the current implementation, a similarity threshold

of 0.9 has worked well.

The algorithm proceeds as follows. First, like the PerfXplain algorithm, it constructs

the training examples (line 1). However, it keeps only the isSame features (lines 2-3). Next,

it filters out training examples that are not similar to (J1, J2), the pair of interest (lines

4-5). A training example is similar if it agrees with the pair of interest on at least s fraction

of the isSame features.

Next, the algorithm iterates through every feature and calculates a score for it (lines

6-11). The score for a feature f is the fraction of training examples that perform as expected

among those that disagree with (J1, J2) on f . The features are then sorted in descending

order of these scores (line 12) and the explanation is a conjunction of predicates of the form

f = (J1, J2).f , constructed in order of the score (lines 14-17).

The SimButDiff algorithm only utilizes the isSame features because they are binary

features, and thus it is easy to identify the training examples that disagree with (J1, J2) on

a feature (i.e., check that the training example takes on the one different value). Secondly,

it is simple to measure the similarity of two training examples by just counting the number

of features that they agree on. Were we to leverage some of the other features, we would

need to define similarity scores between the different values in the domain of the feature.

As such, because the SimButDiff technique leverages only the isSame features, it fails to

produce precise explanations where more complex features are required. We show examples

of such PXQL queries in Section 4.5.
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4.5 Evaluation
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Figure 4.3: Explanation precisions for (a) WhyLastTaskFaster, and (b) WhySlowerDe-
spiteSameNumInstances with varying width. Precisions for (c) when the log consists
only of simple-groupby.pig jobs, and (d) at width-3 with varying log size for WhySlow-
erDespiteSameNumInstances.

In this section, we compare the three explanation generation approaches on two PXQL

queries over real data that we collected on Amazon EC2. We explore several aspects of the

techniques. In Section 4.5.3, we assume that the user has given us a well-specified PXQL

query, and we compare the precisions of the explanations generated by each technique. In

Section 4.5.4, we assume that the user has provided an under-specified query, and investigate
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Parameter Different Values

Number of instances 1, 2, 4, 8, 16

Input file size 1.3 GB, 2.6 GB

DFS block size 64 MB, 256 MB, 1024 MB

Reduce tasks factor 1.0, 1.5, 2.0

IO sort factor 10, 50, 100

Pig script simple-filter.pig, simple-groupby.pig

Table 4.2: The parameters we varied and the different values for each.

whether PerfXplain is able to generate an effective despite clause. In Section 4.5.5, we

explore the case where the log consists of only one type of MapReduce job, whereas the pair

of jobs in question are of a different type. We evaluate the impact of the log size on the

precision of explanations in Section 4.5.6. Finally, in Section 4.5.7, we analyze the trade-off

between generality and precision. We begin with a description of the experimental setup

(Section 4.5.1) and the two PXQL queries that we use for this evaluation (Section 4.5.2).

4.5.1 Experimental Setup

To collect real data for our experiments, we ran two different Pig scripts on Amazon EC2

and varied several parameters for each execution. Table 4.2 shows the features that we

varied and the different values that we tried for each one.

The number of instances is the number of virtual machines used for the job. The input

file consists of a log of search queries submitted to the Excite [53] search engine. This is a

sample file that is used in the standard Pig tutorial. We concatenate the sample file from

the tutorial to itself either 30 or 60 times. This input data file is then broken up into a

given number of blocks. The block size is set through the dfs.block.size parameter in the

MapReduce configuration file. The block size determines the number of map tasks that are

generated for an input file (i.e., the number of map tasks is the input file size divided by the

block size). The reduce tasks factor determines the number of reduce tasks for the job, using
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the mapred.reduce.tasks parameter. The factor is in relation to the number of instances.

e.g.. If there are 8 instances, and the reduce tasks factor is 1.5, then the number of reduce

tasks is set to 12. The IO sort factor feature corresponds to the io.sort.factor MapReduce

parameter, and represents the number of segments on disk to be merged together at a given

time. Finally, the Pig script parameter specifies which Pig job should be executed. The

simple-filter.pig script simply loads the input file, filters out all queries where the query

string is a URL, and outputs the queries that remain. The simple-groupby.pig script groups

all the queries by user and outputs the number of queries per user.

PerfXplain collects data at the job-level as well as the task-level. For each task, PerfX-

plain extracts all details it can from the MapReduce log file, including hdfs bytes written,

hdfs bytes read, sorttime, shuffletime, taskfinishtime, and tracker name. We refer the

reader to a Hadoop guide for details of these properties [127]. Additionally, PerfXplain also

monitors the instances using Ganglia [4], which is a distributed monitoring system. Ganglia

metrics include boottime, bytes in, bytes out, cpu idle, and more. To be precise, PerfX-

plain runs Ganglia to measure these metrics on each instance once every five seconds. For

a given task, it identifies the instance that the task was executed on, and for each metric,

it calculates the average value while the task was executing. PerfXplain also percolates this

monitoring data up to the jobs. Namely, for each job and each metric, it calculates the

average value of the metric across all the tasks belonging to the job. In total, PerfXplain

records a total of 64 features for each task and 36 features for each job.

The graphs in this section are generated as follows. We divide the log into two logs: the

training log and the test log. This split is done randomly; we iterate through each job, add

it to the training log with 50% probability, and all remaining jobs are added to the test log.

The training log is used as the basis for generating the explanation. The test log is used

to evaluate the explanation. Namely, we measure the precision of the explanation over the

test log. We repeat this process ten times, and our graphs report the average results across

these ten runs, along with errors bars to depict the standard deviation.2

2A common evaluation method used in machine learning literature is ten-fold cross validation. We did
not use this technique because it leads to a small test log consisting of a tenth of the jobs. A small log is
ineffective for testing because it results in too few pairs that performed as observed. Therefore, we used
2-fold cross validation.
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4.5.2 The PXQL Queries

We evaluate how well PerfXplain generates explanations for two different PXQL queries.

The first query asks why one task is faster than another, and the second asks why one job is

slower than another. We measure the precision, relevance, and generality of the explanations

generated.

Here are the two PXQL queries that we use:

1. WhyLastTaskFaster:

FOR T1, T2

DESPITE jobID isSame = T ∧ inputsize compare = SIM ∧ hostname isSame = T

OBSERVED duration compare = LT

EXPECTED duration comare = SIM

2. WhySlowerDespiteSameNumInstances:

FOR J1, J2

DESPITE numinstances isSame = T ∧ pig script isSame = T

OBSERVED duration compare = GT

EXPECTED duration compare = SIM

The first query asks why the last task on an instance runs faster than the earlier tasks

that were executed on the same instance, even though each task processes a similar amount

of data. Interestingly, we came across this query when we were puzzled by this pattern while

collecting our experimental data. The reason we discovered was that the last task runs faster

than earlier tasks because the instances have two cores and can run two tasks simultaneously.

Sometimes, by the time the last task is reached, all other tasks are completed, and the

instance is free to run only one task. Thus, the system load is lighter for the last task, and

consequently the task is completed faster.

The second query asks why a job is slower than another job even though both jobs are

running the same Pig script, and on the same number of instances. The explanation here

is that the input size of the slower job is much greater than the input size of the faster job.
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4.5.3 Well-specified PXQL Queries

In this section, we evaluate PerfXplain’s explanation generation technique for PXQL queries

where the user has specified a reasonable des clause as shown above. A good despite clause

facilitates the generation of highly relevant explanations because the user manually con-

strains the search space. We compare the PerfXplain technique to the two näıve techniques

described in Section 4.4.

Figure 4.3(a) shows the precision of the explanations generated by each technique for

the WhyLastTaskFaster PXQL query. The x-axis indicates the width threshold specified

for the explanation. Note that when the width is 0, the explanation is empty (or true) and

thus the precision is P (obs|des ∧ true) = P (obs|des).

With the exception of a single run, both the RuleOfThumb approach and the Per-

fXplain approach generate the same explanation (for width 3), and thus achieve similar

precision: avg cpu user isSame = F ∧ avg proc total isSame = F ∧ avg load one isSame =

F. The explanation says the task was faster because the average CPU time spent on user

processes is not the same, the average total number of processes is not the same, and

the average load time across a minute is not the same. This explanation is generally

pointing towards the fact that the system load is different for the two tasks, and thus

this leads to the observed behavior. (In the one exceptional run, PerfXplain generates an

explanation starting with avg load five isSame = F, which can also lead to faster execu-

tion, but it achieves a slightly lower precision than the above explanation.) The SimBut-

Diff technique generates explanation avg pkts in isSame = F ∧ avg bytes in isSame = F ∧

avg pkts out isSame = F. The first part says that the average number of packets arriving is

different, the second part talks about average number of bytes in, and so on. This expla-

nation is well-grounded in the data; it is indeed the case that if two tasks have a similar

number of packets arriving, they also are likely to perform as expected (i.e. have a similar

duration). However, not many pairs of tasks have a similar number of packets arriving, and

it is not the case that just because two tasks have a different number of packets arriving that

they will achieve very different runtimes. The predicate avg cpu user isSame = F appears

in SimButDiff’s explanation, but usually not until the seventh or eighth predicate.
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Query Avg Relevance Before Avg Relevance After

1 0.49 0.99

2 0.24 0.72

Table 4.3: Relevance of PXQL queries with an empty despite clause versus with a
PerfXplain-generated despite clause.

Figure 4.3(b) shows the precision for the WhySlowerDespiteSameNumInstances

task. For this task, the PerfXplain approach generates the following explanation (for width

3): inputsize compare = GT ∧ avg load five compare = GT ∧ numinstances <= 12. The first

predicate in the explanation indicates that the input size is larger, which is the correct ex-

planation. It continues to explain that the average load (measured at five-minute intervals)

for the slower job is higher, which is probably just a result of the larger input size. Finally,

it says that the number of instances is small. This is also correct because if both jobs had

a sufficiently high number of instances, the change in data size would not have affected the

runtime.

