
c©Copyright 2012

YongChul Kwon

Managing Skew in the Parallel Evaluation of User-Defined Operations

YongChul Kwon

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2012

Reading Committee:

Magdalena Balazinska, Chair

Bill Howe

Dan Suciu

Program Authorized to Offer Degree:
Computer Science and Engineering

University of Washington

Abstract

Managing Skew in the Parallel Evaluation of User-Defined Operations

YongChul Kwon

Chair of the Supervisory Committee:

Professor Magdalena Balazinska

Computer Science and Engineering

Science and business are generating data at an unprecedented scale and rate due to

ever evolving technologies in computing and sensors. Analyzing big data has become a key

skill driving business and science. The challenges in big-data analysis stem not only from

the data volume, but also from the diversity of data types to analyze (e.g., text, image,

audio, video, and graph) and the various analyses beyond relational algebra that need to

be performed (e.g., machine learning, natural language processing, image processing, and

graph analysis). The user-defined operation (UDO) is a powerful mechanism to implement

complex data processing tasks without changing the core of the parallel data processing

engine. Although users can rapidly develop a new data analysis task with UDOs and

execute the task in a cluster of computers, achieving high performance is important for

users, especially those who do not have an extensive background in programming.

This thesis focuses on addressing skew in parallel UDO evaluation. Skew is a problem

when there exists a significant variance in the execution time of parallel tasks. In the

presence of skew, the benefit of using a parallel system diminishes. Our detailed case study

demonstrates that a new data analysis task can be rapidly implemented in a MapReduce-

like system, but such implementation may be prone to skew problem during execution. A

skew-resilient implementation is possible but requires significant implementation effort and

expertise in programming. We also analyze the skew problem in three real workloads and

show that skew problem is frequent (more than 40% of long running jobs experience skew).

The thesis proposes two techniques to manage skew in parallel UDO evaluations: SkewRe-

duce and SkewTune. SkewReduce is a static data partition optimization technique for

feature-extracting applications that are common in scientific analysis. SkewReduce can

improve the application runtime by up to 8x compared with a default MapReduce data par-

titioning strategy without any code-level optimization. SkewTune is a transparent dynamic

skew mitigation technique for MapReduce applications. SkewTune can improve the appli-

cation runtime by up to 4x compared with default MapReduce engine without modifying

the application source code, without requiring any input from the developer or user, and

without causing any side-effect during the execution.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . v

Chapter 1: Introduction . 1

1.1 The Need for Parallel User-Defined Operation (UDO) Execution 2

1.2 Challenges of Parallel UDO Execution . 3

1.3 Contributions of the Thesis . 6

1.4 Outline of Thesis . 10

Chapter 2: Motivating Example . 11

2.1 Friends of Friends Clustering Algorithm . 12

2.2 Basic Distributed Friends of Friends . 14

2.3 Scalable Distributed Friends of Friends . 19

2.4 Implementation . 22

2.5 Evaluation . 24

2.6 Conclusion . 34

Chapter 3: Study of Skew in MapReduce Applications 35

3.1 MapReduce Programming Model . 35

3.2 Types of Skew in a MapReduce Application 38

3.3 Skew in the Real World . 46

3.4 Best Practices . 61

3.5 Conclusion . 63

Chapter 4: SkewReduce: Cost-based Partition Optimization 65

4.1 Feature Extracting Applications . 67

4.2 SkewReduce . 71

4.3 Evaluation . 84

4.4 Conclusion . 96

i

Chapter 5: SkewTune: Dynamic Skew Mitigation 97

5.1 SkewTune Design Requirements . 99

5.2 SkewTune Approach . 101

5.3 SkewTune for Hadoop . 115

5.4 Evaluation . 118

5.5 Conclusion . 126

Chapter 6: Related Work . 128

6.1 Parallel UDO Evaluation Systems . 128

6.2 Skew Handling through Skew-Resilient Implementation 129

6.3 Skew Handling for UDOs . 133

Chapter 7: Conclusion and Future Work . 136

7.1 Short-Term Future Work . 138

7.2 Long-Term Future Work . 139

7.3 Final Remarks . 141

Bibliography . 142

ii

LIST OF FIGURES

Figure Number Page

1.1 Example of Skew in a MapReduce Application 4

2.1 Friends of Friends clustering algorithm . 13

2.2 Dataflow in dFoF algorithm . 15

2.3 Illustration of the dFoF algorithm . 17

2.4 Uniform partitioning and Non-uniform partitioning 22

2.5 Example Dryad execution plan for dFoF . 23

2.6 Average time to cluster entire snapshot . 27

2.7 Runtime breakdown across phases . 28

2.8 Distribution of FoF runtime per partition . 29

2.9 Distribution of FoF peak memory utilization per partition 30

2.10 Speedup of OpenMP dFoF and Dryad dFoF 31

2.11 Scaleup of OpenMP dFoF and Dryad dFoF 32

3.1 Overview of an execution of a MapReduce job in Hadoop 36

3.2 Distribution of task runtimes for PageRank 39

3.3 Distribution of task runtime for CloudBurst 41

3.4 Runtime distribution of the local clustering phase of the Friends-of-Friends
algorithm . 43

3.5 Distribution of the number of key groups and input records per reduce task
for CloudBurst . 44

3.6 Cumulative fraction of straggler tasks . 50

3.7 Cumulative fraction of ratio of straggler runtime to median task runtime . . . 51

3.8 Distribution of map runtime with respect to # of input records per application 53

3.9 Distribution of reduce runtime with respect to # of reduce keys per partition
function . 55

3.10 Fraction of jobs per partition function . 57

3.11 Fraction of speculation result per phase per cluster 59

3.12 Successful speculative execution . 60

4.1 A scatter plot of flow cytometry measurements 68

iii

4.2 Illustration of the merge step of the clustering algorithm in the SkewReduce
framework . 75

4.3 Relative runtime of different partitioning strategies compared with the SkewRe-
duce optimized plan . 88

4.4 Completion times of plans for the Astro dataset using different cost functions 90

4.5 Completion time of plans for Seaflow dataset using different cost functions . . 91

4.6 Completion time for the Astro dataset with varying sample rates 92

4.7 Completion time for the Seaflow dataset with varying sample rates 93

4.8 Optimization time with varying sample rates and cost functions 94

4.9 Aggregate output data size produced at each level of an SkewReduce partition
plan . 95

5.1 Conceptual skew mitigation in SkewTune . 102

5.2 Merging Result of Parallel Scan . 110

5.3 SkewTune Architecture . 115

5.4 UDO runtime with and without SkewTune. 120

5.5 Performance Consistency of Map Phase . 123

5.6 Runtime of Map Phase without Skew . 124

5.7 Runtime of Reduce Phase without Skew . 125

5.8 Overhead of Local Scan vs. Parallel Scan . 127

iv

LIST OF TABLES

Table Number Page

2.1 Distribution of the number of particles within distance threshold 25

3.1 Summary of Analyzed Workloads . 47

3.2 Overall Statistics for Straggler Analysis . 48

3.3 The number and fraction of jobs that have straggler tasks 49

3.4 Types of Map Functions in Figure 3.8 . 54

3.5 Types of Partition Functions in Figure 3.9 . 56

3.6 Total number of jobs and speculated tasks and default setting for speculative
execution. 58

4.1 Notations in Section 4.2 . 71

4.2 Datasets used in the evaluation . 86

4.3 Cost-to-time conversion constant for cost models (ρp, ρm,scale) 86

4.4 Cost functions for evaluation . 89

5.1 Notations in Section 5.2 . 103

5.2 Mitigation Overhead Statistics . 126

v

ACKNOWLEDGMENTS

I am closing the longest chapter of my life so far. My graduate career has been a time

of meeting great people, discussing exciting ideas and learning how to conduct research.

Of course, there were some hard times, but I also learned how to get the most from them

through my career. Here, I want to share my sincere gratitude and appreciation for those

who played a vital roles in my graduate career.

I am forever in debt to Magdalena Balazinska for her advising, support, and patience.

She is a fantastic adviser who guides my research and a friend on whom I can rely. The two

greatest things that I learned from her are optimism and patience, in which I was lacking

before starting my graduate career.

I thank Bill Howe and Dan Suciu for their support, advice, and excellent feedback on

my research. Their perspectives on research are always inspiring. I thank Dan Grossman

and Virginia Armbrust for so enthusiastically being being on my committee.

I thank all my coauthors Jeff Gardner, Jerome Rolia, and Kai Ren. They are all great

and hard-working collaborators and hard working, so hard that I am often ashamed of my

procrastination. I hope that I have a chance to meet Jerome and Kai in person sometime.

I thank the University of Washington Database Group for inspiring discussions, feedback,

and friendship: Mike Cafarella, Nilesh Dalvi, Wolfgang Gatterbauer Abhay Jha, Nodira

Khoussainova, Paris Koutris, Julie Letchner, Alexandra Meliou, Kristi Morton, Vibhor

Rastogi, Chris Ré, Marianne Shaw, Emad Sourush, Prasang Updhyaya, Jingjing Wang,

Evan Welbourne, and Shenliang Xu.

I thank the University of Washington astronomy group for their support and collabo-

ration. The motivation for this thesis came from early collaborations with them: Yusra

AlSayyad, Andrew Connolly, Jeff Gardner, Simon Krughoff, Sarah Loebman, Tom Quinn,

and Keith Wiley.

vi

I thank Eytan Adar, Waylon Brunette, Krishnamurthy Dvijotham, Svetoslav Kolev,

Yang Li, Thomas Lin, and Supasorn Suwajanakorn for being friends and good office mates.

I will not forget those exciting chats on so many different topics.

I thank my friends: Daihyun Baik, Ivan Beschastnikh, Taeshik Earmme, Kyungnam

Han, Seungyeop Han, Susumu Harada, Alan Ho, Miryung Kim Ho, Sukpyo Hong, Jaeyeon

Jung, Felix Sunjoo Kim, Jintae Kim, Wanki Kim, Seongjae Lee, Suin Lee, Taehee Lee,

Yongjoon Lee, Sangjoon Park, Kayur Patel, Hoifung Poon, Fei Wu, and Hyuntae Yoo.

Without them, my life in Seattle would have been gloomy (even more in winter). I thank

Jungwoo Ha and Changkyu Kim for their helpful advice during my job search.

I thank Dr. Sejune Hong and Prof. Junehwa Song for their encouragements to pursue

graduate career. I also thank Lindsay Michimoto and Andrew Petersen. Andrew took me

under his wing during my first year and helped me successfully settle successfully into the

department. Lindsay took over Andrew’s role after he left to pursue his career. She has

always been a valuable source of information to which I often turned to survive in the

graduate school.

Finally, I thank my family. I deeply thank my parents for their unconditional love and

support throughout my life. I thank my wife, Yoon Jee Cho, for her support, patience,

trust, and love. Marrying her is my greatest personal achievement in my graduate career!

vii

1

Chapter 1

INTRODUCTION

Science and business are becoming data-intensive [2, 64, 99, 126]. Computerized services,

advanced sensors, and ubiquitous devices let companies, research communities, and individ-

ual research groups collect data at unprecedented rates and resolutions. In astronomy, the

recently constructed Large Synoptic Survey Telescope (LSST) will cover half the sky every

three nights, detecting 5.7× 108 sources and generating over 30 TB of data per night [94].

In physics, the Large Hadron Collider is generating approximately 25 PB of data every

year [141]. In biology, recent high throughput sequencing devices can generate millions of

DNA sequence reads, and the European Bioinformatics Institute (EBI) increased storage for

those sequence reads from 2.5 PB in 2008 to 5 PB in 2009 [121]. In neuroscience, electron

microscopy over large cortical volume is expected to produce 10 TB of volumetric data on

fine-scale brain anatomy [88]. In 2010, Facebook stored 15 PB of data in its data warehouse

and has loaded 60 TB of new data every day [132]. In May 2010, Google processed more

than 946 PB of data using the MapReduce system [36, 37].

Managing and analyzing data at a large scale has become a key skill driving business

and science. Big-data management and analysis are predicted to be a $50 B industry by

2017, a growth factor of 10 from the $5 B market size as of 2012 [71]. There are two

prominent types of systems in big-data analysis: parallel database management systems

(DBMSs) and MapReduce-type systems. A parallel DBMS is highly optimized to run re-

lational queries in a cluster of computers [58, 101, 124, 128, 137]. For expensive relational

operations, such as join and group by, parallel DBMSs implement several different algo-

rithms that work best under different conditions. These engines select the most promising

combination of strategies for each query submitted to the system. MapReduce [37] and its

open source implementation Hadoop [61] are also popular in big-data analysis. MapReduce

provides simple yet general programming and execution models for distributed data analy-

2

sis applications. In MapReduce, relational queries are supported by high-level abstraction

layers that translate queries written in high-level languages into a directed-acyclic graph of

MapReduce jobs [18, 27, 104, 109, 130, 147].

1.1 The Need for Parallel User-Defined Operation (UDO) Execution

In addition to relational operators, RDBMSs and their parallel counterpart parallel DBMSs

have supported user-defined operations (UDOs) as mechanisms to extend the functionality

of the engine [45, 16, 97, 106, 110]. Through UDOs, users can incorporate new data types

and functions that are not included in the DBMS by default. In MapReduce-type systems,

UDO is the default mode of operation; relational operators are implemented as UDOs.

The need for UDOs in big-data systems is accelerated today by two emerging trends.

• Complex Extract-Transform-Load. Unstructured data (e.g., text, audio, image,

and video) are a gold mine of information [28, 92]. Before data analysis, unstructured

data often require a complex extract-transform-load (ETL) process. For example,

in modern sentiment analysis, blog posts, tweets, and Facebook wall posts are first

treated by a natural language processing (NLP) parser that parses each sentence and

tags each word with a part of speech [78]. The tagged sentences are then analyzed to

extract a sentiment. Running image, audio, and video analysis often requires complex

preprocessing (e.g., ETL) such as color normalization and various transformations

(e.g., sharpen, blur, and spectral). Such complex operations are not built in the

RDBMSs. They thus have to be implemented as UDOs. For example, the New

York Times uses Hadoop [61] with Amazon EC2 for large-scale image conversion [10].

Astronomers use Hadoop to preprocess telescope images for advanced analyses such

as anomaly detection, classification, and moving-object tracking [139].

• Advanced analysis beyond relational algebra. Relational algebra and its close

derivatives are not enough to support complex machine learning algorithms and com-

plex analysis over non-relational data types (e.g., graph, temporal, spatial, and spatio-

temporal). They are also insufficient to scale legacy data-analysis implementations [9,

26, 74, 85, 95, 127]. However, ad hoc development of a new data analysis software to

3

efficiently process petascale data is difficult and expensive [15]. Both parallel DBMSs

and MapReduce-type systems provide the following benefits: (1) they run on inexpen-

sive shared-nothing clusters; (2) they provide quick-to-program, declarative interfaces

with support for UDOs [18, 27, 69, 104, 109, 130, 147]; and (3) they manage all task

parallelization, execution, and failure-handling challenges. Thus, these frameworks

hold the promise of enabling cost-effective, massive-scale data analysis with low de-

velopment costs.

Thus, complex operations over today’s big-data increasingly require the ability to execute

complex UDOs in parallel.

1.2 Challenges of Parallel UDO Execution

DeWitt and Gray identified three factors that threaten the scalability of a parallel DBMS:

startup, interference, and skew [42]. For convenience, we use the term job to refer either

to a SQL query or a MapReduce job. A job is represented as a directed acyclic graph

(DAG) of operators (e.g., a relational algebra plan or a pair of map and reduce operations).

Each operator is executed by distributed tasks in a cluster of compute nodes. Each task

corresponds to a partition of the UDO.

We briefly review each factor then concentrate on skew, the main focus of this disserta-

tion.

• Startup refers to the overhead of distribution and initialization of a new job. For

a short job, the time to transfer the job specification to each compute node may

dominate the actual processing time. The fraction of overhead in the job execution

decreases as the job runs longer.

• Interference occurs when concurrent jobs (or tasks) in the system interfere with

each other due to contention in accessing shared resources such as network, disk, and

memory bandwidth. When interference occurs, adding a new task to the system does

not improve throughput or latency after a certain number of tasks are already running.

4

0 100 200 300

Time (seconds)
T

a
sk

s

Shuffle

Sort

Exec

M

A

P

R

E

D

U

C

E

Figure 1.1: A timing chart of a MapReduce job running the PageRank algorithm from

Cloud 9 [72]. Exec represents the actual map and reduce operations. The slowest map task

(first one from the top) takes more than twice as long to complete as the second slowest

map task, which is still 5x slower than the average. If all tasks took approximately the same

amount of time, the job would be completed in less than half the time.

• Skew refers to a significant variance in task runtime. With greater skew, the benefit

of parallelization diminishes because the completion time of a query is dominated

by the slowest task. Figure 1.1 illustrates the skew problem in a MapReduce job.

We use PageRank [25] as an example of a UDO. As the figure shows, this UDO is

expressed as a MapReduce job, which runs in two main phases: the map phase and

the reduce phase. Load imbalance can occur either during the map or reduce phases.

We refer to such an imbalanced situation as map-skew and reduce-skew, respectively.

5

Skew can lead to significantly longer job-execution times and significantly lower cluster

throughput. In the figure, each line represents one task. Time increases from left to

right. This job exhibits map-skew: a few map tasks take 5x to 10x as long to complete

as the average, causing the job to take twice as long as an execution without skew.

The startup and interference factors are relatively independent of the semantic of appli-

cations or operations. They can thus be addressed by system level optimizations such as

caching of UDO binaries or a better task scheduling algorithm. In contrast, skew is closely

related to the semantics and the implementation of the operator (i.e., how the data is pro-

cessed) because both the data and the implementation affect the runtime of an operator

(we present more details with examples in Chapter 2 and 3). It is possible to develop a

skew-resilient implementation (i.e., it produces the correct result and does not experience

skew at runtime for all input data), but such implementation may vary between operators

since each operator has distinct semantics. There are two problems that make it harder to

handle skew with a UDO than with relational operators.

First, a UDO is a black box to the execution engine. For the relational operators such

as join and aggregate, the semantics are well understood, and many specialized techniques

to handle skew problems are available for those operators [42, 66, 77, 87, 117, 118, 142,

143, 144, 145]. In contrast, virtually nothing of a UDO is known to the execution engine

except the type signature (and maybe some high-level hints if the user is willing to provide

them). Also, it is not feasible to request users to devise techniques and optimize their

code to overcome skew problems. For example, as shown in Chapter 2, troubleshooting an

application consisting of UDOs can take several weeks and require a deep understanding

not only of the application domain but also of the computer systems, algorithms, data

structures, and programming.

Second, a suboptimal implementation is likely to be the norm for UDOs, especially

for MapReduce-type systems that are designed to run UDOs. MapReduce systems have a

rapidly growing user base in various domains including small IT startups, large IT compa-

nies such as eBay [44], Facebook [47], Twitter [133], and domain scientists from universi-

ties [10, 114]. According to Ren et al., many users of Hadoop are writing their applications

6

in traditional programming languages [114]. Given such a diversity of users, it is clear

that not all users are professional developers. We cannot safely assume that a UDO is as

highly optimized as relational operators. The source of the problem is ranges from poor

algorithm design (e.g., a user can easily implement a O(n2) sort algorithm where O(n log n)

is possible) to suboptimal engineering decisions (e.g., poor choice of data structure) to poor

understanding of the data (e.g., uniformity assumption on data distribution). In a recent

study of three research Hadoop clusters, we found that more than 50% of submitted jobs

involved user-defined functions in all clusters [114]. Also, more than 40% of jobs that were

running longer than five minutes had at least one task that experienced skew (more details

in Section 3.3). Thus, unlike relational operators for which skew is well understood and

effectively mitigated [42, 87, 117, 118, 142, 143, 144, 145], UDOs today commonly suffer

from skew.

1.3 Contributions of the Thesis

MapReduce [37] has proven itself as a powerful and cost-effective approach for writing

UDOs and applying them to massive-scale datasets [10]. MapReduce provides a simple API

for writing UDOs; a user only needs to specify a serial map function and a serial reduce

function. The implementation takes care of applying these functions in parallel to a large

dataset in a shared-nothing cluster. MapReduce has influenced UDO API of many other

systems [35, 48, 58, 128, 137] and become a popular low-level execution layer for high-level

query languages [18, 27, 104, 109, 130, 147]. For this reason, in this dissertation, we focus

on UDOs implemented in the context of a MapReduce-type system.

This thesis considers the problem of scaling parallel UDO evaluations in the presence

of skew. We focus on MapReduce systems because they are popular and general and the

problem is potentially more severe than in a parallel DBMS because of diverse users and

UDO intensive workloads [114]. However, the ideas and techniques proposed in the thesis

can be generalized to other types of parallel execution engines, including parallel DBMSs.

The high level contribution of the thesis is threefold. First, the thesis presents a case-

study and a measurement study of MapReduce applications to understand the skew prob-

lems in parallel UDO evaluations (Chapters 2 and 3). Second, the thesis proposes a static

7

data partition optimization technique called SkewReduce for feature-extracting applications

that are popular in scientific data analysis and image processing (Chapter 4). The last con-

tribution is a dynamic skew mitigation technique called SkewTune for general MapReduce

applications (Chapter 5).

The detailed main contributions of the thesis are:

• A Case Study of Scaling Data Analysis using MapReduce: We ask, how

hard is it to convert and optimize a legacy data analysis application to a MapReduce

application? We present a detailed case study of scaling an existing data analysis

algorithm using a MapReduce system. We obtained the pseudocode of a cluster-

ing algorithm from astronomers [33] and implemented the algorithm in MapReduce

through a line-by-line translation using off-the-shelf data structures. We also obtained

two test datasets from astronomers for the evaluation. Although the two datasets have

exactly the same numbers of bytes and items, surprisingly there is a factor of 20 dif-

ference in job completion time due to skew. In Chapter 2, we present the investigation

and application-specific optimization efforts and show that addressing skew problem

requires significant effort and experience in algorithm design, data structures, pro-

gramming, and even distributed systems.

• A Survey of Skew in MapReduce Applications: We ask, is the skew problem

general or unique to the astronomy application? Are there a few common causes of

the skew problem in MapReduce applications? How frequently does the problem arise

in real clusters and how significant is the problem? We generalized the experience

with the one astronomy use-case through a measurement study of skew in existing

MapReduce applications. To understand the skew problem better, we first analyzed

execution logs of three different Hadoop MapReduce clusters and examined the skew

problems that arose in those clusters. We also analyzed the details of several real

world MapReduce applications with real world datasets then analyzed the skew prob-

lems observed during the execution of these applications. We categorize the observed

skew problems into five different causes and create a taxonomy. We present five best

practices in writing MapReduce applications to minimize the skew problem.

8

• Static Skew Mitigation for Feature-Extracting Applications: We ask, if the

UDOs are susceptible to data skew and the best way to partition the data to avoid skew

depends on the input dataset and the cluster configuration, can we automatically find

a good data partitioning plan for a data set before execution? SkewReduce precisely

answers this question for the feature-extracting applications that are popular in many

domain sciences and image processing. The key idea behind SkewReduce is to ask the

user for extra information about their UDOs. The user first creates cost functions that

characterize the UDO runtime. Given the cost models and a sample of the input data,

SkewReduce searches a good partition plan of the input data in the presence of data

skew instead of relying on a fully optimized UDO implementation. For the domain

experts such as scientists and statisticians, we posit that writing a cost model is

easier than debugging and optimizing programs. Also, they can leverage their domain

knowledge in the cost model. The cost models are specific to the implementation and

can be reused across many data sets for the same UDOs.

SkewReduce optimizes how data is partitioned across nodes with given a sample of

the input data, the user-defined cost models, and the cluster configuration (e.g., the

number of nodes and the scheduling algorithm). The user-defined cost models esti-

mate the cost of processing the entire dataset based on the data samples. Using the

cost models, the SkewReduce optimizer searches a good degree of parallelism by a)

applying finer grained data partitioning if a significant data skew is expected for a

part of the input data, b) keeping coarse grained partitions when the data skew is

not anticipated, and c) balancing the partition granularity in a way that minimizes

expected job completion time under the given cluster configuration.

To show the effectiveness of SkewReduce, we built a prototype running on top of

Hadoop. From the evaluation, the partition optimization takes several minutes on a

desktop machine. Compared to the default Hadoop setup, the runtime improves by

factors of two to eight, depending on the dataset, without any code-level optimization.

Another intriguing result is that, even with a näıve cost model (the number of records

per partition), SkewReduce still yields better runtime than the default setup due to

optimization that partitions the data as evenly as possible.

9

• Dynamic Skew Mitigation in MapReduce: We ask, can we take the SkewReduce

idea further and build a system that mitigates skew without any input from the user

whatsoever? Can the system accelerate the job experiencing data skew by exploiting

idle nodes or dynamically adding nodes to the cluster?

SkewTune is a dynamic technique to mitigate the data skew or to accelerate job

execution by fully leveraging idle nodes. To automate the mitigation, SkewTune

assumes that each UDO invocation is independent. This property must be ensured

by the user. Also, SkewTune is designed for systems where the UDOs read the input

from disks and write the output to disks.

SkewTune continuously monitors the execution of UDOs and detects the current bot-

tleneck task that dominates and delays the job completion time. Once such a task

is identified, the task is stopped, and its unprocessed input data are repartitioned

among idle nodes. The repartition only occurs when there is an idle resource (i.e.,

The MapReduce scheduler runs out of other tasks to schedule) or when the nodes

are dynamically added to accelerate the job (e.g., using spot instances in Amazon

EC2 [6]). Thus, if there are no tasks experiencing a significant data skew, SkewTune

imposes no overhead. If there is an idle node and there is the current bottleneck task,

SkewTune will stop the task, repartition the remaining input data with respect to

future node availability, and parallelize processing. SkewTune continuously detects

and removes the bottlenecks until the job completes.

When repartitioning a task, SkewTune takes the future node availability of the cluster

into account to minimize the job completion time. The availability is estimated from

the progress of running tasks. The remaining unprocessed input data of a task is

repartitioned in a way that fully utilizes nodes that are available immediately or in

the near future. SkewTune also minimizes the side-effect of repartitioning so that the

original output can be reconstructed by concatenating the output of split tasks.

For the evaluation, we implemented the SkewTune strategy in the Hadoop MapReduce

engine. Experimental results show that SkewTune can significantly improve comple-

tion time by up to factor of four without code change if there is a significant data

skew. Also, it imposes, at most, a one-minute overhead due to estimation error in the

10

remaining time when the load is well balanced.

All surveys and systems are evaluated using real-world datasets and real-world applica-

tions most of which are available online [129]. The prototypes of SkewReduce and SkewTune

are available as open-source software [82, 83].

1.4 Outline of Thesis

The thesis is organized as follows: we first show the motivation of the thesis by presenting

a case study of scaling a clustering algorithm using Dryad, a parallel dataflow engine [68]

(Chapter 2). We then survey the skew problems in MapReduce applications (Chapter 3).

We present two approaches that mitigate skew in parallel UDO evaluation (Chapter 4

and 5). The SkewReduce system addresses skew problem in a feature-extraction application

through static data partitioning prior to execution (Chapter 4). The SkewTune system

addresses the skew problems through late skew detection and proactive data repartitioning

at runtime for general MapReduce applications (Chapter 5). We present related work

(Chapter 6), and then conclude with future research directions (Chapter 7).

11

Chapter 2

MOTIVATING EXAMPLE

In this chapter, we present a case study where we implement an existing data analysis

application as a series of user-defined operations and execute it at scale using a modern

parallel data processing system. The application is a clustering algorithm called friends-of-

friends (FoF) used in computational astrophysics [33]. The parallel data processing system

we used is Dryad [68], a distributed dataflow engine that provides a more general interface

than MapReduce. The application is written in DryadLINQ, a high-level layer on top of

Dryad [147].

The astronomers use the FoF algorithm to quantify the structure in a snapshot of an N-

body simulation that simulates the evolution of the universe from shortly after the Big Bang

to the present day [100]. Due to its simplicity, FoF is one of only two algorithms that have

been implemented in a distributed parallel fashion in the astrophysics community [50, 51].

At the time of our study, there were two C implementations of the FoF algorithm. One

version is implemented using Message Passing Interface (MPI) [120] and highly optimized

using a custom distributed data structure [50, 51]. Another version is a multi-threaded

OpenMP implementation that runs in a single address space [32]. That is, the OpenMP

version can only handle snapshots that entirely fit in the memory of one machine. The

optimized MPI version has the best performance at the cost of significant implementation

efforts. The OpenMP version is easier to implement than the MPI version, but the input

data size is limited by the memory size of a single machine.

In this chapter, we present dFoF, which is the implementation of FoF in DryadLINQ.

The goal of the translation was to demonstrate the feasibility of expressing a sophisticated

data analytics task from the astronomy domain using the API of an off-the-shelf big-data

processing system. Analyzing the output of N-body simulations is difficult today and the

community could benefit from the ability to carry out such analyses without manually pro-

12

gramming each question in MPI. Thanks to the simple programming model of DryadLINQ,

we could develop dFoF from the pseudocode in several weeks by only implementing the core

of the algorithm. Thanks to the great scalability of the Dryad engine, we could process

large datasets in a cluster of commodity hardware. Unlike the OpenMP version, dFoF does

not require a shared memory machine that has enough memory to hold the entire dataset.

dFoF also achieves great scaleup and speedup as we add more nodes to the cluster.

The case study motivates this thesis work on skew mitigation in parallel user-defined

operations. We show that a näıve implementation of dFoF that we developed only in a

couple of days is prone to skew. One dataset took 20x longer to process than another

dataset even though the two datasets had exactly the same number of tuples. We also show

that a skew-resistant implementation (i.e., the implementation takes a similar amount of

time to process any dataset with the same number of tuples) is possible but developing

such an implementation took several weeks of testing, diagnosis, and optimizations that all

required expertise in algorithm, data structure, and programming.

2.1 Friends of Friends Clustering Algorithm

Application domain. Cosmological simulations serve to study how structure evolves in

the universe on distance scales ranging from a few million light-years to several billion

light-years in size. In these simulations, the universe is modeled as a set of particles.

These particles represent gas, dark matter, and stars and interact with each other through

gravitational force and fluid dynamics. Particles may be created or destroyed during the

simulation (e.g., a gas particle may spawn several star particles). Every few simulation

timesteps, the program outputs a snapshot of the universe as a list of particles, each tagged

with its identifier, location, velocity, and other properties. The data output by a simulation

can therefore be stored in a relation with the following schema:

Particles(id, x, y, z, vx, vy, vz,mass, density, · · ·)

State of the art simulations (e.g., Springel et al. [122]) use over 10 billion particles

producing a dataset size of over 200 GB per snapshot. The NCSA/Cray Blue Waters

system [21] supports astrophysical simulations that generate 100 TB per snapshot and a

13

DA B

C

ε

Figure 2.1: Friends of Friends clustering algorithm. Two particles are considered

friends if the distance between them is less than a threshold ε: A and B are friends and B

and C are friends, but A and C are not. The friend relation is symmetric if the distance

is symmetric. The friend of friend (FoF) relation is defined between two points if they are

contained in the transitive closure of the friend relation (e.g., A and C are a friend of friend

pair via B). In the figure, the FoF relation induces a partition on the particles: all black

points are in one cluster and all white points are in another.

total data volume of more than 10 PB per run.

Friends of Friends Clustering Algorithm. The friends-of-friends (FoF) algorithm

(c.f., Davis et al. [33] and references therein) has been used in cosmology for at least 20

years to identify interesting objects and quantify structure in simulations [113, 122]. FoF

is a simple clustering algorithm that accepts a list of particles (pid, x, y, z) as input and

returns a list of cluster assignment tuples (pid, clusterid). To compute the clusters, the

algorithm examines only the distance between particles. FoF defines two particles as friends

if the distance between them is less than ε. Two particles are friends-of-friends if they are

reachable by traversing the graph induced by the friend relationship. To compute the

clusters, the algorithm computes the transitive closure of the friend relationship for each

14

unvisited particle. All particles in the closure are marked as visited and linked as a single

cluster. Figure 2.1 illustrates this clustering algorithm. To find the friends of a particle,

the algorithm initially builds a spatial index of the input particles then retrieves the friend

particles with a range query on the spatial index for each particle in the input dataset.

2.2 Basic Distributed Friends of Friends

In this section, we introduce dFoF, our distributed FoF algorithm for MapReduce-style

shared-nothing clusters. We discuss critical optimizations that make this algorithm truly

scalable in the following section.

The basic idea behind any distributed clustering algorithm is to (1) partition the space

of data to be clustered, (2) independently cluster the data inside each partition, and finally

(3) merge clusters that span partition boundaries. There are several challenges related to

implementing this type of algorithm on a MapReduce-style platform and in the context of

astronomy data.

