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Data is transforming science, business, and governance by making decisions increasingly

data-driven and by enabling data-driven applications. The data used in these contexts

usually has significant economic or social value. Frequently, data is purchased from a provider

where the price is linked to how the data will be used and the allowed usage is typically

detailed in a license agreement. Data processing, too, is moving to public clouds where

users must pay for access to cloud resources, which are frequently shared by multiple users,

especially when users analyze a common dataset. Current solutions to manage the economic

value of data (prices and licenses) rely on expensive support from economists, auditors and

lawyers, thus, reducing the net value of data. Similarly, how to price shared cloud resources

is poorly understood and when pricing ignores the shared nature of use, the cloud resources

are significantly underutilized and users cannot realize the full value of their data.

In this thesis, we develop novel, principled and usable tools to manage data licenses and

the pricing issues for data and cloud-based data processing.

We first present DataLawyer, a system to specify and enforce data use policies on re-

lational databases. It includes an SQL-based formalism to precisely define policies, and

novel algorithms, to automatically and efficiently evaluate the policies. Experiments on a



real dataset from the health-care domain demonstrate overhead reductions of up to 330×

compared to a direct implementation of such a system on existing databases.

Next, we present a new approach for selecting and pricing shared optimizations on the

cloud by using Mechanism Design. We develop new mechanisms, where users bid for opti-

mizations, to select and price additive and substitutive optimizations, and for the general

setting where the users and their bids can change over time. We show analytically that

our mechanisms incentivize truthful bidding and ensure that the cloud never loses money.

We show experimentally that our mechanisms yield higher utility than the state-of-the-art

approach based on regret accumulation.

Lastly, we present improvements to data APIs. APIs are a common way to buy data. But

users can significantly overpay when they makes multiple API calls and end up purchasing

the same data item more than once. We provide a novel, lightweight and fast method to

support pricing where a buyer is only charged once for each purchased tuple, even with

multiple API calls. To enable this, we present a pricing framework where buyers can refund

repeat purchases of data. We provide the protocols for refunds and develop optimizations to

reduce the overhead of exercising refunds. Experiments show that data costs are significantly

reduced (10× to 99×) for comparatively modest increases (2× to 5×) in query runtimes.
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Chapter 1

INTRODUCTION

Data has value. In industry, predictive models and data analytics are increasingly being

used to improve products and services. For example, in finance, models serve to improve

financial products through finer customer segmentation [53, 69]. In health care, data is

enabling personalized and evidence-based treatment [68, 67, 88]. Data in education enables

real-time feedback and personalized instruction [116]. Academic research in economics [34],

astronomy [99, 66, 85], geology [55, 70, 112, 83] and health [72] too have become data

driven. Beyond analytics, consumer facing applications are also becoming data rich. For

example, public transit applications [44, 80] are commonly augmented with real-time traffic

information. Social data such as user recommendations [121] and user highlights [58] is an

important part of many mobile applications.

In many of the examples listed above, the data used for analysis or in data-rich appli-

cations is acquired from other companies [45, 31, 117, 41, 100, 44, 36] (Schomm et al. [97]

survey data sellers and list 46 commercial data suppliers as of 2013). The reliance on exter-

nal sources of data has led to the emergence of data markets, which comprise the technical,

legal, and financial support needed for the exchange of data that has significant economic or

social value.

Typically, when data is exchanged in data markets, it comes with a price and restrictions

regarding how the data may be used. For example, Microsoft’s Azure Marketplace [117]

provides APIs to access over 100 paid data sources. For an instance of legal restrictions,

consider Yelp [121]: Yelp requires that their ratings for businesses should not be combined

with ratings from other providers to compute a meta-score, but Yelp allows their ratings

to be displayed alongside the other ratings. Moreover, data analysis is increasingly being
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conducted on public clouds where resources in the cloud come at a cost and are frequently

shared by multiple users, especially when users analyze a common dataset. For example,

telescope data from the Sloan Digital Sky Survey [99] is hosted on a public SQL Server, which

is shared by different researchers; and Amazon Web Services hosts a large set of community

databases for free [13], but it charges users for the Amazon EC2 compute instances needed

to analyze that data.

Although the computational challenges of data collection, storage, dissemination and

analysis is an active area of research, the emerging data markets calls for a wider perspective

on how we work with data: we must also look at the economic and legal setting in which data

is obtained, queried and analyzed. This leads to new challenges that require a fundamental

change in our models, abstractions, and designs of data management technology for data in

its broader context.

1.1 Motivation

We now explore, in more detail, the challenges of managing the licensing, the computation,

and the data aspects.

1.1.1 Data Use Agreements

The use of data from data markets is, almost always, governed by data use agreements.

These terms restrict, in various ways, how the data can be used. For example, Navteq [76],

a map making company, prohibits users from joining their map data with other datasets: if

the user wants to join, she needs to purchase the data at a higher price; Amazon Kindle [58]

limits who can access a given book depending on the user context and whether the book

has been lent to another user; and, Microsoft Translator [75] limits the amount of data that

can be retrieved in a time window. These are much simplified descriptions. We surveyed 13

commercial and government data providers, and found that the average length of the terms

of use document was 4489 words or about 8.3 pages; all were written in natural language,

most often using legal terms, were often difficult to read, understand, and remember, and
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were sometimes ambiguous.