For the same task, the explanation of width 3 generated by the RuleOfThumb tech-

nique is avg load five isSame = F ∧ avg proc total isSame = F ∧ inputsize isSame = F.

The SimButDiff approach generates inputsize isSame = F ∧ iosortfactor isSame = T ∧

blocksize isSame = T. Though both techniques note that the input size has an impact on

the duration, they can only point to the fact that the input size is different (instead of

greater than). Furthermore, the RuleOfThumb does not include inputsize isSame = F un-

til the third predicate because it is distracted by other side-effects of a larger input, which

are that the average load is different and that the total number of processes is different.

In summary, we see that PerfXplain generates explanations with a better or equal av-

erage precision than the two näıve techniques. For example, for the WhySlowerDespite-

SameNumInstances query, at width 3, PerfXplain achieves at least 40.5% higher precision

than both techniques.
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4.5.4 Under-specified PXQL Queries

In this section, we evaluate the quality of the des clauses generated by PerfXplain. We

use the same PXQL queries as described in Section 4.5.2 but this time with the des clause

removed. Table 4.3 above shows the relevance without the des clause, as well as the

relevance with PerfXplain’s automatically generated des clause. For this experiment, we

restrict the clause to width 3.

Here are examples of des clauses that PerfXplain generates for each of the two queries:

1. map output records isSame = T ∧ tracker name isSame = T ∧

map input records isSame = T ∧ file bytes written isSame = T

2. pigscript isSame = T ∧ numinstances isSame = T ∧ blocksize isSame = T

For the WhyLastTaskFaster query (1), we see that the des clause indicates that the

numbers of map output records and the number of input records are the same for both

tasks, as is the name of the tracker. The second and third predicates are analogous to the

user-specified des clause. The user-specified des clause achieved an average relevance of

0.97, whereas the PerfXplain-generated one achieves 0.99. For the second query, we see

that PerfXplain generates exactly the des clause that the user specified with the additional

blocksize isSame = T predicate at the end. Thus, it achieves a slightly higher relevance

score of 0.72, compared to the user-specified des clause which has a relevance score of 0.6.

Figure 4.4(a) shows the relevance score for both PXQL queries for des widths ranging

from 0 to 5. Once again, width 0 represents the relevance of the empty des clause. We

see that for both PXQL queries, PerfXplain is able to generate despite clauses with high

relevance.

In summary, we see that PerfXplain is able to generate a good despite clause if the user

fails to do so, thus increasing the relevance of an empty despite clause by up to 200%.

4.5.5 Explaining a Different Job

In this section, we explore whether the techniques can support a scenario in which the pair

of interest is different from all the jobs in the log. This experiment is trying to answer the
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question: Can we use the approach to explain the performance of new jobs, different from

those executed in the past? We analyze this scenario for the WhySlowerDespiteSameN-

umInstances query. The pair of interest for this PXQL query consists of two jobs that are

both running the same Pig script: simple-filter.pig. The log, however, consists only of the

data for the simple-groupby.pig jobs (plus the pair of interest).

In this experiment, we execute the three explanation-generation algorithms over the

log described above, and evaluate the explanation precision over a log consisting of all the

simple-filter.pig jobs. Figure 4.3(c) presents the results.

Comparing the results to those in Figure 4.3(b), we see that PerfXplain performs slightly

worse than when it has access to a normal job log. For width-1 explanations, the precision is

significantly lower when PerfXplain has access to only simple-groupby.pig jobs (0.63) versus

with the full log (0.93). However, by width-3, the difference shrinks to 0.02 (from 0.89 to

0.87). The average decrease in precision across the different widths for PerfXplain is 0.04.

SimButDiff performs almost equivalently across the two scenarios, achieving a slightly lower

precision (average of 0.001 lower). The average decrease in precision for the RuleOfThumb

technique is 0.02.

In summary, we see that the precision of PerfXplain’s explanations decrease slightly if

the log consists of jobs that are different from the jobs in question. For example, for width-3

explanations we saw an average of only 2.7% decrease in precision.

4.5.6 Varying the Log Size

We investigate the effect of the log size on the different techniques. Namely, we randomly

selected x% of the jobs in the log to use as the training log and varied x between 10% and

50%.

Figure 4.3(d) summarizes the results of the experiment for the WhySlowerDespite-

SameNumInstances query. The x-axis represents the size of the log we used, and the

y-axis reports the precision. The results shown are for width-3 explanations. We see that

for the PerfXplain technique, the precision increases gradually with the size of the job log.

However, even with just 10% of the log, PerfXplain achieves an average precision of 0.84.
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However, the standard deviation of the precision at 10% is much higher than at 50% (0.08

versus 0.02). In contrast, the precisions of the RuleOfThumb and SimButDiff techniques

are not significantly impacted by the sample size. In fact, the SimButDiff approach does

not seem to be impacted by the sample size at all. The RuleOfThumb approach is affected

by the size of the log, and the general trend is that it generates better explanations when

the log is larger (with the exception of 0.4). However, the variance of its precision is high.

A key takeaway from this experiment is that even with a small query log consisting of

only 10% of the jobs, PerfXplain is able to achieve a high precision of 0.84 for width-3

explanations.

4.5.7 Precision versus Generality Trade-off

As we discussed in Section 4.2.3, an effective explanation generation approach should achieve

a good trade-off between precision and generality. Figure 4.4(b) plots the precision and gen-

erality scores of explanations generated by the different techniques. As the figure shows,

PerfXplain achieves a better trade-off between generality and precision than the other ap-

proaches because its points fall higher and more to the right than the points for the other

two approaches. (We connect PerfXplain’s points to better show the positions of all its

points in relation to the other techniques’ points.)

4.5.8 Using Different Features

Using the right set of features is crucial to generating good explanations. On one hand, sim-

pler features result in explanations that are generally applicable. On the other hand, having

access to more complex features and just more features in general can lead to explanations

that achieve higher precision.

In this section, we investigate the effect of different feature sets on the precision of the

explanations that PerfXplain generates. We consider three different feature sets, we call

them levels.

1. Level 1 includes only the isSame features.



86

2. Level 2 includes the isSame features, the compare features, and the diff features.

3. Level 3 includes the isSame features, the compare features, the diff features, and

the base features.

Figure 4.4(d) shows the precision of explanations for the WhySlowerDespiteSameN-

umInstances PXQL query at each feature level. As the figure shows, PerfXplain achieves

a similar precision for both levels 2 and 3, which outperform level 1 by a significant mar-

gin. We see an improvement in precision for level 3 versus level 2, at width 3. Remember,

that the explanation generated by PerfXplain for this approach is inputsize compare = GT

∧ avg load five compare = GT ∧ numinstances <= 12. The third predicate here says that

it is because the number of instances is small. This feature is not included at Level 2, and

thus we see the improvement at width 3.

In summary, we see that if we limit the set of features to only the isSame features,

PerfXplain suffers significantly in terms of precision. However, hierarchy levels 2 and 3

perform similarly in this scenario.

4.6 Conclusion

In this project, we addressed the problem of debugging performance problems in MapReduce

computations. We presented PerfXplain, a system that enables users to ask comparative

performance-related questions about either pairs of MapReduce jobs or pairs of MapReduce

tasks. Our current implementation considers only queries over job or task runtimes but the

approach can readily be applied to other performance metrics.

Given a performance query, PerfXplain uses a log of past MapReduce job executions

to construct explanations in the form of predicates over job or task features. PerfXplain’s

key contributions include (1) a language for articulating performance-related queries, (2)

a formal definition of a performance explanation together with three metrics, relevance,

precision, and generality for explanation quality, and (3) an algorithm for generating high-

quality explanations from the log of past executions.

Experiments on real MapReduce job executions on Amazon EC2 demonstrate that Per-

fXplain can indeed generate high-quality explanations, outperforming two näıve explanation-
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generation methods. While our focus in this chapter has been on MapReduce jobs, because

PerfXplain simply represents job or task executions as feature vectors, the approach has the

potential to generalize to other parallel data processing systems.
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Algorithm 2 PerfXplain Algorithm.

Input: PXQL query q = (des,obs, exp), jobs J1 and J2, set of all jobs J ,

width w

Output: an explanation X

1: P ← constructTrainingExamples(J, q)

2: P ← sample(P, J1, J2)

3: X ← true

4: for i = 1 . . . w do

5: predicates← [ maxInfoGainPredicate(f) : f ∈ F ]

6: precisions← [ P (obs|p,X) : p ∈ predicates]

7: generalities← [ P (p|X) : p ∈ predicates ]

8: predScores← []

9: for j ∈ [1 . . . |predicates|] do

10: p← predicates[j]

11: precScore← normalizeScore(precisions[j], precisions)

12: genScore← normalizeScore(generalities[j], generalities)

13: predScores.append((p, w · precScore+ (1− w) · genScore)

14: end for

15: (bestPred, bestScore)← argmaxp∈predScores p.score

16: X ← X ∧ bestPred

17: P ← [ p : p ∈ P ∧X holds true for p]

18: end for

19: return X
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Algorithm 3 SimButDiff Algorithm.