Challenges. First, in astrophysical applications, there is no characteristic cluster size

or mass. The clustering of matter in the universe is largely scale-invariant at the size

represented by the simulation. This means a cluster can be arbitrarily large and span

arbitrarily many partitions. To identify such arbitrarily-large clusters from locally found

ones, one cannot simply send to each compute node its own data plus a copy of the data

at the boundary of adjacent partitions. Indeed, nearly all data would have to be copied to

merge the largest clusters. Alternatively, one could try to use a global index structure, but

this approach requires extensive inter-node communication and is therefore unsuitable for

the dataflow-style processing of MapReduce-type platforms. In this chapter, we investigate

a radically different approach. Instead of trying to use a distributed index, we redesign the

algorithm to better follow the shared-nothing, parallel query processing approach and not

require a global index at all. In this section, we present this algorithm, which we call dFoF.

Second, the uncharacteristic clusters pose a challenge for load balancing — each node

needs to hold a contiguous region of space but there is no a priori spatial decomposition

that is likely to distribute the processing load evenly. Load imbalances can negate the

benefits of parallelism [42]. To achieve load balance and improve performance, we must

15

Figure 2.2: Dataflow in dFoF algorithm. dFoF runs in four phases. Each phase ex-

changes data in the form of a standard relation or set of key-value pairs. Underlined

attributes are the primary keys of the corresponding relations. part represents a partition

id. pid represents a particle ID. x, y, and z correspond to the particle coordinates. cid is a

cluster id. Phases execute in series but with intra-phase parallelism.

ensure that each partition of the same operation processes its input data in approximately

the same amount of time. This requirement is more stringent than ensuring each node

processes the same amount of data. Indeed, in the FoF algorithm, execution times depend

not only on the number of particles in a partition but also their distribution: small dense

regions are significantly slower to process than large sparse ones. We discuss extensions to

our algorithm that address these challenges in Section 2.3.

Approach. Our basic dFoF algorithm follows the typical distributed clustering ap-

proach in that the data is first partitioned, then clustered locally, and finally the local

clusters are reconciled into large ones. Our algorithm differs from earlier work primarily in

the way it handles the last phase of the computation. Instead of relying on a distributed

index, dFoF reconciles large clusters through a hierarchical merge process that resembles

a parallel aggregate evaluation [146]. To keep the cost of merging low, only the minimum

amount of data is propagated from one merge step to the next. The rest of the data is

written to disk before the merge. A final relabeling phase takes care of updating this data

given the final merged output. dFoF thus runs in four phases: Partition, Local cluster,

Hierarchical merge, and Relabel. Figure 2.2 shows the overall data flow of the algorithm,

with each step labeled with the type of its output. We now describe the four phases in more

16

detail using a simple 2D example.

Partition. During partitioning, we assign each node a contiguous region of space to

improve the probability that particles in the same cluster will be co-located on the same

node. Figure 2.3 illustrates a 2D space split into four partitions P1 through P4. To determine

these uniform regions, dFoF recursively bisects the space, along all dimensions, until the

estimated number of particles per region is below the memory threshold of a node, such

that local processing can be performed entirely in memory. We call the hierarchical regions

cells, and the finest-resolution cells — the leaves of the tree — unit cells. The output of

this phase is a partition of all data points (i.e., particles).

Local Cluster. Once the data is partitioned, the original FoF algorithm runs within

each unit cell. As shown in Figure 2.2, the output of this phase is written to disk and consists

of a set of pairs: (pid,cid), where pid is a particle ID and cid is a globally-unique cluster

ID. Each input particle is labeled with exactly one cluster ID. Particles within distance ε of

the boundary of each cell continue on to the next phase. They will serve to identify locally

found clusters that need to be merged into larger ones.

Hierarchical Merge. To identify clusters that span multiple cells, particles at cell

boundaries must be examined. If particles in adjacent partitions are within distance thresh-

old ε of each other, their clusters must be merged. Figure 2.3 illustrates the merge step

for four partitions P1 through P4. The outer boxes, Pi, represent the cell boundaries. The

inner boxes, I, are distance ε away from the corresponding edge of the cell. In Figure 2.3(a),

the local clustering step identified a total of six clusters labeled C1 through C6. Each cluster

comprises points illustrated with a different shape and shade of gray. However, there are

only three global clusters in this dataset. These clusters are identified during the hierarchi-

cal merge process. Clusters C3, C4, C5, and C6 are merged because the points near the cell

boundaries are within distance ε of each other. Only points inside each Pi but outside each

region I are needed to determine that these clusters must be merged. Figure 2.3(b) shows

the actual input to the hierarchical merge following local clustering phase. This data reduc-

tion is necessary to enable nodes to process hierarchically larger regions of space efficiently

17

(a) Local clustering (b) Hierarchical merge

P1

II

C1 C2

C3

P3
I

P4

P2

I

C4

C5 C6

I

P1

C1 C2

C3

P3 P4

P2

C5→C3 C6→C3

C4→C3

(c) Relabel

C4→C3

C5→C3 C6→C4

C4→C3

Figure 2.3: Illustration of the dFoF algorithm. (a) shows the first local clustering

phase. Data is partitioned into four cells. Points with the same shape are in the same

global cluster. Particles with different shades but with the same shape are in different local

clusters. Each Pi shows the cell boundary and each I shows the interior region that is

excluded during the Hierarchical Merge phase. (b) demonstrates Hierarchical Merge phase.

Note that only boundary particles in (a) are considered during the merge phase. After

the merge, three cluster mappings are generated: (C4,C3), (C5,C3), and (C6,C3). Such

mappings are used to relabel local clusters during the Relabel phase as illustrated in (c).

and without running out of memory.

Algorithm 1, which we call mergefof, shows the detailed pseudocode of the merge

procedure. At a high-level, the algorithm does two things. First, it re-computes the clusters

in the newly merged space. Second, it relabels the cluster ids of those clusters that have

been merged. The input is a set of particles, each labeled with a cluster id. The output is

a set of pairs (oldcid, newcid) providing a mapping between the pre-merge cluster ids and

the post-merge cluster ids.

Lines 1-8 show the initial cluster re-computation whose output, M , is a nested set of

clusters that must be merged. For example, for the dataset in Figure 2.3, M will have three

elements, {{C1}, {C3, C4, C5}, {C4, C6}}. This set M , however, is not yet quite correct, as

there are potentially members of M that should be further combined. To see why, recall that

some particles — those in the interior of the merged regions — were set aside to disk before

the merge process began. These set-aside particles may connect two otherwise disconnected

18

Algorithm 1 Merge result of FoF (mergefof)

Input: D ← {(pid, cid, x, y, z)} // output from Local Cluster or Hierarchical merge

ε← distance threshold

Output: {(old cid, new cid)}

1: M ← ∅ // nested set to store cluster ids of merged clusters

2: R← ∅ // output mappings

3: sidx← build spatial index(D)

4: for all unvisited p ∈ D do // compute cluster ids to merge

5: N ← friendclosure(p, ε, sidx) // find all friends of friends of p using the spatial index

6: mark all q ∈ N as visited

7: C ← {x.cid | x ∈ N} // set of all cluster ids found in N

8: M ←M ∪ {C} // All cluster ids in N must be merged

9: end for

10: repeat // find additional clusters to merge

11: for all C ∈M do

12: C+ ← {X|X ∈M,C ∩X 6= ∅}

13: if |C+| > 1 then

14: M ←M − C+

15: C′ ← {x|x ∈ X,X ∈ C+}

16: M ←M ∪ {C′}

17: end if

18: end for

19: until M does not change

20: for all C ∈M do // produce output

21: newCid← minC // select the lowest identifier in C

22: R← R ∪ {(cid, newCid)|cid ∈ C}

23: end for

24: return R

clusters. In our example, C6 should be merged with C3, C4, and C5 but is not because

the particles of C4 bridging C6 to C3 were set aside to disk before merging. We can infer

such missing links by examining the pairwise intersections between sets of merged cluster

identifiers. For example, since {C3, C4, C5} and {C4, C6} both contain C4, we infer that

C3, C4, C5, and C6 are all part of the same cluster and can be assigned a single cluster

id. The second step of mergefof (lines 10-19) performs this inference. In the last step, the

19

algorithm simply chooses the lowest cluster id as the new id of the merged cluster (lines

20-23).

Algorithm mergefof executes every time a set of child cells under the same parent are

merged as we proceed up the cell hierarchy. After each execution, the mappings between

clusters that are found are saved to disk. They will be reused during the final Relabel phase.

Relabel. In dFoF, there are two occasions for relabeling, intermediate and global.

Intermediate relabeling assigns each particle used during the merge process a new cluster

id based on the output of mergefof. This operation occurs once for each cell in the merge

hierarchy. Global relabeling occurs at the end of dFoF. This operation first determines the

final cluster ids for each local cluster id based on the accumulated output of mergefof.

It then updates the local cluster assignments from the first phase with the final cluster id

information by reprocessing the data previously set aside to disk as shown in Figure 2.2.

2.3 Scalable Distributed Friends of Friends

The dFoF algorithm presented thus far is parallel but not scalable due to skew effects.

Some compute nodes during Local clustering phase may run significantly longer than others,

negating the benefits of parallelism. In this section, we discuss this problem and present two

optimizations that address it. The first optimization significantly improves the performance

of both local fof and mergefof algorithms. The second optimization improves load balance.

2.3.1 Pruning Visited Subtrees

With an ordinary spatial index implementation, each partition can spend a significantly

different amount of time processing its input during the local clustering phase (i.e., FoF),

despite having approximately the same amount of input data. We demonstrate this effect

in Section 2.5, where we measure the variance in task execution times (in Figure 2.8, all

plots except for non-uniform/optimized exhibit high variance). This imbalance is due to

densely populated regions taking disproportionately longer to process than sparsely popu-

lated regions, even when both contain the same number of points.

To understand the challenge related to dense regions, the serial FoF algorithm computes

the transitive closures of particles using repeated range-lookups in a spatial index as dis-

20

cussed in Section 2.1. The number of returned particles per lookup (i.e., the traversed part

of the index) are proportional to the density of the region. These lookups dominate the

runtime. Astronomy simulation data is especially challenging in this respect, because the

density can vary by several orders of magnitude from region to region1. To address this

challenge, we optimize the local cluster computation as follows.

The original FoF algorithm constructs a spatial index over all points to speed up friend

lookups. We modify this data structure to keep track of the parts of the subtree where

all data items have already been visited. For each node in the tree (leaf node and interior

node), we add a flag that is set to true when all points within the subtree rooted at the

node have been returned as a result of previous friends lookups. The algorithm can safely

skip such flagged subtrees because all data items within them have already been covered by

previous lookups. By the nature of spatial indexes, points in a dense region are clustered

under the same subtree and are therefore quickly pruned. With this approach, the index

shrinks over time as the previously visited subtrees are pruned.

Because this optimization requires only one flag per node in the spatial index, it imposes

a minimal space overhead. Furthermore, the flag can be updated while processing range

lookups. In Algorithm 2, we show the modified version of the range search using this

modified index structure. Line 5 is dependent on the type of spatial index. For a kd-tree,

which we use in our prototype implementation, the condition can be evaluated by checking

the flags of the child nodes and the data item assigned to the root node. For an R-tree, the

condition can be evaluated similarly by checking child nodes and data items in a leaf node.

We apply this optimization both during the local clustering and the merging phases.

2.3.2 Non-Uniform Data Partitioning

While the above optimization solves the problem of efficiently processing dense regions, it

does not solve all load imbalance problems. Indeed, with the uniform space-based partition-

ing described in Section 2.2, some nodes may be assigned significantly more data than others

1In the DBSCAN algorithm [46], the average complexity of a range lookup in a spatial index was assumed
to be logn where n is the number of data items in the index. Clearly, this assumption does not always
hold in FoF and its input data.

21

Algorithm 2 Range search with pruning visited subtree
Input: root← search root node

query ← center of the range search (i.e., querying object)

ε← distance threshold

Output: set of objects within distance ε of query

1: if root.visitedAll is true then

2: return ∅ // skip this subtree

3: end if

4: R← · · · // normal range search for root

// update bookkeeping information

5: if entire branch under root marked visited then

6: root.visitedAll← true

7: end if

8: return R

and may delay the overall execution or even halt if they run out of memory when the data

is not uniformly distributed. The only way to recover is for the system to restart the job

using a smaller unit cell. On the other hand, unit cells that are unnecessarily fine-grained

add significant scheduling and merging overheads.

To address this challenge, we use a variant of Recursive Coordinate Bisection (RCB)

scheme [17] to ensure that all partitions contain approximately the same amount of data

(i.e., same number of particles). The original RCB repeatedly bisects a space by choosing the

median value along alternating axes to evenly distribute input data across multi-processors.

Since the input data does not fit in memory, we first scan the data, collect a random sample

at 1% sampling rate2, and run RCB over the sample until the estimated size of the data for

each bucket fits into the memory of one node. We use RCB because its spatial partitioning

nature is well-suited to the underlying shared-nothing architecture (i.e., it generates non-

overlapping regions that are also easy to merge compared to, for example, space-filling

curves). In Figure 2.4, we compare the uniform and data partitioning schemes. Because we

use a sample instead of the entire dataset, there is some small discrepancy in the size of the

2If 1% sample does not fit in memory, we adjust the rate so that the entire sample fits in memory.

22

P1

P3 P4

P2 P1

P3 P4

P2

Figure 2.4: Uniform partitioning and Non-uniform partitioning. Uniform partition-

ing would generate uneven workloads: P1 contains 22 points while P3 have only 5 points

in it. Data-oriented partitioning, however, produces an even workload: each partition is

assigned 10 or 11 points.

partitions. Also, sampling requires an extra scan over the data, thus adding overhead to the

entire job. However, it effectively reduces load skew, especially with the first optimization,

and improves the job completion time as we show in Section 2.5.

2.4 Implementation

We implemented dFoF in approximately 3000 lines of C# code using DryadLINQ [147] the

programming interface to Dryad [68]. Dryad is a massive-scale data processing system that is

similar to MapReduce but offers more flexibility because its vertices are not limited to map or

reduce operations. DryadLINQ is a Language-Integrated Query (LINQ) interface provider

for Dryad. The LINQ offers relational-style operators such as filters, joins, and groupings

and users can write complex data query succinctly and seamlessly in C#. At runtime,

DryadLINQ automatically translates and optimizes the task written in LINQ expressions

into a Dryad job which is a directed acyclic graph of operators with one process per operator.

If possible, connected vertices communicate through shared memory pipes. Otherwise, they

communicate through compressed files stored in a distributed file system. The job is then

23

64 x Merge__47

64 x GroupJoin__151

8 x Merge__55

8 x Tee__59

8 x merge_fof()

8 x Tee__69

8 x Super__81

8 x Merge__85

8 x HashPartition__74 8 x HashPartition__89

8 x GroupJoin__96

8 x Merge__77 8 x Merge__92

8 x Super__122

64 x Merge__164

64 x Join__182

64 x Merge__178

64 x HashPartition__161 64 x Super__168

64 x Super__172

mergeGroup()64 x OUTPUT

8 x Merge__127

Super__137

8 x Union__141

17 x INPUT

17 x Super__30

64 x fof()

64 x Tee__39

64 x HashPartition__44 64 x Super__51

64 x Tee__156

64 x Tee__187

64 x Apply__192

64 x RangePartition__206

Super__196

Tee__201

64 x Super__210

S

Merge__101

Tee__105

merge_fof()

Super__131

Tee__114

HashPartition__119

Figure 2.5: Example Dryad Execution Plan for dFoF. Nodes in grey color are running

user-defined functions. Partition and Merge vertex pair represents repartitioning of data.

Tee vertices replicate the input data and feed them to multiple down stream vertices. Super

vertices are a chain of operators which could be pipelined in memory.

deployed and executed in the Dryad cluster.

We wrote the core fof(), mergefof() functions as user-defined operators. Because both

24

functions have to see all data in the input data partition, we used DryadLINQ’s apply

construct which exposes the entire partition to the operator rather than a single data item

(i.e., a single particle) at a time. Other than the user defined operators, we used standard

LINQ operators not only for the initial data partitioning and relabeling but also for the

output post-processing operation of each phase. We also used the lazy evaluation feature

of the LINQ framework to implement the iterative hierarchical merge phase. Thus, we only

submit a single Dryad job for the entire dFoF task. Using MapReduce, we would have

to schedule one MapReduce job for the local clustering, and also one for each iteration of

the iterative hierarchical merge process. (See Section 4.3.) The entire job coordination is

written in only 120 lines out of a total of 3000 lines. The final Dryad plan to process dataset

in Section 2.5 consists of 1227 vertices with three hierarchical merges. An example Dryad

execution plan is shown in Figure 2.5.

For the node-local spatial index used in the FoF computation (and also partitioning the

data), we chose to use a kd-tree [49] because of its simplicity. We implemented both a

standard version of the kd-tree and the optimized version presented in Section 2.3.1.

2.5 Evaluation

In this section, we evaluate the performance and scalability of the dFoF clustering algorithm

using two real world datasets. We execute our code on an eight-node cluster running

Windows Server 2008 Datacenter edition Service Pack 1. All nodes are connected to the

same gigabit ethernet switch. Each node is equipped with dual Intel Xeon E5335 2 GHz

quad core CPU, 8 GB RAM, and two 500 GB SATA disks configured as RAID 0. Each Dryad

process requires 5 GB RAM to be allocated, or it is terminated. 5 GB per node is just enough

to fit 40 GB of the input data in the memory of eight nodes when the input data is evenly

distributed among the nodes. So, this memory constraint helps quickly detect unacceptable

load imbalances. Note that we tuned neither the hardware nor software configurations other

than implementing the algorithmic optimizations that we described previously. Our goal is

to show improvements in the relative numbers rather than try and show the best possible

absolute numbers.

We evaluate our algorithm on data from a large-scale astronomy simulation that ran on

25

Percentile 25 50 75 90 99 99.9 100

S43 6 16 97 373 1,853 8,322 10,494

S92 8 44 1,370 41,037 350,140 386,577 387,136

S92:S43 1.33 2.75 14.12 110.02 188.96 46.45 36.89

Table 2.1: Distribution of the number of particles in the two snapshots S43 and S92. Al-

though the two snapshots contain the same number of particles, the distribution of particles

in S92 is orders of magnitude denser than that of S43.

2048 compute cores of the Cray XT3 system at the Pittsburgh Supercomputing Center [19].

The simulation itself was only about 20% complete when we acquired the dataset. Therefore

we use two relatively early snapshots: S43 and S92 corresponding respectively to 580 million

years and 1.24 billion years after the Big Bang. Each snapshot contains 906 million particles

occupying 43 GB in uncompressed binary format. Each particle has a unique identifier and 9

to 10 additional attributes such as coordinates, velocity vector, mass, gravitational potential

stored as 32-bit floating-point numbers. The data is preloaded into the cluster and is hash

partitioned on the particle identifier attribute. Each partition is also compressed in the

GZip format. Dryad can directly read compressed data and decompresses it on-the-fly as

needed.

For this particular simulation, astronomers set the distance threshold (ε) to 0.000260417

in units where the size of the simulation volume is normalized to 1. Both datasets require

at least two levels of hierarchical merging.

As the simulation progresses, the Universe becomes increasingly structured (i.e., more

stars and galaxies are created over time). Thus, S92 has not only more clusters (3496) than

S43 (890) but also has denser regions than S43. Table 2.1 shows the distribution of the

number of particles within distance threshold (i.e., density of data).

Ideally, the structure of data should not affect the runtime of the algorithm so that

scientists can examine and explore snapshots taken at any time of simulation in a similar

26

amount of time.

Evaluation summary. In the following subsections, we evaluate our dFoF Dryad

implementation. First, we process both snapshots using an eight-node Dryad cluster while

varying the partitioning scheme and the spatial index implementation. These experiments

enable us to measure the overall performance of the algorithm and the impact of our two

optimizations. Second, we evaluate dFoF’s scalability by varying the number of nodes in the

cluster and the size of the input data. Finally, we compare dFoF to the existing OpenMP

implementation that the astronomers use today. Overall, we find that dFoF exhibits a near

linear speedup and scaleup even with suboptimal hardware and software configurations.

Additionally, dFoF shows consistent performance regardless of skew in the input data thanks

to the optimization in Section 2.3.

2.5.1 Performance

In this section, we use the full eight-node cluster, varying the partitioning scheme and spatial

index implementation. For the partitioning scheme, we compare deterministic uniform

partitioning (Uniform) described in Section 2.2 and dynamic partitioning (Non-uniform)

described in Section 2.3.2. We also compare an ordinary kd-tree implementation (Normal)

to the optimized version (OPT) described in Section 2.3.1. We repeat all experiments three

times except for Uniform partitioning using the Normal kd-tree because it took over 20

hours to complete. For Non-uniform partitioning, we use a sample of size 0.1%. We show

the total runtime including sampling and planning times. There is no special reason for

using a small sample except to avoid a high overhead of planning. As the results in this

section show, even small samples work well for this particular dataset.

Figure 2.6 shows the total run times for each variant of the algorithm and each dataset.

For dataset S43, which has less skew in the cluster-size distribution, all variants complete

within 70 minutes. However, when there is high skew (i.e., more structures as in S92),

the normal kd-tree implementation takes over 20 hours to complete while the optimized

version still runs in 70 minutes. Uniform-OPT over snapshot S92 did not complete because

27

1:04 1:10

19:30 20:36

0

6

12

18

24

Uniform Non-uniform Uniform Non-uniform

S43 S92

A
v
g
.
T

o
ta

l
R

u
n

ti
m

e

(h
o
u

r
s)

Normal Prune

Fail

Figure 2.6: Average time to cluster entire snapshot. Average of three executions

except for jobs that took longer than 20 hours. Missing bar is due to a failure caused by an

out-of-memory error due to slightly larger memory footprint of the optimized index than the

default kd-tree (see Figure 2.9). As the figure shows, with both non-uniform partitioning

and optimized index enabled, both snapshots are processed within 70 min.

it reached full memory capacity while processing a specific data partition, causing the failure

of the entire query plan as we discuss in more detail below.

Figure 2.7 shows the average relative time taken by each phase of the algorithm. The

hierarchical merge occurs in order of mergeLv1, mergeLv2, and mergeLv3. As the figure

shows, local clustering, fof, takes more than 40% of total runtime in all cases and completely

dominates when there is high-skew in the data and a normal kd-tree is used. All other user-

defined functions account for less than 4% of total runtime. All other standard operators

account for over 50% of total runtime, but the total is the sum of more than 30 operators

including repartitions, filters, and joins to produce intermediate and final result for each

level of the hierarchical merge. In the following subsections, we report results only for the

dominant fof phase of the computation and analyze the impact of different partitioning

schemes and different spatial index implementations.

In Figures 2.8 and 2.9, we measure the per-node runtime and peak memory utilization

of the local fof phase. We plot the quartiles and minimum and maximum values. Low

variance in runtime represents a balanced computational load, and low variance in peak

memory represents balance in both computation and data across different partitions. In

both Figures 2.8 and 2.9, Non-uniform partitioning shows a tighter distribution in runtime

28

0.41 0.40 0.39 0.39

0.95 0.94

0.40

0.00

0.25

0.50

0.75

1.00

Normal OPT Normal OPT Normal OPT Normal OPT

Uniform Non-uniform Uniform Non-uniform

S43 S92

R
a
ti

o
 t

o
 T

o
ta

l
R

u
n

ti
m

e

other

mergefofLv3

mergefofLv2

mergefofLv1

fof

Fail

Figure 2.7: Runtime breakdown across phases. Average of three executions except jobs

that take longer than 20 hours. The initial fof() takes more than 40% of total runtime. The

three-level hierarchical merges, mergefof(), took less than 4% of total runtime. “Other”

represents time to take to run all standard vertices such as filter, partition, joins to glue the

phases. Overall, fof() is the bottleneck and completely dominates when the data is highly

skewed and an ordinary kd-tree is used.

and peak memory utilization than uniform partitioning. With uniform partitioning, the

worst scenario happens when we try the optimized kd-tree implementation. Due to high data

skew, one of the partitions runs out of memory causing the entire query plan to fail. This

does not happen with normal kd-tree and uniform partitioning because the optimized kd-

tree has a larger memory footprint as discussed in Section 2.3.1. Non-uniform partitioning

is therefore worth the extra scan over the entire dataset.

As Figure 2.8 shows, dFoF with the optimized index (Section 2.3.1) significantly outper-

forms Normal implementation especially when there is significant skew in the cluster-size

distribution. Thanks to the pruning of visited subtrees, the runtime for S92 remains almost

the same as that for S43. However, the optimization is not free. Due to the extra tracking

flag, the optimization requires slightly more memory than the ordinary implementation as

shown in Figure 2.9. The higher memory requirement could be alleviated by a more effi-

cient implementation such as keeping a separate bit vector indexed per node identifier or

implicitly constructing a kd-tree on top of an array rather than keeping pointers to children

in each node. Overall, however, the added memory overhead is negligible compared with

29

 0

 50

 100

 150

 200

 250

 300

 350

S43 S92
 1

 10

 100

 1000

 10000

 100000
Uniform Non-uniform Uniform Non-uniform

R
u

n
ti

m
e
 f

o
r

S
4

3
 (

se
c
o

n
d

s)

R
u

n
ti

m
e
 f

o
r

S
9

2
 (

se
c
o

n
d

s)

F
a
il

Normal
OPT

Figure 2.8: Distribution of FoF runtime per partition. Uniform partitioning yields

higher variance in per partition runtime than Non-uniform partitioning. FoF with optimized

index traversal runs orders of magnitude faster than FoF with normal implementation in

S92 dataset. Note that the y-axis for S92 is in log scale.

the order-of-magnitude gains in runtime.

2.5.2 Scalability

In this section, we evaluate the scalability of the dFoF algorithm with non-uniform data

partitioning and the optimized kd-tree. In these experiments, we vary the number of nodes

in the cluster and redistribute the input data only to the participating nodes. All reported

results are the average of three runs. The standard deviation is less than 1%.

Figure 2.10 shows the runtime of dFoF for each dataset and increasing number of com-

pute nodes. Speedup measures how much faster a system can process the same dataset if

it is allocated more nodes [41]. Ideally, speedup should be linear. That is, a cluster with

N nodes should process the same input data N times faster than a single node. For both

datasets, the runtime of the dFoF is approximately half as long as we double the number

of nodes, showing a close-to perfect linear speedup. We do not present the number for the

30

 0

 1000

 2000

 3000

 4000

 5000

S43 S92

Uniform Non-uniform Uniform Non-uniform

P
ea

k
 M

em
o

ry
 U

sa
g

e
(M

B
)

F
ai

l

Normal
OPT

Figure 2.9: Distribution of FoF peak memory utilization per partition. Uniform

partitioning yields a higher variance in peak memory utilization per partition than Non-

uniform partitioning. This high variance caused the crash of one of the partitions with

optimized index traversal. The optimized kd-tree index traversal has a higher memory

footprint than the normal implementation.

single-node case due to an unknown problem in the Dryad version we use; the system did

not schedule remaining operators if currently running operator takes too long to complete.

Figure 2.11 shows the scaleup results. Scaleup measures how a system handles data size

that has increased in proportion to the cluster size. Ideally, as the data and cluster size

increase proportionally to each other, the runtime should remain constant. To vary the

data size, we subsample the S43 and S92 datasets. For 4-node and 8-node configurations,

the scaleup is close to ideal: the ratio of runtimes to the single-node case are 0.99 and 0.91

respectively. The 2-node experiment showed a scaleup of only 0.83 and 0.78. We investigated

the 2-node case and found that the size of the subsampled dataset was near the borderline

of requiring one additional hierarchical merge. Thus, each partition was underloaded and

completed quickly, overloading the job scheduler and yielding a poorer scaleup.

Overall, considering our suboptimal hardware configuration, the scalability of dFoF is

31

5000

10000

15000

20000

25000

R
u

n
ti

m
e

(s
ec

o
n

d
s)

S43 OS43

S92 OS92

0

5000

10000

15000

20000

25000

0 2 4 6 8

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Number of nodes (parallelism)

S43 OS43

S92 OS92

Figure 2.10: Speedup. dFoF runtime for each dataset with varying number of nodes. dFoF

speedup is almost linear. OS43 and OS49 are the result of OpenMP implementation of FoF

with varying degree of parallelism. Note that S43 overlaps with S92.

excellent.

2.5.3 Compared to OpenMP implementation

Astronomers currently use a serial FoF implementation that has been moderately paral-

lelized using OpenMP [32] as a means of scheduling computation across multiple threads

that all share the same address space. OpenMP is often used to parallelize programs that

were originally written serially. The two biggest drawbacks of OpenMP are (1) non-trivial

serial portions of code are likely to remain, thereby limiting scalability by Amdahl’s Law;

(2) the target platform must be shared memory. The serial aspects of this program are

state-of-the-art in terms of performance — they represent an existing program that has

been performance-tuned by astrophysicists for over 15 years. It uses an efficient kd-tree

implementation to perform spatial searches, as well as numerous other performance en-

hancements. The OpenMP aspects are not performance-oriented, though. They represent

a quick-and-dirty way of attempting to use multiple processing cores that happen to be

present on a machine with enough RAM to hold a single snapshot.

The shared-nothing cluster that we used for the previous experiments represents a com-

32

1000

2000

3000

4000

5000

6000
R

u
n

ti
m

e
 (

se
c
o

n
d

s)

S43 S92

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8

R
u

n
ti

m
e
 (

se
c
o

n
d

s)

Number of nodes

S43 S92

Figure 2.11: Scaleup. Runtime of dFoF with increasing data size proportional to the

number of nodes. Except for the two node case where scheduling overhead dominated,

dFoF scales up in linear.

mon cost-efficient configuration for modern hardware: roughly 8 cores per node and one

to two GB of RAM per core. Our test dataset is deliberately much larger than what can

be held in RAM of a single one of these nodes. The astrophysics FoF application must

therefore be run on an unusually large shared-memory platform. In our case, the University

of Washington Department of Astronomy owns a large shared-memory system with 128 GB

of RAM, 16 Opteron 880 single-core processors running at 2.4 GHz, and 3.1 TB of RAID 6

SATA disks.

At the scale of 128 GB of RAM, it is now cheaper to buy a single shared-memory system

than to distribute the same 128 GB across 16 nodes. However, this cost-savings breaks

down at the scales beyond 128 GB. For example, it is not possible to find symmetric multi-

processing systems (SMPs) with 1TB of RAM. At this scale, certain vendors offer systems

with physically distributed memory that share a global address space (“Non-Uniform Mem-

ory Access” or “NUMA” systems), but these are generally more expensive than building a

cluster of distributed-memory nodes from commodity hardware. Furthermore, the ostensi-

ble advantage of the shared-nothing architecture over a large, shared-memory system is the

scalability of I/O.

33

Consequently, our goal is to achieve competitive performance with the astrophysics FoF

running on the shared-memory system with our Dryad version running on the shared-

nothing cluster (i.e., 64 GB of total RAM — just barely large enough to fit the problem in

memory). If we do this, then we have demonstrated that the MapReduce paradigm is an

effective means of utilizing cheaper distributed-memory platforms for clustering calculations

at scales large enough to have economic impact.

In order to normalize serial performance, we ran the existing astrophysics FoF application

on a smaller dataset on both the shared-memory system and our cluster. The dataset was

small enough to fit completely into RAM on a single cluster node. The shared-memory

platform took 61.4 seconds to perform the same analysis that required 34.8 seconds on

a cluster node excluding I/O. We do not include I/O in our normalization because the

system’s storage hardware is still representative of the current state-of-the-art; only its

CPUs are dated. In the following results, we normalize the timings of the CPU portion of

the test on shared-memory system to the standard of the Dryad cluster hardware.

Running the astronomy FoF algorithm in serial on the shared-memory system for our

test dataset S43 (with the same parameters as our cluster runs) took 5202 seconds in total

— only 1986 of this was actual FoF calculation, the rest was I/O. In comparison, our Dryad

version would likely have taken an estimated 30,000 seconds, as extrapolated from our

optimized Dryad 2-node run assuming ideal scalability. However, since we do not actually

know the serial runtime of Dryad on this dataset, it is difficult to compare a parallel Dryad

run directly to our serial FoF implementation, since there is undoubtedly parallel overhead

induced by running Dryad on more than one node.

The runtime comparisons are much more interesting for S92. The particle distribution

in S92 is more highly clustered than S43, meaning that the clusters are larger on average,

and there are more of them. In this case, the astrophysics FoF takes quite a bit longer:

16763 seconds for the FoF computation itself and 19721 for the entire run including I/O,

compared to roughly 30,000 seconds for a serial Dryad run of the same snapshot. The

OpenMP implementation still wins, but the difference is smaller than for S43.

One can also see the effect of S92’s higher clustering on the OpenMP scalability. The

OpenMP version is not efficient for snapshots with many groups spanning multiple thread

34

domains. This limitation is because multiple threads may start tracking the same group.

When two threads realize they are actually tracking the same group, one gives up entirely

but does not contribute its already-completed work to the survivor. While this is another

optimization that could be implemented in the OpenMP version, astronomers have not yet

done so. This effect can be seen in Figure 2.10.