It is impractical to expect that every user can understand and adhere to such agreements.

While individual end-users happily ignore terms of use (commonly clicking the I-agree box

without even opening the accompanying document), when a major firm acquires a valuable

database, it cannot ignore its terms of use; they risk significant losses if their employees fail

to adhere to the terms of use. This means that the company is responsible for, and interested

in monitoring how its employees access, view, use, and manipulate data from its valuable

databases. This often applies also to data produced internally by a company. For example,

all large Internet companies put significant value on their user data (and their user privacy)

and restrict both the employees who can access the data and what they can do with that

data: e.g., end-users may have agreed that their data be used to improve a certain product

but for no other purpose. The company must respect this restriction.

To date, firms have few ways to enforce such terms of use and typically rely on access

restrictions [4, 40] that obfuscate parts of the data, database triggers [82, 89], data audit-

ing [57, 4, 52, 73, 35] and extensive employee training. Unfortunately, obfuscation severely

reduces the utility of data and neither access control nor triggers can express many common

requirements found in data use agreements. Techniques based on auditing can detect data

misuses, but only after the fact.

Thus, the current status quo reduces the utility of data and relies on the users to comply

with the license terms. Since these agreements are lengthy and complex, and may apply

to sophisticated workloads over large datasets, non-expert users might inadvertently violate

the terms or if they are overly cautious, they might not fully utilize the data in the mistaken

belief that their proposed use can cause a violation. Thus, there is a need for systems that

ease the understanding of license agreements and improves compliance.

1.1.2 Pricing Computation

Data analysis is increasingly being conducted on public clouds. There are many data-

management-in-the-cloud options ranging from highly-scalable systems with simplified query
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interfaces (e.g., Windows Azure Storage [15], Amazon SimpleDB [12], Google App Engine

Datastore [48]), to smaller-scale but fully relational systems (SQL Azure [71], Amazon

RDS [9]), to data intensive scalable computing systems (Amazon Elastic MapReduce [8],

to highly-scalable unstructured data stores (Amazon S3 [11]), and to systems that focus on

small-scale data integration (Google Fusion Tables [46]).

Public clouds offer multiple options for users to trade-off price and performance such as

views [3], indexes (e.g., users can create indexes in SQL Azure and Amazon RDS), the choice

of physical location of data (affecting latency and price as with Amazon S3), how data is

partitioned (e.g., Amazon SimpleDB data “domains”), and the degree of data replication

(e.g., Amazon S3 standard and reduced-redundancy storage). Cloud systems have an incen-

tive to configure optimally, because this increases their customer’s satisfaction and can also

optimize the cloud’s overall performance.

Providers of cloud based services know how to price the resources for individual use. But,

resources in the cloud are frequently shared by multiple users, especially when users analyze

a common dataset. For example, telescope data from the Sloan Digital Sky Survey [99]

is hosted on a public SQL Server, which is shared by different researchers. Amazon’s S3

storage service also allows users to share their data with others, with each user paying his

or her own data access charges [10]. With shared use, optimizing the database for one user

can benefit others too. How to price such shared resources is poorly understood and when

pricing ignores the shared nature of use, the cloud resources are significantly underutilized

and users can not realize the full value of their data.

Prior research [26, 56] on optimizing databases for shared use predict user demand for

different configuration options. The cost of implemented the options is amortized to future

queries that use them. These systems do not account for two important issues that we see in

markets: (a) the cloud providers are not altruistic and will not implement an option without

guarantees that its cost will be recouped, and (b) they assume that users in the cloud will act

truthfully. In practice, users will try to game the system if doing so improves their utility.

Any usable solution must ensure that clouds do not lose money. Moreover such solutions
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must also adapt to the reality that users may start and terminate their use of the cloud

arbitrarily and unpredictably over time.

1.1.3 Pricing Data

Many applications use data purchased online through REST APIs [45, 31, 100, 37, 117, 120,

92, 21] provided by data sellers. Existing APIs enable buyers to submit requests for data

in the form of parameterized queries. For example, to purchase data from Twitter, one can

specify keywords of interest, say a user name, in the API call and Twitter returns all activity,

up to an API defined limit, from the user. Typically, sellers charge buyers based on how

much data they purchase. In many scenarios, buyers need to make repeated calls to the

seller’s API and it is a challenge to keep track of the data purchased by applications to avoid

charging applications twice in the case they request the same data twice.

The seller may put the burden on the buyer to never purchase the same data twice.

Apart from increased storage and computation overhead for the seller, and the increased

application complexity for the buyer this solution is unable to handle the following:

• Updates: For datasets such as weather and traffic, the underlying data is updated over

time. In such cases, it may not be possible to predict when the updates are made to

the subset of data that a buyer is interested in and the only way to know of an update

is to redo the call to the data API.