Input: PXQL query q = (des,obs, exp), jobs J1 and J2, set of all jobs J ,

width w, similarity threshold s

Output: an explanation X

1: T ← constructTrainingExamples(J, q)

2: isSameFeatures← [ f : f ∈ F ∧ f is a isSamefeature]

3: T ← reduceDimensionality(T, isSameFeatures)

4: k ← s · dimensionality(T )

5: S ← [ t : t ∈ T ∧ t agrees with (J1, J2) on ≥ k features]

6: featureScores = []

7: for f ∈ isSameFeatures do

8: d← |[ t : t ∈ S ∧ t.f 6= (J1, J2).f ]|

9: o← |[ t : t ∈ S ∧ t.f 6= (J1, J2).f ∧ exp(t) = true]|

10: featureScores.append((f, od))

11: end for

12: featureScores← sort(featureScores)

13: X ← true

14: for i = 1 . . . w do

15: (f, score)← featureScores[i]

16: X ← X ∧ (f = (J1, J2).f)

17: end for

18: return X
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Figure 4.4: (a) Relevance of PerfXplain-generated despite clauses, (b) Precision versus
generality for WhySlowerDespiteSameNumInstances, (c) Precision of explanations for
WhySlowerDespiteSameNumInstances with different feature levels.
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Chapter 5

SIQ: GENERATING SAMPLE DATASETS FOR QUERY
DEBUGGING

Successfully writing a correct query is an iterative process. With a question in mind,

the user often begins with a simple SELECT * FROM T query to get a quick glance at the

data. After the query finishes executing, the user looks at the data, examines the schema as

well as the content, and returns to query writing. She might add a WHERE clause, join with

another table, group on a column or two, and so on. So, in general, she modifies the query,

executes the new query, waits for the query to finish executing, examines the output, and

repeats this whole process until she has written her target query. Figure 5.1 summarizes

this process. We refer to the sequence of queries that the user poses as a query session, or

simply a session.

This process is often frustratingly slow, due to all three steps that occur in each iteration.

First, modifying and writing SQL queries is difficult. Second, the query may take a long

time to execute. Third, the queries are often over large datasets, which generally may lead

to large output sizes. Thus, even examining the output can be an onerous task for the user.

A common solution employed by experienced users is to construct a sample dataset,

sometimes called a toy database, which the user interacts with through the debugging

process before executing their query over the full dataset. The toy database is constructed

either by taking a small sample of the input data or by manually crafting it tuple-by-tuple.

However, constructing a good toy database is a challenging endeavor. Näıvely selecting a

random sample is insufficient, and leads to empty results while debugging, even for simple

queries. As an example, consider the Internet Movie Database (IMDB). Suppose we have a

small random sample of the Movies table (with schema mid, title, year), and the Genre

table (with schema mid, genre). Even if the user writes a query simply joining the two

tables, the output may be empty because the probability that there is a pair of tuples that
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Figure 5.1: Iterative query debugging process. The sequence of queries that the user writes
is referred to as a query session.

join in the two samples is low. A similar problem occurs with highly selective filters, such

as a query that finds all actors whose last name is ‘Theron’. Though manually constructing

a toy database can solve this problem, it is a cumbersome task for the user. He or she must

create each toy table, and then create each tuple by hand.

Prior work [107] by Olston et al. addresses this challenge with an algorithm for auto-

matically generating a toy database for an input query (in the form of a Pig program). This

approach, however, has a significant limitation. It is able to generate a toy database only

once it has seen the query, and only for a single query. However, as described above, the

query writing process is an iterative one. As such, if we apply Olston [108] directly, then

each query in a session will have a distinct sample. This means that it will take the user

some time in each iteration to examine the toy database and the query output. Therefore,

it would be preferable to use the same toy database across all queries in the session. This

way, the user would become familiar with the sample only once at the beginning of the

session, and would then use it throughout the whole session. In this paper, we refer to this

property as coherency (we define it formally in Section 5.1). As the user interacts with

the toy database through each iteration of the query debugging process, we want the toy

database to stay as coherent as possible (i.e., the dataset should change minimally across

the queries in the session). We illustrate this point in Figure 5.2.

To summarize, a good toy database should ideally:
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Figure 5.2: Directly applying Olston’s algorithm generates a different sample for each query,
and thus offers no coherency within a query session (a), whereas the ideal algorithm would
allow the user to interact with the same sample through the session (b).
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1. be small so that the user can familiarize herself with it quickly,

2. demonstrate the semantics of the operators in the query (e.g.., showing both tuples

that pass a filter and tuples that do not pass the filter), so that the user can understand

the query modifications they make, and quickly identify errors (we discuss this in more

detail in Section 5.1), and

3. illustrate all the queries in a session so that the cost of familiarizing herself with the

toy database is amortized across all queries in the session.

Generating a coherent toy database that illustrates all the queries in a session is more

difficult than generating a toy database for a single query due to two additional challenges.

First, we must generate the toy database prior to knowing the queries the user will articulate.

Second, even if we did know exactly which queries the user is going to ask, we still face

the challenge of generating a sample that is helpful for all the queries while still remaining

small.

In this chapter, we present the Sample-based Interactive Query (SIQ) system. SIQ is

able to generate a toy database, over which users can rapidly develop and debug their

queries, before executing them over the full, original dataset. A small toy database enables

users to more quickly formulate and debug their queries due to the instantaneous response

times. Furthermore, the small size of the dataset means that users are able to more easily

examine and verify the effects of their query edits. The toy database is constructed so

that it illustrates the semantics of the user’s query from the start (often a simple SELECT

* query), and through all revisions of it (i.e., all queries in a query sesison). Additionally,

the toy database remains coherent within a query session, so that the user’s efforts can be

directed toward query editing rather than monitoring the changes in the dataset. However,

if needed, SIQ is able to repair a toy database, if the database is no longer illustrative of

the user’s query.

To summarize, the following is our problem statement:

Given a query session consisting of queries q1, . . . , qn, generate a sequence of toy databases
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D1, . . . , Dn such that (1) Di is illustrative of qi, (2) Di is generated prior to seeing Di+1,

(3) D1, . . . , Dn are as small as possible, and (4) D1, . . . , Dn are as coherent as possible.

The key insight behind the SIQ system is to use the log of all past queries executed over

the full database to generate the smallest and most coherent toy databases for new queries.

SIQ uses the log to try to guess where the user may be headed with their query, which helps

increase the coherency and decrease the size of the toy database generated for each query.

Overall, we make the following contributions with SIQ:

1. We design and implement an algorithm, that utilizes a log of past queries, for gen-

erating a toy database with which the user can interact while debugging his or her

query.

2. We define three quality metrics for what makes a good sequence of toy databases for

a given query session: completeness, conciseness, and coherency. The first two are

extensions of quality metrics from Olston et al. [107], whereas the third is new.

3. We design two techniques, extending and regenerating, for repairing a toy database

which a user can invoke when the current toy database is no longer satisfactory for

their needs.

4. We evaluate the SIQ system with real queries collected from an undergraduate database

class. First, we find that SIQ is able to generate toy databases of similar quality to

Olston’s algorithm for single queries (Section 5.7.1). Second, we find that the toy

database generated has varying levels of completeness as we vary how much of a

query session SIQ knows a priori (Section 5.7.2). Third, we see that SIQ is able to of-

fer coherent toy databases for query sessions while maintaining good completeness and

conciseness (Section 5.7.3). Finally, we show that SIQ generates toy databases that

are up to 85 times smaller than a näıve extension of Olston’s algorithm (Section 5.7.4).
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5.1 Definitions

In this section, we define a toy database, and articulate the properties that make a good

sequence of toy databases for a given query session. We define these properties formally

and illustrate the concepts with examples.

Definition 22 A database D′ is a toy database over a full database D, if D′ and D share

the same schema, D′ follows the primary and foreign key constraints of D, and the tuples

of D′ are a subset of the tuples of D.

Note that we restrict the toy databases that SIQ generates to the definition above.

However, we relax the definition for when we compare against Olston’s technique. The

Olston algorithm sometimes generates fake tuples in its generated sample, and does not

consider key constraints, and thus violates them occasionally.

Query sessions are defined as in Section 3.5. As an example, consider query 4 in Fig-

ure 5.3. In order to reach this query, the user begins with a simple SELECT * FROM Actor

query, then adds the gender predicate to the WHERE clause, then adds the Casts table to the

FROM clause along with the join predicate, and finally finishes with the GROUP BY clause. This

sequence of queries executed by the user forms a single query session. The properties we

define in this section are with respect to query sessions.

In this work, we assume that query sessions are append-only. Once a user has executed

a query qi as part of a session, any query qj that follows it (i.e., j > i) will have only

additional snippets of SQL added to it. For example, once the user adds a GROUP BY clause

to the query, he or she will not remove it. This assumption is required for the following

reason. When we generate a toy database, we aim to generate one that is illustrative of the

target query that the user is going to write. However, since we do not know the target query

a priori, we require a way to reduce the space of possible target queries. So, we assume that

query sessions are append-only, and therefore can consider only those queries that have a

superset of the current query’s snippets.

We represent each SQL query as a relational algebra query plan, and the SIQ system

works with these plans directly. To generate the query plan, we do not use the plan generated
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1
SELECT *

FROM Actor a

2

SELECT *

FROM Actor a

WHERE a.gender = ‘f’

3

SELECT *

FROM Actor a, Casts C

WHERE a.gender = ‘f’ AND a.id = c.pid

4

SELECT c.mid, count(*)

FROM Actor a, Casts C

WHERE a.gender = ‘f’ AND a.id = c.pid

GROUP BY c.mid

Figure 5.3: Example of a query session for which we generate a toy database.

by the query optimizer, but rather a query plan that we refer to as the canonical plan. The

canonical plan has load base table operators as leafs, above that it places joins first, then

selections, then aggregates (if any), and finally projections. We currently do not support

subqueries. SIQ presents to the user the toy database, the query plan, and how data is

transformed by the plan into the output. Due to the canonical order of operators, the

plans shown to the users have fewer variations than the plans generated by the optimizer.

Figure 5.4 presents an example of such a query plan.