Since our Dryad version performed similarly on both snapshots, we conclude that our

methodology achieves scalability in both computational work and I/O. The advantage of

our implementation can be seen when we run on more nodes. This advantage allows us to

match the performance of the astrophysics code on S43 (3513 seconds vs. 4141 seconds)

and to substantially outperform it for S92 (11763 seconds vs. 4293 seconds). This idea is

in keeping with the MapReduce strategy: We employ a technique that may be less than

optimally efficient in serial, but that scales very well. Consequently, we have achieved our

goal of reducing time-to-solution on platforms that offer an economic advantage over current

shared-memory approaches at large scales.

2.6 Conclusion

Science is rapidly becoming a data management problem. Scaling existing data analysis

techniques is very important to expedite the knowledge discovery process. In this chap-

ter, we designed and implemented a standard clustering algorithm to analyze astrophysical

simulation output using a popular MapReduce-style data analysis platform. Through ex-

periments on two real datasets and a small eight-node lab-size cluster, we show that our

proposed dFoF algorithm achieves near-linear scalability and performs consistently regard-

less of data skew. To achieve such performance, we leverage non-uniform data partitioning

based on sampling and introduce an optimized spatial index approach. An interesting area

of future work, is to extend dFoF to other density-based clustering algorithm such as the

DBSCAN algorithm [46] or the OPTICS algorithm [8].

35

Chapter 3

STUDY OF SKEW IN MAPREDUCE APPLICATIONS

In Chapter 2, we showed how a näıve implementation of a UDO can cause significant

performance degradation due to skew. In this chapter, we study the skew problem in sev-

eral other MapReduce applications and analyze three cluster workloads to measure the

prevalence of this problem. More specifically, we first present an overview of the MapRe-

duce programming model and show how a MapReduce job is structured and executed in

Hadoop, an open source MapReduce engine (Section 3.1). We then analyze five different

causes of the skew problem in several real MapReduce applications (Section 3.2). We also

analyze workloads of three research Hadoop clusters and examine the severity of the skew

problem in practice and the effectiveness of speculative execution (the only countermea-

sure implemented in MapReduce and Hadoop to handle load imbalance among tasks) for

mitigating this problem (Section 3.3).

Overall, we find that more than 40% of jobs running more than five minutes have at least

one task running at least 50% longer than the median runtime of its peer tasks. More than

half of such long-running tasks are running at least twice and up to orders of magnitude

longer than the median runtime of their peer tasks. We also find that only 20% of speculative

execution attempts are successful (i.e., one of the speculated tasks completes faster than the

initial attempt). We conclude the chapter with five best practices in authoring MapReduce

applications (Section 3.4).

3.1 MapReduce Programming Model

Dean and Ghemawat introduced the MapReduce API and runtime system to write and

execute distributed data processing applications in a fleet of commodity PC servers [37].

The original MapReduce paper subsequently inspired an open source project Hadoop [61].

The Hadoop project closely replicates the MapReduce system including the distributed file

36

Reduce TaskMap Task

Distributed
File System

Map Sort

Local
Disk

Local
Disk

Sort Reduce

Distributed
File System

Partitioner

Combiner

Grouping
Comaprator

Shuffle

SortComparator SortComparator

Combiner

Figure 3.1: An execution of a MapReduce job in Hadoop. Dashed boxes represent user-

supplied functions. Shaded boxes represent optional functions. White boxes define phases

in a MapReduce job execution. Data flows from left to right in the figure.

system (i.e., Hadoop Distributed File System (HDFS) [23] instead of the Google File System

(GFS) [54]) described in the original MapReduce paper.

With the MapReduce programming model, a user can easily write a distributed data

processing application. The programming model requires two functions: map and reduce.

map :(K1, V 1)→ [(K2, V 2)]

reduce :(K2, [V 2])→ [(K3, V 3)]

The map function is invoked per input record (i.e., per key-value pair) of any key type

K1 and any value type V1 and produces a bag of output records with key type K2 and

value type V2. The map output records are then grouped by the output key, and all values

that have the same key are passed to the reduce function. The reduce function is thus

invoked per map output key, or reduce key, and produces final output records. For given

map and reduce functions, the framework handles all runtime issues such as parallelization,

scheduling, and fault-tolerance.

Figure 3.1 shows the structure of a typical MapReduce job in Hadoop. A MapReduce job

usually reads its input from and writes its output to the underlying distributed file system.

The distributed file system stores a file as a sequence of fixed-size blocks and each block is

replicated for fault-tolerance. A MapReduce job consists of two types of tasks: map tasks

37

and reduce tasks. Each task executes in phases (white boxes in Figure 3.1). By default, a

map task is created for each block of the input file. Each map task applies the given map

function to all assigned input records (Map). The output of the map function is typically

hash-partitioned and sorted by the reduce key (Local Sort). The number of reduce tasks

is typically chosen by the user. When a map task completes, the reduce tasks are notified

to pull newly available data (Shuffle). Once all map tasks complete and all reduce input is

shuffled, the reduce input is sorted on the reduce key (Sort) then the reduce tasks start the

reduce phase. They invoke the reduce function once for each reduce key. Each invocation

processes one key and all associated values (Reduce). The final output is stored back in the

distributed file system.

There is a coordinator daemon called JobTracker for each Hadoop MapReduce cluster.

The JobTracker manages the life cycle of each MapReduce job and makes scheduling de-

cisions across jobs and across tasks. A TaskTracker daemon runs at each worker node in

the cluster. The TaskTracker manages the life cycle of each task executing on the node.

The TaskTracker periodically contacts the JobTracker and reports the current status and

progress of the tasks that it manages. It also retrieves a new task to run from the JobTracker

if it has the capacity to run that task. A cluster configuration parameter determines how

many map or reduce tasks a node can run simultaneously. This setting is referred to as the

number of slots.

In the Hadoop implementation of MapReduce, users can further control their applica-

tions by providing optional functions (shaded boxes in Figure 3.1).

partitioner :(K2, V 2)→ int→ int

sortComparator :K2→ K2→ int

groupingComparator :K2→ K2→ int

combiner :(K2, [V 2])→ [(K2, V 2)]

With partitioner, users can override the default hash-partitioning of the map output and use

more sophisticated partitioning schemes (e.g., range partitioning, partitioning using a space-

filling curve). The partitioner is invoked once for each map output. With sortComparator,

the users can control the order of the reduce input. sortComparator is useful when a user

38

wants to sort the final output in a specific order. With groupingComparator users can

group reduce keys and invoke the reduce function per group rather than per reduce key.

groupingComparator is a popular way to implement a reduce-side join [20]. The Combiner

performs a partial aggregation over a small batch of map output to reduce the data size

transferred over the network. Similarly to the reduce function, the combiner is invoked once

for each reduce key and processes all the map output that shares the same reduce key in

the batch.

3.2 Types of Skew in a MapReduce Application

We present five types of skew that can arise in a MapReduce application. We only consider

skew originating from the characteristics of the algorithm and dataset. We do not consider

load imbalance due to workload interference and heterogeneous resources. For each type

of skew, we relate a real world application where we encountered this source of skew in

practice.

3.2.1 Sources of Map-side Skew

We identify three causes of skew in the map phase.

Expensive Record

Map tasks typically process a collection of records in the form of key-value pairs, one-by-

one. Ideally, the processing time does not vary significantly from record to record. However,

depending on the application, some records may require more CPU and memory to process

than others. These expensive records may simply be larger than other records, or the map

algorithm’s runtime may depend on the record’s value.

PageRank [25] is an application that can experience this type of skew. PageRank is a

link analysis algorithm that assigns weights (ranks) to each vertex in a graph by iteratively

aggregating the weights of its inbound neighbors. This application can thus exhibit skew

if the graph includes nodes with a large degree of incoming edges. We took the PageRank

implementation from Cloud 9 [72] and applied it to the freebase dataset [55]. We patched

39

0 20 40 60 80 100 120 140
Rank

0

50

100

150

200

250

300

R
u
n
ti

m
e
 (

se
co

n
d
s)

(a) Page Rank - Map

0 20 40 60 80 100 120 140
Rank

0

5

10

15

20

25

R
u
n
ti

m
e
 (

se
co

n
d
s)

(b) Page Rank - Reduce

Figure 3.2: The distribution of task runtimes for PageRank with 128 map and 128 reduce

tasks. A graph node with a large number of edges is much more expensive to process than

many graph nodes with few edges. Skew arises in both the map and reduce phases, but the

overall job runtime is dominated by the map phase.

Cloud 9 so that it would properly handle graph nodes with large numbers of edges without

running out of memory. The freebase graph is 2 GB in size, and contains 37M nodes and

342M edges. We stored the graph in a Hadoop sequence file, hash-partitioned on node id1.

Cloud 9 expresses each iteration of PageRank as a sequence of two MapReduce jobs.

The first MapReduce job distributes the weight of each vertex in the graph along outgoing

edges during the map phase, then aggregates these weights into a new PageRank value for

each vertex during the reduce phase. The second MapReduce job handles the random jump

and lost weights due to dangling vertices in the first MapReduce job. The output of the

second MapReduce job is the newly weighted graph. This graph forms the input to the next

iteration. We observed skew in the first job. Figure 3.2a shows the distribution of map task

1Cloud 9 provides multiple ways to partition data and multiple implementations of the PageRank algo-
rithm. We chose the most straight forward schemes: hash partition and best practice implementation with
combiner.

40

runtimes in that job, during the first iteration of the algorithm (subsequent iterations show

similar trends). The total runtime of this job is approximately 5 minutes. In Figure 3.2a,

the longest map task takes more than four minutes while most map tasks complete in

30 seconds. After investigation, we found that the slow map tasks were processing graph

nodes with a large number of outgoing edges. These graph nodes were significantly slower

to process, leading to the skew shown in the figure.

Heterogeneous Maps

MapReduce is a unary operator, but can be used to emulate an n-ary operation by logically

concatenating multiple datasets into a single input file. Each dataset may be required to

be processed differently, leading to a multi-modal distribution of task runtimes.

For example, SkewedJoin is one of the join implementations in the Pig system [52]. Each

map task in SkewedJoin distributes frequent join keys from one of the input datasets in a

round-robin fashion to reduce tasks, but broadcasts joining records from the other dataset

to all reduce tasks. These two algorithms exhibit different runtimes because the map tasks

that perform the broadcasts do more I/O than the other map tasks.

CloudBurst [116] is a MapReduce implementation of the RMAP algorithm for short-

read gene alignment2. CloudBurst aligns a set of genome sequence reads with a reference

sequence. CloudBurst distributes the approximate-alignment computations across reduce

tasks by partitioning the reads and references on their n-grams. The references and reads

bearing frequent n-grams are handled similarly to frequent join keys in SkewedJoin: frequent

n-grams from a reference sequence are replicated, and frequent n-grams from a read are

distributed in round-robin.

Figure 3.3a shows the runtime distribution of map tasks in the CloudBurst application.3

The total runtime for the job is over 8 hours. Unlike the PageRank application, the runtime

2http://rulai.cshl.edu/rmap/

3We ran the CloudBurst job on a biology dataset [73]. For each alignment, we allowed up to 4 mismatches
including insertion and deletion. We used 160 map tasks and 128 reduce tasks for the entire alignments.
We use 64 reduce tasks to process low-complexity fragments. The reduce phase processes 128 sequences
at a time (first loading data from reference dataset in memory, then processing 128 sequences from the
query dataset in a batch).

http://rulai.cshl.edu/rmap/

41

0 20 40 60 80 100 120 140 160 180
Rank

0

50

100

150

200

250

300
R

u
n
ti

m
e
 (

se
co

n
d
s)

(a) CloudBurst - Map

0 20 40 60 80 100 120 140
Rank

0

5000

10000

15000

20000

25000

30000

R
u
n
ti

m
e
 (

se
co

n
d
s)

(b) CloudBurst - Reduce

Figure 3.3: Distribution of task runtime for CloudBurst. Total 162 map tasks, and 128

reduce tasks. The map phase exhibits a bimodal distribution. Each mode corresponds to

map tasks processing a different input dataset. The reduce is computationally expensive

and has a smooth runtime distribution, but there is a factor of five difference in runtime

between the fastest and the slowest reduce tasks.

distribution during the map phase exhibits a bimodal distribution and there is little variance

within each mode. We verified that the two modes correspond to the two input datasets.

Although there is no significant skew within each mode, the MapReduce job is experiencing

skew because the two modes coexist in a single job.

Non-Homomorphic Map

One of the key features of the MapReduce framework is that users can run arbitrary code as

long as it conforms to the MapReduce interface: map() or reduce(), and typically initializa-

tion and cleanup. Such flexibility enables users to push, when necessary, the boundaries of

what map and reduce phases have been designed to do: each map output can depend on a

group of input records — i.e., the map task is non-homomorphic. For example, although the

conventional join algorithm in MapReduce requires both map and reduce phases, if the data

42

are sorted on the join attribute, the join can be implemented directly in the map phase using

a sort-merge algorithm. Similarly, a clustering algorithm can directly run during the map

phase if the data are already partitioned by a prior MapReduce job [85]. In these scenarios,

a map task may run what is normally reduce logic such as aggregation or join, consuming a

group of records as a unit rather than a single record as in a typical MapReduce application.

Thus, the map tasks may experience reduce-side skews discussed in Section 3.2.2.

Users can also employ the MapReduce framework to implement a distributed analysis

application by only leveraging the distributed execution and fault-tolerance features of the

MapReduce engine (e.g., [81]). In such scenarios, the map phase often runs arbitrary

computation which is potentially non-homomorphic4.

In the above scenarios, map tasks may run a CPU-intensive algorithm over many input

records. If the runtime of the algorithm varies depending on the distribution of input data

or the relationships between input data, then a job may incur significant map-skew.

An example of such an application is a data clustering algorithm called Friends of

Friends (FoF) [33] that we have implemented in multiple MapReduce-type systems, in-

cluding Hadoop (we present the dFoF implementation in detail in Chapter 2 and 4). FoF

is used by astronomers to analyze the structure of the universe within a snapshot of a sim-

ulation of the universe evolution. For each point in the dataset, the FoF algorithm uses

a spatial index to recursively look up neighboring points to find connected clusters. The

performance of a range query over a spatial index varies depending on the data distribution.

In a dense region, every lookup returns a large number of neighbors, but in a sparse region

the lookup returns few records. Thus, processing times depend on the distribution of input

data to map tasks.

Figure 3.4 shows the runtime distribution of the FoF “local clustering phase” [81, 85],

which runs in the map tasks. The data is space-partitioned by a prior MapReduce job.

There are 276 map tasks. Each task is assigned a region of space such that all tasks have

the same amount of data in bytes and in number of records (they differ by less than 2%).

Even with this condition enforced, the runtime varies between 6 minutes and 13 hours.

4The new interface since Hadoop 0.20 makes writing this kind of applications easier and cleaner.

43

0 50 100 150 200 250 300
Rank

0

10000

20000

30000

40000

50000

60000

R
u
n
ti

m
e
 (

se
co

n
d
s)

Figure 3.4: Runtime distribution of the local clustering phase of the Friends-of-Friends

algorithm [81, 85]. Total 276 map tasks. Even though all map tasks received the same

amount of data, the slowest map takes more than 50000 seconds while the fastest one

completes in 400 seconds due to different input data value distributions.

3.2.2 Reduce-side skew

We identify two types of reduce-skew. The first one, partitioning skew, is unique to reduce.

The other type of skew is analogous to the map-skew problems above.

Partitioning skew

In MapReduce, the outputs of map tasks are distributed among reduce tasks via hash-

partitioning (by default) or some user-defined partitioning logic. The default hash-partitioning

is usually adequate to evenly distribute the data. However, reduce-skew can still arise in

practice. Consider the following two examples.

First, consider an application that needs to process many small files. In Hadoop, pro-

cessing a small number of large files is more efficient than processing a large number of

small files. As a result, users often write MapReduce jobs that combine small files into

larger sequence files. One of our science collaborators wrote such a MapReduce job. The

map derives the target sequence file name from the content of the small files, then the out-

44

0 5 10 15 20 25 30 35
Execution Time (1000 seconds)

0

20

40

60

80

100

120

140

T
o
ta

l
n
u
m

b
e
r

o
f

g
ro

u
p
s

(a) Number of key groups

0 5 10 15 20 25 30 35
Execution Time (1000 seconds)

0

1000

2000

3000

4000

5000

T
o
ta

l
n
u
m

b
e
r

o
f

re
co

rd
s

(t
h
o
u
sa

n
d
s)

(b) Number of input records

Figure 3.5: Distribution of the number of key groups and input records per reduce task

with respect to runtime for CloudBurst. Each point in the figures represents a reduce task.

The number of key groups assigned to each reducer is 129 or 130 key groups. It is thus

extremely well balanced. However, there is factor of five difference between the minimum

and the maximum task runtime. This suggests that evenly distributing key groups among

reduce tasks is not sufficient to eliminate the skew for CloudBurst. The number of input

records assigned to each reduce task varies by a factor of two and the runtime increases as

the number of records increases. This suggests that the number of input records is a better

measure to partition the map output than the number of key groups for CloudBurst.

put is distributed among reduce tasks by hash-partitioning on the target sequence file name

with a default hash function. The user wanted to assign one reduce task for each sequence

file but unfortunately the hash partitioning scheme did not evenly distribute the key groups

(i.e., file names) across the available reduce tasks because there are too few key groups

compared to the number of reduce tasks. This problem is known as the coupon collector’s

problem [34]. Roughly n log n distinct key groups are necessary to prevent an empty reduce

task (i.e., a reduce task with no input data). In this scenario, there exist only n key groups

thus it is likely that some reduce tasks are assigned more than one key group, leading to

45

skew. Therefore, some reduce tasks ended up writing multiple sequence files, each in the

order of a TB, while others completed almost immediately.

As a second example, even when the partitioning function perfectly distributes keys

across reducers, some reducers may still be assigned more data simply because the key

groups they are assigned contain significantly more values. Figure 3.3b shows the runtime

distribution with respect to the number of input key groups and the number of input records

per reduce task for the CloudBurst application above. While the keys are distributed evenly

across the reduce tasks (Figure 3.5a), there is a factor of two difference between the smallest

and the largest key-group in the number of input records (Figure 3.5b). As a result, the

runtime of the reducers exhibits skew.

In general, balanced data allocation is a difficult problem if the partitioning logic relies

upon values computed during the execution of the map algorithm because the values are

not known beforehand.

Expensive Input

In MapReduce, reduce tasks process a sequence of (key, set of values) pairs. As in the

case of expensive records processed by map, expensive (key, set of values) pairs can skew

the runtime of reduce tasks. Since reduce operates on key groups instead of individual

records, the expensive input problem can be more pronounced, especially when the reduce

is a holistic operation that requires memory proportional to the size of the input data [57].

A holistic reduce may load the entire associated values with a reduce key in memory and

run complex algorithms (e.g., find clusters in a multi-dimensional input data using a spatial

index, perform complex joins, and analyze the activities of a user given a subgraph of social

network).

The runtime of a holistic reduce that runs a complex algorithm can significantly vary

per reduce key. For example, the reduce of CloudBurst performs a similarity join. It is

a holistic reduce because each reduce invocation needs to buffer all the values from the

reference dataset. Figure 3.5a shows that all reduce tasks are extremely well balanced in

terms of the reduce keys. However, there is factor of five difference between the minimum

46

and the maximum task runtime. This suggests that some reduce keys are more expensive

to process than others. As shown in Figure 3.5b, there is a factor of two difference in the

number of input records between the fastest and the slowest reduce tasks, but there is a

factor of five difference in runtime between tasks. Thus, each reduce in the slowest reduce

task processed 2x more input records and each input record is 2.5x more expensive than in

the fastest reduce task on average. The difference might have been greater depending on

the data and the parameters of the algorithms.

3.3 Skew in the Real World

How frequent is the skew problem in practice? How significant is the impact of the skew

problem? To answer these questions, we analyze the workloads of three research Hadoop

clusters. As shown in the previous section, the tasks that exhibit skew run significantly

longer than other tasks in the same job. We call such long running tasks straggler tasks.

In this section, we first analyze the frequency and distribution of straggler tasks (Sec-

tion 3.3.2) then analyze the relationship between skew and techniques to partition input data

(Section 3.3.3). Finally, we evaluate the effectiveness of speculative execution in Hadoop,

which is the default mechanism to address straggler tasks (Section 3.3.4).

3.3.1 Datasets and Scope of Analysis

We analyze the execution logs from three Hadoop MapReduce clusters used for research:

OpenCloud, M45, and Web Mining. The three clusters have different hardware and

software configurations and range in size from nine nodes (Web Mining), to 64 nodes

(OpenCloud), to 400 nodes (M45).

OpenCloud: OpenCloud is a research cluster at Carnegie Mellon University (CMU)

managed by the CMU Parallel Data Lab. It is open to researchers (including faculty,

post-docs, and graduate students) from all departments on campus. In the trace that

we collected, the cluster was used by groups in areas that include computational astro-

physics, computational biology, computational neurolinguistics, information retrieval and

information classification, machine learning from the contents of the Web, natural language

47

Cluster Duration Start Date End Date Successful/Failed/Killed Jobs Users

OpenCloud 20 months 2010 May 2011 Dec 51975/4614/1762 78

M45 9 months 2009 Jan 2009 Oct 42825/462/138 30

Web Mining 5 months 2011 Nov 2012 Apr 822/196/211 5

Table 3.1: Summary of Analyzed Workloads

processing, image and video analysis, security malware analysis, social networking analysis,

cloud computing systems development, cluster failure diagnosis, and several class projects

related to information retrieval, data mining and distributed systems.

The 64 nodes in this cluster each have a 2.8 GHz dual quad core CPU, 16GB RAM,

10 Gbps Ethernet NIC, and four Seagate 7200 RPM SATA disk drives. The cluster ran

Hadoop 0.20.1 during the data collection.

M45: M45 is a production cluster made available by Yahoo! to support scientific re-

search [1]. The research groups that used this cluster during the collection of the trace cov-

ered areas that include large-scale graph mining, text and web mining, large-scale computer

graphics, natural language processing, machine translation problems, and data-intensive file

system applications [75]. The 400 nodes in this cluster each contain two quad-core 1.86GHz

Xeon processors, 6GB of memory, and four 7200 rpm SATA 750 GB disk. The cluster ran

Hadoop 0.18 with Pig during the data collection. The first four months of the trace overlap

with the end of the trace previously analyzed by Kavulya et al. [75].

Web Mining: Web Mining is a small cluster owned and administered by an anonymized

research group. The group comprises faculty, post-docs, and students. Most users run web

text mining jobs. The 9 nodes in the cluster each have four quad-core CPU Xeon E5630,

32GB RAM, four 1.8TB HDD. The cluster runs Hadoop 0.20.203 with Pig.

Log: Table 3.1 summarizes the duration of each collected log and the number of Hadoop

jobs that it covers. For each cluster, our log comprises two types of information for each

executed job. All data were collected automatically by standard Hadoop tools requiring no

additional tracing tools.

48

Cluster Total > 5 mins |map| > 1 |reduce| > 1

OpenCloud 51957 5144 (9.9%) 4953 (9.5%) 3077 (5.9%)

M45 42825 6621 (15.5%) 6538 (15.3%) 4130 (9.6%)

Web Mining 822 369 (44.9%) 368 (44.8%) 255 (31.0%)

Table 3.2: Overall Statistics for Straggler Analysis: total number of jobs in the log, number

of jobs longer than 5 min, and number of jobs with more than one map or reduce task.

• Job configuration files: Hadoop archives a job configuration file for each submitted

job, which is an XML file that carries the specification of the MapReduce job (e.g., the

class names of the mapper and reducer, the types of the keys and values, the number

of mappers, the number of reducers).

• Job history files: Hadoop also archives a job history file for each submitted job, which

includes for each task the initialization time, start time, completion time, and time of

each phase transition. In addition, this file includes a variety of counters, including

the number of bytes/records read/written for each task.

Scope of Analysis: We limit our study to successfully completed jobs only, because

counters and timing information were not captured in the job history for failed and killed

jobs. Unless explicitly stated, we only consider jobs that run longer than five minutes

because the impact of stragglers is insignificant for short jobs (i.e., even jobs with stragglers

are fast). A task only straggles with respect to some other task, so we only consider map

and reduce phases that have at least two tasks. Table 3.2 summarizes the number of jobs

and job phases analyzed in this section. When calculating the task runtime, we only take

the map phase and reduce phase into account and ignore the shuffle and sort phases5.

5Unfortunately, we cannot exclude the local sort phase of map tasks because the version of Hadoop
running in all three clusters does not separate the timing of the local sort phase from that of the map
phase.

49

Stragglers Map Reduce Map ∧ Reduce Map ∨ Reduce

OpenCloud 2967 (58%) 1940 (38%) 1109 (22%) 3798 (74%)

M45 3643 (55%) 2659 (40%) 1310 (20%) 4992 (75%)

Web Mining 140 (38%) 35 (9%) 18 (5%) 157 (43%)

Table 3.3: The number and fraction of jobs that have stragglers in map, in reduce, and both

phases. More than 40% of jobs running longer than five minutes have at least one straggler.

3.3.2 Straggler Tasks

Dean et al. identified the straggler problem [37] and Ananthanarayanan et al. analyzed the

problem in a production cluster [7]. In this subsection, we replicate the straggler analysis by

Ananthanarayanan et al. [7]6. Ananthanarayanan et al. categorized a task as a straggler if

the task is running at least 50% longer than the median task in the same phase of the same

job. Using this definition, the three research clusters are similar to the enterprise clusters

studied by Ananthanarayanan [7] and an earlier study of the M45 cluster [75]: there are

many stragglers, and some are orders of magnitude slower than the median runtime.

Table 3.3 summarizes the number of jobs that have stragglers in the map phase, the

reduce phase, and in both phases. Overall, more than 40% (and up to 75%) of jobs that run

longer than five minutes have at least one straggler. We also find that even the map phase,

which is usually regularized by assigning a fixed amount of bytes to each task, frequently

experiences the straggler problem. This finding confirms that the input data size alone is

not a good indicator of task runtime in these three clusters. The same finding was reported

in the analysis of enterprise clusters [29].

Knowing that many jobs have stragglers, we can also ask how many tasks per job

are stragglers. To answer this question, we plot the cumulative distribution function of

stragglers in each cluster and for each MapReduce phase. Figure 3.6 shows the results. In

6We use the term straggler instead of outlier for consistency with the original MapReduce paper [37].

50

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of Stragglers in a Phase

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

of
Jo

bs
w

ith
S

tra
gg

le
rs

OpenCloud Map (N=2967)
OpenCloud Reduce (N=1940)
M45 Map (N=3643)
M45 Reduce (N=2659)
Web Mining Map (N=140)
Web Mining Reduce (N=35)

Figure 3.6: Cumulative distribution of the fraction of straggler tasks in Map and Reduce

phases. N is the number of jobs that run for longer than five minutes and have stragglers

per cluster, per phase.

all three clusters, 30% of map and reduce phases that include any stragglers have more than

10% of tasks as stragglers. The M45 reduce distribution closely resembles the one reported

in Ananthanarayanan et al. [7]. However, we can observe variations in the distributions

across phases and clusters.

In Figure 3.7, we show the distribution of relative runtimes of straggler tasks with re-

spect to the median task runtime of the same phase in the job. In all three clusters, 75%

of reduce-side stragglers complete within 2.5x of the median runtime. Map stragglers have

larger variations across clusters: 55% and 65% of map straggler tasks complete within

2.5x of median runtime in M45 and OpenCloud respectively. As observed in Anantha-

narayanan et al. [7], the distribution is heavy-tailed. We also show the values at 99%, 99.9%,

and 100% percentiles in the table. Some straggler tasks run orders of magnitudes longer

than the median runtime.

51

0.0 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Ratio of Straggler Runtime to Median Runtime

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

of
Jo

bs
w

ith
S

tra
gg

le
rs

OpenCloud Map (N=1004580)
OpenCloud Reduce (N=106663)
M45 Map (N=386473)
M45 Reduce (N=88718)
Web Mining Map (N=27178)
Web Mining Reduce (N=1146)

Percentile 99 99.9 100

OpenCloud
Map 70.0 1106.0 23068.5

Reduce 15.3 64.9 54692.5

M45
Map 15.3 153.0 1537.5

Reduce 11.4 143.8 1267.4

Web Mining
Map 11.2 66.9 170.7

Reduce 46.4 404.3 409.3

Figure 3.7: Cumulative fraction of ratio of straggler runtime to median task runtime. N is

the number of straggler tasks per cluster, per phase. The table shows straggler runtime at

specific percentiles.

In summary, the straggler problem is prevalent in all clusters, and slow tasks frequently

run more than 2.5x to orders of magnitude slower than the median.

52

3.3.3 Input Data Size and Task Runtime

There are many causes of stragglers but one of the causes is data skew : some tasks take

longer simply because they have been allocated more data. Ideally, if we assign the same

amount of input data to all tasks, then all tasks should take the same time to execute.

We evaluate how close the workloads are to this ideal case by analyzing the relationship

between input data size and task runtime.

Method: For each phase of each job, we compute the ratio of the maximum task

runtime in the phase to the average task runtime in that phase. We classify phases where

this ratio is greater than 0.5 (meaning that at least one straggler took twice as long to

process its data as the average) as unbalanced in time (UT). Otherwise, the phase is said

to be balanced in time (BT). We compute the same ratio for the input data and classify

phases as either balanced or unbalanced in their data (BD or UD).

Map Input Record: Figure 3.8 shows the result for the map phases. We group the

jobs by application types (Table 3.4) then breaks the results into four different types based

on whether the input data and/or the runtime are balanced or not (i.e., (U)BD(U)BT as

defined in the previous paragraph).

As expected for the map phase, most jobs are balanced with respect to data allocated

to tasks. However, a significant fraction of jobs, more than 20% for all but Mahout in

the OpenCloud cluster, remain unbalanced in runtime and are categorized as BDUT.

These results agree with the result of the previous study in enterprise clusters [29]. Mahout

is effective at reducing skew in the map phase, clearly demonstrating the advantage of

specialized implementations. Interestingly, Pig produces unbalanced map phases similar to

users’ custom implementations. Overall, allocating data to compute nodes simply based on

data size alone is insufficient to eliminate skew.

In Hadoop, the InputFormat mechanism is responsible for generating InputSplits that

describe the input data processed by a map task. In our traces, less than 1% of jobs attempt

to optimize the partitioning of the map input by using a custom input format. In addition,

the user can manually specify the number of bytes per split if the input is stored in HDFS.

53

0.0

0.2

0.4

0.6

0.8

1.0

Custom
(N=4298)

Example
(N=50)

Hadoop
(N=102)

Mahout
(N=5)

Pegasus
(N=484)

Fr
a

ct
io

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

(a) OpenCloud

0.0

0.2

0.4

0.6

0.8

1.0

Custom
(N=5794)

Example
(N=259)

Hadoop
(N=310)

Pegasus
(N=14)

Pig
(N=161)

Fr
ac

ti
o

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

(b) M45

0.0

0.2

0.4

0.6

0.8

1.0

Custom
(N=219)

Hadoop
(N=9)

Mahout
(N=21)

Pig
(N=119)

Fr
ac

ti
o

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

(c) Web Mining

Figure 3.8: Distribution of map runtime with respect to # of input records per application.

N is the number of successful jobs that run map functions in each category. The labels

indicate the category: (U)BD(U)BT stands for (un)balanced input data, (un)balanced run-

time.

54

Type Description

Hadoop Functions that are part of Hadoop MapReduce framework (e.g., Iden-

tity, Regex).

Example Functions from the example applications distributed with the Hadoop

software (e.g., Terasort, Wordcount, and LoadGen).

Mahout Functions in Mahout jobs. Mahout is a machine learning algorithm

package built on top of Hadoop [127].

Pegasus Functions used in Pegasus jobs. Pegasus provides high-level APIs for

large scale graph analysis [74]. The functions are either provided by

the Pegasus framework or written by users.

Pig Functions used in Pig jobs. Pig translates a Pig-Latin script into a

DAG of MapReduce jobs [52, 104]. The functions include relational

operators provided by the Pig execution engine as well as user-defined

operators.

Custom The remaining functions in the workload

Table 3.4: Types of Map Functions in Figure 3.8

In our traces, 12% of all jobs from ten users in OpenCloud used this optimization. In M45

and Web Mining, less than 1% of all jobs from one and three users used the optimization,

respectively. It is clear that users only rarely exploit these opportunities for optimizing the

data allocation.