We now define our three quality metrics. Each metric is measured with respect to a

sequence of toy databases and a query session. The first two metrics, completeness and

conciseness, are borrowed from Olston [108], and are defined per query plan. To extend

each metric to sessions, we simply measure its value for each query plan in the session

and take the mean. We choose to pick the mean to stay consistent with how Olston [108]

calculates the completeness and conciseness scores for a single query plan: by taking the

mean of the scores at each node in the query plan. The third metric, coherency, is measured

across all the query plans in a session.
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Figure 5.4: An example of a query plan with intermediate data.

5.1.1 Completeness

Completeness measures how well the sample data illustrates the various operators in the

query plan. Each operator requires different types of tuples in order to be illustrated. For

example, for a filter, a good sample is one which shows an example of a tuple that passes

the filter and one that does not. However, a second tuple that passes the filter would be

redundant. We say that the two tuples that pass the filter are in the same equivalence

class [108].

Similar to Olston’s work [108], for each operator, we define a set of equivalence classes

as follows.

1. Load base table: every input tuple is assigned to a single equivalence class E1. Our

goal is to show at least one example tuple for the table.

2. Filter: every input tuple that passes the filter is assigned to an equivalence class E1,

and those that do not pass are assigned to equivalence class E2. This ensures that we

show one tuple that passes the filter, and one that does not.
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3. Join: every output tuple is assigned to a single equivalence class E1. The goal is to

show at least one example of joining together tuples.

4. Project: every input tuple is assigned to a single equivalence class E1, thus demon-

strating the projection for at least one tuple.

5. Group by: every output record which has two or more underlying input records is

assigned to equivalence class E1. Our goal is to show an example of multiple input

records being combined into one.

The equivalence classes for each operator is defined similarly to its corresponding Pig oper-

ator in Olston’s work.

Definition 23 Given an operator o and a toy database D, the completeness score for the

operator, completeness(o,D) is the fraction of equivalence classes which contain at least

one tuple.

For example, in Figure 5.4, the join operator has completeness score 1.0, while the filter

operator has only 0.5 because there is no tuple that fails the filter. Note that not all input

or output records are assigned to an equivalence class. For example, for Group by, any

output tuple that has just one underlying tuple is not assigned to any class.

5.1.2 Conciseness

Conciseness measures the fraction of tuples that are actually necessary to illustrate an

operator’s semantics. More precisely,

Definition 24 Given an operator o and a toy database D, the conciseness score for the

operator, conciseness(o,D) is the fraction of equivalences classes divided by the total number

of example tuples at the operator.

Maximizing conciseness indirectly leads to minimizing the size of the toy database. In

Figure 5.4, the group-by operator has conciseness 1.0, while the join operator has a concise-

ness of 0.5 because there is only one equivalence class and two example tuples. Note how

in this example, it is not possible to achieve a completeness score of 1.0 at the group-by

operator while maintaining 1.0 conciseness at the join operator.
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We extend these definitions to queries and query sessions. Completeness is extended in

the following way. Conciseness is extended equivalently.

Definition 25 Given a query q and a toy database D, the completeness score for the query,

completeness(q,D) is:

completeness(q,D) =

∑k
i=0 completeness(oi, D)

n
,

where o1, . . . , ok are the operators in q.

Definition 26 Given a query session s = q1, . . . , qn and a sequence of toy databases D1, . . . , Dn,

the completeness score for the session, completeness(s, [D1, . . . , Dn]) is:

completeness(s, [D1, . . . , Dn]) =

∑n
i=0 completeness(qi, Di)

n
.

5.1.3 Coherency

The coherency quality metric rewards sequences where the toy database stays consistent

across iterations, throughout a query session. We define coherency as follows:

Definition 27 Given a query session s = q1, . . . , qn, and a sequence of toy databases

D1, . . . , Dn. The coherency is:

coherency(s, [D1, . . . , Dn]) =

∑n−1
i=1 Jaccard(Di, Di+1)

n− 1
,

where the Jaccard index of two sets Di and Di+1 is |Di∩Di+1|
|Di∪Di+1| .

More informally, coherency is the mean set similarity between every adjacent pair of

toy databases. The Jaccard index score is a popular metric used to measure the similarity

between two sets.

5.2 Näıve Approach

Our goal is to construct a toy database that is illustrative of all the queries in a user’s

current session after seeing only the first query in that session. We demonstrated in the

earlier chapters that past queries can help users articulate future queries. We propose to
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leverage this observation for the purpose of query illustration by building a toy database

that is illustrative of previous sessions, with the hypothesis that the toy database will also

be illustrative of future query sessions. We show in Section 5.7.3 that SIQ is indeed able to

generate toy databases, from a query log, that achieves good completeness and conciseness

for a random set of ten queries, which are not from the log.

As such, we reduce our problem to the following. Given a set of past query sessions, and

thus a set of queries Q1, . . . , Qn over a database D, construct a toy database that achieves

a high completeness and conciseness score across these queries.

These past query sessions can be either (1) all past query sessions in the log or (2) the

subset of past query sessions that are possible extensions to the query that the user has

typed so far. In Chapter 3, we showed how to effectively extract the latter subset of query

sessions. In this chapter, we assume the subset if given.

An initial approach is to convert each query into a Pig Latin dataflow program, to use

Olston’s technique[108] to illustrate each program, and then to take the union of all these

datasets. Though we do not try this technique directly, we implement a variation of our

algorithm where we use our technique on a per-query basis and then take the union of all

the samples. We compare our technique on a per query basis to the Olston technique in

Section 5.7.1, and find that the two techniques generate samples of similar quality for single

queries. After this comparison, we then show in Section 5.7.4 that this union-based tech-

nique results in toy databases that are orders of magnitudes larger than the toy databases

that SIQ generates.

Consider the following simple example. Suppose that in order to illustrate q1, we require

a single female actor tuple and thus we select actor(546420, Drew, Barrymore, f). Suppose

for q2 we need an actor with last name ’Roberts’ and thus we have selected actor(401326,

Arnold, Roberts, m). Taking the union, results in a toy database consisting of two tuples.

However, if we had been more careful, we could have satisfied both requirements with a

single tuple where the last name is ’Roberts’ and the gender is ’f’, such as actor(770247,

Julia, Roberts, f).
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QP1	   QP2	   QPn	  

S1	   S2	   Sn	  

S	  

DS	  

…	  

…	  

Full	  Database	  

Query	  Plan	  
Analysis	  

Instan7a7on	  

Figure 5.5: SIQ algorithm overview. Each QPi is a query plan, each Si is a symbolic
database, and DS is the generated toy database.

5.3 SIQ Approach

At a high level, the SIQ approach consists of two phases. In the first phase, the Query

Plan Analysis phase, we generate a symbolic database per query that describes the kind of

tuples required to illustrate each query. Informally, a symbolic database is like a database

except we have variables instead of values. We then merge the symbolic databases into one

large symbolic database. In the second phase, Instantiation, we find an instantiation of the

symbolic database consisting of real tuples from the database. Figure 5.5 summarizes this

process.

Before we continue, we introduce a few definitions. Note that symbolic databases are

defined similarly to incomplete databases in Imielinski and Lipski [81], as well as symbolic

databases in Binnig et al. [30]. Symbolic databases are most similar to v-tables as defined

by Imielinski and Lipski, but also allow constraints on variables (that only refer to a single
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variable), as well as constraints specifying that a pair of tuples may not be merged together.

Definition 28 A symbolic tuple is a k-tuple (v1, . . . , vk) where each vi is a variable. As-

sociated with each variable v is a set of constraints that we refer to as constraintsv. We

restrict constraintsv to be a conjunction of atomic predicates of the form: v op c where c

is a constraint and op is =, 6=, <,>,≤, or ≥.

Definition 29 A symbolic relation is a relation schema (defined traditionally) together with

a set of symbolic tuples.

Definition 30 A symbolic database S is a set of symbolic relations R1, . . . , Rn together

with a NoMerge set, which represents the pairs of tuples that may not be instantiated with

the same tuple. NoMerge is a set of pairs (t1, t2) where t1 and t2 are tuples that appear in

some symbolic relation Ri, 1 ≤ i ≤ n.

We refer to all the tuples in all the relations of a symbolic database S as tuples(S).

We now define what it means for a database instance to instantiate a symbolic database.

Definition 31 A database instance D instantiates a symbolic database S if there is a map-

ping m : tuples(S)→ tuples(D) such that:

1. if m(t) = t′, then t and t′ have the same schema,

2. if m((v1, . . . , vn)) = (c1, . . . , cn), then constraintsvi(ci) = true for 1 ≤ i ≤ n, and

3. if m(t1) = t and m(t2) = t, then (t1, t2) 6∈ NoMerge.

If the mapping is partial (i.e., it is undefined for some tuples in S), then we say that D

is a partial instantiation of S.

Note that there exist symbolic databases that can not be instantiated. For example, if

there is a symbolic tuple that says that the value of column c is v, and if there is no such

tuple in the full database.

As an example consider the symbolic database presented in Figure 5.6, but suppose

it only consists of the three Movie tuples m1,m2, and m3. If we disregard the NoMerge
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Figure 5.6: An example of a symbolic database.
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Figure 5.7: An incorrect instantiation of m1,m2,m3 from Figure 5.6. This is because
(m1,m2) ∈ NoMerge.

component, then the database shown in Figure 5.7 is a correct instantiation; we map m1

and m2 to t1, and m3 to t2. However, if we consider the NoMerge, then this is not a correct

instantiation because (m1,m2) ∈ NoMerge, and thus they can not be mapped to the same

tuple.

5.4 Query Plan Analysis

In this section, we describe the Query Plan Analysis (QPA) phase of the SIQ approach.

The algorithm we present takes a query plan Q as input and produces a symbolic database

S. The symbolic database S is such that if we can instantiate it fully with a database D,

then D should have perfect completeness with respect to Q.

Algorithm 4 outlines the QPA phase. The algorithm begins by constructing an empty

symbolic database (line 1), and this database gets populated as the algorithm proceeds.
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Algorithm 4 Query Plan Analysis (QPA) algorithm.
Input: query plan Q

Output: a symbolic database S

1: S ← empty symbolic database

2: toBeAnalyzed← [Q.root]

3: while toBeAnalyzed 6= ∅ do

4: op← toBeAnalyzed.dequeue()

5: for c ∈ equivalenceClasses(op) do

6: request(op, canonicalTuple(c), S)

7: end for

8: for op′ ∈ childrenOps(op) do

9: toBeAnalyzed.enqueue(op′)

10: end for

11: end while

12: return DS

The algorithm begins by processing the root operator in the query plan (line 2). It first

identifies the equivalence classes for the operator, and requests one tuple per equivalence

class (lines 5-7). For example, for the filter operator in Figure 5.4, it requests the tuple

(x1, x2, x3, x4 =‘f’, x5, x6, x7) and the tuple (y1, y2, y3, y4 6=‘f’, y5, y6, y7). When a tuple t is

requested from an operator op, the requested tuples are translated down through the query

plan until we know which tuples to add to the base tables in order for t to appear as part

of op’s intermediate data. We discuss its details shortly. Once we have added the tuples for

this operator, we then look at its children operator(s) and add them to our toBeAnalyzed

queue (lines 8-10). We repeat this process. So, in the second iteration we process the

children operator(s) of the root operator, and then the children operator(s) of the children

operator(s), and so on. We continue until toBeAnalyzed is empty, which means that we

have processed all the operators in our query plan.

The request method takes an operator op, a requested tuple t = (x1, . . . , xn) along with

its associated constraints, and a symbolic database S as input. Let’s suppose that t has

schema (c1, . . . , cn). It finishes when it has added a few tuples to S that cause t to appear

in the intermediate data at op.

1. If op is a load table operator for a relation R, then add t to the R relation in S.
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2. If op is a filter operator with predicate ci op
′ v for some value v, then request tuple

(x1, . . . , xi op
′ v, xi+1, xn) from the child operator.

3. If op is a group by operator, SIQ currently only supports the count aggregate, so then

it must be the case that the group by is on columns c1, . . . , cn−1 and that xn is an

integer (i.e., the desired count). Generate xn tuples t1, . . . , txn conforming to the child

operator’s schema, and copying over the variables from the columns c1, . . . , cn−1. Fill

the remaining columns with new variables (with no constraints). Call request on the

child operator for each ti. Afterward, add every pair (ti, tj) to the NoMerge list for S.

4. If op is a cartesian product operator, and the schemas of the children operators op1

and op2 are c1, . . . , cj and cj+1, . . . , cn, respectively, then request (x1, . . . , xj) from op1,

and (xj+1, . . . , xn) from op2.

5. If op is a join operator, the schemas of the children operators op1 and op2 are c1, . . . , ck

and ck+1, . . . , cn respectively, and the join predicate is ci = cj , then request (x1, . . . , xi, . . . , xk)

from op1, and (xk+1, . . . , xj−1, xi, xj+1, . . . , xn) from op2. Note how we have replaced

the reference to variable xj with a reference to xi instead.

6. If op is a project operator and the underlying schema is c1, . . . , cn, cn+1, . . . , cm, then

request (x1, . . . , xn, y1, . . . , ym−n) from the child operator, where each yi is a new

variable (for 1 ≤ i ≤ m− n).

5.5 Instantiation

Given a symbolic database S and the full database instance, the goal of the Instantiation

phase is to find a partial instantiation D of S that includes as many tuples of S as possible

in its mapping and has few tuples. We aim to instantiate many tuples of S with the goal of

achieving high completeness in future sessions, and for few tuples in D as this often leads

to higher conciseness.

We begin by describing an algorithm that finds a partial instantiation without concern

for the size of D. We then extend this to a greedy algorithm that is able to find a small

instantiation.
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SELECT *

FROM Actor a1, Actor a2,

Casts c1, Casts c2,

Movie m1, Movie m2, Movie m3

WHERE a1.gender=‘f’ AND a2.lname=‘Roberts’

AND m3.year > 1990

AND a1.id = c1.pid AND a1.id = c2.pid

AND c1.mid = m1.id

AND c2.mid = m2.id

LIMIT 1

Figure 5.8: SQL query translation of Figure 5.6.

5.5.1 Finding Any Instantiation

We begin by describing a direct translation technique that takes a single symbolic database

S and translates it into a single SQL query. The output of this SQL query is the set of

all instantiations of S over the underlying database. We follow up with a technique which

generates multiple SQL queries, which is both faster and is able to find partial instantiations

for symbolic databases that can not be fully instantiated.

To demonstrate the translation from symbolic database to SQL query, we show the

translation for an example symbolic database. Consider the symbolic database S in Fig-

ure 5.6. The translation works as follows. For each symbolic tuple in S, we add a table

to the FROM clause. From there, every constraint for a variable is added to the query as

a predicate in the WHERE clause. For example, the constraint x4 = ‘f ′ is translated to the

predicate a1.gender = ‘f’. Next, multiple occurrences of a variable are also translated into

predicates. More specifically, if a variable appears in two cells, then we add a predicate to

enforce that these two columns are equal. For example, we can see in Figure 5.6 that x1

appears in a1’s id column but also in c1 and c2’s pid column. This is translated into the

equality predicates a1.id = c1.pid and a1.id = c2.pid. Finally, we select all the columns
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Figure 5.9: Graph representing the symbolic database in Figure 5.6.

and add the LIMIT clause because we only need one instantiation of the symbolic database.

We refer to this algorithm as findFullInstantiation in the remainder of this section.

Optimization: The problem with generating a single SQL query is that the number

of joins in the query grows linearly with the number of symbolic tuples. Thus, a symbolic

database with n tuples results in a SQL query with an n-way join. Furthermore, if there

is any part of the symbolic database that can not be instantiated, then the query returns

no result. However, there is no reason that we should limit ourselves to generating a single

SQL query.

In this section, we describe a better algorithm for instantiating a symbolic database S

that executes multiple SQL queries, which we call simply the findInstantiations algorithm.

The technique is outlined in pseudocode in Algorithm 5. The method takes as input the

symbolic database S and outputs a database DS that instantiates S. First, it represents

S as a graph G (lines 1-3). There is a vertex for every tuple (line 1) and there is an edge

between two tuples if either they share a variable or if they can not be merged (line 2).

Figure 5.9 shows this graph representation for the symbolic database found in Figure 5.6.

We then partition G into its connected components (line 4). Each connected component

defines a smaller symbolic database consisting only of the tuples in the component (line

5). We then execute the findFullInstantiation algorithm, as described above, on each
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Figure 5.10: Overview of technique for building a small toy database.

connected component and take the union of these instantiations (lines 6-9). Finally, we

return the resulting database DS (line 10).

Algorithm 5 findInstantiations algorithm breaks symbolic database into connected com-

ponents.
Input: symbolic database S

Output: a database DS that instantiates S

1: V ← {t : t is a symbolic tuple in S}

2: E ← {(u, v) ∈ V 2 : (vars(u) ∩ vars(v) 6= ∅) ∨ noMerge(u, v)}

3: G← (V,E)

4: {G1, . . . , Gn} ← connectedComponents(G)

5: {S1, . . . , Sn} ← {Si : symbolic database consisting of tuples Gi.V }

6: DS ← ∅

7: for i ∈ [1 . . . n] do

8: DS ← DS ∪ findFullInstantiation(Si)

9: end for

10: return DS

5.5.2 Finding a Small Instantiation

In this section, we describe how to find a small instantiation of a symbolic database. The

technique utilizes the algorithms from the above section.

At a high-level, we build the instantiation iteratively, using a greedy algorithm. Given

the symbolic database S, we first break it into its connected components s1, . . . , sn. Then

we begin with an empty toy database D0. In each iteration, we do the following. For every
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pair of tuples ti, tj from the full database D (that are not already in the toy database), we

count the number of connected components that would be successfully instantiated if we

were to add the tuples to the toy database. It is not computationally feasible to compute

this for every pair, so we use sampling, which we describe in the Optimization part at the

end of this section. Then we pick the pair of tuples with the highest such score to add.

We repeat the process until the number of instantiated connected components does not

increase. The reason we consider pairs of tuples, instead of one tuple at a time, is to reduce

the chance of terminating early due to a local minimum. Informally, considering two tuples

at a time makes the algorithm less greedy. Figure 5.10 summarizes this process.

We now describe the algorithm in more detail. Algorithm 6 outlines the pseudocode.

Algorithm 6 findSmallInstantiation algorithm.
Input: symbolic database S

Output: a database DS that instantiates S

1: DS ← ∅

2: {G1, . . . , Gn} ← connectedComponents(G)

3: U ← {Si : symbolic database consisting of tuples Gi.V }

4: while U 6= ∅ do

5: t1, t2 ← findPairThatInstantiatesMostCCs(U,DS)

6: score← |{Si ∈ U : findFullInstantiation(Si, DS ∪ {t1, t2}) 6= ∅}|

7: score1← |{Si ∈ U : findFullInstantiation(Si, DS ∪ {t1}) 6= ∅}|

8: if score > 0 then

9: DS ← DS ∪ {t1}

10: if score > score1 then

11: DS ← DS ∪ {t2}

12: end if

13: end if

14: instantiated← {Si ∈ U : findFullInstantiation(Si, DS) 6= ∅}

15: U ′ ← U \ instantiated

16: if |U ′| = |U | then

17: terminate

18: end if

19: end while

20: return DS

The findSmallInstantiation algorithm starts with the empty toy database DS (line 1).