Reduce Key: We perform a similar analysis for the reduce phase by using the number

of reduce keys as the input measure. Instead of application types, we group the jobs

by the partition function employed (Table 3.5). The partition function is responsible for

redistributing the reduce keys among the reduce tasks. Again, we find that users rely

primarily on the default hash-partition function (Figure 3.10) rather than trying to optimize

55

0.0

0.2

0.4

0.6

0.8

1.0

Custom
(N=155)

Hadoop
(N=78)

Hash
(N=1195)

Pegasus
(N=4)

Fr
ac

ti
o

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

(a) OpenCloud

0.0

0.2

0.4

0.6

0.8

1.0

Custom
(N=6)

Hadoop
(N=702)

Hash
(N=3306)

Pig
(N=34)

Fr
a

ct
io

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

(b) M45

0.0

0.2

0.4

0.6

0.8

1.0

Hash
(N=219)

Pig
(N=34)

Fr
a

ct
io

n
 o

f
Jo

b
s

UDBT

UDUT

BDUT

BDBT

(c) Web Mining

Figure 3.9: Distribution of reduce runtime with respect to # of reduce keys per partition

function. The labels indicate the category: (U)BD(U)BT stands for (un)balanced input

data, (un)balanced runtime.

56

Type Description

Hash The default hash partition function in Hadoop

Hadoop Partition functions except hash provided by the Hadoop MapReduce

framework (e.g., TotalOrderPartitioner, KeyFieldBasedPartitioner)

Pegasus Partition functions provided by the Pegasus framework [74]

Pig Partition functions provided by the Pig execution engine [52, 104]

Custom The remaining partition functions in the workload

Table 3.5: Types of Partition Functions in Figure 3.9

the data allocation manually to reducers.

Figure 3.9 shows the analysis per partition function7. Overall, hash partitioning effec-

tively redistributes reduce keys among reduce tasks for more than 92% of jobs in all clusters

(i.e., BDBT+BDUT). Interestingly, we observed that as many as 5% of all jobs in all three

clusters experienced the empty reduce problem, where a job has reduce tasks that processed

no data at all due to either a suboptimal partition function or because there were more

reduce tasks than reduce keys. (We observed the latter condition in 1% to 3% of all jobs.)

For the jobs with a balanced data distribution, the runtime is still unbalanced (i.e.,

BDUT jobs) for 22% and 38% of jobs in the OpenCloud and M45 clusters, respectively. In

both the OpenCloud and M45 clusters, custom data partitioning is more effective than the

default scheme in terms of balancing both the keys and the computation. Other partitioning

schemes that come with Hadoop distribution do not outperform hash partitioning in terms

of balancing data and runtime. A noticeable portion of UDBT jobs (in which data are not

balanced but runtime is balanced) use the total order partitioner, which tries to balance the

keys in terms of the number of values. Pig, which uses multiple partitioners, consistently

performs well in both M45 and Web Mining clusters.

In summary, we recommend pursuing techniques that automatically reduce skew to

7In the M45 workload, the number of reduce keys was not recorded for the jobs that use the new
MapReduce API due to a bug in the Hadoop API. The affected jobs are not included in the figure.

57

OpenCloud
(N=50307)

M45
(N=36616)

Web Mining
(N=749)

Hash 0.877 0.930 0.774

Custom 0.119 0.001 0.016

Hadoop 0.003 0.024 0.000

Pegasus 0.001 0.000 0.000

Pig 0.000 0.045 0.210

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n

 o
f

J
o

b
s

Hash Custom Hadoop Pegasus Pig

Figure 3.10: Fraction of jobs per partition function. The hash partitioning is dominant

in all three clusters. The fraction of jobs using customized partition function is relatively

small, less than 10% in all clusters.

achieve better overall performance given: a) the prevalence of load imbalance problems, b)

the evidence that achieving load balance requires more than uniform data distribution, and

c) users’ reluctance to use the manual tuning features provided by Hadoop [84, 135].

3.3.4 Speculative Execution

Finally, we analyze the effectiveness of speculative execution. Speculative execution is the

default mechanism implemented in Hadoop to handle straggler tasks. The intuition is that

the task scheduler will eagerly schedule a redundant copy of a task whenever there exists

an idle slot in an attempt to improve job completion time. The detailed implementation

varies from version to version in Hadoop.

Method: For all successful jobs, we extract tasks that involve multiple attempts and

categorize the tasks according to the characteristics of the attempts. The Recompute label

indicates that the attempts were necessary to recover from the failure of the original attempt.

The Successful label shows that the attempts were part of a successful speculative execution

58

Jobs Tasks Default

OpenCloud
Map 16857 (32%) 548993 (3%)

Enabled
Reduce 6751 (13%) 124931 (5%)

M45
Map 1195 (3%) 6025 (0.1%)

Disabled
Reduce 2165 (5%) 38835 (2%)

Web Mining
Map 467 (57%) 6966 (1%)

Enabled
Reduce 278 (34%) 630 (5%)

Table 3.6: Total number of jobs and speculated tasks and default setting for speculative

execution.

(i.e., the speculative task was initiated after the original attempt but completed first).

The Unsuccessful label represents an unsuccessful speculation (i.e., the original attempt

completed faster than speculative attempts). Since Hadoop does not keep track of precise

timings for failed and killed attempts, we infer the missing data using other information. In

particular, the failure of an original task attempt may have left the start time of the failed

attempt unrecorded in the attempt log. In this case, we recover the start time from the

task log.

Overall Statistics: In Table 3.6, we show whether the speculative execution is enabled

by default for each cluster (if it is disabled by default, a user has to manually enable it

for each MapReduce job), the number of all jobs, and the number of speculated tasks that

triggered speculative execution. The OpenCloud and Web Mining clusters enable the

speculative execution by default while M45 does not. Thus, all speculative executions

observed in the M45 cluster were initiated by users who explicitly overrode the default

value. The fraction of jobs and tasks that have at least one task attempted multiple times

varies from cluster to cluster and between map and reduce. The fraction of jobs in M45 is

significantly less than that of OpenCloud and Web Mining due to the default setting.

59

0.0

0.2

0.4

0.6

0.8

1.0

Map Reduce Map Reduce Map Reduce

OpenCloud M45 Web Mining

Fr
ac

ti
o

n
 o

f
Sp

e
cu

la
ti

o
n

s

Uncertain Scheduled late
No improvement Successful

Figure 3.11: Fraction of Speculation Result per Phase per Cluster. In all clusters, a specu-

lative execution completed faster than the original attempt (successful) at most 21% of the

time. In all clusters, a large fraction of map speculations did not run significantly faster than

the original attempt (no improvement). In OpenCloud and M45, many reduce specula-

tions were scheduled late (speculative attempts ran only less than 10% of original attempt

time before killed).

Figure 3.11 summarizes the results of speculations in all clusters. Speculative execution

was not very successful in all three clusters: only 3 to 21% of speculations were successful.

We further analyze those unsuccessful speculations by classifying each unsuccessful attempt

as scheduled late, no improvement, and uncertain. A speculation is scheduled late if all

speculation attempts for a task ran less than 10% of the original attempt runtime before

being killed. Those killed attempts ran too briefly and so did have enough time to run to

the end. Also, a speculation may not improve runtime at all. We label such speculations

as no improvement when the oldest speculation attempt ran more than 90% of the original

attempt runtime. The tasks in this category are likely to be genuinely long-running tasks, so

re-executing the same tasks on different nodes does not improve their runtime significantly.

We label the remaining unsuccessful speculations as uncertain.

60

10−3 10−2 10−1 100 101 102 103 104

Runtime of Killed Original Attempt/Runtime of Speculation Attempt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

of
S

pe
cu

la
te

d
Ta

sk
s

OpenCloud Map (N=28297)
OpenCloud Reduce (N=5001)
M45 Map (N=667)
M45 Reduce (N=2944)
Web Mining Map (N=425)
Web Mining Reduce (N=17)

Figure 3.12: Successful speculative execution. Cumulative distribution of runtime ratio

between the original attempt and successful speculation attempt. Median speedup of suc-

cessful speculative execution varies from 1.05x to 5.4x and maximum speed up varies from

1.5x to 7000x.

In all three clusters, most of map speculations do not run significantly faster than the

original attempts. For reduce, many speculation attempts in both OpenCloud and M45

are scheduled too late.

By analyzing recomputed tasks, we find only one instance of lost map output (i.e., re-

execute previously completed map task of which output is lost due to a node failure) in

OpenCloud. Ananthanarayanan et al. also reported that such recomputation due to loss

of map output is rare [7].

Successful Speculative Execution: In Figure 3.12, we analyze the speedup of suc-

cessful speculative executions. We adjust the start time of the original reduce attempt to

the time when the last map attempt completed if the reduce attempt started before com-

61

pletion of all map tasks because the shuffle time of such attempts includes a long waiting

time for the completion of the map phase. In contrast, the speculative tasks immediately

begin to shuffle because all input data are ready. Due to this adjustment, the ratio of some

reduce attempts may be underestimated. Median speedup of speculative execution varies

from 1.05x to 5.4x and 90% of the speculative execution runs up to 10x faster than the

initial attempt. A few speculations run orders of magnitude faster than their initial at-

tempts, and most of them complete within a minute. After closely investigating speculative

executions that run orders of magnitude faster than their initial attempts, we suspect that

those tasks are typically experiencing I/O problems (e.g., very little disk and network I/O

for an extended period time compared with the successful attempt) and the speedup was

more pronounced especially when the job had a large number of tasks. Speculation was

thus delayed at the end of each phase.

To sum up, the straggler tasks are prevalent and delay the job completion significantly

in the three real world clusters. The speculative execution, the de facto strategy to handle

stragglers, is rarely effective: only less than 21% of speculations were effective in the three

clusters. When it is successful, however, the speed up is dramatic (up to 7000x). To

improve the effectiveness of speculation, it is promising to make more informed decisions

based on more accurate progress estimators and monitoring not only the tasks but also

cluster resources [7, 98]. Also, more efficient skew mitigation strategies such as stealing

work from stragglers rather than starting from scratch are important [84, 135].

3.4 Best Practices

We present a survey of best practices to mitigate skew in a MapReduce job derived from

our observations in Section 3.2 and Section 3.3. We present them in order of our estimate

of their implementation complexity. We discuss their benefits, their limitations.

Best Practice 1 Use domain knowledge when choosing the map output partitioning scheme

if the reduce operation is expensive: Range partition or some other form of explicit partition

may be better than the default hash-partition.

62

The default hash-partitioning scheme on key is a well-known technique in the parallel

database literature for ensuring an even data distribution [40]. However, when the reduce

operation is expensive and susceptible to skew, this simple technique often fails. Frequently,

load must be balanced not at the granularity of keys but at the granularity of values as

shown in Figure 3.5. In case of Holistic Reduce operations, the partitioning strategy must

be application-dependent, which puts a significant burden on the developer.

To choose or implement better domain-specific partitioning strategies, the user must

already be familiar with the properties of the application and the data. We found that the

next best practice is useful in achieving this goal.

Best Practice 2 Try different partitioning schemes on sample workloads or collect the data

distribution at the reduce input if a MapReduce job is expected to run several times.

Best Practice 3 Implement a combiner to reduce the amount of data going into the reduce-

phase and, as such, significantly dampen the effects of any type of reduce-skew.

In MapReduce (and in Hadoop), at the output of the map phase and before the reduce

phase, one can optionally implement a combiner that pre-aggregates the map output. Com-

biners are in general beneficial when the expected reduction ratio for data to be shuffled is

significant.

The combiner optimization, however, may hurt performance if the CPU and disk I/O

cost of the combiner is greater than the diminished network I/O cost [62]. As shown by

Lin and Schatz [90], manually combining the output within a map is desirable, if possible,

because it avoids extra serialization overheads to prepare the input for the combiner. This

is true for the current Hadoop implementation. Other MapReduce and future Hadoop

implementations may not have this issue.

Combiners are effective at handling Partitioning Skew and Expensive Input at the reduce

side when the skew observed during the reduce phase is mainly due to the volume of data

transferred during the shuffle phase because a proper combiner can significantly reduce the

transferred data size and mitigate the problems. To be more effective, we recommend using

both a combiner and domain-specific partitioning strategy as described in the previous

practice.

63

Best Practice 4 Use a pre-processing MapReduce job that extracts properties of the input

data in the case of a long-running, skew-prone map phase. Appropriately partitioning the

data based on the extracted properties before the real application runs can significantly reduce

skew problems in the map phase.

For MapReduce jobs that may experience Expensive Input on the map side and possibly

a Non-homomorphic Map, skew can be eliminated by changing the allocation of input data

to map tasks. If the behavior of the algorithm is known, then the user can run a sepa-

rate MapReduce job that checks whether map-skew will occur. For example, a PageRank

MapReduce preprocessing job can check whether there are graph nodes with large numbers

of edges, and adjust the data partition accordingly, before executing the real PageRank job.

Best Practice 5 Design algorithms whose runtime depends only on the amount of input

data and not the data distribution.

For MapReduce jobs with either Holistic Reduce or Non-homomorphic Map problems,

the best approach to avoid skew is to re-design the map or reduce algorithms such that their

runtime performance depends only on the size of the input data rather than the data value

distribution. However, such redesign often requires extra expertise. For example, in the

friends-of-friends clustering algorithm, we successfully eliminated skew by reimplementing

the in-memory spatial index structure in Chapter 2. With the re-design, skew can be

handled straightforwardly by assigning the same amount of data per node. However, it is

not certain that such re-design is possible for all algorithms.

3.5 Conclusion

MapReduce and its open source implementation Hadoop have made large scale data anal-

ysis widely accessible. Such runtime systems free users from problems associated with

distributed coordination, fault-tolerance, and scalability. However, users may still suffer

from performance problems related to skew if they are not careful regarding their map and

reduce implementations and how data is partitioned across tasks. In this chapter, we sur-

veyed five common sources of skew in real MapReduce applications and demonstrated skew

64

problems as well as the effectiveness of current practices (i.e., data partitioning, speculative

execution) using real workloads from three Hadoop clusters. We presented five best prac-

tices in developing a MapReduce application to address these problems. In the following

two chapters, we propose two approaches that systematically address the problems.

65

Chapter 4

SKEWREDUCE: COST-BASED PARTITION OPTIMIZATION

As we showed in Chapters 2 and 3, skew frequently occurs in real workloads. In our study,

when a task experienced skew, the runtime of that task was sometimes orders of magnitude

larger than the average runtime of peer tasks. In this chapter, we propose SkewReduce,

a cost-based partition optimization technique that mitigates skew for a particular class of

applications for which traditional approaches fail.

The standard approach to handling skew in parallel systems is to assign an equal num-

ber of data values to each partition via hash partitioning or clever range partitioning (see

Chapter 6). These strategies effectively handle partition skew, which occurs when some

nodes are assigned more data than others. For example, in MapReduce, the default par-

titioning strategy for the map phase is to assign one fixed-size block of the input data file

to each map task so that all map tasks process the same amount of data. For the reduce

phase, the default strategy is to hash-partition on the key attribute. In Section 3.3.3, we

showed that both strategies effectively balanced the amount of input data per task, but a

significant fraction of tasks still experienced skew. These tasks thus took significantly longer

to process their data than other tasks even though they were assigned the same amount of

data. In some cases, the cause is a hardware malfunction or high-load condition, and here

existing techniques such as speculative execution work well. In many cases, however, we

found speculative execution to be ineffective, indicating that the UDO computation time

was simply non-uniform (i.e., cost per input byte or per invocation was not a constant),

leading to skew. (See the portion of ‘*UT’ labels in Figure 3.8 and 3.9).

Given a UDO with non-uniform computation, finding the right granularity of data parti-

tioning is challenge. If the granularity is too coarse (i.e., a small number of large partitions),

there may not be enough tasks to keep the cluster busy when a task experiences skew. If the

granularity is too fine, we can still keep the cluster busy with unscheduled tasks at the cost

66

of extra overhead (e.g., scheduling and/or reconciliation overheads due to extra tasks, as

we discuss further in Section 4.2.1). The right granularity may vary between datasets and

clusters, so the users typically rely on the system’s decision (e.g., the number of partitions

is a multiple of either the number of nodes in the cluster or the number of blocks hold-

ing the input data file), which does not take into account the variability between datasets.

More experienced users may guess the right granularity based on rules of thumb or past

executions, which still burden users to choose the right parameter.

The key insight behind SkewReduce is that users know the details of their computa-

tion, and, while they are not parallel data processing experts, they can reason about the

complexity of their algorithms. Based on this observation, SkewReduce asks the user for

cost models, which are additional black-box functions that users implement to specify the

complexity of their computations. Given user-defined cost models, a sample of the input

dataset, the task scheduling algorithm, and the number of nodes in the cluster, SkewReduce

generates an optimized data partitioning plan (i.e., an allocation of the input data to dif-

ferent tasks for processing) as well as a scheduling order expected to yield a good runtime.

The user-defined cost model captures the non-uniform computation of the UDO; the model

estimates the cost of processing a given sample input data partition. The optimizer greedily

searches the partition plan in a top-down manner by evaluating whether a split of the most

expensive partition improves the estimated runtime. Since the optimizer can run offline,

users can test different cluster configurations on a workstation before running the analysis

in a cloud service such as Amazon EC2 [5] or Microsoft Windows Azure [140].

The current SkewReduce API and optimizer are designed for feature extracting applica-

tions (see Section 4.1 for examples). We chose this specific class of applications because it

represents some important scientific data analyses and requires non-trivial data partitioning

over a multi-dimensional space to reduce the impact of skew. However, the technique can be

generalized to other applications and other parallel execution engines in a straight forward

manner as we discuss in Section 7.1.

The SkewReduce system executes a UDO written following the SkewReduce API by

transforming the computation into a set of Hadoop MapReduce jobs. SkewReduce is thus a

new system for the parallel and skew-resilient execution of feature-extracting applications.

67

SkewReduce system is implemented on top of Hadoop. In experiments on real applications

and real data, we show that SkewReduce improves the job completion time by a factor of up

to 8 compared with a non-optimized implementation (i.e., a default MapReduce partitioning

strategy) without any code-level optimizations nor cluster configuration tunings. Also, we

show that more accurate cost models yield better partition plans, but the cost model need

not perfectly capture every aspect of the UDOs.

In this chapter, we first introduce feature extracting applications with examples (Sec-

tion 4.1). We then present the SkewReduce API (Section 4.2.1) and the static optimization

with user-defined cost models (Section 4.2.2 and 4.2.3). We demonstrate the efficacy of the

optimization on real data from two different science domains (Section 4.3).

4.1 Feature Extracting Applications

We begin by describing three motivating applications from different scientific domains. The

applications have a common structural pattern that we call feature extraction. We discuss

the challenges that arise when trying to implement them on a MapReduce-type platform.

• Astronomy Simulation. Cosmological simulations are used to study the structural

evolution of the universe on distance scales ranging from a few million light-years

to several billion light-years. In these simulations, the universe is modeled as a set

of particles. These particles represent gas, dark matter, and stars and interact with

each other through gravity and fluid dynamics. Every few simulation timesteps, the

simulator outputs a snapshot of the universe as a list of particles, each tagged with its

identifier, location, velocity, and other properties. The data output by a simulation

can thus be stored in a relation with the following schema:

Particles(id, time, x, y, z, vx, vy, vz, · · ·)

State of the art simulations (e.g., Springel et al. [122]) use over 10 billion particles

producing a data set size of over 200 GB per snapshot and are expected to significantly

grow in size in the future.

Astronomers commonly used various sophisticated clustering algorithms [53, 79, 119]

to recognize the formation of interesting structures such as galaxies. The clustering

68

Figure 4.1: A scatter plot of flow cytometry measurements. Each point represents an

organism and clusters represent populations. The axes correspond to different wavelengths

of light.

algorithm is typically executed on one snapshot at a time [85]. Given the size of indi-

vidual snapshots, however, astronomers would like to run their clustering algorithms

on a parallel data processing platform in a shared-nothing cluster.

• Flow Cytometry. A flow cytometer measures scattered and fluoresced light from a

stream of particles, using data analysis to recognize specific microorganisms. Origi-

nally devised for medical applications, it has been adapted for use in environmental

microbiology to determine the concentrations of microbial populations. Similar mi-

croorganisms exhibit similar intensities of scattered light, as in Figure 4.1.

In an ongoing project in the Armbrust Lab at the University of Washington [11], flow

cytometers are being continuously deployed on ocean-going vessels to understand the

ocean health. All data is reported to a central database for ad hoc analysis and takes

the form of points in a 6-dimensional space, where each point represents a particle or

69

organism in the water and the dimensions are the measured properties.

As in the astrophysics application, scientists need to cluster the resulting 6D data.

As their instruments increase in sophistication, so does the data volume, calling for

efficient analysis techniques that can run in a shared-nothing cluster.

• Image Processing. As a final example, consider the problem of analyzing collec-

tions of 2D images. In many scientific disciplines, scientists process such images to

extract objects (or features) of interest: galaxies from telescope images, hurricanes

from satellite pictures, etc. As these images grow in size and number, parallel pro-

cessing becomes necessary.

General Feature Extracting Applications. Each of these scientific applications fol-

low a similar pattern: data items (events, particles, pixels) are embedded in a metric space,

and the task is to identify and extract emergent features from the low-level data (popula-

tions, galaxies). These algorithms then typically return (a) a set of features (significantly

smaller than the input data), (b) a modified input dataset with each element tagged with

the corresponding feature (potentially as large as the input), or (c) both. For example,

the output of the astronomy clustering task is a list of clusters with the total number of

particles in each and a list of the original particles annotated with their cluster identifier.

Parallel Implementation Challenges. A straightforward way to parallelize such

feature extraction applications in a compute-cluster with N nodes is the following: (1)

split the input into N equal-sized hypercubes, (2) extract features in each partition and

annotate the input with these initial features, (3) reconcile features that span partition

boundary, relabeling the input as appropriate. With existing parallel processing systems,

there are several challenges with expressing this seemingly simple algorithm in a manner

that achieves high performance.

First, the data distribution in many scientific applications is highly skewed. Even worse,

the processing time of many feature-extraction algorithms depends not only on the number

of data points but also on their distribution in space. For example, in a simple clustering

algorithm used in astrophysics called “friends-of-friends” [33], clusters correspond to con-

nected components of the graph induced by the “friend” relationship — two particles are

70

friends if they are within a given distance threshold. To identify a cluster, the algorithm

starts with a single point, then searches a spatial index to find its immediate friends. For

each such friend, the algorithm repeats the search recursively. In a sparse region with N

particles, the algorithm completes in O(N logN) time (i.e., all particles are far apart). In

a dense region, however, a single particle can be a friend of all the other particles and vice

versa. Thus, the algorithm takes O(N2) time. In the two simulation snapshots that we

received from astronomers [85], we found that the number of friends associated with a given

particle varied between 2 and 387, 136. As a result, without additional optimizations, a

dense region takes much longer to process than a sparse one even when both contain the

same number of total particles [85]. The consequence is a type of computational skew, where

some data partitions require dramatically more time than others to process. Computational

skew is the reason that the näıve parallel implementation of the astronomy clustering ap-

plication in Chapter 2 required over 20 hours, while an optimized one took only 70 minutes

on the same dataset [85]. Our key motivation is that existing platforms do nothing to re-

duce computational skew. In our case, developing a skew-resistant algorithm (by optimizing

index traversal to avoid quadratic behavior in the dense region) required significant effort

from multiple experts over several weeks [85].

Second, the feature reconciliation phase (which we refer to as the “merge” phase) can be

both CPU and memory intensive. For example, to reconcile clusters at the boundary of two

data partitions requires processing all particles within a small distance of that boundary. If

the space is initially carved into N partitions, it may not be efficient or even possible for a

single node to reconcile the data across all these partition boundaries in one step. Instead,

reconciliation should be performed in a hierarchical fashion, reconciling increasingly large

regions of the space, while keeping the amount of data to process at each step approximately

constant (i.e., the memory requirement cannot increase as we move up the hierarchy). At

the same time, while the local data processing and later merge steps proceed, the input data

must be labeled and re-labeled as necessary, e.g., to track feature membership. While it is

possible to implement both functions using existing systems, expressing them using current

APIs is non-trivial.

71

T A record in the original input data file assigned to a region (e.g., a particle in

an astronomy simulation)

S A record set aside during the process phase or merge phase. (e.g., a particle far

away from a partition boundary tagged with a local cluster id).

F An object representing a set of features extracted during the process phase for a

given region. May not be relational. Includes enough information to allow recon-

ciliation of features extracted in different partitions (e.g., the clusters identified

so far and the particles near a partition boundary)

Z A record in the final result set (e.g., a particle tagged with a global cluster id)

Table 4.1: Notations in Section 4.2

Problem Statement Summary. The goal of SkewReduce is to enable scientists to

easily express and efficiently execute feature-extraction applications at very large scale with-

out consideration of resource constraints and data or computation skew issues.

4.2 SkewReduce

SkewReduce has two components. The first component is an API for expressing spatial

feature-extraction algorithms such as the ones above. We present the API in Section 4.2.1.

The functions in our API are translated into a dataflow that can run in a MapReduce-type

platform [37, 61, 68]. The second component of SkewReduce is a static optimizer that

partitions the data to ensure skew-resistant processing if possible. The data partitioning is

guided by a user-defined cost function that estimates processing times. We discuss the cost

functions in Section 4.2.2 and the SkewReduce optimizer in Section 4.2.3.

4.2.1 Basic SkewReduce API

Informed by the success of MapReduce [37], the basic SkewReduce API is designed to be a

minimal control interface allowing users to express feature extraction algorithms in terms

of serial programs over familiar data structures. The basic SkewReduce API is the minimal

72

interface that must be implemented to use our framework. The basic API is

process :[T]→ (F, [S])

merge :(F, F)→ (F, [S])

finalize :(F, [S])→ [Z]

The notation used in these types is defined in Table 4.1. At a high-level, T refers to the

input data. F is the set of features and S is an output data field that must be tagged with

the features F to form Z. The above three functions lead to a very natural expression of

feature extracting algorithms: First, partition the data (not shown). Second, apply process

to each partition to get an initial set of local features and an initial field. Third, merge,

or reconcile, the output of each local partition to identify a global set of features. Finally,

adjust the output of the original process functions given the final, global structures output

by merge. For example, in the case of the astronomy simulation clustering task, process

identifies local clusters in a partition of the 3D space. merge hierarchically reconciles local

clusters into global clusters. Finally, the finalize function relabels particles initially tagged

by process with a local cluster ID using the appropriate global cluster ID.

The functions of the SkewReduce API loosely correspond to the API for distributed

computation of algebraic user-defined aggregates found in OLAP systems and distributed

dataflow frameworks. For example, Yu et al. propose a parallel aggregation framework

consisting of functions initialreduce, combine, and finalreduce [146]. The function initialreduce

generates intermediate partial aggregates, combine merges partial aggregates, and the final

aggregate value can be further transformed by finalreduce.

The distinguishing characteristic of our API is that our analog of the initialreduce and

finalreduce functions return two types of data: a representation of the extracted features,

and a representation of the “tagged” field. A given algorithm may or may not use both of

these data structures, but we have found that many do.

We now present the three functions in SkewReduce’s API in more detail.

73

Process: Local Computation with Set-Aside

The process function locally processes a sequence of input tuples producing F , a represen-

tation of the extracted features, and [S], a sequence of tuples that are set aside from the

hierarchical reconciliation. In our astronomy simulation use-case, process performs the ini-

tial clustering of particles within each partition. Although we can forward all the clustering

results to the merge function, only particles near the boundary of the fragment are neces-

sary to merge clusters that span two partitions. Thus, process can optionally set aside those

particles and results that are not required by the following merges. This optimization is not

only helpful to reduce the memory pressure of merge but also improves overall performance

by reducing the amount of data transferred over the network. In this application, our ex-

periments showed that almost 99% of all particles can thus be set aside after the Process

phase (Figure 4.9).

Merge: Hierarchical Merge with Set-Aside

The merge function is a binary operator that combines two intermediate results correspond-

ing to two regions of space. It takes as input the features from each region and returns a new

merged feature set. The two feature set arguments are assumed to fit together in the mem-

ory of one node. This constraint is a key defining characteristic of our target applications.

This assumption is shared by most user-defined aggregate frameworks [105, 123, 146]. How-

ever, SkewReduce provides more flexibility than systems designed with trivial aggregation

functions such as sum, count, average in mind. Specifically, we acknowledge that the union

of all feature sets may not fit in memory, so we allow the merge function to set aside results

at each step. In this way, we ensure that the size of any value of type F does not grow

larger than memory. We acknowledge that some applications may not exhibit this property,

but we have not encountered them in practice. We assume that both functions process and

merge set aside data of the same form. This assumption may not hold in general, but so far

we have found that applications either set aside data in the process phase or in the merge

phase, but not both.

In our running example, the merge function combines features from adjacent regions of

74

space, returning a new feature object comprising the bounding box for the newly merged

region of space, the cluster id mappings indicating which local clusters are being merged,

and the particles near the boundary of the new region. Figure 4.2 illustrates the merge step

for four partitions P1 through P4. The outer boxes, Pi, represent the cell boundaries. The

inner boxes, I, are a fixed distance ε away from the corresponding edge of the region. The

local clustering step, process, identified a total of six clusters labeled C1 through C6. Each

cluster comprises points illustrated with a different shade of gray and shape. However, there

are only three clusters in this dataset. These clusters are identified during the hierarchical

merge step. Clusters C3, C4, C5, and C6 are merged because the points near the cell

boundaries are within distance ε of each other. In Figure 4.2, C2 does not merge with any

other cluster because all points in C2 are sufficiently far from P1’s boundary. We can thus

safely discard C2 before merging: These points are not needed during the merge phase. In

general, we can discard all the points in the larger I regions before merging, reducing the

size of the input to the merging algorithm. This reduction is necessary to enable nodes to

process hierarchically larger regions of space without exhausting memory.

Finalize: Join Features with Set-Aside Data

The finalize function can be used to implement a join between the final collection of features

and the input representation as output by the process and merge functions. This function

is useful for tagging the original data elements with their assigned feature. The finalize

function accepts the final feature set from the merge phase and a single tuple set aside

during processing. The SkewReduce framework manages evaluation of this function over

the entire distributed dataset.

Our emphasis on distinguishing “features” and “set aside” data may at first appear to

be over-specialized to our particular examples, but we find the idiom to be quite general.

To understand why, consider the analogous distinction between vector and raster repre-

sentations of features. For example, Geographic Information Systems (GIS) may represent

a geographic region as an image with each pixel assigned a value of “road”, “waterway”,

“building”, etc. (the raster representation). Alternatively, these objects may be represented

75

P1

II

C1 C2

C3

P3
I

P4

P2

I

C4

C5 C6

Figure 4.2: Illustration of the merge step of the clustering algorithm in the

SkewReduce framework. Data is partitioned into four chunks. Points with the same

shape are in the same global cluster. Point with different colors but with identical shapes

are in different local clusters (e.g., the circles in the middle of the figure). Each Pi labels

the cell boundary and each I labels the interior region. Only points outside of I are needed

in the subsequent merge phase. After the hierarchical merge phase, three cluster mappings

are generated: (C4,C3), (C5,C3), and (C6,C3). Such mappings are used to relabel local

cluster ids during the finalize phase.

individually by line segments, polygons, or some other complex object (the vector represen-

tation). Neither representation is ideal for all algorithms, so both are frequently computed

and maintained. In our running example, the tagged particles are analogous to the raster

representation — each point in the original dataset is labeled with the feature to which it

contributes.

The user thus specifies the above three functions. Given these functions, SkewReduce

automatically partitions the input data into hypercubes and schedules the execution of the

process, merge, and finalize operators in a Hadoop cluster. We further discuss the details

of the Hadoop translation in Section 4.3. The partition plan is derived by SkewReduce’s

optimizer, as we discuss below.

In many application domains the process function satisfies the following property:

76

Definition 4.2.1 process Monotonicity For datasets R,S where R ⊆ S, the execution

time time[process(R)] ≤ time[process(S)] (Intuition: as the dataset grows incrementally, so

must the local processing cost).

The SkewReduce’s optimizer is designed primarily for applications where this property

holds. However, it can still handle applications that violate this property, as we discuss in

Section 4.2.3.

For the applications we encounter in practice, we find that process is far more expensive

than merge, which causes aggressive partitioning to be generally beneficial. In these cases,

the limiting factor in partitioning is the scheduling overhead. In contrast, if merge is expen-

sive or comparable relative to process, partitioning simply ensures that no node is allocated

more data than will fit in its memory.

Optional Pre-Processing. The process function operates on a set of records [T]. In

some applications, especially those operating on arrays, individual records are not cells but

rather small neighborhoods of cells, sometimes called stencils. This distinction is not an

issue for process, which receives as input a contiguous block of cells and can thus extract

stencil neighborhoods unilaterally. However, since the optimizer operates on a sample of the

input data, SkewReduce must apply a pre-processing step that extracts application-defined

computational units before sampling them. For this reason, although not part of the basic

API, we allow a user to provide a custom function to transform a sequence of “raw” records

into a sequence of computational units, [T].

4.2.2 Cost Functions

We have presented the basic SkewReduce API, but we have not explained how skew is han-

dled. Both the process and merge phases of the API are crucially dependent on the initial

partitioning of data into regions. Feature extraction applications often exhibit both data

skew and computational skew, and both are determined by how the data are partitioned.

Datasets prone to significant data and computational skew (usually due to extreme vari-

ations in data density) can be processed efficiently if an appropriate partition-and-merge

plan can be found. As we will show, plan quality can be improved dramatically if the user

77

can estimate the runtime costs of their process and merge functions.

We allow the user to express these costs by providing two additional cost functions Cp

and Cm, corresponding to process and merge, respectively. These cost functions operate

serially on samples of the original dataset returning a real number; that is:

Cp :(S, α,B)→ R

Cm :(S, α,B)→ (S, α,B)→ R

where S is a sample of the input, α is the sampling rate, and B is a bounding hypercube.

The cost functions accept both a representation of the data (the sample S) and a repre-

sentation of the region (the bounding hypercube B, represented as a sequence of ranges, one

for each dimension). The cost of the feature extraction algorithms we target is frequently

driven by the distribution of the points in the surrounding space. One approach to estimate

cost inexpensively is therefore to build a histogram using the bounding hypercube and the

sample data and compute an aggregate function on that histogram. The sampling rate α

allows the cost function to properly scale up the estimate to the overall dataset. When

discussing cost functions in the remainder of this chapter, we omit the bounding hypercube

and sampling rate parameters when they are clear from the context.

Given a representative sample, the cost functions Cp and Cm must be representative

of actual runtimes of the process and merge functions. More precisely, the functions must

satisfy the following properties.

• Fidelity. For samples R,S, if Cp(R) < Cp(S), then

time[process(R)] < time[process(S)]

(intuition: the true cost and the estimated cost impose the same total order on

datasets). Similarly, for samples R,S, T, U , if Cm(R,S) < Cm(T,U), then

time[merge(R,S)] < time[merge(T,U)]

• Boundedness. For some constants ρp and ρm and samples R and S,

time[process(R)] = ρpCp(R) and time[merge(R,S)] = ρmCm(R,S)

78

For the boundedness condition, we can estimate the constant factors ρp and ρm in at

least two ways. The first method is to run the process and merge algorithms over a data

sample and compute the constants. This type of approach is related to curve fitting for

UDF cost estimation [24]. The second method is to derive new constants for a new cost

function from past executions of the same analysis.

Many MapReduce-style analytic systems are running on top of chunk-based distributed

file systems such as GFS, HDFS, and S3 and use the chunk as a unit of task distribution

and computation. SkewReduce takes a similar approach and requires that the process and

merge functions have the ability to process at least one chunk-size of input data without

running out of memory. Alternatively, we could optionally allow users to specify memory

usage estimation functions that take a form analogous to the cost functions above. In both

cases, the optimizer ensures a partition plan with sufficient granularity that no operator

runs out of memory.

4.2.3 SkewReduce’s Optimizer

There are two potential optimization goals for a SkewReduce application: minimize execu-

tion time or minimize resource usage. SkewReduce’s current optimizer adopts a traditional

approach and minimizes the query execution time subject to a constraint on the number of

available machines in a cluster. This constraint can be dictated by the size of a locally

available cluster or by monetary reasons when using a pay-as-you-go platform such as Ama-

zon EC2 [5]. SkewReduce’s optimizer could be used to try alternative cluster sizes if a user

tries to find some desired price-performance trade-off, but we leave it for future work to

automate such exploration.

SkewReduce’s optimizer is designed to operate on a small sample of the entire dataset,

so that the optimizer can execute on a user’s desktop before the user acquires or even just

reserves any resources on a large cluster. In this chapter, we do not address the problem

of how the user generates such a sample. Such samples are already commonly used for

debugging in these environments.

At a high level, SkewReduce’s optimizer thus works as follows: given a sample S of

79

the input data, process and merge functions and their corresponding cost functions Cp

and Cm, a compute cluster-size constraint of M nodes, and a scheduling algorithm, the

optimizer attempts to find the partitioning plan that minimizes the total query execution

time. The user-supplied cost functions and the scheduling algorithm guide the optimizer’s

search for such best plan. SkewReduce works best with a task scheduler that minimizes

makespan subject to task dependencies. However, it uses the scheduler as a black box and

can therefore work with various schedulers.

Since the scheduler is modeled as a black box and the cost functions may not be com-

pletely accurate, SkewReduce does not guarantee to generate an optimal plan. However,

our experiments in Section 4.3 show that it finds very efficient plans in practice (Figure 4.3).

We begin by defining the SkewReduce partition plan, execution plan, and the optimiza-

tion problem more precisely.

Partition Plan: A SkewReduce partition plan is a full binary tree where all interme-

diate nodes represent merge operators and all leaf nodes represent process operators. Each

node in the tree is associated with a bounding hypercube defining the region of space con-

taining all data in the partition. The hypercubes at a given height in the tree partition the

space; there are no gaps or overlaps.

Valid Partition Plan: A partition plan is valid if no node in the plan is expected to

receive more data than will fit in memory. The memory size is applied after scaling the

sample data back to the original input data size, assuming the sample, S, is representative.

For example, if a 1% data sample leads to a partition with 2, 000 particles, and we know

that a single node cannot process more than 100, 000 particles, the plan will not be valid

since 2, 000 ∗ 100 > 100, 000.

Execution Plan: A SkewReduce execution plan comprises a partition plan and its

corresponding schedule using a job scheduling algorithm schedule. A valid execution plan

is a valid partition plan and its schedule.

Optimization Problem: Given a sample S of the input data, process and merge

functions with their corresponding cost functions and constants (ρp, ρm), a compute cluster

of M nodes, a scheduling algorithm and constant operator scheduling delay (∆), return the

valid execution plan that is estimated to minimize query runtime.

80

Algorithm 3 Searching Optimal Partitioning Plan
Input: p0: root partition

M : the number of machines

Output: P : the best partitioning plan

bestCost: the best cost to run P

schedule: the schedule of P

1: P ← {p0}
2: bestCost← schedule cost(P,M)

3: L← {p0} // all leaf partitions in P

4: while L 6= ∅ do

5: p← choose the most expensive partition

6: pl, pr ← find best split of p

7: c← ρp max{Cp(pl), Cp(pr)}+ ρmCm(pl, pr) + ∆

8: force← p does not satisfy memory requirement

9: if c < ρpCp(p) or force then

10: s← schedule cost(P ∪ {pl, pr},M)

11: if s < bestCost or force then

12: L← L ∪ {pl, pr}
13: P ← P ∪ {pl, pr} // p becomes an internal node.

14: bestCost← s

15: end if

16: end if

17: L← L− {p}
18: end while

19: if all p ∈ P satisfies memory requirement then

20: return (P, bestCost, schedule(P))

21: else

22: print failed to find a valid plan

23: end if

Optimizing the Partition Plan

The search space of the optimizer is the set of all possible partitions of the hypercube

defined by the input data. The optimizer enumerates potentially interesting partition plans

in this search space using a greedy strategy. This greedy strategy is motivated by the fact

that all process cost functions are assumed to be monotonic (Section 4.2.2).

Starting from a single partition that corresponds to the entire hypercube bounding the

input data I, and thus also the data sample, S, the optimizer greedily splits the most

81

expensive leaf partition in the current partition plan. The optimizer stops splitting parti-

tions when two conditions are met: (a) All partitions can be processed and merged without

running out of memory; (b) No further leaf-node split improves the runtime: i.e., further

splitting a node increases the expected runtime compared to the current plan. Algorithm 3

summarizes this approach.

In order for a partition split to decrease the runtime, the savings in process processing

times must outweigh the cost of the extra merge including scheduling overheads. More

specifically, in the algorithm, the runtime after the split for the partition is estimated to be

the sum of the runtime of the slower of the two new process operators (given that they will

most likely be processed in parallel), the runtime of merge, and the task scheduling delay

(∆) for the merge operator. This is compared to the estimated runtime before the split,

which was simply the time to run the process operator (line 9). Additionally, the resulting

parallel execution plan must be valid and must improve the total estimated runtime. We

estimate the total runtime by running the black-box scheduling algorithm. The algorithm

updates the current best plan only when the runtime improves (line 10-11) or if a split is

mandatory due to memory constraints. We perform this two-level filtering to reduce the

number of calls to the scheduler function.

The optimizer returns an error if no valid partition plan exists. That is, if in all con-

sidered partition plans at least one process or one merge operators run out of memory (line

22).

The algorithm uses two key subroutines: finding the best point where to split a partition

in two (line 5) and estimating the cost of a schedule in terms of processing time (line 10).

In the following subsections, we discuss each of these two subroutines and SkewReduce’s

default implementation of these routines. Alternatively, the user may also supply custom

implementations.

Partition Splitting

When splitting a hypercube in two, the optimizer has two choices to make: which axis

to use for the split and at what point along this axis to perform the split.

82

Algorithm 4 Searching best split for a given partition

Input: B: bounding hypercube

S: sample data bounded by B

Output: bestSplit: axis and splitting point

1: bestCost←∞

2: bestSplit← null

3: A← chooseAxes(B,S)

4: for all axis ∈ A do

5: split← find best split point along axis

6: Bl, Br ← split B at split along axis

7: c← max{Cp(Bl, S), Cp(Br, S)}

8: if c < bestCost and satisfies merge memory requirement then

9: bestSplit← (axis, split)

10: bestCost← c

11: end if

12: end for

13: return bestSplit

An ideal split should partition the data into two subpartitions with identical real run-

times. In contrast, the worst split creates two subpartitions with very different real runtimes,

with the runtime for the slower subpartition similar to the pre-split runtime.

Algorithm 4 shows the optimizer’s approach to choosing the split axis and split point

for a given partition. This algorithm applies the user-defined cost functions on the data

sample, S, to estimate execution times.

For a low dimensional data, typically 3 to 4, the optimizer exhaustively tries to split the

data along each of the available axes because the optimization process is low-overhead (as

we show later in Figure 4.8). For a high dimensional data, the user can supply a heuristic

to filter out bad split axes to improve optimization time. We define the best split to be

the one that minimizes the maximum cost Cp of any of the subpartitions created without

violating the merge memory requirement.

83

To select the point along an axis where to split the data, different algorithms are possi-

ble. We present and compare three strategies. All three methods require that the examined

sample data be sorted along the splitting axis with tie-breaking using values in other di-

mensions. Thus, we sort the sample data before run the strategy.

Discrete: The Discrete approach considers splitting the data at each one of n uniformly-

spaced points along the splitting-axis. n is given as a parameter. For each point, the discrete

strategy computes the cost of splitting the data at that point. The discrete approach is thus

the most general strategy because it can work even when the cost function is not monotonic.

It simply tries all possible splitting points assuming a given minimum granularity. On the

other hand, this strategy may not return the best estimated splitting point, especially if n

is small.

Binary Search: This approach requires that cost functions be monotonic and performs

a binary search for the best split point. The algorithm terminates after examining all log |S|

candidate split points. Binary search always returns the optimal split as estimated by the

cost function.

Incremental Update: The Incremental Update approach requires that the cost func-

tion be monotonic and incrementally updatable. That is, whenever the cost function is

updated with a sample through an API call, the new cost is returned. Given these restric-

tions, the Incremental Update approach achieves the best optimization performance. The

approach searches for the best split point in two phases. The algorithm starts with two

empty subpartitions. It continuously adds samples to these subpartitions starting at both

ends of partitioning axis. Each new data point is added to the partition currently estimated

to have the lower runtime. The algorithm terminates when all samples have been assigned

to a subpartition and the splitting point is the mid-point between the last sample inserted

into each partition.

If multiple points fall on the partition boundary, the algorithm enters a second phase,

where it computes the fraction of such points that were assigned to each partition. At

runtime, when the entire dataset is partitioned, points on the same partition boundary are

randomly distributed to subpartitions according to these precomputed proportions.

84

Estimating the Cost of a Schedule

The newly split partitions are only added if the candidate plan yields a better total runtime

than the current plan. We estimate the runtime by calling a black box scheduling function

schedule. To match the units of the operator costs to those of the scheduling overheads, we

scale the process and merge costs using the pre-computed ρp, ρm constants, thus converting

these costs into time units.

Converting a schedule to a cost estimate is straight forward; we invoke the scheduling

algorithm with the costs of all operators and M slots as input then take the total runtime.

While we leave the scheduling algorithm as a black box, we found that Longest Processing

Time (LPT) scheduling algorithm [56] works well in practice and satisfies all necessary

features such as job dependency and multiple slots. Thus, we use LPT algorithm in the

prototype.

4.3 Evaluation

In this section, we evaluate the performance of SkewReduce on the friends-of-friends clus-

tering task over datasets from two different domains: astronomy and oceanography (see

Section 4.1). Table 4.2 summarizes the properties of the two datasets. We implemented

friends-of-friends in a straightforward fashion without any optimizations, and using a stan-

dard KD-tree for storing local data and looking up friends.

Summary. We answer the following questions: (1) Does SkewReduce improve task

completion times compared to uniform data partitioning, and, if so, is the difference signif-

icant? (2) How important is the fidelity of the cost model for SkewReduce’s optimization?

(3) How does the sample size affect cost estimates and ultimately performance? (4) What

is the overhead of scheduling and optimization in SkewReduce? Our results show that

SkewReduce imposes a negligible overhead (Figure 4.8) and can decrease total runtime by

a factor of 2 or more compared to uniform data partitioning (Figure 4.3). We also find that

small sample sizes of just 1% suffice to guide optimization, but the quality of the result-

ing plan does depend on the characteristics of the sample (Figures 4.6 and 4.7). Finally,

a cost function that better captures the analysis algorithms helps SkewReduce find better

85

plans, but even an approximate cost function can improve runtime compared to not using

SkewReduce at all (Figures 4.4 and 4.5).

Implementation. The SkewReduce prototype consists of two Java classes: the SkewRe-

duce optimizer and the SkewReduce execution engine. The optimizer takes the cost model

and sample data as input and produces an optimized partition plan and a corresponding

schedule. The execution engine converts the plan into a graph of Hadoop jobs and submits

them to Hadoop according to the schedule from the optimizer. SkewReduce deploys a full

MapReduce job for the initial data partitioning task (if necessary) and for each finalize op-

erator, but deploys a map-only job for each process or merge operator. This design gives us

better control over the timing of the schedule because Hadoop only supports user specified

priorities at the job level rather than at the task level.

SkewReduce minimizes the scheduling overhead by using asynchronous job completion

notifications of the Hadoop client API. Optionally, the user can implement the finalize

operator as a Pig script [104] instead of a MapReduce program.

Setup. We perform all experiments in an eight-node cluster running Hadoop 0.20.1

with a separate master node. Each node uses two 2 GHz quad-core CPUs, 16 GB of RAM,

and two 750 GB SATA disk drives (RAID 0). All nodes are used as both compute and

storage nodes. The HDFS block size is set to 128 MB and each node is configured to run

at most four map tasks and four reduce tasks concurrently.

We compare SkewReduce to various uniform data partitioning algorithms. We use the

LPT scheduling algorithm for the SkewReduce optimizer. Uniform alternatives cannot use

this approach because they do not have any way to estimate how long different tasks will

take to process the same amount of data.

Default Optimization Parameters. SkewReduce’s optimizer assumes a MapReduce

job scheduling overhead (∆) of 10 seconds [108]. Unless indicated otherwise, experiments

use a sample size of 1%. The default cost function builds a 3D equi-width histogram of

the data. Each bucket covers a range equal to the friend distance threshold along each

dimension. The cost is computed as the sum of squared frequencies for all buckets. Each

86

Dataset Size # of items Description

Astro 18 GB 900 M Cosmology simulation

Seaflow 1.9 GB 59 M Flow Cytometry

Table 4.2: Datasets used in the evaluation

Data Size Histogram 1D Histogram 3D

Astro 83 4.3 10−6 1500 2.9 10−12 3.0 40 10−7

Seaflow 4.8 1.6 10−5 9.3 130 10−12 6.0 200 10−8

Table 4.3: Cost-to-time conversion constant for cost models (ρp, ρm,scale)

frequency is scaled back by the sample size (e.g., for a 1% sample, all bucket frequencies

are multiplied by 100) before squaring. The intuition behind this cost model is this: To

identify a cluster, the friends-of-friends algorithm starts with a point and recursively finds

friends and friends-of-friends using the KD-tree until no new friends can be added. This

process yields quadratic runtime in dense regions, since every point is a friend of every

other point. We obtain the conversion constants ρp, ρm (shown in Table 4.3) by executing

10 micro-benchmark runs of the analysis task over a 1% data sample.

4.3.1 Overall SkewReduce Performance

In this section, we present experimental results that answer the following question: Q: Does

SkewReduce improve task completion times in the presence of computational

skew compared to uniform data partitioning? Is the improvement significant?

To answer this question, we measure the total runtime of the plans generated by SkewRe-

duce for both datasets. We compare them against the runtimes of a manually crafted plan

called Manual and plans with various uniform partitioning granularities: Coarse, Fine,

Finer, and Finest. All plans are generated from the same 1% data sample. Coarse mimics

87

Hadoop, which assigns a Map task to each HDFS chunk. Similarly, Coarse partitions the

data into fragments that each contains the same number of data points. It does so by re-

peatedly splitting the region to bisect the data, one axis at a time in a round robin fashion,

just like a KD-tree using a Recursive Coordinate Bisection (RCB) scheme [17]. Coarse stops

splitting when the size of each partition is less than 128 MB. Fine stops splitting only when

each partition is 16 MB. Finer and Finest partition the Fine partitions further until each

partition holds 4 MB and 2 MB, respectively. Finally, we prepared the Manual plan by

tweaking the Fine plan based on the execution results: we merged partitions experiencing

no skew and split slow partitions further. We prepared a manual plan only for the Astro

dataset due to the tedious nature of this task. Figure 4.3 shows the relative completion

times of all plans compared to the optimized plan, labeled as Opt. We also report the

actual completion time of each plan in the accompanying table.

The results from both datasets illustrate that fine-grained uniform splitting only im-

proves performance up to a certain point before runtimes increase again due to overheads

associated with scheduling and executing so many partitions. The SkewReduce optimizer’s

plan, however, guided by user-defined cost functions, is more than twice as fast as the

best uniform plan. For the Astro dataset, SkewReduce improves the completion time of

the clustering task by a factor of more than 8 compared with Coarse, which is the strategy

equivalent to the default approach in MapReduce-type systems. SkewReduce’s performance

is even a bit better than the Manual plan. For the Seaflow dataset, the Opt runtime is a

factor of 3 better than Fine and a factor of 6 better than Coarse.

Overall, SkewReduce can thus significantly improve the runtime of this analysis task.

4.3.2 Cost Model Fidelity

In this section, we start to study the parameters that affect SkewReduce’s performance. In

particular, we answer the following question: Q: How important is the fidelity of the

cost model for SkewReduce’s optimization?

The fidelity of a cost function is related to the Fidelity property defined in Section 4.2.2.

Given two partitions R and S, if a cost function CA is more likely to produce cost estimates

88

0

1

2

3

4

5

6

7

8

9

Coarse Fine Finer Finest Manual Opt

R
e
la

ti
v
e
 r

u
n

ti
m

e
 w

.r
.t

.
O

p
t

Partition Plan

Astro Seaflow

Completion time (hours for Astro, minutes for Seaflow)

Dataset Coarse Fine Finer Finest Manual Opt

Astro 14.1 8.8 4.1 5.7 2.0 1.6

Seaflow 87.2 63.1 77.7 98.7 - 14.1

Figure 4.3: Relative runtime of different partitioning strategies compared with the optimized

plan (Opt). The table shows the actual completion time for each strategy (units are hours

for Astro and minutes for Seaflow). Manual plan is shown only for the Astro dataset.

Overall, SkewReduce’s optimization significantly improves the completion time.

that reflect the correct execution time order than a cost function CB, we say that CA is a

higher-fidelity cost function than CB.

To answer this question, we compare the performance of SkewReduce using different cost

functions and find that plan quality is sensitive to the fidelity of the cost function to the

actual algorithm. In this experiment, we compare three cost functions: the 3D histogram

function described previously, a simpler but less faithful 1D histogram, and simply the data

size as a cost proxy. Table 4.4 summarizes the three functions.

89

Function Fidelity Description

Data Size Low The number of data items

Histogram 1D Medium Sum of squared frequencies, 10 buckets

Histogram 3D High Sum of squared frequencies, all buckets

Table 4.4: Cost functions for evaluation

For each dataset, we prepared three independent 1% data samples. We then ran the

SkewReduce optimizer with the different cost functions for each data sample and compared

the execution times of the resulting partition plans.

Figure 4.4 shows the result for the Astro dataset. The x-axis shows the cost function

in order of increasing fidelity. Each dashed line represents the execution time of plans

generated from the same sample. Overall, the fidelity of the cost function significantly

affects the total runtime.

The Data Size cost function leads to a plan essentially equivalent to Coarse in Figure 4.3

thus there is no big improvement. Interestingly, the Histogram 1D function yields a runtime

close to the second best Finest from Figure 4.3. Hence, even a cost function with limited

fidelity to the actual algorithm can help compare to not using SkewReduce. The most

faithful Histogram 3D function yields the best plan and significantly improves the execution

time compared to the least faithful cost function, Data Size. Across all three samples, the

higher fidelity cost function yields the better plan. The estimated runtimes and percent

errors with respect to the real execution times are shown in the accompanying table in

Figure 4.4. The expected runtimes significantly deviate from the actual runtimes because

of discrepancies between the cost function and the real algorithm, as well as the sample and

the real data.

Figure 4.5 shows the results of the same experiment on the Seaflow dataset. Here, the

Histogram 1D cost function yields a worse plan than the Data Size cost function in two out

90

2

4

6

8

10

12

14

16

C
o

m
p

le
ti

o
n

 t
im

e
(H

o
u

rs
)

0

2

4

6

8

10

12

14

16

Data Size Histogram 1D Histogram 3D

C
o

m
p

le
ti

o
n

 t
im

e
(H

o
u

rs
)

Cost Function

Estimated runtime and percent error for Astro data (hour)

Sample Data Size Histogram 1D Histogram 3D

1 6.64 (-53.0%) 7.59 (31.8%) 2.84 (76.2%)

2 6.64 (-37.9%) 7.21 (8.20%) 2.94 (-20.0%)

3 6.64 (-33.2%) 3.30 (135%) 2.73 (36.2%)

Figure 4.4: Completion times of plans for the Astro dataset using different cost functions.

The x-axis is cost functions in increasing order of fidelity and y-axis is completion time in

hours. Each line represents the real runtimes of the plans derived from the same sample.

The table shows estimated runtimes and percent errors with respect to completion times.

of three cases, while Histogram 3D consistently produces the best plans.

The anomaly is due to characteristics of the Seaflow dataset. Unlike the Astro dataset,

all domains of the Seaflow dataset are 16-bit unsigned integers with significant repetition

(e.g., values near 0 along the x-axis in Figure 4.1). Histogram 1D tends to overestimate

the cost of a partition compared with Histogram 3D because it approximates the cost using

a fixed number of buckets (Table 4.4). With small domains and many repeated values in

the dataset, the error becomes significant compromising fidelity and eventually affecting the

optimization. While the resulting plans are worse than those produced by Data Size, the

91

5

10

15

20

25

30

35

40

C
o

m
p

le
ti

o
n

 t
im

e
(M

in
u

te
s)

0

5

10

15

20

25

30

35

40

Data Size Histogram 1D Histogram 3D

C
o

m
p

le
ti

o
n

 t
im

e
(M

in
u

te
s)

Cost Function

Estimated runtime and percent error for Seaflow data (minutes)

Sample Data Size Histogram 1D Histogram 3D

1 3.84 (-77.5%) 6.71 (-48.8%) 1.41 (-85.3%)

2 3.84 (-75.2%) 6.71 (-81.8%) 1.41 (-83.9%)

3 3.84 (-79.2%) 6.72 (-79.9%) 1.41 (-85.5%)

Figure 4.5: Completion time of plans for Seaflow dataset using different cost functions. Note

that the y-axis is in minutes. Each line represents the real runtimes of the plans derived

from the same sample. The table shows estimated runtimes and percent errors with respect

to completion times. Histogram 1D performs badly because it significantly overestimates

the cost of a partition.

execution time is only half of the best uniform partitioning strategy (Fine) in Figure 4.3.

Thus, a less faithful cost function may not produce a good plan consistently but still yields

better results than a uniform strategy.

Finally, the Data Size cost function significantly improves the runtime compared with

the Coarse and Fine plans from Figure 4.3, while it seems that the two should be equivalent.

The difference is attributable to SkewReduce’s ability to select the partitioning axis that

yields the best splits.

92

5

10

15

20

25

C
o

m
p

le
ti

o
n

 t
im

e
(H

o
u

r) Real Expected

0

5

10

15

20

25

0.0001 0.001 0.01

C
o

m
p

le
ti

o
n

 t
im

e
(H

o
u

r)

Sample Rate

Real Expected

Figure 4.6: Completion time for the Astro dataset with varying sample rates. Error bars

show the minimum and maximum values obtained for each sampling rate.

In summary, a high fidelity cost function benefits SkewReduce’s optimization and im-

proves the runtime significantly. However, even approximate cost functions can yield better

plans than ignoring computation costs and splitting only based on dataset sizes.

4.3.3 Sample Size

In this section, we examine the effects of the sample size on SkewReduce’s performance and

answer the following question: Q: What sample sizes are required for SkewReduce

to generate good plans?

SkewReduce’s optimization is based solely on the sample, and an unrepresentative sam-

ple may affect the accuracy of the optimizer’s cost estimates. To measure the effect on

accuracy, we prepared three independent samples with varying sampling rates, then gener-

ated and executed an optimized plan using the best cost function, Histogram 3D.

Figures 4.6 and 4.7 show the results from the Astro and Seaflow datasets, respectively.

In both figures, the optimizer’s cost estimates improve as the sample size increases but

the convergence is not smooth. Surprisingly, the estimated runtime of the Astro dataset

93

5

10

15

20

25

30

35

40

C
o

m
p

le
ti

o
n

 t
im

e
(M

in
u

te
) Real Expected

0

5

10

15

20

25

30

35

40

0.0001 0.001 0.01 0.1

C
o

m
p

le
ti

o
n

 t
im

e
(M

in
u

te
)

Sample Rate

Real Expected

Figure 4.7: Completion time for the Seaflow dataset with varying sample rates. Error bars

show the minimum and maximum values obtained for each sampling rate.

does not fluctuate as much as that of the Seaflow dataset even at lower sampling rates. The

reason is that the extreme density variations in the Astro dataset that drive the performance

are still captured even in a small sample. In contrast, the Seaflow sample may or may not

exhibit significant skew. We also find that a larger sample does not always guarantee a

better plan. In Figure 4.7, the sampling rate of 10% does not yield a better plan than a 5%

sampling rate. The conclusion is that the quality of optimization may vary subject to the

representativeness of the sample. Interestingly, the runtime of this suboptimal plan is still

a factor of 2 improvement compared to the plans based on uniform partitioning as shown

in Figure 4.3.

4.3.4 SkewReduce Overhead

We finally study SkewReduce’s overhead and answer the following question. Q: How long

does SkewReduce’s optimization take compared with the time to process the query?

Figure 4.8 shows the runtime of the prototype optimizer using the Data Size and the

Histogram 3D cost functions for each dataset. At a 1% sampling rate, the optimization

94

1

10

100

1000

O
p

ti
m

iz
a

ti
o

n
 t

im
e

(S
ec

o
n

d
s)

0.1

1

10

100

1000

0.0001 0.001 0.01 0.1

O
p

ti
m

iz
a

ti
o

n
 t

im
e

(S
ec

o
n

d
s)

Sample Rate

Astro-DataSize Astro-Hist3D

Seaflow-DataSize Seaflow-Hist3D

Figure 4.8: Optimization time with varying sample rates and cost functions. With a 0.01

sample rate, there are 590K samples for the Seaflow dataset and 9.1M samples for Astro.

takes 18 seconds using 594K samples from the Seaflow dataset and 15 minutes using 9.1 M

samples from the Astro dataset. Considering that the prototype is not parallelized and does

not manage memory in any sophisticated way, the runtime is still a small fraction of the

actual runtime of the algorithm for each dataset. With an efficient parallel implementation,

the SkewReduce optimizer could potentially run with a more complex cost function or use

multiple samples to produce a better plan.

4.3.5 Data Volume between Operations

Lastly, we briefly consider the performance implications of SkewReduce’s capability to set-

aside some data during the process and merge steps. The amount of data transferred between

stages is known to be a bottleneck of MapReduce [43]. In SkewReduce, however, this is more

than a bottleneck because a flood of data between levels eventually exceeds the memory

bounds of merge. In this section, we answer the following question. Q: Does SkewReduce

feed too much data to merge? How much data is set aside?

In Figure 4.9, we analyze the total amount of data generated at each level of the partition

95

1

10

100

1000

10000

T
o

ta
l

O
u

tp
u

t
S

iz
e

(M
B

) SetAside Data State

0.1

1

10

100

1000

10000

012345678910

T
o

ta
l

O
u

tp
u

t
S

iz
e

(M
B

)

Level in Partition Plan

SetAside Data State

Figure 4.9: Aggregate output data size produced at each level of an optimized partition plan

for the Astro dataset. The x-axis is the level in the partition tree with level 10 representing

the leaves. The y-axis is in log scale. Data and State together form the Feature object

(F). Data corresponds to boundary particles with cluster ids and State holds the cluster

mappings found so far. Overall, a significant amount of data is set-aside and only a small

amount of data is passed to merge.

tree during one execution of the clustering algorithm on the Astro dataset. Overall, a total

of 13.7 GB of data was set aside by process, which corresponds to almost 99% of the input

data. The total data passed to all merge operators is only 2 GB and the top-level merge

has received the most amount of data (39 MB), however, this is only one third of the 128

MB chunk size. Thus, through its API, SkewReduce guides application writers toward an

efficient implementation of their feature extraction applications, setting aside significant

amounts of data when possible, reducing traffic between operators, and helping to satisfy

the per node memory requirement. We acknowledge that the amount of data that is set

aside data will vary depending on the dataset and the application.

96

4.4 Conclusion

In this chapter, we presented SkewReduce, a new API for feature-extracting scientific appli-

cations and an implementation that leads to an efficient execution of these applications. At

the heart of SkewReduce is a static optimizer that leverages user-supplied cost functions to

generate parallel processing plans, which significantly reduce the impact of computational

skew inherent in many of these applications. Through experiments on two real datasets, we

showed that SkewReduce can improve application run times by a factor of two to eight and

takes only seconds to minutes to run, facilitating offline resource planning.

97

Chapter 5

SKEWTUNE: DYNAMIC SKEW MITIGATION

The SkewReduce approach to skew avoidance presented in Chapter 4 can dramatically

improve job completion times by optimizing how data is partitioned across tasks based

on user-defined cost models. Although SkewReduce can significantly reduce the impact of

skew, it has several limitations due to its static nature. First, SkewReduce can not handle

runtime conditions such as failures and interferences. Second, estimation errors from sample

and user-defined cost models may underestimate or overestimate the cost of a partition, so

the optimized partition plan may still exhibit skew, though to a much lesser degree than

before the optimization. Third, SkewReduce burdens the user with specifying cost functions.

Finally, SkewReduce is specific to one type of applications.

In this chapter, we propose SkewTune, a dynamic skew mitigation strategy for the par-

allel evaluation of UDOs. SkewTune addresses several of the limitations of SkewReduce.

The greatest benefit of SkewTune is its transparency. Users can use SkewTune with existing

MapReduce applications without modifications. The output of a mitigated job is identical

to the output without mitigation; thus, mitigation does not break downstream applications

that consume the output of a mitigated job. SkewTune detects a task experiencing skew

(i.e., a straggler task as defined in Section 3.3.2) by monitoring the execution of each opera-

tor partition. It thus does not require cost models from users. If a straggler task is detected,

SkewTune mitigates skew at runtime by dynamically repartitioning the input data of the

straggler task (i.e., it tunes the impact of skew at runtime by repartitioning the input to

the straggler task). The data repartitioning process preserves the order of the input data,

so the final output after mitigation can be transparently reconstructed by concatenating

the output of the extra tasks resulting from skew mitigation. SkewTune is independent of

SkewReduce, but it can complement SkewReduce by dynamically mitigating skew resulting

from estimation errors during the static partition optimization and by handling unexpected

98

failures and load variations. These benefits come at one expense: a UDO should not main-

tain state across invocations (i.e., it should process each input record independently of the

others).

SkewTune effectively handles two very common types of skew: (1) skew caused by an un-

even distribution of input data to operator partitions (or tasks) and (2) skew caused by some

portions of the input data taking longer to process than others. As shown in Section 3.3.4,

for these sources of skew, speculative execution, a popular strategy in MapReduce-like sys-

tems [37, 61, 68] to mitigate skew stemming from a non-uniform performance of physical

machines, is ineffective because the speculative tasks execute the same code on the same

data and therefore do not complete in any less time than the original tasks. SkewReduce

could help by identifying expensive tasks and splitting them through the partition optimiza-

tion, but, as mentioned above, it is insufficient because of estimation errors and dynamically

changing runtime conditions that are not taken into account during the optimization. Ad-

ditionally, SkewReduce requires extra inputs from the user, while SkewTune does not.