Next, it identifies the connected components of the symbolic database (lines 1-3). Hence-
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forth, we refer to the connected components as cc’s, for short. We maintain the list of

uninstantiated cc’s as U . Next, while there exists some uninstantiated cc, we repeatedly

add tuples to our sample (the while loop from lines 4-19). Each iteration of this while loop

begins by identifying the pair of tuples that, if added to the sample DS , would instantiate

the largest number of cc’s. In other words, we are finding:

(t1, t2)← argmax
ti,tj

|{Si ∈ S : (DS ∪ {t1, t2}) instantiates Si}|.

This findPairThatInstantiatesMostCCs step (line 5) is implemented using SQL queries,

as follows. First, for every pair t1, t2, we count the number of cc’s that they can instantiate

together with the help of the existing sample DS . We call this the teamScore. We compute

the teamScore as follows. For a given cc, if we take the SQL query that finds its instan-

tiations (as in Figure 5.8), with a few modifications, we can find all pairs of tuples, that

if added to the sample, would satisfy the cc. We do this translation for every cc, take the

union of all the results, and group by the tuple identifier columns, the oid’s, of the pair of

tuples. This results in a long and slow SQL query however. We describe two optimization

techniques at the end of this section.

The second score we compute is the individualScore, which is the number of cc’s that

either t1 or t2 is able to instantiate with the existing sample. We use similar technique as

above to find the cc’s that can be instantiated by adding a single tuple. Then for each pair

of tuples, we take the union of their respective cc’s, and the size of their union gives us their

individualScore. We then add the teamScore and the individualScore to give us the final

score for each pair. We take the pair with the highest score (line 6).

If the score is greater than 0 (i.e., at least some additional cc’s are instantiated), then

we add t1 to the sample (lines 8,9). It is sometimes the case that the score for a pair of

tuples t1 and t2 is exactly the same as the score of adding a single tuple t1. For example,

if t1 alone instantiates k cc’s and t2 instantiates a subset of those cc’s, then the combined

score of the pair is k. In such cases, we simply add t1 to the sample and discard t2 for this

iteration (lines 10-12).

At the end of this iteration, we identify all the cc’s that are now instantiated (line 14),

compute the set difference with U (line 15), and call this U ′. If U ′ is the same size as U
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(i.e., no additional cc’s were instantiated in this round), then we stop the algorithm (lines

16,17). Otherwise, we continue and repeat this process.

Optimization: We describe three techniques for optimizing the query that finds the

teamScore for every pair of tuples. First, many cc’s are repeated across the query log, so

instead of repeating every occurrence in our SQL query, we simply incorporate the number

of repetitions into our query. Thus, when we group by the pair of oid’s, instead of counting

(the number of cc’s), we take the sum of the numbers of repetitions. Second, not every cc

needs to be included in this computation in every iteration. Therefore, in a given iteration,

we include in the SQL query only the most popular cc’s until we have covered at least k% of

the total number of cc’s. Our current implementation has k set at 50%, but this threshold

is easily adjustable. Finally, our third optimization is to, for every cc, include only 1
x of the

pairs of tuples, that if added would satisfy the cc. We do this by adding a predicate to the

SQL query that says (oid1 + oid2)%x = 0. Though this will fail to find some optimal pairs

of tuples, it is better than doing a simple LIMIT on the query because if a pair of tuples

satisfies two cc’s and it appears in the list for one of the cc’s, then it is guaranteed to appear

in the list for the second cc as well. Thus, informally, we are using the limited spots more

efficiently.

5.6 Repairing the toy database

Despite the quality of the toy database, it will sometimes be insufficient at illustrating the

user’s query session. As such, repairing a toy database is of high importance. In this work,

we support two techniques for repairing a toy database: regenerating and extending. The

repair process is currently user-invoked.

We begin by defining the notion of a potential target query for a query q. We say that

a query q′ is a potential target query if q′ appears in the query log, and can be written by

starting with q and only adding snippets of SQL. This is where our assumption, which says

that sessions are append-only, is useful.

Regenerating a toy database involves discarding the current sample and generating a

new toy database. For this approach, we can reuse the existing algorithm as described in

Algorithm 6. However, we now have additional information from the user: the query session
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thus far. Therefore, when generating the new sample, we no longer consider the full query

log. We only consider queries that are potential target queries of the user’s current query.

Extending a toy database consists of starting with the existing current sample, and

extending it until we have a high-quality toy database again. Though this technique may

lead to lower conciseness, it will result in better coherency across iterations. For extending,

we can again reuse the algorithm described in Algorithm 6. However, instead of starting

with the empty sample (line 1), we begin with the existing sample.

5.7 Evaluation

To evaluate SIQ, we run four different experiments, using the IMDB database along with a

query log over it. We used this dataset for evaluating SnipSuggest, and thus we described

it earlier in Section 3.6.

First, we compare the SIQ algorithm and the Olston technique for single queries. We

examine the sample datasets generated by the two algorithms for six different queries of

varying complexity. We show that the SIQ algorithm performs comparably to the Olston

algorithm for single queries.

In our second experiment, we study how knowing the future can assist in generating toy

databases. For a given query session, we vary how much of the query session we know a

priori, to see the impact that this knowledge has on the completion and conciseness of the

dataset.

In our third experiment, we compare SIQ to using the Olston algorithm at every step of

a query session. We do this for ten randomly selected query sessions, and we examine the

completeness, conciseness, and coherency of the sequence of toy databases.

Finally, we compare the SIQ technique to the union-based technique that we described

in Section 5.2. We measure how the size of the toy database changes as the workload sizes

increases.

5.7.1 Single-Query Case Study

In this section, we consider six different queries of varying complexity, and perform a case

study of the two techniques. We use the SIQ technique to generate a toy database given



114

Query Toy Database Generated

SELECT *

FROM Actor a

Actor:

id fname lname gender

3244 rodney afif m

Com: 1.0 Con: 1.0 Real: 1.0

a= LOAD ‘Actor.csv’ USING PigStorage(‘,’)

AS (id, fname, lname, gender);

ILLUSTRATE a;

Actor:

id fname lname gender

5080 Mohamed Al-Fayed m

Com: 1.0 Con: 1.0 Real: 1.0

Figure 5.11: The samples generated by the SIQ technique versus the Olston technique for
a simple SELECT * query [Query 1].

a single query, and we do the same with the Olston approach. We measure conciseness,

completeness, and realism (the fraction of tuples in the toy database that appear in the

full IMDB database). Note that the definition of a toy database allows only databases

with 100% realism. However, because Olston’s technique sometimes generates fake data,

we allow fake data and measure realism in this experiment.

Query 1: We begin with a simple SELECT * query. Figure 5.11 shows the query, its

translation into Pig, the samples generated by the two techniques, and the quality scores

for the samples. We see that both techniques generate just one tuple to illustrate this query,

thus achievning a score of 1.0 for completeness, conciseness, and realism (Com, Con and

Real in the figure, respectively). We truncate certain column values for cleaner presentation.

Query 2: Next, we examine a query over the Movie table with a simple filter on the

movie name in Figure 5.12. Even with such a simple query, we notice a few interesting

points. First, the sample generated by the SIQ algorithm has perfect completeness, but has

a conciseness of 0.75. The reason is that there are two operators in the query. The first

is the LOAD operator, which requires only a single tuple to illustrate its semantics and thus

the sample has a conciseness of 0.5 for this operator. Whereas for the FILTER, we need both

tuples and the conciseness is 1.0. Thus, the total conciseness is (0.5 + 1.0)/2 = 0.75, which

is in fact the highest conciseness we can have while achieving perfect completeness.
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Query Toy Database Generated

SELECT *

FROM Movie m

WHERE name = ‘Cold Mountain’

Movie:

id name year

66947 Cold Mountain 2003

289197 Sawing Wood 1896

Com: 1.0 Con: 0.75 Real: 1.0

m= LOAD ‘Movie.csv’ USING PigStorage(‘,’)

AS (id, name, year);

f = FILTER m BY name == ‘Cold Mountain’;

ILLUSTRATE f;

Movie:

id name year

239692 Old Maid’s First 1903

239692 Cold Mountain 1903

Com: 1.0 Con: 0.75 Real: 0.5

Figure 5.12: The samples generated by the SIQ technique versus the Olston technique for
a simple query with a single filter [Query 2].

The second interesting point is that the Olston algorithm generates fake data to illustrate

this query. This happens because when the algorithm is generating a toy database, it begins

with an initial sample of the original dataset. Any toy database generated by Olston’s

algorithm consists of tuples that either appear in this initial sample or are fake. Therefore,

since there is no ‘Cold Mountain’ tuple in this initial sample, the algorithm constructs such

a tuple itself.

The third interesting pattern follows from the second. While generating the fake tuple,

the Olston algorithm has violated a primary key constraint (i.e., there are two distinct

tuples with the same id in the Movie table).

Query 3: In Figure 5.13, we examine a query with two predicates in the WHERE clause.

Note that we now need three tuples. One that fails both predicates, one that satisfies the

‘Julia’ predicate but fails the ‘Roberts’ predicate, and one that satisfies both predicates.

The SIQ algorithm generates such tuples, thus achieving a completeness score of 1.0.

The conciseness is 0.66, which, like Query 2, is the maximum conciseness we can achieve

while maintaining a completeness of 1.0.

The Olston algorithm also generates a sample with completeness 1.0 and conciseness
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0.66, but again with the help of fake data (which again leads to a primary key violation).