SkewTune is designed for MapReduce-type engines, characterized by disk-based process-

ing and a record-oriented data model. The technique is applicable to other parallel data

flow engines with an appropriate isolation layer that can replay the output of each operator

partition on a request from the downstream operator (e.g., [134]). We implemented the

SkewTune technique by extending the Hadoop MapReduce engine [61]. SkewTune relies on

two properties of the MapReduce model: (1) MapReduce’s ability to buffer the output of an

operator before transmitting it to the next operator; and (2) operator de-coupling, where

each operator processes data as fast as possible without back-pressure from downstream op-

erators. SkewTune’s optimizations mitigate skew while preserving the fault-tolerance and

scalability of vanilla MapReduce.

The key features of SkewTune are:

• SkewTune mitigates two very common types of skew: skew due to an uneven distri-

bution of data to operator partitions and skew that results from the fact that some

subsets of the data take longer to process than others.

• SkewTune can optimize unmodified MapReduce programs; programmers need not

99

change a single line of code.

• SkewTune preserves interoperability with other UDOs. It guarantees that the output

of an operator consists of the same number of partitions with data sorted in the same

order within each partition as an execution without SkewTune.

• SkewTune is compatible with pipelining optimizations proposed in the literature (c.f.,

[134]) and does not require any synchronization barrier between consecutive opera-

tors1.

We evaluate SkewTune through experiments with real data and real applications in-

cluding PageRank [25], CloudBurst [116], and an application that builds an inverted index

over Wikipedia. We show that SkewTune can reduce processing times by up to factor of

4 when skew arises and adds only minimal overhead in the absence of skew. Most impor-

tantly, SkewTune delivers consistent performance independent of the initial configuration

of a MapReduce job.

The rest of this chapter is organized as follows. We discuss the design requirements of

SkewTune in Section 5.1. We present the SkewTune approach in Section 5.2 and the Hadoop

implementation in Section 5.3. We show results from experiments with real application in

Section 5.4.

5.1 SkewTune Design Requirements

Before presenting the SkewTune approach, we first discuss the rationale behind its design.

When designing SkewTune, we had the following goals in mind:

Developer Transparency. The first goal behind SkewTune is to make it easier for MapRe-

duce developers to achieve high performance. For this reason, we do not want these de-

velopers to even be aware that skew problems can arise. We want SkewTune to simply

be an improved version of Hadoop that executes their jobs faster. As a result, we reject

all design alternatives that require operator writers to either implement their jobs following

special templates [14] or provide special inputs such as cost functions for their operators [81].

1However, SkewTune, like MapReduce, does not allow downstream operators to throttle the flow of
upstream operators, as is typically the case in parallel pipelined query plans.

100

Instead, SkewTune should operate on unchanged MapReduce jobs.

Mitigation Transparency. Today, MapReduce makes certain guarantees to users: The

output of a MapReduce job is a series of files, with one file per reducer. The user can

configure the number of reducers. Additionally, the input of each reducer is sorted on

the reduce key by the user-provided comparator function thus the output is produced in

a specific order. To facilitate adoption and to ensure the correctness and efficiency of

the overall application, we want SkewTune to preserve these guarantees. The output of a

job executed with SkewTune should be the same as the output of a job executed without

SkewTune: it should include the same number of files with the same data order inside these

files. Indeed, users often create data analysis workflows and the application consuming the

output of a MapReduce job may rely on there being a specific number of files and on the

data being sorted within these files. By preserving these properties, SkewTune also helps

ensure predictability: the same job executed on the same input data will produce the same

output files in the same order.

Maximal Applicability. In MapReduce (and in other parallel data processing systems),

many factors can cause skew in a UDO as surveyed in Section 3.2. We designed SkewTune to

handle these different types of skew rather than specializing SkewTune for only one type of

skew [37, 67]. In general, SkewTune strives to make the least number of assumptions about

the cause of skew. Instead, it monitors execution, notices when some tasks run slower than

others, and reacts accordingly independent of the reason why the tasks are slower.

No Synchronization Barriers. Finally, parallel data processing systems try to minimize

global synchronization barriers to ensure high performance [80] and produce incremental

results when possible. Even in MapReduce, reducers are allowed to start copying data

before the previous mappers finish execution. Additionally, new MapReduce extensions

strive to further facilitate pipelining during execution [86, 31, 134]. For those reasons, we

avoided any design options that required blocking while an operator finishes processing

before letting the next operator begin shuffling (and possibly processing) the data.

To achieve the above goals, SkewTune only assumes that a MapReduce job follows the

API contract: each map() and reduce() invocation is independent. This assumption en-

ables SkewTune to automate skew mitigation because it can be sure that re-partitioning

101

input data at the boundary of map and reduce function invocations is safe. Such re-

partitioning will not break the application logic.

5.2 SkewTune Approach

SkewTune is designed to be API-compatible with Hadoop, providing the same parallel

job execution environment while adding capabilities for detecting and mitigating skew.

This section presents SkewTune’s approach and core algorithms; Section 5.3 describes the

implementation on top of Hadoop.

5.2.1 Overview

SkewTune takes a Hadoop job as input. For the purpose of skew mitigation, SkewTune

considers the map and reduce phases of the job as separate UDOs. In SkewTune, as in

Hadoop, a UDO pulls its input from the output of the previous UDO, where it is buffered

locally. A UDO is assumed to take a record as input. A key-value pair (i.e., mapper

input) and a key group (i.e., reducer input) are each considered a special case of a record.

Each UDO is parallelized into tasks, and each task is assigned a slot in the cluster. There

is typically one slot per CPU core per node. When a task completes, the slot becomes

available.

SkewTune’s skew mitigation technique is designed for MapReduce-type data processing

engines. The three important characteristics of these engines with respect to skew handling

are the following: (1) A coordinator-worker architecture where the coordinator node makes

scheduling decisions and worker nodes run their assigned tasks. On completion of a task, the

worker node requests a new task from the coordinator. This architecture is commonly used

today [37, 43, 61, 68]. (2) De-coupled execution: Operators do not impose back-pressure on

upstream operators. Instead, they execute independently of each other. (3) Independent

record processing: The tasks are executing a UDO that processes each input record (possibly

nested) independently of each other. Additionally, SkewTune requires (4) Per-task progress

estimation, tremain, which estimates the time remaining [98, 148] for each task. Each worker

periodically reports this estimate to the coordinator. (5) Per-task statistics: each task keeps

102

SLOT 1

SLOT 2

SLOT 3

SLOT 4

Task T1

T2

T3

T4

Time
(a) Without SkewTune, operator runtime is that of the slowest task.

SLOT 1

SLOT 2

SLOT 3

SLOT 4

T2a

T2b

T2c

Time

T4a

T4b

T4c

T4d

t2 t3t1
(b) With SkewTune, the system detects available resources as task T1 completes at t1. SkewTune

identifies task T2 as the straggler and re-partitions its unprocessed input data. SkewTune repeats

the process until all tasks complete.

Figure 5.1: Conceptual skew mitigation in SkewTune

track of a few basic statistics such as the total number of (un)processed bytes and records.

Figure 5.1 illustrates the conceptual skew mitigation strategy of SkewTune. Without

SkewTune, the operator completion time is dominated by the slowest task (e.g., T2 in

Figure 5.1a). With SkewTune, as shown in Figure 5.1b, the system detects that T2 is

experiencing skew at t1 when T1 completes. SkewTune labels T2 as the straggler and

mitigates the skew by repartitioning T2’s remaining unprocessed input data. Indeed, T2 is

not killed but rather terminates early as if all the data that it already processed was the only

data it was allocated to process. Instead of repartitioning T2’s remaining input data across

only slots 1 and 2, SkewTune proactively repartitions the data to also exploit slot 3, which

is expected to become available when T3 completes. SkewTune re-partitions the data such

103

N Set of nodes in the cluster

S Set of slots in the cluster (multiple slots per node)

O Set of output files

R Set of running tasks

W Set of unscheduled tasks

∆ Straggler’s unprocessed data (bytes)

β Disk bandwidth (bytes/seconds)

ρ Task scheduling overhead (seconds)

ω Repartitioning overhead (seconds)

T , tremain A task and its time-remaining (seconds)

Table 5.1: Notations in Section 5.2

that all new partitions are predicted to complete at the same time. The resulting subtasks

T2a, T2b, and T2c are called mitigators and are scheduled in the longest processing-time

first manner. SkewTune repeats the detection-mitigation cycle until all tasks complete. In

particular, at time t2, SkewTune identifies T4 as the next straggler and mitigates the skew

by repartitioning T4’s remaining input data.

In terms of our requirements from Section 5.1, SkewTune achieves developer transparency

by detecting and mitigating skew at runtime without requiring any input from the de-

velopers. We further discuss SkewTune’s skew detection approach in Section 5.2.2. To

achieve mitigation transparency, SkewTune re-partitions the straggler’s data using range-

partitioning as we discuss further in Section 5.2.3. To be maximally applicable, SkewTune

makes no assumptions about the cause of the skew. It also respects the input record bound-

ary when repartitioning data. Thus, as long as a UDO follows the MapReduce API contract,

SkewTune is applicable without breaking the application semantics. Finally, SkewTune’s

skew mitigation approach does not require any synchronization barriers.

104

5.2.2 Skew Detection

Skew detection determines when to mitigate skew experienced by which task. If the de-

tection is too eager, SkewTune may split a task and pay unnecessary overhead (i.e., false-

positive). If the detection is too conservative, SkewTune may miss the right mitigation

timing thus diminishing the skew-mitigation gains (i.e., false-negative).

Late Skew Detection: SkewTune’s skew detection approach relies on the fact that

tasks in consecutive phases are decoupled from each other. That is, map tasks can process

their input and produce their output as fast as possible. They never block waiting for reduce

tasks to consume that data. Similarly, reduce tasks can never be blocked by map tasks in

a subsequent job.

This decoupling has important implications for skew handling. Because tasks can inde-

pendently process their input as fast as possible, the cluster has high utilization as long as

each slot is running some task. For this reason, SkewTune delays any skew mitigation de-

cisions until a slot becomes available. We call this approach late skew detection. Late skew

detection is analogous to MapReduce’s current speculative execution mechanism [37, 61],

where slow remaining tasks are replicated when slots become available. Similarly, Skew-

Tune’s repartitioning overhead is only incurred when there are idle resources. Late skew

detection thus reduces opportunities for false positives. At the same time, it avoids false

negatives by immediately allocating resources when they become available.

Identifying Stragglers: The next key question is to decide which task to label as the

straggler. Here, we observe that it is never beneficial to re-partition more than one task at a

time, since re-partitioning one task can suffice to fully occupy the cluster again. Given that

only one task should be labeled as a straggler, SkewTune selects the task with the greatest

tremain estimate at the time of detection.

SkewTune flags skew when half of the time remaining is greater than the repartitioning

overhead:

tremain
2

> ω

The intuition is as follows. If SkewTune decides to repartition task T , at least two slots be-

come available: the slot running T and the slot that recently became idle and triggered skew

105

Algorithm 5 GetNextTask()

Input: R: set of running tasks

W: set of unscheduled waiting tasks

inProgress: global flag indicating mitigation in progress

Output: a task to schedule

1: task ← null

2: if W 6= ∅ then

3: task ← chooseNextTask(W)

4: else if ¬inProgress then

5: task ← argmaxtask∈R time remain(task)

6: if task 6= null ∧ time remain(task) > 2 · ω then

7: stopAndMitigate(task) // asynchronous

8: task ← null

9: inProgress← true

10: end if

11: end if

12: return task

detection. After paying repartition overhead ω, the expected remaining time would be half

of the remaining time of T (Table 5.1 summarizes the notation). The repartition thus only

makes sense if the original runtime of T is greater than the new runtime plus the overhead.

In our prototype implementation, ω is on the order of 30 seconds (see Section 5.4). Hence,

our prototype only re-partitions tasks if at least 1 minute worth of processing remains.

For long-running tasks where skew is particularly damaging, overhead of a few minutes is

typically negligible.

Algorithm 5 summarizes SkewTune’s skew detection strategy. As long as there exist

unscheduled tasks, SkewTune invokes the ordinary task scheduler chooseNextTask(). If

the coordinator runs out of tasks to schedule, SkewTune starts to consider repartitioning one

of the running tasks based on the tremain estimates. stopAndMitigate() asynchronously

notifies the chosen task to stop and to commit the output produced so far. We describe the

mitigation process next.

106

5.2.3 Skew Mitigation

There are three challenges related to mitigating skew through repartitioning. First, we

want to minimize the number of times that we repartition any task to reduce repartitioning

overhead. Second, when we repartition a straggler, we want to minimize any visible side-

effects of the repartitioning to achieve mitigation transparency (see Section 5.1). Finally,

we want to minimize the total overhead of skew mitigation, including any unnecessary

recomputations.

SkewTune strives to minimize the number of repartition operations by identifying one

straggler at a time and proactively partitioning its data in a manner that accounts for

slots that are likely to become available in the near future. To eliminate side-effects of skew

mitigation, SkewTune uses range partitioning to ensure that the original output order of the

UDO result is preserved. To minimize the mitigation overhead, SkewTune saves a straggler’s

output and repartitions only its unprocessed input data. It also uses an inexpensive, linear-

time heuristic algorithm to plan mitigators. To drive this planning, SkewTune needs to

collect information about the value distribution in the repartitioned data. To minimize

overhead, SkewTune makes a cost-based decision to scan the remaining data locally at the

straggler or to spawn new tasks that scan the distributed input in parallel.

Skew mitigation occurs in three steps. First, the straggler stops its computation. Second,

depending on the size of the data that remains to be processed, either the straggler or the

operators upstream from the straggler collect statistics about the straggler’s remaining input

data. Finally, the coordinator plans how to re-partition the straggler’s remaining work and

schedules the mitigators. We now present these steps in more detail.

Stopping a Straggler

When the coordinator asks a straggler to stop, the straggler captures the position of its

last processed input record, allowing mitigators to skip previously processed input. If the

straggler is in a state that is impossible or difficult to stop (e.g., processing the last input

record or performing the local sort at the end of the map phase), the request fails and

the coordinator either selects another straggler or repartitions and reprocesses the entire

107

straggler’s input if this straggler is the last task in the job. Reprocessing a straggler’s entire

input is analogous to MapReduce’s speculative execution [37, 61] except that SkewTune

repartitions the input before reprocessing it.

Scanning Remaining Input Data

In order to ensure skew mitigation transparency, SkewTune uses range-partitioning to allo-

cate work to mitigators. With this approach, the data order remains unchanged between

the original MapReduce job and the altered job. The output of the mitigators only needs

to be concatenated to produce an output identical to the one obtained without SkewTune.

An alternate design would be to use hash-partitioning and add an extra MapReduce job to

sort-merge the output of the mitigators. Such an extra job would add overhead. Addition-

ally, a hash function is not guaranteed to evenly balance load between mitigators, especially

if the number of keys happens to be small. Range partitioning avoids both problems.

When range-partitioning data, a data range for a map task takes the form of an input

file fragment (i.e., file name, offset, and length). A range for a reduce task is an interval of

reduce keys. In the rest of this section, we focus on the case of repartitioning the reduce

task’s input. The techniques are equally applicable to map tasks.

Range-partitioning a straggler’s remaining input data requires information about the

content of that data: The coordinator needs to know the key values that occur at various

points in the data. SkewTune collects that information before planning the mitigator tasks.

A näıve approach is to scan the data and extract all keys together with the associated

record sizes. The problem with this approach is that it may produce a large amount of data

if there exists a large number of distinct keys. Such large data imposes a significant network

overhead and also slows-down the mitigator planning step.

Instead, SkewTune collects a compressed summary of the input data. The summary

takes the form of a series of key intervals. Each interval is approximately the same size

in bytes, respecting the input boundaries (e.g., a single record for map, values sharing

a common reduce key for reduce). These intervals become the units of range-partitioning.

Consecutive intervals can be merged to create the actual data range assigned to a mitigator.

108

Choosing the Interval Size: Given |S|, the total number of slots in the cluster, and ∆,

the number of unprocessed bytes, SkewTune needs to generate at least |S| intervals since it

is possible that all cluster slots will be available for mitigators. However, because SkewTune

may want to allocate an uneven amount of work to the different mitigators (e.g., Figure 5.1),

SkewTune generates k|S| intervals. Larger values of k enable finer-grained data allocation

to mitigators but they also increase overhead by increasing the number of intervals and thus

the size of the data summary. In our prototype implementation, k is set to 10. Hence, the

size s of the intervals is given by s = b ∆
k·|S|c.

Local Scan: If the size of the remaining straggler data is small, the worker running the

straggler scans that data and generates the intervals. Algorithm 6 summarizes the interval

generation process. The algorithm expects a stream of intervals I as input. This is the

stream of singleton intervals, with one interval per key in the reducer’s input. For the local

scan, b is set to s and k is ignored. The algorithm iterates over these singleton intervals. To

generate the output intervals, it opens an interval with the first seen key. It then merges

the subsequent keys and their statistics (e.g., size of all values in bytes) until the aggregated

byte size reaches the threshold s. If a key has a byte size larger than s, the key remains in

its own singleton interval. The process continues until the end of the data.

Choosing between a Local and a Parallel Scan: To choose between a local and

a parallel scan, SkewTune compares the estimated cost (in terms of total time) for each

approach. The time for the local scan is given by ∆
β , where ∆ is the remaining input data

in bytes and β is the local disk bandwidth. The time for the parallel scan is the time to

schedule an extra MapReduce job to perform the scan, and the time for that job to complete.

The latter is equal to the time that the slowest task in the job, say n, will take to scan

its input data:
∑
o∈On o.bytes

β , where On is the set of all map outputs at node n (recall that

multiple map tasks can run on a node). The decision is thus made by testing the following

inequality:

∆

β
>

max{
∑

o∈On o.bytes | n ∈ N}
β

+ ρ

where N is the set of nodes in the cluster and ρ is the task scheduling delay. The stopping

109

Algorithm 6 GenerateIntervals()

Input: I: Sorted stream of intervals

b: Initial bytes-per-interval. Set to s for local scan.

s: Target bytes-per-interval.

k: Minimum number of intervals.

Output: list of intervals

1: result← [] // resulting intervals

2: cur ← new interval() // current interval

3: for all i ∈ I do

4: if i.bytes > b ∨ cur.bytes ≥ b then

5: if b < s then

6: result.appendIfNotEmpty(cur)

7: if |result| ≥ 2× k then

8: // accumulated enough intervals. increase b.

9: b← min{2× b, s}

10: // recursively recompute buffered intervals

11: result← GenerateIntervals(result, b, b, k)

12: end if

13: else

14: result.appendIfNotEmpty(cur)

15: end if

16: cur ← i // open a new interval

17: else

18: cur.updateStat(i) // aggregate statistics

19: cur.end← i.end

20: end if

21: end for

22: result.appendIfNotEmpty(cur)

23: return result

straggler tests the inequality since it knows where its input data came from. If a parallel scan

is expected to be more cost-effective, the straggler immediately replies to the coordinator

110

Interval ID Begin key # values End key

i1 k3 : 4 9 k7 : 3

i2 k7 : 1 10 k100 : 2

i3 k50 : 2 14 k95 : 5

Input: Intervals from Parallel Local Scans.
↙

Key Range Est. # values Intervals

[k3, k3] 4 i1

(k3, k7) 9 i1

[k7, k7] 4 i1, i2

(k7, k50) 10/5 i2

[k50, k50] 2 + 10/5 i2, i3

(k50, k95) 14 + 10/5 i2, i3

[k95, k95] 5 + 10/5 i2, i3

(k95, k100) 10/5 i2

[k100, k100] 2 i2

Merge intervals and estimate # of values. The

values of i2 (10) is evenly distributed over

(k7, k100) range.

→

Key Range Est. # values

[k3, k3] 4

(k3, k7) 9

[k7, k7] 4

(k7, k50) 2

[k50, k50] 4

(k50, k95) 16

[k95, k95] 7

(k95, k100) 2

[k100, k100] 2

Output: Aligned key ranges

and estimated # of values.

Figure 5.2: Merging Result of Parallel Scan. The table on the left shows the output of

the parallel scan. The middle column #values represents the number of values that fall

between begin and end keys. Each key is also associated with its number of values (the

number followed by ‘:’). The table on the right shows the output from merging the input

intervals and the estimated number of values for each range. The values of wide interval

(k7, k100) introduce uncertainty. The middle table shows how the 10 values of i2 are evenly

redistributed across the five key ranges included in (k7, k100).

111

and the latter schedules the parallel scan.

Parallel Scan: During a parallel scan, Algorithm 6 runs in parallel over the distributed

input data (i.e., map outputs). The intervals generated for each map output file are then put

together to estimate the intervals that would have been generated by a local scan (illustrated

in Figure 5.2).

The s value for the Local Scan may be too large for a parallel scan because there are

usually more map outputs than the total number of slots in the cluster. Thus, we set a

smaller s value for the parallel scan to properly generate intervals for each map output:

s = b ∆

k ·max{|S|, |O|}
c

where O is the union of all the On sets. Additionally, because the size of the map output files

can be skewed and because SkewTune does not know how much data in each of these files

will have to be re-processed, SkewTune dynamically adjusts the interval size (variable b in

Algorithm 6) starting from a small value (e.g., 4 KB in prototype) and adaptively increasing

it as it sees more unprocessed data. Whenever the b value is doubled, the collected intervals

so far are merged using the new b value (line 7-12). Once the b value becomes s, the algorithm

reaches a steady state and produces intervals every s bytes. Without this approach, a single

wide key-interval may be generated for small data files and such wide key-intervals yield

errors during the interval merge process at the coordinator.

Merging Intervals from a Parallel Scan: The intervals generated by a parallel scan

are put together to approximate the result of a local scan. We present a two-pass algorithm

illustrated in Figure 5.2, which estimates the number of records that would have been output

by a local scan. The algorithm can be extended to handle other measures (e.g., the number

of bytes and the number of keys) in a straightforward manner.

The leftmost table in Figure 5.2 shows the input of the algorithm, which is a list of

possibly overlapping intervals. Each interval is represented with a triple (begin key, #

values, end key). The # values field represents the number of values that fall between

begin and end keys. Each key is also associated with its number of values. The input is

sorted by the begin key of each interval.

Intervals are a lossy representation of the data distribution. As a simplification, our

112

approach assumes that values are uniformly distributed in each interval. A small compli-

cation arises when intervals overlap. For example, i3 is completely included in i2 and it is

uncertain how the 10 values of i2 are actually distributed in the (k7, k100) range due to i3.

The middle table of Figure 5.2 shows addressing such uncertainty by evenly distributing

the values over (k7, k100) range given the input. In the input, we can be sure that k50 and

k95 exist between k7 and k100. The two keys segment the uncertain range (k7, k100) into five

intermediate ranges: (k7, k50), [k50, k50], (k50, k95), [k95, k95], and (k95, k100). Then we evenly

distribute the 10 values of i2 over the five ranges. For this approximation, thus we need to

know how many keys fall within (or overlap) each of input interval.

The algorithm proceeds in two passes over the input data. During the first pass, the

algorithm collects statistics about existing intervals and how they overlap. It then generates

the smaller key ranges and estimates the number of values in these smaller ranges during

the second pass. Figure 5.2 shows an example of input and output for this algorithm. We

omit the algorithm pseudocode since it is straightforward.

The time and space complexities of the algorithm areO(|I| log |I|) andO(|I|) respectively

where I is the list of input intervals. The size of I is controlled by value k in Algorithm 6

during the parallel scan. If |I| is expected to be too large to fit in memory, the k value needs

to be adjusted to a smaller value. The output of the algorithm can also be post-processed

by Algorithm 6 (i.e., merge small adjacent key ranges to make the final intervals roughly

the size of s).

Planning Mitigators

Finally, we present SkewTune’s approach to planning mitigators. The goal is to find a

contiguous order-preserving assignment of intervals to mitigators, meaning that the intervals

assigned to a mitigator should be totally ordered on the key and should be contiguous: i.e.,

no intervals between the first and the last keys should be assigned to other mitigators. The

assignment should also minimize the completion time of all re-allocated data.

The planning algorithm should be fast because it is on the critical path of the mitigation

process. A longer execution time means a longer idle time for the available slot in the

113

Algorithm 7 LinearGreedyPlan()
Input: I: a sorted array of intervals

T : a sorted array of tremain for all slots in the cluster

θ: time remaining estimator

ω: repartitioning overhead

ρ: task scheduling overhead

Output: list of intervals

// Phase 1: find optimal completion time opt.

1: opt← 0; n← 0 // n: # of slots that yield optimal time

2: W ← θ(R) // remaining work+work running in n nodes

3: // use increasingly many slots to do the remaining work

4: while n < |T | ∧ opt ≥ T [n] do

5: opt′ ← W+T [n]+ρ
n+1

// optimal time using n+ 1 slots

6: if opt′ − T [n] < 2 · ω then

7: break // assigned too little work to the last slot

8: end if

9: opt← opt′; W ←W + T [n] + ρ; n← n+ 1

10: end while

// Phase 2: greedily assign intervals to the slots.

11: P ← [] // intervals assigned to slots

12: end← 0 // index of interval to consider

13: while end < |I| do

14: begin← end; remain← opt− T [|P |]− ρ
15: while remain > 0 do

16: test ← θ(I[end]) // estimated proc. time of interval

17: if remain < 0.5 · test then

18: break // assign to the next slot

19: end if

20: end← end+ 1; remain← remain− test
21: end while

22: if begin = end then

23: end← end+ 1 // assign a single interval

24: end if

25: P.append(new interval(I[begin], I[end− 1]))

26: end while

27: return P

cluster. We now describe a heuristic algorithm with linear time complexity with respect to

the number of intervals.

114

Algorithm 7 takes as input the time remaining estimates for all active tasks in the

cluster, the intervals collected by the data scan, a time remaining estimator θ, which serves

to estimate processing times for intervals from their statistics (e.g., sizes in bytes), and

overhead parameters. The algorithm proceeds in two phases. The first phase (line 1-10)

computes the optimal completion time opt assuming a perfect split of the remaining work

(i.e., record boundaries are not honored). The phase stops when a slot is assigned less than

2ω work to avoid generating arbitrarily small mitigators (line 6-7). 2ω is the largest amount

of work such that further repartitioning is not beneficial. In the second phase, the algorithm

sequentially packs the intervals for the earliest available mitigator as close as possible to

the opt value. The algorithm then repeats the process for the next available mitigator

until it assigns all the intervals to mitigators. The time complexity of this algorithm is

O(|I|+ |S| log |S|) where |I| is the number of intervals and S is the number of slots in the

cluster.

5.2.4 Discussion

SkewTune in a Shared Cluster: SkewTune currently assumes that a single user has

access to all the resources in a cluster. There are two ways to incorporate SkewTune in

a shared cluster setup: (1) by using a task scheduler that carves out a pre-defined set of

resources for each user or (2) by implementing a SkewTune-aware scheduler that prioritizes

mitigators (and preempts other tasks if necessary) if mitigating a straggler improves overall

cluster utilization and latency.

Very expensive map() or reduce(): SkewTune is designed to repartition load around

record boundaries. SkewTune is not designed to mitigate skew in the case where single

invocations of the user-defined map() or reduce() functions take an extremely long time.

To handle such cases, SkewTune would need to be extended with techniques such as those

in the SkewReduce [81] system.

115

Job
Tracker

ST Job
Tracker

ST Task
Tracker

Task
Tracker

Task

Client

Job submit

Status

Status
Stop request

New map output loc.Status
Stop request

New map output loc.

Status, New task

Job submit
Map output loc. Stop response

HDFS

New map output

Figure 5.3: SkewTune Architecture. Each arrow is from sender to receiver. Messages related

to mitigation are shown. Requests are underlined. Mitigator jobs are created and submitted

to the job tracker by the SkewTune job tracker. Status is the progress report.

5.3 SkewTune for Hadoop

Overview: We implemented SkewTune on top of Hadoop 0.21.1. We modified core Hadoop

classes related to (1) the child process, which runs the user supplied MapReduce application

and (2) the Shuffle phase, which also runs in the child process. The only class we modified

that runs in the Hadoop trackers is the JobInProgress class, which holds all information

associated with a job. We added fields to track dependent jobs (i.e., mitigator jobs) such

that the map output is only cleaned up when there is no dependent job running.

The prototype consists of a job tracker and a task tracker analogous to those used in

Hadoop. The child processes running with SkewTune report to both Hadoop and SkewTune

trackers as shown in Figure 5.3. The SkewTune job tracker serves as the coordinator and

is responsible for detecting and mitigating skew in the jobs submitted through its interface.

The SkewTune task tracker serves as a middle tier that aggregates and delivers messages

between the SkewTune job tracker and the Hadoop MapReduce tasks. When mitigating

skew, the SkewTune job tracker executes a separate MapReduce job for each parallel data

scan and for each mitigation.

Stopping a Straggler Task: When a straggler task has been chosen, SkewTune tries

116

to stop it by flagging a field in the heartbeat response message from the SkewReduce job

tracker to its task tracker. Upon receiving the stop request, the task immediately reports

back the currently processed record (e.g., current offset in the input file or the current reduce

key). If only a small amount of data remains to be processed, the task also runs the local

data scan and returns the summary intervals. The stopped task then completes processing

the current record and terminates. If a task is in the map-side sort, shuffle, or reduce-side

sort phases, stopping the task is difficult because the outputs from disk spills, different

tasks are intermingled at any point of those stages and it is hard to precisely define what

are the remaining work in those stages in a compact manner. Tasks re-partitioned during

those phases reports there is nothing to repartition and the coordinator makes decision as

described in Section 5.2.2.

The current prototype only supports file-based inputs. Also, the RecordReader must

implement an interface, StoppableRecordReader, to support stopping the process. When

stop is requested, the record reader must return the current position in the record stream,

and the remaining bytes if possible. If the stop was successful, the record reader immediately

returns an end of stream on the next record request so that the map can start the SORT

phase.

Repartitioning a Map Task: When SkewTune decides to repartition a map task, the

map task runs the local scan (because map tasks are typically assigned with small amounts

of data. It is possible to use the parallel scan if the size of remaining data is large and the

input is replicated) and reports the summary intervals to the coordinator. The mitigators

for a map task execute as map tasks within a new MapReduce job. They have the same

map and, optionally combiner, functions.

We modify the original Map task implementation to sort and write the map output to

HDFS when the task is a mitigator. Without this change, a map without reduce would skip

the SORT phase. The map output index, i.e., the information that reports which portion

of the file is designated to which reduce task, is also written to HDFS for fault tolerance

and sent to the SkewTune job tracker via a heartbeat message. The job tracker broadcasts

the information about the mitigated map output to all reducers in the job.

Repartitioning a Reduce Task: To repartition a reduce task, the parallel scan job

117

(if it exists) and the mitigator job read map outputs from the Hadoop task tracker2. Thus,

we implemented InputSplit, TaskTrackerInputFormat and MapOutputRecordReader to

directly fetch the map output from task trackers. Our implementation uses the HDFS API

to read the mitigated map outputs. MapOutputRecordReader skips over the previously

processed reduce keys to ensure that only unprocessed data is scanned and repartitioned.

For both jobs, we create one map task per node, per storage type (i.e., task tracker and

HDFS) so that each map task reads local data if the schedule permits it.

The map task in the mitigator job runs an identity function since all the data has already

been processed. The partition function is replaced with a range partitioner provided by the

SkewTune framework. The bucket information generated by the planner is compressed and

encoded in the job specification. If a combiner exists in the original job, the map task

also runs the same combiner to reduce the amount of data. Since the map is running the

identity function, SkewTune knows that it can use more memory for the combiner and sort.

Thus, it adjusts the corresponding configuration values appropriately. The reduce task runs

unchanged.

Merging Mitigated Output: A mitigation job creates its output directory under the

original output directory so that the mitigated output can be merged or disposed with the

original output. The name of directory consists of the name of original task output and a

suffix that identifies the mitigated job. The output can be merged in two ways. First, the fol-

lowing MapReduce job can read the output using an extended CombinedFileInputFormat

which logically concatenates the mitigated output files with CombinedInputSplit. Or, on

completion of the job, concatenates the files using HDFS concatenate operation 3.

Reducing Launch Overhead: Launching a new MapReduce job is relatively expensive

compared to launching a job in a database management system (DBMS) because every task

and job starts from scratch [108]. This overhead is critical for SkewTune since eliminating

such overheads enables SkewTune to be used with relatively short jobs. An optimization we

made to reduce the startup overhead of mitigator jobs is that SkewTune does not copy the

2Map output is served via HTTP by an embedded web server in the task tracker

3Implemented by HDFS-222 patch but requires that all intermediate blocks be full.

118

binaries and data per launch. Instead, SkewTune simply reuses the existing binaries and

data copied to HDFS for the original job. This way, SkewTune can avoid the overhead of

copying redundant files when launching a new parallel scan job as well as a new mitigator

job.

Progress Monitoring and Estimation: The prototype implements Parallax to esti-

mate time remaining [98]. We extend Parallax to handle multiple spills at the end of the Map

phase. The extension is a simple analytical model of sort and spill as proposed in Li [86].

The estimate is calculated in the heartbeat thread of the child process and transmitted to

the SkewTune task tracker with every report, roughly every 3 seconds. The SkewTune task

tracker collects all reports from all local tasks, and submits them to SkewTune job tracker

via a heartbeat message. Thus, there is an end-to-end delay from the map/reduce process

to the job tracker that is double of the heartbeat interval.

Fault-tolerance: Fault-tolerance of SkewTune is mostly identical to that of Hadoop.

The worst failure scenario in SkewTune is the same as in Hadoop: losing a map output due

to a node failure. In this case, the lost map output has to be recomputed if there exists

any reduce tasks that have not read it yet. Any map task failure or reduce task failure

could be handled as if the failed tasks were experiencing skew. SkewTune may parallelize

the re-execution but the current prototype does not implement this.

The failure of the coordinator could be handled similarly as in Hadoop except the coor-

dinator has to persist repartitioning decisions so that the coordinator can make consistent

decisions after recovery.

5.4 Evaluation

We evaluate the benefits of SkewTune when skew arises, SkewTune’s robustness to initial

job configuration parameters, and SkewTune’s overhead in the absence of skew. We find

that SkewTune delivers up to a factor of 4X improvement on real datasets and real UDOs.

It also significantly reduces runtime variability. Further, the overhead of SkewTune in the

absence of skew is shown to be minimal.

All experiments are performed on a twenty-node cluster running Hadoop 0.21.1 with a

separate master node. Each node uses two 2 GHz quad-core CPUs, 16 GB of RAM, and

119

two 750 GB SATA disk drives. All nodes are used as both compute and storage nodes. The

HDFS block size is set to 128 MB and each node is configured to run at most four map

tasks and four reduce tasks concurrently.

We evaluate SkewTune using the following applications.

Inverted Index (II): An inverted index is a popular data structure used for Web

search. We implemented a MapReduce job that builds an inverted index from the full

English Wikipedia archive and generates a compressed bit vector for each word. The Potter

word stemming algorithm is used to post-process the text during the map phase 4. The

RADIX partitioner is used to map letters of the alphabet to reducers and to produce a

lexicographically ordered output. The total data size is 13 GB.

PageRank (PR): PageRank [25] is a popular link analysis algorithm that assigns

weights (ranks) to each vertex in a graph by iteratively aggregating the weights of its

inbound neighbors. We take the PageRank implementation from Cloud 9 [72] and apply it

to the freebase dataset [55]. The total input data size is 2.1 GB.

CloudBurst (CB): CloudBurst [116] is a MapReduce implementation of the RMAP

algorithm for short-read gene alignment5. CloudBurst aligns a set of genome sequence

reads with a reference sequence. We take the CloudBurst application and use it to process

a methylotroph dataset [73]. The total input data size is 1.1 GB.

5.4.1 Skew Mitigation Performance

The first question that we ask is how well SkewTune mitigates skew.

Figure 5.4(a) shows the runtime for the reduce phase of the Inverted Index application.

When using vanilla Hadoop, the reduce phase runs across 27 reducers (one per letter of the

alphabet and one for special characters) and completes in 1 hour and 52 minutes. With

SkewTune, as soon as the reduce phase starts, SkewTune notices that resources are available

(there are a total of 80 reduce slots). It thus partitions the 27 tasks across the available

4We use a bit vector implementation and a stemming algorithm from the Apache Lucene open source
search engine.

5http://rulai.cshl.edu/rmap/

http://rulai.cshl.edu/rmap/

120

0

2000

4000

6000

8000

Hadoop SkewTune

R
u

n
ti

m
e

 (
se

co
n

d
s)

extra ideal

(a) Reduce Phase of Inverted Index with RADIX partitioner

0

200

400

600

800

Hadoop SkewTune

R
u

n
ti

m
e

 (
se

co
n

d
s)

extra ideal

(b) Map Phase of CloudBurst

0

100

200

300

400

500

600

700

Hadoop SkewTune Hadoop SkewTune

9 Map Tasks 17 Map Tasks

R
u

n
ti

m
e

(s
e

co
n

d
s)

extra ideal

(c) Map Phase of PageRank

Figure 5.4: UDO runtime with and without SkewTune.

121

slots until the cluster becomes fully occupied. The runtime drops to only 25 minutes, a

factor of 4.5 faster. This experiment demonstrates that, with SkewTune, a user can focus

on the application logic when implementing her UDO. She does not need to worry about the

cluster details (e.g., how to write the application to use N reducers instead of the natural

27).

In the figure, we also show the ideal execution time for the job. This execution time is

derived from the logs of the vanilla Hadoop execution: we compute the minimal runtime that

could be achieved assuming zero overhead and a perfectly accurate cost model driving the

load re-balancing decisions. In the figure, we see that SkewTune adds a significant overhead

compared to this ideal execution time. The key reasons for the extra latency compared

with ideal are scheduling overheads and an uneven load distribution due to inaccuracies in

SkewTune’s simple runtime estimator. SkewTune does, however, improve the total runtimes

greatly compared with vanilla Hadoop. In the rest of this section, we always decompose the

runtime into ideal time and extra time. The latter accounts for all real overheads of the

system and possible resource under utilization.

Figure 5.4(b) shows the runtime for the map phase of CloudBurst. This application uses

all map slots. Hence, the cluster starts off fully utilized. However, the mappers process two

datasets: the sequence reads and the reference genome. All map tasks assigned to process

the former complete in under a minute. With vanilla Hadoop, the job then waits for the

mappers processing the reference dataset to complete. In contrast, SkewTune re-balances

the load of the mappers processing the reference dataset, which improves the completion

time from 12 minutes to 3 minutes (ideal time is 66 seconds). This application is a classical

example of skew and it demonstrates SkewTune’s ability to both detect and mitigate that

skew. Notice that skew arises even though all mappers are initially assigned the same

amount of data (in bytes).

Finally, we demonstrate SkewTune’s ability to help users avoid the negative performance

implications of mis-configuring their jobs. Figure 5.4(c) shows the runtime for the map phase

of PageRank. The figure shows two configurations: a good configuration and a worst-case

configuration. In the good case, vanilla Hadoop and SkewTune perform similarly. How-

ever, if the job is mis-configured, vanilla Hadoop leads to a significantly longer completion

122

time while SkewTune maintains a consistent performance. To create the bad configuration,

we simply changed the input data order: we sorted the nodes in the graph by increasing

order of outdegree. While in practice a user may not necessarily hit the worst-case config-

uration for this application, the experiment shows that vanilla Hadoop is sensitive to user

mis-configurations, unlucky data orders, and other unfortunate conditions. In contrast,

SkewTune delivers high performance systematically, independent of these initial conditions.

5.4.2 Performance Consistency

In this section, we further study the consistency of the performance that SkewTune delivers.

For this, we run the CloudBurst and PageRank applications but we vary the initial number

of tasks. Figure 5.5 shows the results for the map phase of CloudBurst using either 80 or 801

mappers and PageRank using either 9 or 17 mappers. As the figure shows, Vanilla Hadoop

is sensitive to these configuration parameters with up to a 7X difference in runtimes. In

contrast, SkewTune’s performance is significantly more stable with performance differences

within 50%. The figure shows, however, that for configurations without skew in PageRank,

SkewTune yields a runtime higher than that of vanilla Hadoop (3 s more). This is due to

inaccurate time-remaining estimates: SkewTune missed the timing to mitigate skew of the

longest map task and made an unnecessary split of another task. The overhead, however,

is negligible.

5.4.3 Skew Mitigation Overhead

To measure some of SkewTune’s overheads, we re-run the same applications as above, but

we tune them to ensure low runtimes with vanilla Hadoop. We make the following tunings.

For CloudBurst, we configure the number of map and reduce tasks exactly as the author

recommends: We use 10 times as many map tasks and 2 times as many reduce tasks as

slots. In the experiment, we thus get 801 map tasks (the last task is assigned only a small

amount of data due to rounding in size) and 160 reduce tasks. For the Inverted Index, we

use a hash partitioner and spread the reduce input across 140 tasks. Finally, for PageRank,

we use 17 map and 17 reduce tasks with 128 MB chunks. This configuration differs from

123

0

100

200

300

400

500

600

700

800

C
B
-8
0

C
B
-8
01

P
R
-9

P
R
-1
7

C
B
-8
0

C
B
-8
01

P
R
-9

P
R
-1
7

Hadoop SkewTune

R
u

n
ti

m
e

(s
e

co
n

d
s)

 extra ideal

Figure 5.5: Performance Consistency of Map Phase: For both PageRank (PR) and Cloud-

Burst (CB), SkewTune delivers high-performance consistently, while Hadoop is sensitive to

the initial configuration (here, the number of map tasks).

the worst-case configuration in the ordering of data (the original ordering of the dataset vs

sorted by record size) and a smaller chunk size (128MB vs. 256MB).

Figures 5.6 and 5.7 show the results. As the figures show, SkewTune adds overhead

but that overhead is small. In most cases when applications are already well-tuned and

do not exhibit skew, the slots remain busy. SkewTune has few opportunities to improve

performance or incur repartitioning overhead. As a result, performance may improve only

slightly as in the case of the CloudBurst and Inverted Index reduce phases. In other cases,

the runtime can slightly increase. Also with shorter overall runtimes, the overheads of stop-

ping, planning, and re-partitioning become more pronounced. Errors in progress estimation

also have more visible effects as does any unnecessarily re-partitioning of nearly completed

tasks.

In Figure 5.7, we also show the result of the REHASH technique, where we replace

SkewTune’s range partitioning with hash partitioning thus avoiding the need to scan the

124

0

50

100

150

200

250

300

H
ad
o
o
p

Sk
ew

Tu
n
e

H
ad
o
o
p

Sk
ew

Tu
n
e

H
ad
o
o
p

Sk
ew

Tu
n
e

CB II-HASH PageRank

R
u

n
ti

m
e

 (
se

co
n

d
s) extra ideal

Figure 5.6: Runtime of Map Phase without Skew

remaining input data. Overall, REHASH performs slightly better than SkewTune due to its

reduced overhead but it requires an extra job to recover the ordering (note that the numbers

do not include such extra jobs!). SkewTune is only marginally slower than REHASH but it

preserves the output order.

Detailed Mitigation Overhead Analysis: We further analyze the overhead of mit-

igating the skew of a single straggler by analyzing the execution logs of 32 map task miti-

gations and 64 reduce task mitigations from our three test applications. Overall, in these

experiments, the current SkewTune prototype incurs approximately 15 sec overhead for map

task skew mitigation and 30 sec for reduce tasks.

Table 5.2 shows the breakdown of the overhead. Interestingly, the mitigator planning

phase takes less than 200 ms. It hardly incurs any overhead due to the compact summary

information. We ran extra experiments (not shown due to space constraints), where we

varied the interval granularity. We found the PLAN phase to be consistently fast and below

500 ms in all configurations. The most significant overhead component is the data scan,

which takes approximately 10 to 15 sec for a local scan. This overhead grows linearly with

the size of the input data. Because SkewTune repartitions more data for reduce tasks than

125

Sk
ew

Tu
n
e

0

200

400

600

800

1000

1200

1400

H
ad
o
o
p

Sk
ew

Tu
n
e

R
EH

A
SH

H
ad
o
o
p

Sk
ew

Tu
n
e

R
EH

A
SH

H
ad
o
o
p

Sk
ew

Tu
n
e

R
EH

A
SH

CB II-HASH PageRank

R
u

n
ti

m
e

 (s
e

co
n

d
s)

 extra ideal

Figure 5.7: Runtime of Reduce Phase without Skew

map tasks in these experiments, it follows that the total overhead is larger for reduce tasks.

With the same applications and datasets, parallel scans take between 20 and 22 sec. This

includes the startup and tear down overhead of the MapReduce job as well as shuffling and

sorting overheads when scanning map outputs. This overhead also grows linearly but with

a much smaller slope as we discuss below.

“< Compute” represents the time between mitigator planning and the resumption of

the data computation. In case of map mitigation, this time only includes the overhead of

starting a new job. For reduce mitigation, the overhead includes another scan of the data

to repartition and re-shuffle that data.

Overhead of Local Scan vs. Parallel Scan: In all three applications and datasets,

the size of remaining data during skew mitigation is small (< 1 GB). Thus, SkewTune always

performs a local scan rather than a parallel scan. To evaluate the trade-off between the

two approaches, we compared the performance of the two scan strategies using a synthetic

workload. Figure 5.8 shows the results. We generated random datasets with different sizes

and evenly distributed them across all 20 nodes. To simulate a realistic environment, we

loaded all the disks using two background writer processes per disk and dropped the disk

126

Type Scan Plan < Compute Input Bytes

Map 8.0s (3.0) 0.19s (0.08) 5.01s (3.83) 84MB (55)

Reduce 15s (15.0) 0.18s (0.19) 15.7s (10.4) 140MB (175)

Table 5.2: Mitigation Overhead Statistics. The average and standard deviation (number in

parentheses) in seconds for each mitigation step. Size of re-partitioned data. “< Compute”

represents time until the actual processing resumes. Scans are all local scans.

cache before the scan. The timing of parallel scan includes the MapReduce job startup and

cleanup overhead. In our 20 node cluster, parallel scan performs better than local scan if the

size of remaining data is greater than 1 GB. With smaller data, the MapReduce job overhead

dominates the I/O time. However, once the data becomes large enough, the overhead pays

off by reading a small amount of data per disk while local scan has to sequentially read the

data from a single disk. Clearly, the gain will diminish if there exists a significant skew in

the amount of distributed input data. For example, for 8 GB of data, local scan takes 890

s but parallel scan takes 679 s when a node has 7.2 GB of data.

Summary: The above experiments show that SkewTune effectively mitigates skew

whether it is intrinsic to the application, caused by a misconfiguration, or due to an unfor-

tunate input data order. SkewTune also delivers consistently fast runtimes independent of

initial job configuration parameters. SkewTune’s overhead is small to none when there is no

skew. Finally, the greatest overhead component of re-partitioning a straggler’s data comes

from the data scans necessary for planning and re-allocating the data. SkewTune’s ability

to perform these scans in parallel when possible, however, effectively keeps these overheads

low even when large datasets need to be repartitioned.

5.5 Conclusion

In this chapter, we presented SkewTune, a system that automatically mitigates skew in a

broad class of user defined operations implemented as MapReduce jobs. SkewTune requires

no input from users. It is broadly applicable as it makes no assumptions about the cause of

127

1

10

100

1000

64 512 4096

Ti
m

e
to

 S
ca

n
 (

se
co

n
d

s)

Size of Data (MB)

Local Scan

Parallel Scan

Figure 5.8: Overhead of Local Scan vs. Parallel Scan. Time was measured under heavy

disk load. For small data sizes (< 1 GB), local scan is faster. For large data sizes (> 1 GB),

parallel scan is faster.

the skew but instead observes the job execution and re-balances load as resources become

available. SkewTune is also capable of preserving the order and partitioning properties of

the output of the original unoptimized job, making it transparently compatible with existing

code, even in the context of complex workflows and advanced MapReduce algorithms.

Experimental results show that SkewTune can deliver a factor of 4X improvement over

Hadoop on real and representative datasets and real, non-trivial UDOs. At the same time,

it adds little to no overhead when skew is not present. Finally, it provides for much more

consistent job execution times for jobs that sometimes incur skew thereby enabling more

predictable performance.

128

Chapter 6

RELATED WORK

In any parallel system, improper skew handling can counter all the benefits of parallel

processing, so skew must be handled effectively.

6.1 Parallel UDO Evaluation Systems

There are many systems that can run UDOs in parallel.

Parallel DBMSs have been supporting UDOs for a long time [12, 58, 101, 124, 128, 137].

Parallel DBMSs typically support two types of UDOs: user-defined functions (UDFs) and

stored procedures. UDFs can be used as expressions in a SQL query. There are three types

of UDFs: scalar functions (i.e., returning a scalar value), table functions (i.e., returning a

relational table), and aggregate functions (i.e., processing a group of tuples and returning a

scalar value). A stored procedure is a procedure executed entirely in the database engine. In

parallel DBMSs, both UDOs and statements in a stored procedure are executed in parallel.

Although parallel DBMSs do support UDOs, the primary focus of parallel DBMSs is running

relational queries faster.

The MapReduce system has proposed a programming model of UDOs and an execution

strategy of UDOs in a cluster of commodity hardware [37]. The MapReduce system has

inspired many other systems that improve MapReduce in different ways including more

general job descriptions (i.e., a directed acyclic graph of operators) and adapting the ideas

of parallel DBMSs [14, 22, 43, 61, 68, 115]. Just like the SQL in parallel DBMSs, many

high-level declarative interfaces on top of MapReduce-like systems have been proposed to

improve productivity of writing parallel data analysis programs [18, 27, 104, 109, 131, 147].

All those systems and declarative interfaces support UDOs by default.

Several parallel DBMSs support MapReduce interface in addition to the traditional SQL

interface [12, 48, 58, 137].

129

6.2 Skew Handling through Skew-Resilient Implementation

As we showed in Chapter 2, a skew-resilient implementation is possible if the algorithm and

the system are well understood. In this section, we review skew-resilient implementations

designed for relational operators (join and aggregate) and parallel scientific simulations.

6.2.1 Join

In parallel database research, the skew problem has been extensively researched by many

research groups, especially in the context of the join operator.

Walton et al. studied taxonomy of data skew in a parallel join [138]. The taxonomy of

Walton et al. inspired the taxonomy of skew in aggregation [117] and taxonomy of skew in

MapReduce as presented in Chapter 3.

Many different parallel join algorithms to address skew have been proposed.

Kitsuregawa et al. proposed a bucket spreading hash join policy to handle data skew [77].

During the partitioning phase, a specially designed network switch evenly distributes the

fragments of a hash bucket among all processors. During the join phase, each bucket is

dynamically assigned to a processor. The processor first collects all distributed fragments of

the assigned bucket, and then performs the join algorithm. The concurrent bucket collection

is coordinated to prevent I/O contention.

Hua et al. proposed three adaptive join algorithms with partition tuning [65, 66]. The

goal of partition tuning is assigning buckets to processors so that all processors have roughly

equal amounts of data (i.e., total size of buckets assigned to each processor). The tuple

interleaving parallel hash join is a variant of a bucket spread join that does not require a

special network switch. The adaptive load balancing parallel hash join is a conventional

hash join with partition tuning between the split and join phases. The extended adaptive

load balancing parallel hash join is a variant of adaptive load balancing parallel hash join

that defers tuple transfer after partition tuning.

Wolf et al. proposed a scheduling-based algorithms for parallel joins [142, 143]. The

key idea is that estimating the cost of join partitions based on statistics then applying the

longest processing time (LPT) scheduling algorithm to determine processing order among

130

join partitions.

DeWitt et al. proposed a practical approach to handle skew in a parallel join [42].

They considered combinations of range partitioning (with subset-replication, weighting),

load scheduling (e.g., round-robin, LPT), and virtual processors (i.e., create many logical

partitions and schedule multiple partitions per physical processor). For range partitioning,

DeWitt et al. proposed an efficient sampling technique to estimate the distribution of the

join key value. For LPT scheduling, they used a simple cost model to estimate the cost

of each partition. This technique can handle redistribution skew but not the join product

skew.

Shatdal et al. proposed a join algorithm that handles join product skew with distributed

shared memory [118]. During the join phase, an idle processor that has just completed its

assigned join work chooses a busy processor and steals the remaining join work. The algo-

rithm requires shared states (i.e., split table per processor [42]) and shared data structures

(i.e., hash table) among all the processors. The distributed shared memory abstraction thus

greatly simplifies the implementation.

Li et al. proposed block-based sort merge join algorithms that impose little overhead

when there is no skew and perform efficiently with heavily skewed workload [87].

Xu et al. proposed a parallel join approach, partial redistribution partial duplication

(PRPD) to handle data skew [145]. The PRPD approach first splits the rows of joining

relation into three disjoint groups that are handled differently (redistributed, duplicated,

or kept local). The rows having skewed values are kept local, the rows bearing skewed

values of joining attributes in the other relation are duplicated, and the remaining rows are

redistributed as in an ordinary parallel hash join. The final join is computed by union of

three joins (two replicated-joins for skewed join values of each relation, and an ordinary

parallel join for non-skewed values). Xu et al. also proposed a parallel outer join algorithm

in the presence of data skew [144].

In MapReduce, a join is just another UDO, so there are many different ways to implement

a join. Pig, a declarative layer of Hadoop, implements an algorithm proposed in parallel

database literature [42] to handle data skew in a join algorithm [52]. Blanas et al. surveyed

and compared different join implementations in MapReduce [20]. Afrati and Ullman studied

131

the multi-way join problem in MapReduce and proposed an algorithm that minimizes total

communication cost [3]. Koutris et al. studied the complexity of evaluating conjunctive

query (i.e., multi-way join) in a MapReduce-like model [80]. Okcan et al. studied a theta-

join in MapReduce [102]. Lin et al. proposed MapReduce join implementations using

column-oriented storage [91].

Users can easily implement more advanced joins in MapReduce.

CloudBurst is a bioinformatics application that aligns DNA sequence reads with a refer-

ence database [116]. CloudBurst is implemented in Hadoop and performs a similarity join

between a DNA sequence reads dataset and the reference database. CloudBurst balances

load using domain knowledge; frequently occurring, low-complexity sequences (calculated

using domain knowledge) are distributed among multiple reduce tasks.

Vernica et al. and Metwally et al. studied set-similarity joins in MapReduce [96,

136]. Vernica et al. studied the set-similarity join based on prefix filtering with several

MapReduce-specific optimizations [136]. To handle skew, Vernica et al. first scanned the

input data to collect statistics on frequencies and load balance according to the statis-

tics. Metwally et al. proposed V-SMART-Join framework for all-pair similarity joins of

sets, multisets, and vectors [96]. Metwally et al. carefully analyzed set similarity measures

and extracted a common structure in computing similarities, and then designed a series of

MapReduce steps according to the structure. Metwally et al. also analyzed skew that may

occur in each step, and described skew handling strategies.

Spatial joins are also implemented in MapReduce [149, 151]. SJMR is a general spatial

join framework in MapReduce [151]. Zhang et al. proposed a k-nearest neighbor join

implemented in MapReduce [149]. To handle skew, both spatial joins partition the spatial

input data using space-filling curves.

6.2.2 Aggregate

Shatdal et al. investigated skew problems in the parallel aggregation [117]. Shatdal et al.

identified two skew problems in parallel aggregation: input skew and output skew. Input

skew problems arise when the number of groups per node is equal but the number of tuples

132

per node is different (i.e., some nodes process more input data than other nodes). The

output skew arises when the number of tuples per node is equal but the number of groups

per node is different (i.e., some nodes produce more output than other nodes). Two adap-

tive algorithms were proposed. The first algorithm (adaptive two phase) initially assumes

that there exists a small number of aggregation groups and runs two-phase aggregation

(i.e., local aggregation followed by a global aggregation). If there exist too many groups,

the algorithm is switched to a repartitioning algorithm (i.e., redistribute input table based

on group attribute value), and the global aggregation processes both intermediate aggre-

gation results or raw data tuples. The second algorithm (adaptive repartition) starts with

a different assumption from that of the adaptive two phase algorithm. The algorithm first

assumes that there exists a large number of groups and thus starts with the repartitioning

algorithm. If a node detects too small a number of groups, the aggregation is switched

to the adaptive two phase algorithm. Both algorithms are applicable to distributive or al-

gebraic aggregate operators which are relatively inexpensive and easy to migrate into the

intermediate state [57].

Yu et al. surveyed and evaluated different aggregation APIs and execution strategies

in distributed systems [146]. Rusu et al. proposed the GLADE system, a distributed

aggregation framework based on a generalized linear aggregate (GLA) [115]. Neither Yu et

al. nor Rusu et al. considered data skew in evaluation. Li et al. proposed a hash-based

incremental analysis platform and implemented a prototype using Hadoop [86].

6.2.3 Parallel Scientific Simulation

Scientific simulation communities have long studied load imbalance problems in parallel sys-

tems. Just as in parallel database systems, there exist many mature infrastructures to run

parallel simulations in a scalable manner [39, 103, 107]. The primary technique for attacking

skew is adaptively repartitioning (or regridding) the data by periodically monitoring the ap-

plication runtime statistics or through explicit error measures of the parallel simulation [63].

Several cosmological simulations partition the workload based on gravitational potential and

construct a tree to balance parallel spatial index lookup and computation [125].

133

Summary

In this section, we reviewed many skew-resilient implementations of important algorithms

in database and scientific simulation. All such implementations are highly optimized based

on deep understandings of target applications. As shown in Chapter 2, developing a skew-

resilient implementation requires significant efforts. The two proposed approaches SkewRe-

duce and SkewTune support a broad class of applications (e.g., feature extracting applica-

tions for SkewReduce and MapReduce applications for SkewTune). By carefully exploiting

the common structure of applications and the properties of the execution engine, SkewRe-

duce and SkewTune can execute skew-prone UDOs in a scalable manner without developing

a skew-resilient implementation every time.

6.3 Skew Handling for UDOs

The most closely related work to this thesis regards skew-handling in MapReduce.

6.3.1 Skew in MapReduce

MapReduce and similar large scale data analysis platforms handle machine skew using

speculative execution [37, 61, 68], which simply re-executes slow tasks on multiple machines

and takes the result of the first replica to complete. Speculative execution is effective in

heterogeneous computing environments or when machines fail. However, it is not effective

against data skew because rerunning the skewed data partition even on a faster machine can

still yield a very high response time. Lin analyzed such impact of data skew of a MapReduce

program [89].

Qiu et al. implemented three applications for bioinformatics using cloud technologies

and reported their experience and measurement results [111]. Although they also found

skew problems in two applications, they discussed a potential solution rather than tackling

the problem.

For data and computation imbalance problems, Ke et al. also found these problems are

prevalent in a variety of industrial applications [76]. Ananthanarayanan et al. studied the

causes to outlier (i.e., straggler) tasks and ways of mitigating outlier tasks caused by data

134

imbalances or resource contentions [7].

6.3.2 Adaptive MapReduce

There are several proposals to handle skew by adaptively executing UDOs. These proposals

are closely related to SkewTune.

Ibrahim et al. and Gufler et al. studied data skew in the reduce phase [59, 67]. Both

approaches schedule reduce keys to the reduce tasks based on cost models. Also, the reduce

key scheduling does not preserve the order as in the original reduce output. SkewTune not

only addresses skew in both the map and reduce phases but also minimizes the side-effect

of skew mitigation by preserving input order.

In the follow-up work, Gufler et al. proposed the TopCluster approach to construct a

histogram of all reduce keys to identify skewed reduce keys [60]. The TopCluster approach

is similar to reconciling the result of the parallel scan in SkewTune. TopCluster eagerly

monitors, detects, and mitigates reduce skew, while SkewTune lazily detects and mitigates

skew. Also, in SkewTune, the planning is done using exact information, if possible.

Vernica et al. proposed an adaptive MapReduce system using situation-aware mappers

that continuously monitor the execution of mappers and adaptively resplit the map input

data [135]. Also, with an adaptive combiner and partitioner, the system also tries to balance

the reduce input. However, the situation-aware mappers can not handle computational skew

at the reducers, where some key-groups take longer to process than others.

Rao et al. proposed the Sailfish system, a drop-in replacement of Hadoop [112]. Sailfish

uses I-files, aggregated intermediate data stored in a distributed file system, to manage

intermediate data between Map and Reduce phases. With I-files, Sailfish not only improves

performance, but also enables users to choose the number of reduce tasks dynamically.

There are three key differences between the above proposals and SkewTune. First, the

above approaches eagerly monitor the execution and data to detect and react to skew. On

the other hand, SkewTune lazily detect and react to skew. The second difference is trans-

parency. SkewTune is more transparent than the other approaches by strictly preserving

the input data order of mitigation tasks. The other approaches may require an extra job

135

to reconstruct the original output. Lastly, SkewTune can handle different types of skew in

both map and reduce phases while the others are specialized to address specific types of

skew in a specific phase. SkewTune is complementary to the other approaches. SkewTune

can handle anything left by each of the above systems in a transparent manner.

Agarwal et al. proposed RoPE, an adaptive query processing (AQP) technique for

SCOPE [27], including UDOs [4]. Previous AQP research in databases mostly focused on

executing relational queries by correcting optimizer mistakes and dealing with unknown

statistics [13, 38]. RoPE can adaptively increase or decrease the degree of parallelism of

current and descendant operators, but the changes are effective to only the unexecuted part

of the plan. SkewTune changes a running UDO partition and is complementary to RoPE.

136

Chapter 7

CONCLUSION AND FUTURE WORK

The emerging big-data analysis trend requires complex data processing at large scale.

The user-defined operations (UDOs) are a powerful mechanism to express such complex pro-

cessing, and the existing parallel processing engines (e.g., parallel DBMSs and MapReduce-

like systems) can execute UDOs at large scale in a cluster of commodity hardware. In this

thesis, we tackle one of the challenges in parallel UDO evaluation: skew.

Problem

Skew refers to a significant variance between different partitions of an operator executing in

parallel. With greater skew, the benefit of parallelization quickly diminishes because the job

completion time is dominated by the slowest task, which may run orders of magnitude longer

than its peer tasks. With UDOs, handling skew is more challenging than with relational

operators because a UDO is a black box to the execution engine, and thus the user is fully

responsible for writing skew-resistant code. While skew can arise in the execution of a UDO

both in a parallel DBMS and in MapReduce, in this dissertation, we focused on the skew

problem in MapReduce-type systems because these systems have been designed specifically

for UDO implementation and are known to be easier to use for this purpose [108].

Summary of Contributions

In this thesis, we first studied the problem of skew in UDOs through a detailed case study on

porting an existing data analysis algorithm to Dryad, a MapReduce-like execution engine

that provides a more flexible API than MapReduce. We showed that there may exist a

skew-resistant implementation of an algorithm, but the design and development of such

implementation require significant efforts. Furthermore, through a measurement study of

three Hadoop cluster workloads, we found that more than 40% of jobs running longer than

137

five minutes had experienced skew problems. The majority of slow tasks ran twice as long

as their median peer tasks, and there were tasks that ran orders of magnitude longer than

the median runtime. Also, we found that the de facto countermeasure (i.e., speculative

execution) was effective in improving the completion time in only 20% of instances.

We proposed two techniques to manage skew in parallel UDO evaluation: SkewReduce

and SkewTune.

SkewReduce is a skew-avoidance technique that statically optimizes data partitioning for

a specific class of applications, feature extracting applications. The key insight of SkewRe-

duce is that users can reason about the complexity of the computations even though they

are not experts in parallel programing. Based on this intuition, the SkewReduce partition

optimizer uses user-defined cost models (black-box functions that estimate the computa-

tion complexity of a given data) to identify expensive parts of the data and appropriately

increase the number of partitions around these parts.Thus, the optimizer can reduce the

impact of skew using more finer-grained data partitions when processing data susceptible to

skew. The optimization is greedy-top-down. At each iteration, the optimizer uses the user-

defined cost models to find the best hyperplane that divides the data into two subpartitions

of approximately equal costs. After each split, the optimizer evaluates the new expected

runtime by simulating the UDO execution with the new data partition. If the runtime

improves, the optimizer accepts the split. The optimizer continues to work on the most

expensive partition until no further split improves the runtime. SkewReduce can improve

job completion times of feature extracting applications by a factor of up to 8x compared

with the default data partitioning strategy of MapReduce.

SkewTune is a dynamic skew mitigation technique for data-parallel UDOs, that pro-

cess input records independently: i.e., MapReduce jobs where both the map and reduce

functions do not keep state between consecutive invocations. SkewTune first monitors the

execution of a UDO and estimates the remaining time of each task. Whenever a com-

pute node becomes idle, SkewTune selects the task with the longest remaining time and

checks whether re-partitioning the remaining input data of the task improves the overall

completion time of the job. SkewTune then repartitions the remaining input data of the

selected task in a way that fully utilizes the cluster based on the time remaining estimates

138

of all concurrent tasks. SkewTune repeats the monitoring-mitigation cycle until there are

no remaining tasks. The greatest benefit of SkewTune is its transparency. Users do not

need to modify existing MapReduce applications for SkewTune. Also, SkewTune does not

require cost models. Instead, SkewTune collects the information necessary for mitigation

by monitoring the execution of a job. Finally, the carefully designed input data reparti-

tioning technique guarantees that the original output without skew mitigation is trivially

reconstructed by concatenating the output of the tasks of the modified job and is thus

transparent to downstream applications that consume that output. In the evaluation of

real MapReduce applications, SkewTune improved a job completion time by a factor of 4

without any code-level modification. SkewReduce and SkewTune together can provide a

practical framework for parallel UDO evaluation especially in the cloud. First, users can

plan the executions in a cloud service using the SkewReduce optimizer by testing different

cluster sizes. At runtime, SkewTune can handle dynamic runtime events such as failures,

interference, and estimation errors. Also, SkewTune can leverage opportunistic resources,

such as spot instances of Amazon EC2 [6], if the users want to accelerate the job execution.