Query Toy Database Generated

SELECT *

FROM Actor a

WHERE fname = ‘Julia’ AND

lname = ‘Roberts’

Actor:

id fname lname gender

639883 Julia Griffin f

4936 E. Akopov m

770247 Julia Roberts f

Com: 1.0 Con: 0.66 Real: 1.0

a= LOAD ‘Actor.csv’ USING PigStorage(‘,’)

AS (id, fname, lname, gender);

f1 = FILTER a BY fname == ‘Julia’;

f2 = FILTER f1 BY lname == ‘Roberts’;

ILLUSTRATE f2;

Actor:

id fname lname gender

3542 Vatentin Agopov m

3542 Julia Roberts m

3542 Julia 0 m

Com: 1.0 Con: 0.66 Real: 0.33

Figure 5.13: The samples generated by the SIQ technique versus the Olston technique for
a simple query with two filters [Query 3].

Query 4: For the fourth query, we include a join. Figure 5.14 shows the query and the

samples. The SIQ algorithms sample is simply two tuples that can be joined together. The

Olston algorithm is similar, but somehow includes both tuples twice (our belief is that this

is due to a bug).

Query 5: We now also include a GROUP BY clause. The SIQ algorithm generates a

sample with perfect completeness, and the maximal possible conciseness in this case. If we

improved the Olston technique to remove duplicates, it would achieve a conciseness score

of 0.88 (higher than the SIQ algorithm’s 0.625). However, this would come at the cost of a

foreign-key violation.

Query 6: Our final query includes a three-way join, grouping, and an additional filter

(Figure 5.16). Once again, we see that SIQ’s sample achieves a 1.0 completeness and a lower

conciseness (that is still the highest possible conciseness that we can achieve).



117

Query Toy Database Generated

SELECT *

FROM Actor a, Casts c

WHERE a.id = c.pid

Actor:

id fname lname gender

3244 Rodney Afif m

Casts:

pid mid role

3244 137560 Marty Vella

Com: 1.0 Con: 1.0 Real: 1.0

a= LOAD ‘Actor.csv’ USING PigStorage(‘,’)

AS (id, fname, lname, gender);

c= LOAD ‘Casts.csv’ USING PigStorage(‘,’)

AS (pid, mid, role);

j = JOIN a BY id, c BY pid;

ILLUSTRATE j;

Actor:

id fname lname gender

938 Thomas Abernathy m

938 Thomas Abernathy m

Casts:

pid mid role

938 52432 Dancer

938 52432 Dancer

Com: 1.0 Con: 0.42 Real: 1.0

Figure 5.14: The samples generated by the SIQ technique versus the Olston technique for
a query with a join [Query 4].

Meanwhile, for our Pig translation, we alter the query slightly to include a filter that

says year == ’2000’. Due to irregular delimiters, the Movie.csv file is parsed in such a

way that the year column is parsed as a string. Thus, we could not include the numeric

predicate. The Olston technique achieves a higher conciseness than the SIQ technique, but

is unable to achieve a perfect completeness score as SIQ did.

This case-by-case study of the above six different queries shows us the subtle interactions

between completeness and conciseness. It also shows us that, even for single queries, the

SIQ algorithm is able to generate datasets of similar and sometimes even better quality than

the Olston technique. The SIQ algorithm always prioritizes completeness over conciseness.

In contrast, the Olston algorithm sometimes achieves higher completeness or conciseness,

but at the cost of realism and by violating key constraints.
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Query Toy Database Generated

SELECT md.did, count(*)

FROM Movie m, Movie Directors md

WHERE m.id = md.mid

GROUP BY md.did

Movie:

id name year

21725 Asfaltlggerne 1897

45989 Brandvsnet rykker ud 1897

Movie Directors:

did mid

22604 21725

22604 45989

Com: 1.0 Con: 0.625 Real: 1.0

m= LOAD ‘Movie.csv’ USING PigStorage(‘,’)

AS (id, name, year);

md= LOAD ‘MDs.csv’ USING PigStorage(‘,’)

AS (did, mid);

j = JOIN m BY id, md BY mid;

g = GROUP j BY (did);

o = FOREACH g GENERATE group, COUNT(j);

ILLUSTRATE o;

Movie:

id name year

227046 Nakhet tqveni sakhe 1908

Movie Directors:

did mid

1671 227046

1671 124361

1671 227046

Com: 1.0 Con: 0.42 Real: 1.0

Figure 5.15: The samples generated by the SIQ technique versus the Olston technique for
a query with a join and a GROUP BY [Query 5].

5.7.2 How Knowing the Future Can Help

In this experiment, we isolate the challenge of not knowing the future. The goal of this

experiment is to demonstrate that, indeed, knowing the user’s target query a priori can

help us generate a better sample dataset versus generating a dataset based only on the

user’s current query.

For this experiment, we test for the following scenario. Suppose the following is the

user’s target query:

SELECT d.fname, d.lname, m.name, m.year

FROM movie m, movie_director md, director d, genre g

WHERE m.id = md.mid AND md.did = d.id AND
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Query Toy Database Generated

SELECT d.fname, d.lname, count(*)

FROM Directors , Movie Directors md,

Movie m

WHERE d.id = md.did AND

md.did = m.id AND

m.year > 2000

GROUP BY d.fname, d.lname

Movie:

id name year

93272 Dreaming 1990

323029 Taggart: fire, burn 2002

Movie Directors:

did mid

1167 93272

1167 323029

Director:

id fname lname

1167 Mike (I) Alexander

Com: 1.0 Con: 0.71 Real: 1.0

d = LOAD ‘Dir.csv’ USING PigStorage(’,’)

AS (id, fname, lname);

md= LOAD ‘MDs.csv’ USING PigStorage(‘,’)

AS (did, mid);

m= LOAD ‘Movie.csv’ USING PigStorage(‘,’)

AS (id, name, year);

j1 = JOIN d BY id, md BY did;

j2 = JOIN j1 BY mid, m by id;

f = FILTER j2 BY year == ’2000’;

g = GROUP f BY (fname, lname);

o = FOREACH g generate group, COUNT(f);

illustrate o;

Movie:

id name year

220510 Move On 1903

Movie Directors:

did mid

44 220510

Director:

id fname lname

44 A.C. Abadie

Com: 0.79 Con: 1.0 Real: 1.0

Figure 5.16: The samples generated by the SIQ technique versus the Olston technique for
a query that has a three-way join and a GROUP BY [Query 6].
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Figure 5.17: Completeness increases as we learn more about the user’s queries in the session.

g.mid = m.id AND g.genre = ’Film-Noir’

Suppose the user writes a simple SELECT * FROM movie query as her first query. Then,

she adds the additional tables to the FROM clause, one table at a time. She proceeds to do

the same with the WHERE clause (one predicate at a time), and as her final step she changes

the SELECT clause to its final form. In total, there are nine queries in the query session.

Figures 5.17 and 5.18 plot the completeness and conciseness, respectively, as we increase

the number of queries in the session that we generate the toy database for. We see that

there is a tradeoff between completeness and conciseness when generating samples to support

every query of the session. Namely, as we increase the number of queries in the session that

we illustrate, the completeness score increases (Figure 5.17). However, we also see that if

we illustrate the whole query session at once the conciseness decreases (Figure 5.18).

5.7.3 Tradeoff of Coherency versus Completeness and Conciseness

In our third experiment, we compare using SIQ that generates a single toy database for

a whole session, to the Olston technique that generates a toy database at every step of

the query session. We do this for ten randomly selected query sessions, and report the
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Figure 5.18: Conciseness decreases if we try to illustrate too many queries in the session.

completeness, conciseness and coherency scores.

For the SIQ part of the comparison, we first generate a toy database for a workload

consisting of 500 sessions. Then we measure the quality of this single toy database for the

ten random test sessions (which do not appear in the workload that SIQ used to generate

the sample) and report the average completeness and conciseness. Note that with SIQ, in

this experiment, the coherency score is always 1.0. Figures 5.19 and 5.20 report the results.

The x-axis varies the number of tuples we allow in the toy database, and the y-axis reports

the completeness and conciseness, respectively. For example, we see that when k = 10, SIQ

achieves a completeness score of 0.66, and a conciseness score of 0.82.

For the Olston part of the comparison, we generate a toy database per query in the

session. The first row in Figure 5.21 reports the average completeness, conciseness, and

coherency scores for the Olston technique. The second row summarizes the results from

Figures 5.19 and 5.20 for SIQ when k = 10.

From these results, we see that the conciseness and completeness scores decrease a non-

trivial amount in order to achieve full coherency. It would be interesting to see if we can

generate toy databases with better conciseness and completeness when allowing repairs, at
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Figure 5.19: Average completeness scores for ten random sessions for SIQ-generated toy
database. Coherency is 1.0.
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Figure 5.20: Average conciseness scores for ten random sessions for SIQ-generated toy
database. Coherency is 1.0.
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Technique Completeness Conciseness Coherency

Olston 0.98 0.79 0.28

SIQ (top 10) 0.66 0.82 1.0

Figure 5.21: Average completeness, conciseness and coherency scores for the ten random
sessions.

the price of coherency. However, we leave this for future work.

5.7.4 Size of Toy Database as Workload Grows

In this section, we investigate how the size of the toy database increases as we increase

the number of queries in the workload. We compare two techniques. The first is the SIQ

algorithm whose core algorithm is described in Algorithm 6. The second algorithm is the

union-based algorithm that we discussed in Section 5.2. Remember, that we generate a

dataset per query and take the union across all the queries in the workload. To generate the

dataset per query, we actually use the SIQ algorithm itself (instead of the Olston algorithm),

and because we have shown in Section 5.7.1 that SIQ is similar or better than the Olston

technique for single queries, we believe that this is a fair comparison.

Figure 5.22 summarizes the results of this experiment. The x-axis (log-scale) shows

the number of queries in the workload (i.e., the number of queries that the toy database

illustrates). The y-axis reports the average number of tuples per table in the toy database.

We chose to use this measure, instead of conciseness for this experiment, because we wanted

a measure that is independent of queries and query sessions. We see from the figure that

the union-based algorithm generates toy databases that are an order of magnitude larger

than the SIQ algorithm’s toy databases. For example, for 512 queries, SIQ generates a

toy database consisting of an average of 7.75 tuples per table, whereas the union based

algorithm generates 85 times more tuples (665 tuples).
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Figure 5.22: Size of toy database generated by SIQ algorithm versus union-based algorithm.

5.8 Conclusion

In this chapter, we examined the problem of query debugging, which is currently a slow and

cumbersome process. Inspired by users who construct their own toy database to work with

during the query debugging process, we designed and built the SIQ system for automating

toy database construction. Given a query log of past query sessions, SIQ’s goal is to generate

a toy database that is small, and illustrative of these past sessions. We evaluated SIQ and

found that it is able to generate samples that are more effective than simply using an existing

technique which generates a toy database per query in a session, and generates significantly

smaller toy databases than a union-based technique that generates a sample per past query

and takes the union of all these samples.
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Chapter 6

FUTURE DIRECTIONS

In this chapter, we discuss areas for future work. We organize the discussion around

possible extensions for each of the three different projects.

6.1 Potential Directions for SnipSuggest

SnipSuggest employs a fairly generalizable algorithm for selecting its recommendations. As

such the recommendation technique could be applied in different contexts. First, it could

be easily extended to support other querying languages, including visual query building

tools. Though SnipSuggest’s original goal was to help those struggling with SQL concepts,

it proved to be also helpful to users who are unfamiliar with the underlying schema. There-

fore, we believe that the technique could also be used for programming; the system could

recommend relevant parts of the application programming interface (API) to the user. This

new problem would pose additional challenges, however. For example, with SQL, the system

knows the semantics of each operator, whereas this is not the case with many imperative

languages (such as Java). Second, if the recommendations are over an API that is still

evolving, this will create a whole new set of challenges (whereas schemas tend to be more

persistent).

One drawback of the SnipSuggest system is that it relies on an extensive query log. If

the query log is small or even non-existent, the recommendation techniques that use only

popularity (while ignoring the context), or that use only the schema of the database may

prove to be more helpful. As such, a useful extension to SnipSuggest would be to add

support to self-adjust among the different techniques as the query log evolves over time.

A contrasting problem is if the query log is too large and too diverse. This problem may

occur when there is a single shared database, and many different groups of people are writing

queries over it. If there are too many trends and patterns in the log, then maintaining high
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recommendation accuracy is challenging. In such a setting, a possible direction to pursue

would be to cluster together users with similar querying patterns. Therefore, when a new

user arrives, we can quickly determine which cluster the user belongs to, and thus offer better

recommendations. Similarly, querying patterns may evolve over time. For example, tables

that were explored together in the past may no longer be of interest to current users. Even

schemas occasionally are modified, thus invalidating past queries. Therefore, techniques for

gradually expiring queries over time may prove necessary in long-running settings.

6.2 Potential Directions for PerfXplain

Like SnipSuggest, PerfXplain’s language for specifying performance queries and it’s algo-

rithm for generating explanations are general. As such, the technique could be applied to

different settings. For example, with the PerfXplain technique, one could debug the per-

formance of SQL queries, Java programs, and so on. The key challenge to these extensions

would be in picking an effective set of features, that are both predictive of the duration of

a query or program, but also not too specific.

Another interesting perspective to explore with PerfXplain is the relationship between

optimizations and explanations. In some cases, the user does not care to understand why

a job was slower than another job. They simply want the job to execute quickly. One

interesting question here is how do we translate an explanation into an optimization? How-

ever, not all explanations are actionable. For example, a job may have been slower because

it was executed when the cluster was busy or because the input file was large. So, how

can we distinguish between explanations that are actionable versus not? More generally,

is it possible to build an automatic optimization system on top of an effective explanation

system such as PerfXplain?

Sometimes the explanations generated by PerfXplain need explaining. For example,

saying that despite having different input sizes, two jobs had a similar duration because the

block size was large may not be helpful to a user who does not understand what a block

size is. This calls for a system with more support for such non-experts. Perhaps associated

with each parameter should be a short explanation of what the parameter means (written

by experts), typical values seen for this parameter, as well as how to change its value (if
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possible). Such an integrated system would require more user-effort to design and build, but

would probably prove more helpful to users in the long run. It could even be constructed

over time. Namely, the system could support a way to request additional explanations, and

so when a user sees an explanation that they do not understand, they can trigger such a

request.

PerfXplain currently supports queries about pairs of jobs. A natural question that arises

from this is: how do we support questions about single jobs? An example is a query that asks

why a job was fast or slow, without giving reference to a second job. In such settings, perhaps

PerfXplain could find such a point of reference (a similar job that performed differently),

and then utilize its existing algorithm for then generating the explanations. There are

several challenges here. First, without another job to compare against, how does a user

specify fast or slow? Namely, when there is another job in the query, the user can say that

they expected the job to be faster than the other job or slower than the other job. Does the

user now need to specify exact values? Second, if we do choose to automatically identify

the job of reference - how do we pick it among multiple candidates? Or perhaps it makes

more sense to present all candidates to the user and have him or her pick it?

6.3 Potential Directions for SIQ

In the current SIQ system, we support two approaches to repairing a toy database: extending

and regenerating. There are however many more options that should be explored and

compared. A simple one is to allow the user to modify the sample by adding tuples, deleting

tuples or editing existing tuples. Another possible technique is to find a sample that is a

minimal edit from the existing one. This is similar to the extending technique, except that

we are now also allowed to delete tuples from the sample. Another interesting question

is when to repair the toy database. Currently, we repair when the user requests a repair,

however it may be interesting to investigate different techniques for automatically detecting

a good time to repair the sample.

In this work, we ruled out the option of utilizing fake tuples because we were concerned

about confusing the user. For example, a distracting scenario is one in which the query

returns a result over the sample dataset but no result when executed over the full dataset.
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However, by allowing fake data, we can generate samples that are smaller or more complete.

This leads us to several interesting challenges including: how do we incorporate fake tuples

into our current algorithm, when do we choose to use fake data versus real data, and how

do we communicate to the user which data is fake and which is real, if we communicate this

at all?

The SIQ system improves the query debugging process by reducing the time it takes

to execute the query in each iteration, and the time it takes for the user to examine and

understand the results. However, it still conforms to the existing query debugging model,

where the user modifies the query in every iteration, executes the query over the dataset,

examines the output, and returns to editing the query. An exciting direction to pursue

would be to extend SIQ to provide a more seamless interaction between the query and the

sample data. Why limit the user to modifying the query by only interacting with the query

text itself? The user should be able to specify what they want by selecting tuples that

they want in their output, as well as tuples that they want eliminated. There are several

challenges. First, what is the space of hints that should be supported? Examples of hints

are ‘I want this tuple’, ‘I do not want this tuple’, ‘I want more tuples like this’, and so

on. Second, how should the user communicate such hints to the system? Third, such hints

may be ambiguous as to what change is required to the query. Namely, there may be many

different edits that are compatible with the hints. Therefore, the system would need a way

to help the user navigate through this space of options.
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Chapter 7

CONCLUSION

The goal of this thesis work was to make database systems easier to use for non-expert

database users. We focused on the challenges that users face repeatedly, every time he or

she wishes to ask a question over the data.

We investigated three different challenges that are commonly faced by users. First, we

addressed the problem of query composition. We wanted to make writing SQL queries easier

for those who are either unfamiliar with SQL or the underlying database schema. As such,

we designed and built SnipSuggest, a smart autocomplete system for SQL. SnipSuggest is

a context-aware recommendation system that is able to recommend tables, views, table-

valued functions in the FROM clause, predicates in the WHERE clause, columns in the GROUP BY

clause, and more. The key idea behind SnipSuggest is to use a log of past queries to try

make an informed guess about what query the user wants to compose and recommend SQL

snippets from these guesses. We evaluated SnipSuggest on two different query logs, and

found that it is able to generate recommendations with up to 144% higher accuracy than

competing techniques.

The second challenge we addressed is that of understanding the performance of queries.

Our focus in this project was on MapReduce due to its growing popularity among non-expert

users, and due to the large number of configuration parameters and other factors (e.g., load

conditions) that can affect the duration of a MapReduce job. In the PerfXplain work,

our first contribution is a simple language that supports queries of the form ‘I expected

job X to be faster than job Y because it processed much less data. However, it took

a similar amount of time. Why?’ The second contribution of the work is an algorithm

that is able to automatically generate explanations to such performance queries. To this

end, we also defined the notion of a performance explanation as well as three metrics to

measure the quality of an explanation (precision, generality, and relevance). Finally, we
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evaluated PerfXplain on a log of MapReduce jobs executed on Amazon EC2. We found

that PerfXplain is able to generate high-quality explanations, compared to two non-trivial

algorithms that we also implemented. It also offered a good trade-off between the precision

and generality of the explanations it generated.

Finally, the third challenge we investigated was that of query debugging. Currently,

query debugging is a slow process that many users struggle with. It is a slow, iterative

process where each iteration involves writing or modifying a SQL query, waiting for the cur-

rent query to execute over the large dataset, and examining the, often large, output of the

query to understand its effects before further refining the query. To ease this process, some

users construct a sample database with which they interact until they have finished con-

structing their query, at which point they execute the query over the full dataset. However,

constructing a sample database that is helpful in illustrating the semantics of a query can

be challenging. To address this problem, we design and implement the SIQ system, which

can automatically generate a sample database that is illustrative of queries in a workload.

We show that SIQ is able to generate samples that are of similar or higher quality than

existing state-of-the-art techniques for single queries. More importantly, we show that it is

able to generate significantly smaller samples than a näıve extension of existing techniques,

for varying workload sizes. We also explore two different techniques for repairing a data

sample when it is no longer sufficient for the user’s current query.
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