Overall, we found that skew in parallel UDO is a frequent yet challenging problem

through a case study and a measurement study. The two proposed techniques, SkewReduce

and SkewTune, demonstrate that the impact of skew in parallel UDOs can be reduced

statically and dynamically at a greatly reduced user efforts.

7.1 Short-Term Future Work

The most straightforward future work is to generalize SkewReduce to MapReduce applica-

tions beyond feature extracting applications. For this, the SkewReduce API needs to be

redefined for map and reduce. The partition optimization can be carried out along the key

dimension (e.g., the reduce key for the reduce and the offset in the input file for map).

Second, this generalized SkewReduce could be integrated with SkewTune to handle skew in

MapReduce applications. The generalized SkewReduce generates partition plans for both

map tasks and reduce tasks before execution. At runtime, SkewTune can exploit the extra

partition, merge, and finalize functions (i.e., generalized SkewReduce API for MapReduce)

to handle an expensive input skew better through parallelization. If a user provides cost

139

models, then the user-defined cost model can override the default progress estimator of

SkewTune. If both user-defined cost models and extra API are given for the MapReduce

application, the SkewReduce optimization can override the SkewTune repartition planning.

An interesting extension of SkewReduce static optimization and SkewTune repartition plan-

ning is taking failures into account during the optimization (e.g., given a priori node failure

probability, what is a good partitioning plan?). Lastly, evaluating such a system in a large

shared cluster of 1,000 or more machines would be an interesting study.

7.2 Long-Term Future Work

7.2.1 Skew Handling in Other Parallel Systems

The thesis focuses on skew handling in a shared-nothing cluster, but there are many emerg-

ing technologies for parallel processing such as multicore CPUs, GPGPUs, distributed

shared-memory enabled by the fast network interconnects (e.g., InfiniBand and 10Gbps

Ethernet), and advanced shared-memory systems (e.g., Cray XMT).

Both SkewReduce and SkewTune demonstrate that revising the degree of parallelism

(either statically or dynamically) is effective in handling skew. This is true for any parallel

system. SkewReduce works regardless of the architecture of the execution engine as the

technique is static planning before execution, but it requires tuning parameters such as task

scheduling delay, which may vary per architecture.

SkewTune works in other systems, but the implementation may vary to leverage the

properties of the underlying architectures fully. For example, in a shared-nothing architec-

ture, scan and repartition during skew mitigation are expensive as both involve disk and

network I/O. In a shared-memory system, however, the overhead of scan and repartition are

significantly lower than in a shared-nothing system. Sharing state and coordinating tasks

(i.e., threads) are also easier and faster in a shared-memory system than a shared-nothing

system thus the overall implementation could be simpler. However, different problems and

optimizations (e.g., data layout in memory, cache coherency, and cache miss) may be more

important in other parallel systems than in a shared-nothing system. SkewTune is designed

for disk-oriented MapReduce execution, and so does sequential I/O as much as possible

140

(e.g., the MapReduce execution strategy is optimized for sequential I/O. Both parallel and

local scan in SkewTune sequentially access the data). Fortunately, such sequential property

of SkewTune is also preferred in other architectures.

It would be interesting to implement SkewTune’s approach in other architectures and

compare the trade-off and optimizations across different architectures. It would also be

interesting to apply the ideas to other types of parallel processing engines (e.g., parallel

DBMSs and graph processing engines [9, 93, 95]) and study trade-offs and optimizations

specific to different programming models.

7.2.2 Skew-Tolerant System Design

Skew can arise in any parallel system. If any of the assumptions that a parallel system

makes do not hold, skew is likely to arise. Some common assumptions include uniform

data “value” distribution, constant processing time per input byte/record, over-reliance

on default values/strategies, and the failure model. The system designer should carefully

evaluate such assumptions and check whether each assumption is the norm rather than an

exception. To do so, a thorough understanding of workloads is important.

If skew is the norm in a system and for a given workload, as shown in Chapter 3 for

MapReduce, the system designer should include a proper countermeasure so that either the

system or the user can easily tolerate the skew. As shown in the thesis, flexible partitioning

and scheduling of parallel tasks are promising countermeasures to skew and so should be

considered in the design when the skew is anticipated in the workload especially with user-

defined operations.

Identifying the root cause of skew is also important in a skew-tolerant system because the

proper way to handle skew depends on the source of the problem. For example, if a failing

disk is the problem, then it is the best to avoid using the disk. The scheduler should be

aware of this and schedule mitigation tasks in other nodes which preferably have a replica

of the input data. To isolate the root cause, the system needs to monitor various parts

of the system including application performance counters and make a scheduling decision

based on the holistic observations. Clearly, this approach complicates scheduling decisions

141

and increases the monitoring overhead. Thus, using a combination of scalable monitoring,

detection, and scheduling algorithms based on holistic information is an interesting research

direction.

7.2.3 Oblivious Skew Handling

Ideally, users should be completely oblivious to skew handling. Although SkewReduce and

SkewTune somewhat disburden users with writing skew-resistant code, there still exists

much room to improve by incorporating recent advances in programming languages and

compilers.

Both SkewReduce and SkewTune rely on cost models. In SkewReduce, the system ex-

pects that the models are specified by the users. In SkewTune, the system uses a general

model based on input byte consumption rate. As shown in Figure 4.4, a high-fidelity cost

model can yield a better plan than a low-fidelity model. An interesting future work would be

to construct a progress estimator and cost model through dynamic instrumentation and code

analysis at runtime. As shown in Ren et al. [114], many UDOs are written in high-level pro-

gramming languages such as Java, C#, and Python in which dynamic instrumentation and

code analysis are much easier than in the native programming languages such as C/C++.

Also, extracting relevant UDO features (e.g., blocking vs. non-blocking, pure function, out-

put ordering) for optimization through analysis would be interesting. There exists several

early works along this direction [30, 62, 70, 150].

7.3 Final Remarks

Skew is a challenging problem in a parallel system. As shown in the thesis, it often requires

significant efforts to address skew in a parallel application. This dissertation contributes

two (semi-)automatic techniques to handle skew in a parallel UDO evaluation. With the

result of this dissertation, users can spend their precious time on more important matters

than optimizing code to deal with skew. We hope that this dissertation inspires much

future research that leads to the age of “democratized” big data where any people from any

background can easily process and analyze big data.

142

BIBLIOGRAPHY

[1] Yahoo! reaches for the stars with M45 supercomputing project. http://research.

yahoo.com/node/1884.

[2] Deal with data. Science, 331(6018):639–806, 2011.

[3] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environment.
In Proc. of the EDBT Conf., pages 99–110, 2010.

[4] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu, Ion Stoica, and
Jingren Zhou. Re-optimizing data-parallel computing. In Proc. of the 9th NSDI
Symp., 2012.

[5] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/.

[6] Amazon EC2 Spot Instances. http://aws.amazon.com/ec2/spot-instances/.

[7] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi Lu,
Bikas Saha, and Edward Harris. Reining in the outliers in map-reduce clusters using
mantri. In Proc. of the 9th OSDI Symp., 2010.

[8] Mihael Ankerst, Markus M. Breunig, Hans peter Kriegel, and Jörg Sander. OPTICS:
Ordering Points To Identify the Clustering Structure. In Proc. of the SIGMOD Conf.,
pages 49–60, 1999.

[9] Apache Giraph Project. Apache Giraph. http://incubator.apache.org/giraph/,
2012.

[10] Apache Hadoop Project. Powered By Hadoop. http://wiki.apache.org/hadoop/

PoweredBy/, 2011.

[11] Oceanic Remote Chemical Analyzer (ORCA). http://armbrustlab.ocean.

washington.edu/.

[12] Teradata Aster. http://www.asterdata.com/.

[13] Sivnath Babu and Pedro Bizarro. Adaptive query processing in the looking glass. In
Proc. of the Second CIDR Conf., pages 238–249, 2005.

http://research.yahoo.com/node/1884
http://research.yahoo.com/node/1884
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/spot-instances/
http://incubator.apache.org/giraph/
http://wiki.apache.org/hadoop/PoweredBy/
http://wiki.apache.org/hadoop/PoweredBy/
http://armbrustlab.ocean.washington.edu/
http://armbrustlab.ocean.washington.edu/
http://www.asterdata.com/

143

[14] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and Daniel
Warneke. Nephele/pacts: a programming model and execution framework for web-
scale analytical processing. In Proc. of the First SoCC Conf., pages 119–130, 2010.

[15] Jacek Becla and Kian-Tat Lim. Report from the SciDB meeting (a.k.a. extremely large
database workshop). http://xldb.slac.stanford.edu/download/attachments/

4784226/sciDB2008_report.pdf, 2008.

[16] Hernando Bedoya, Fredy Cruz, Daniel Lema, and Satid Singkorapoom. Stored proce-
dures, triggers, and user-defined functions on db2 universal database for iseries. IBM
Redbooks. IBM, 2006.

[17] M.J. Berger and S.H. Bokhari. A partitioning strategy for nonuniform problems on
multiprocessors. Computers, IEEE Transactions on, C-36(5), 1987.

[18] Kevin S. Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed Eltabakh,
Carl-Christian Kanne, Fatma Ozcan, and Eugene J. Shekita. Jaql: A Scripting Lan-
guage for Large Scale Semistructured Data Analysis. Proc. of the VLDB Endowment,
4(12):1272–1283, 2011.

[19] Bigben. http://www.psc.edu/machines/cray/xt3/.

[20] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and
Yuanyuan Tian. A comparison of join algorithms for log processing in MapReduce.
In Proc. of the SIGMOD Conf., pages 975–986, 2010.

[21] About the Blue Waters project. http://www.ncsa.illinois.edu/BlueWaters/.

[22] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and Rares Vernica.
Hyracks: A flexible and extensible foundation for data-intensive computing. In Proc.
of the 27th ICDE Conf., pages 1151–1162, 2011.

[23] Dhruba Borthakur. The Hadoop distributed file system: Architecture and design.
http://lucene.apache.org/hadoop/hdfs_design.pdf, 2007.

[24] Jihad Boulos and Kinji Ono. Cost estimation of user-defined methods in object-
relational database systems. SIGMOD Record, 28(3), 1999.

[25] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. In Proc. of the 7th WWW Conf., pages 107–117, 1998.

[26] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. HaLoop: efficient
iterative data processing on large clusters. Proc. of the VLDB Endowment, 3(1):285–
296, 2010.

http://xldb.slac.stanford.edu/download/attachments/4784226/sciDB2008_report.pdf
http://xldb.slac.stanford.edu/download/attachments/4784226/sciDB2008_report.pdf
http://www.psc.edu/machines/cray/xt3/
http://www.ncsa.illinois.edu/BlueWaters/
http://lucene.apache.org/hadoop/hdfs_design.pdf

144

[27] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. Scope: easy and efficient parallel processing of massive
data sets. Proc. of the VLDB Endowment, 1(1):1265–1276, 2008.

[28] Surajit Chaudhuri. What next?: a half-dozen data management research goals for big
data and the cloud. In Proc. of the PODS Conf., pages 1–4, 2012.

[29] Yanpei Chen, Sara Alspaugh, and Randy H. Katz. Design insights for MapReduce
from diverse production workloads. Technical Report UCB/EECS-2012-17, EECS
Department, University of California, Berkeley, 2012.

[30] Byung-Gon Chun, Ling Huang, Sangmin Lee, Petros Maniatis, and Mayur Naik. Man-
tis: Predicting system performance through program analysis and modeling. CoRR,
abs/1010.0019, 2010.

[31] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy,
and Russell Sears. MapReduce online. In Proc. of the 7th NSDI Symp., 2010.

[32] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard api for shared-
memory programming. Computing in Science and Engineering, 5(1):46–55, 1998.

[33] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. M. White. The evolution of large-scale
structure in a universe dominated by cold dark matter. Astroph. J., 292:371–394, May
1985.

[34] Brian Dawkins. Siobhan’s problem: The coupon collector revisited. The American
Statistician, 45(1):76–82, 1991.

[35] IBM InfoSphere Warehouse. http://www.ibm.com/software/data/infosphere/

warehouse/.

[36] Jeffrey Dean. Evolution and future directions of large-scale storage and computation
systems at google. In Proc. of the First SoCC Conf., 2010.

[37] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. In Proc. of the 6th OSDI Symp., 2004.

[38] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. Adaptive query processing.
Foundations and Trends in Databases, 1(1):139, 2007.

[39] Karen Devine, Erik Boman, Robert Heapby, Bruce Hendrickson, and Courtenay
Vaughan. Zoltan data management service for parallel dynamic applications. Com-
puting in Science and Engg., 4(2), 2002.

http://www.ibm.com/software/data/infosphere/warehouse/
http://www.ibm.com/software/data/infosphere/warehouse/

145

[40] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I. Hsiao, and
R. Rasmussen. The Gamma database machine project. IEEE TKDE, 2(1):44–62,
1990.

[41] David DeWitt and Jim Gray. Parallel database systems: the future of high perfor-
mance database systems. CACM, 35(6):85–98, 1992.

[42] David DeWitt, Jeffrey Naughton, Donovan Schneider, and S S. Seshadri. Practical
skew handling in parallel joins. In Proc. of the 18th VLDB Conf., pages 27–40, 1992.

[43] David J. DeWitt, Erik Paulson, Eric Robinson, Jeffrey Naughton, Joshua Royalty,
Srinath Shankar, and Andrew Krioukov. Clustera: an integrated computation and
data management system. Proc. of the VLDB Endowment, 1(1):28–41, 2008.

[44] eBay, Inc. http://www.ebay.com/.

[45] EMC. Greenplum database 4.2 administrator guide. EMC, 2012.

[46] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proc. of
the 2nd KDD Conf., pages 226–231, 1996.

[47] Facebook, Inc. http://www.facebook.com/.

[48] Eric Friedman, Peter Pawlowski, and John Cieslewicz. Sql/mapreduce: a practical
approach to self-describing, polymorphic, and parallelizable user-defined functions.
Proc. of the VLDB Endowment, 2(2):1402–1413, 2009.

[49] Volker Gaede and Oliver Günther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, 1998.

[50] Jeffrey P. Gardner, Andrew Connolly, and Cameron McBride. Enabling knowledge
discovery in a virtual universe. In Proc. of the 2007 TeraGrid Symp., 2007.

[51] Jeffrey P. Gardner, Andrew Connolly, and Cameron McBride. Enabling rapid de-
velopment of parallel tree search applications. In Proc. of the 2007 CLADE Symp.,
2007.

[52] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan M.
Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and
Utkarsh Srivastava. Building a high-level dataflow system on top of map-reduce:
the pig experience. Proc. of the VLDB Endowment, 2:1414–1425, August 2009.

http://www.ebay.com/
http://www.facebook.com/

146

[53] J. M. Gelb and E. Bertschinger. Cold dark matter. 1: The formation of dark halos.
Astroph. J., 436:467–490, 1994.

[54] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. In
Proc. of the 19th SOSP Symp., pages 29–43, 2003.

[55] Google. Freebase Data Dumps. http://download.freebase.com/datadumps/, 2010.

[56] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17(2):416–429, 1969.

[57] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Mu-
rali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational aggre-
gation operator generalizing group-by, cross-tab, and sub-totals. Data Min. Knowl.
Discov., 1:29–53, January 1997.

[58] Greenplum database. http://www.greenplum.com/.

[59] Benjamin Gufler, Nikolaus Augsten, Angelika Reiser, and Alfons Kemper. Handling
data skew in MapReduce. In The First International Conference on Cloud Computing
and Services Science, 2011.

[60] Benjamin Gufler, Nikolaus Augsten, Angelika Reiser, and Alfons Kemper. Load bal-
ancing in mapreduce based on scalable cardinality estimates. In Proc. of the 28th
ICDE Conf., 2012.

[61] Hadoop. http://hadoop.apache.org/.

[62] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A self-tuning system for big data
analytics. In Proc. of the Fifth CIDR Conf., 2011.

[63] Michael A. Heroux, Padma Raghavan, and Horst D. Simon, editors. Parallel Process-
ing for Scientific Computing, chapter 6. SIAM, 2006.

[64] Tony Hey, Stewart Tansley, and Kristin Tolle. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft, 2009.

[65] K.A Hua, Chiang Lee, and C.M Hua. Dynamic load balancing in multicomputer
database systems using partition tuning. IEEE TKDE, 7(6):968–983, 1995.

[66] Kien Hua and Chiang Lee. Handling data skew in multiprocessor database computers
using partition tuning. In Proc. of the 17th VLDB Conf., 1991.

http://download.freebase.com/datadumps/
http://www.greenplum.com/
http://hadoop.apache.org/

147

[67] Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu, Bingsheng He, and Li Qi. LEEN:
Locality/Fairness-Aware Key Partitioning for MapReduce in the Cloud. In Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second International
Conference on, pages 17–24, 2010.

[68] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed data-parallel programs from sequential building blocks. In Proc. of the
EuroSys Conf., pages 59–72, 2007.

[69] ISO/IEC 9075-*:2011. Database Languages - SQL. ISO, Geneva, Switzerland, 2011.

[70] Eaman Jahani, Michael J Cafarella, and Christopher Re. Automatic Optimization for
MapReduce Programs. Proc. of the VLDB Endowment, 4(6):1–12, 2011.

[71] jeff kelly, david vellante, and david floyer. big data market size and vendor revenues.
http://wikibon.org/wiki/v/big_data_market_size_and_vendor_revenues.

[72] Jimmy Lin. Cloud 9: A MapReduce library for Hadoop. http://www.umiacs.umd.

edu/~jimmylin/Cloud9/docs/index.html, 2010.

[73] M.G. Kalyuzhnaya, D.A.C. Beck, and L. Chistoserdova. Functional metagenomics of
methylotrophs. Methods in Enzymology, 495, 2011.

[74] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGASUS: a peta-
scale graph mining system implementation and observations. In ICDM, 2009.

[75] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An analysis of
traces from a production MapReduce cluster. In CCGrid, 2010.

[76] Qifa Ke, Vijayan Prabhakaran, Yinglian Xie, Yuan Yu, Jingyue Wu, and Junfeng
Yang. Optimizing data partitioning for data-parallel computing. In HotOS, 2011.

[77] Masaru Kitsuregawa and Yasushi Ogawa. Bucket spreading parallel hash: a new,
robust, parallel hash join method for data skew in the super database computer (sdc).
In Proc. of the 16th VLDB Conf., pages 210–221, 1990.

[78] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Pro-
ceedings of the 41st Annual Meeting on Association for Computational Linguistics -
Volume 1, ACL ’03, pages 423–430, 2003.

[79] S. R. Knollmann and A. Knebe. AHF: Amiga’s Halo Finder. Astroph. J. Suppl.,
182:608–624, 2009.

http://wikibon.org/wiki/v/big_data_market_size_and_vendor_revenues
http://www.umiacs.umd.edu/~jimmylin/Cloud9/docs/index.html
http://www.umiacs.umd.edu/~jimmylin/Cloud9/docs/index.html

148

[80] Paraschos Koutris and Dan Suciu. Parallel evaluation of conjunctive queries. In Proc.
of the PODS Conf., pages 223–234, 2011.

[81] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skew-resistant
parallel processing of feature-extracting scientific user-defined functions. In Proc. of
the First SoCC Conf., 2010.

[82] Yongchul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. SkewRe-
duce: skew-resistance execution of a distributed job in Hadoop. http://skewreduce.
googlecode.com/, 2011.

[83] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. SkewTune:.
http://skewreduce.googlecode.com/, 2012.

[84] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. SkewTune:
Mitigating Skew in MapReduce Applications. Technical Report UW-CSE-12-03-03,
University of Washington, March 2012.

[85] YongChul Kwon, Dylan Nunley, Jeffrey P. Gardner, Magdalena Balazinska, Bill Howe,
and Sarah Loebman. Scalable clustering algorithm for N-body simulations in a shared-
nothing cluster. In Proc. of the 22nd Scientific and Statistical Database Management
Conference (SSDBM), 2010.

[86] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and Prashant Shenoy. A
Platform for Scalable One-Pass Analytics using MapReduce. In Proc. of the SIGMOD
Conf., June 2011.

[87] Wei Li, Dengfeng Gao, and Richard Snodgrass. Skew handling techniques in sort-
merge join. In Proc. of the SIGMOD Conf., pages 169–180, 2002.

[88] Jeff W. Lichtman, R. Clay Reid, Hanspeter Pfister, and Michael F. Cohen. Discovering
the wiring diagram of the brain. In The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft, 2009.

[89] Jimmy Lin. The Curse of Zipf and Limits to Parallelization: A Look at the Stragglers
Problem in MapReduce. In 7th Workshop on Large-Scale Distributed Systems for
Information Retrieval, 2009.

[90] Jimmy Lin and Michael Schatz. Design patterns for efficient graph algorithms in
mapreduce. In Proceedings of the Eighth Workshop on Mining and Learning with
Graphs, pages 78–85, 2010.

[91] Yuting Lin, Divyakant Agrawal, Chun Chen, Beng Chin Ooi, and Sai Wu. Llama:
leveraging columnar storage for scalable join processing in the mapreduce framework.
In Proc. of the SIGMOD Conf., pages 961–972, 2011.

http://skewreduce.googlecode.com/
http://skewreduce.googlecode.com/
http://skewreduce.googlecode.com/

149

[92] Steve Lohr. The age of big data. http://www.nytimes.com/2012/02/12/

sunday-review/big-datas-impact-in-the-world.html, 2012.

[93] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning and
data mining in the cloud. Proc. of the VLDB Endowment, 5(8):716–727, 2012.

[94] Large Synoptic Survey Telescope. http://www.lsst.org/.

[95] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proc. of the SIGMOD Conf., pages 135–146, 2010.

[96] Ahmed Metwally and Christos Faloutsos. V-smart-join: a scalable mapreduce frame-
work for all-pair similarity joins of multisets and vectors. Proc. of the VLDB Endow-
ment, 5(8):704–715, 2012.

[97] Microsoft. User-defined functions. http://msdn.microsoft.com/en-us/library/

ms191007.aspx.

[98] Kristi Morton, Abram Friesen, Magdalena Balazinska, and Dan Grossman. Estimating
the progress of MapReduce pipelines. In Proc. of the 26th ICDE Conf., March 2010.

[99] Richard P. Mount. The office of science data-management challenge. Technical report,
Department of Energy, 2004.

[100] N-Body Shop Group. ChaNGa massively parallel N-body code. http://www-hpcc.

astro.washington.edu/tools/changa.html.

[101] Netezza, inc. http://www.netezza.com/.

[102] Alper Okcan and Mirek Riedewald. Processing theta-joins using mapreduce. In Proc.
of the SIGMOD Conf., pages 949–960, 2011.

[103] Leonid Oliker and Rupak Biswas. Plum: parallel load balancing for adaptive unstruc-
tured meshes. J. Parallel Distrib. Comput., 52(2), 1998.

[104] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig latin: a not-so-foreign language for data processing. In Proc. of the
SIGMOD Conf., pages 1099–1110, 2008.

[105] Oracle. http://www.oracle.com/database/.

http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html
http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html
http://www.lsst.org/
http://msdn.microsoft.com/en-us/library/ms191007.aspx
http://msdn.microsoft.com/en-us/library/ms191007.aspx
http://www-hpcc.astro.washington.edu/tools/changa.html
http://www-hpcc.astro.washington.edu/tools/changa.html
http://www.netezza.com/
http://www.oracle.com/database/

150

[106] Oracle. Oracle database data cartridge developer’s guide 11g release 2 (11.2). http:

//docs.oracle.com/cd/e11882_01/appdev.112/e10765/toc.htm, 2010.

[107] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and S. Hariri.
AutoMate: Enabling Autonomic Applications on the Grid. Cluster Computing, 9(2),
2006.

[108] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel R. Madden, and Michael Stonebraker. A comparison of approaches to large
scale data analysis. In Proc. of the SIGMOD Conf., 2009.

[109] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the data:
Parallel analysis with Sawzall. Scientific Programming, 13(4), 2005.

[110] PostgreSQL Global Development Group. Extending sql. http://www.postgresql.

org/docs/9.1/static/extend.html, 2012.

[111] Xiaohong Qiu, Jaliya Ekanayake, Scott Beason, Thilina Gunarathne, Geoffrey Fox,
Roger Barga, and Dennis Gannon. Cloud technologies for bioinformatics applications.
In MTAGS ’09: Proceedings of the 2nd Workshop on Many-Task Computing on Grids
and Supercomputers, pages 1–10, 2009.

[112] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein, Mike Ovsiannikov, and Damian
Reeves. Sailfish: A framework for large scale data processing. Technical Report YL-
2012-002, Yahoo! Labs, 2012.

[113] D. Reed, J. Gardner, T. Quinn, J. Stadel, M. Fardal, G. Lake, and F. Governato.
Evolution of the mass function of dark matter haloes. Monthly Notices of the Royal
Astronomical Society, 346:565–572, December 2003.

[114] Kai Ren, YongChul Kwon, Magdalena Balazinska, and Bill Howe. Hadoop’s adoles-
cence: a comparative workload analysis from three research clusters. Technical Report
UW-CSE-12-06-01, University of Washington, June 2012.

[115] Florin Rusu and Alin Dobra. Glade: a scalable framework for efficient analytics.
SIGOPS Oper. Syst. Rev., 46(1):12–18, 2012.

[116] Michael C. Schatz. CloudBurst: highly sensitive read mapping with MapReduce.
Bioinformatics, 25(11):1363–1369, June 2009.

[117] Ambuj Shatdal and Jeffrey Naughton. Adaptive parallel aggregation algorithms. In
Proc. of the SIGMOD Conf., 1995.

http://docs.oracle.com/cd/e11882_01/appdev.112/e10765/toc.htm
http://docs.oracle.com/cd/e11882_01/appdev.112/e10765/toc.htm
http://www.postgresql.org/docs/9.1/static/extend.html
http://www.postgresql.org/docs/9.1/static/extend.html

151

[118] Ambuj Shatdal and Jeffrey F. Naughton. Using shared virtual memory for parallel
join processing. In Proc. of the SIGMOD Conf., pages 119–128, 1993.

[119] An Overview of SKID. http://www-hpcc.astro.washington.edu/tools/skid.

html.

[120] Marc Snir and Steve Otto. MPI-The Complete Reference: The MPI Core. The MIT
Press, second edition, 1998.

[121] Christopher Southan and Graham Cameron. Beyond the tsunami: Developing the
infrastucture to deal with life sciences data. In The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft, 2009.

[122] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro,
R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman,
A. Evrard, J. Colberg, and F. Pearce. Simulations of the formation, evolution and
clustering of galaxies and quasars. NATURE, 435:629–636, June 2005.

[123] SQL Server. http://www.microsoft.com/sqlserver/.

[124] Microsoft SQL Server 2008 R2 Parallel Data Warehouse. http://www.microsoft.

com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx.

[125] Joachim Gerhard Stadel. Cosmological N-body simulations and their analysis. PhD
thesis, University of Washington, 2001.

[126] Alexander Szalay and Jim Gray. 2020 computing: Science in an exponential world.
Nature, 440:413–414, 2006.

[127] The Mahout Team. Apache mahout project. http://mahout.apache.org/.

[128] Teradata. http://www.teradata.com/.

[129] the Hadepot team. Hadepot: repository of mapreduce applications. http://nuage.

cs.washington.edu/repository.php, 2011.

[130] The Hive Team. Apache Hive. http://hadoop.apache.org/hive/.

[131] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a warehousing
solution over a map-reduce framework. Proc. of the VLDB Endowment, 2(2):1626–
1629, 2009.

http://www-hpcc.astro.washington.edu/tools/skid.html
http://www-hpcc.astro.washington.edu/tools/skid.html
http://www.microsoft.com/sqlserver/
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx
http://mahout.apache.org/
http://www.teradata.com/
http://nuage.cs.washington.edu/repository.php
http://nuage.cs.washington.edu/repository.php
http://hadoop.apache.org/hive/

152

[132] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joy-
deep Sen Sarma, Raghotham Murthy, and Hao Liu. Data warehousing and analytics
infrastructure at facebook. In Proc. of the SIGMOD Conf., pages 1013–1020, 2010.

[133] Twitter, Inc. http://www.twitter.com/.

[134] Prasang Upadhyaya, YongChul Kwon, and Magdalena Balazinska. A latency and
fault-tolerance optimizer for online parallel query plans. In Proc. of the SIGMOD
Conf., June 2011.

[135] Rares Vernica, Andrey Balmin, Kevin S. Beyer, and Vuk Ercegovac. Adaptive MapRe-
duce using situation-aware mappers. In Proc. of the EDBT Conf., 2012.

[136] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins
using MapReduce. In Proc. of the SIGMOD Conf., pages 495–506, 2010.

[137] Vertica, inc. http://www.vertica.com/.

[138] Christopher Walton, Alfred Dale, and Roy Jenevein. A taxonomy and performance
model of data skew effects in parallel joins. In Proc. of the 17th VLDB Conf., 1991.

[139] Keith Wiley, Andrew Connolly, Jeffrey P. Gardner, Simon Krughof, Magdalena Bal-
azinska, Bill Howe, YongChul Kwon, and Yingyi Bu. Astronomy in the cloud: Using
MapReduce for image coaddition. Publications of the Astronomical Society of the
Pacific (PASP), 123(901):366–380, March 2011.

[140] Windows Azure. http://www.windowsazure.com/.

[141] Worldwide LHC computing grid. http://wlcg.web.cern.ch/, 2012.

[142] Joel L. Wolf, Daniel M. Dias, and Philip S. Yu. An effective algorithm for parallelizing
sort merge joins in the presence of data skew. In Proceedings of the second international
symposium on databases in parallel and distributed systems, DPDS ’90, pages 103–115,
1990.

[143] Joel L. Wolf, Daniel M. Dias, Philip S. Yu, and John Turek. An effective algorithm
for parallelizing hash joins in the presence of data skew. In Proc. of the 7th ICDE
Conf., pages 200–209, 1991.

[144] Yu Xu and Pekka Kostamaa. Efficient outer join data skew handling in parallel dbms.
Proc. of the VLDB Endowment, 2(2), 2009.

[145] Yu Xu, Pekka Kostamaa, Xin Zhou, and Liang Chen. Handling data skew in parallel
joins in shared-nothing systems. In Proc. of the SIGMOD Conf., pages 1043–1052,
2008.

http://www.twitter.com/
http://www.vertica.com/
http://www.windowsazure.com/
http://wlcg.web.cern.ch/

153

[146] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. Distributed aggregation for
data-parallel computing: interfaces and implementations. In Proc. of the 22nd SOSP
Symp., 2009.

[147] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, Pradeep Ku-
mar Gunda, and Jon Currey. DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language. In Proc. of the 8th OSDI Symp.,
2008.

[148] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.
Improving MapReduce Performance in Heterogeneous Environments. In Proc. of the
8th OSDI Symp., 2008.

[149] Chi Zhang, Feifei Li, and Jeffrey Jestes. Efficient parallel knn joins for large data in
mapreduce. In Proc. of the EDBT Conf., pages 38–49, 2012.

[150] Jiaxing Zhang, Hucheng Zhou, Rishan Chen, Xuepeng Fan, Zhenyu Guo, Haoxiang
Lin, Jack Y. Li, Wei Lin, Jingren Zhou, and Lidong Zhou. Optimizing data shuffling
in data-parallel computation by understanding user-defined functions. In Proc. of the
9th NSDI Symp., 2012.

[151] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu.
SJMR:Parallelizing Spatial Join with MapReduce on Clusters. In CLUSTER. IEEE,
2009.

	List of Figures
	List of Tables
	Introduction
	The Need for Parallel User-Defined Operation (UDO) Execution
	Challenges of Parallel UDO Execution
	Contributions of the Thesis
	Outline of Thesis

	Motivating Example
	Friends of Friends Clustering Algorithm
	Basic Distributed Friends of Friends
	Scalable Distributed Friends of Friends
	Implementation
	Evaluation
	Conclusion

	Study of Skew in MapReduce Applications
	MapReduce Programming Model
	Types of Skew in a MapReduce Application
	Skew in the Real World
	Best Practices
	Conclusion

	SkewReduce: Cost-based Partition Optimization
	Feature Extracting Applications
	SkewReduce
	Evaluation
	Conclusion

	SkewTune: Dynamic Skew Mitigation
	SkewTune Design Requirements
	SkewTune Approach
	SkewTune for Hadoop
	Evaluation
	Conclusion

	Related Work
	Parallel UDO Evaluation Systems
	Skew Handling through Skew-Resilient Implementation
	Skew Handling for UDOs

	Conclusion and Future Work
	Short-Term Future Work
	Long-Term Future Work
	Final Remarks

	Bibliography