• Caching restrictions: Some APIs such as Yelp [121] prohibit all forms of caching of the

their data, while others, such as Twitter [107], prohibit caching of certain forms of data

while permitting caching for the other parts of the data. Thus, even if the buyer knew

that they would require a newly purchased data item in the future, they are prohibited

from caching it and reusing it when the need arises.

Thus, in both circumstances above, the buyer can not avoid making multiple API calls and

must incur the cost of repeat purchases of the same data.
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An alternative is to store enough information about a buyer’s purchase history so that

the seller can figure out if a data item has already been paid for by the buyer. It may be

beneficial for sellers to provide a service that only charges for data once so as to enable price

discrimination. Although there are customers who may pay the full price of the data and not

worry about paying extra, there are price-conscious customers who may not buy the dataset

unless the data is available within their budget. Providing an avenue for such customers

to optimize and reduce their data costs can increase revenues. But, storing such additional

information to enable pricing that accounts for prior API calls can impose space and time

overheads that are in the order of the data size and the number of previous API calls.

Thus, neither of the approaches that exclusively rely on buyer-side techniques or seller-

side techniques provide a satisfactory solution that optimizes for both data costs and per-

formance at the same time.

1.2 Contributions

We propose new models, abstractions and systems to automate the management of data

use agreements that are associated with premium data. We also propose new mechanisms

for sellers to price cloud computing resources shared across many users and propose new

methods to optimize the purchase of data from data sellers.

Data Use Agreements In Chapter 2, we present DataLawyer, a system for the declarative

specification and automated enforcement of data usage policies. We introduce a formal

language, based on SQL, for specifying usage policies, which is rich enough to express

all policies encountered in our survey (such as those in Table 2.1). The DataLawyer

system, which is used as a middle-ware over a relational DBMS, allows users to run

normal SQL queries, but before executing a query, it checks all policies. If any policy is

violated, the query is rejected and the user is informed about the violation; otherwise,

the query is evaluated in normal fashion.

Automated policy enforcement can be expensive because it requires recording a signif-
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icant amount of information about each query: e.g., the user identifier, the provenance

expression, etc. To improve performance, we propose two novel algorithms: log com-

paction, addresses the problem of high and growing overhead of policy evaluation as

more data is collected about a user’s use of the data, by discarding information that is

no longer necessary for future policy checking; and, interleaved evaluation, represents

an advanced method to efficiently evaluate expensive policies and leverages the obser-

vation that, when a policy is satisfied, it is usually because there is a fragment of the

policy that already proves it is satisfied.

We show experimental results from evaluating variants of policies in our survey on a

real database from the health-care domain, MIMIC II [72]. Our results demonstrate

that DataLawyer, with the optimizations, has a constant overhead that in many cases

is to a few percent of the total query runtime, which is from 10× up to 330× less than

an unoptimized implementation.

The work presented in this chapter originally appeared in the SIGMOD 2015 pa-

per [110] entitled “Automatic enforcement of data use policies with datalawyer.” Chap-

ter 2 further adds the proof of NP-hardness of computing the absolute witnesses in §2.3

and an additional experiment for the advanced optimizations in §2.4.4.

Pricing Computation In Chapter 3, we present a new approach for selecting and pricing

shared optimizations by using Mechanism Design.

We first show how the optimization pricing problem maps onto a cost-recovery mecha-

nism design problem and how the Shapley Value Mechanism [74], which is known to be

both cost-recovering and truthful, solves the problem of pricing a single optimization.

We propose a direct extension of the mechanism to the case of additive optimizations

in an offline scenario, where all users access the system for the same time-period.

Second, we present a novel mechanism for the online scenario, where users come and

go. It turns out to be much more difficult to design mechanisms for the online setting:
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algorithms that are truthful or cost recovering in the static setting cease to be so

in the dynamic setting, see [79, pp 412]. We prove our new mechanism to be both

cost-recovering and truthful in the dynamic setting.

Third, we extend the mechanisms for the offline and the online cases to the case where

optimizations are inter-dependent, called substitutive optimizations, where the user

derives a single value for any optimization in a set, however, implementing multiple

optimizations from the set does not improve the user value. We prove the new mech-

anisms truthful and cost-recovering.

We experimentally compare our mechanisms against the state-of-the art approach

based on regret accumulation [26] using a real dataset from the astronomy domain.

We show that our mechanisms produce up to a 3× higher utility and provide the same

utility for ranges of optimization costs up to 12.5× higher than the state-of-the-art ap-

proach in addition to handling selfish users and while ensuring that the cloud recovers

all costs.

The work presented in this chapter originally appeared in the VLDB 2012 paper [109]

entitled “How to price shared optimizations in the cloud.” Chapter 3 further adds

proofs related to substitutable mechanisms in §3.5.

Pricing Data APIs In Chapter 4, we propose lightweight modifications to data APIs to

achieve optimal history-aware pricing so that buyers are only charged once for data

that they have purchased and that has not been updated.

The key idea behind our approach is the notion of refunds: buyers buy data as needed

but have the ability to ask for refunds of data that they had already purchased before.

Thus, the payment for data is conducted in two steps: the usual payment when data is

received and another round where the buyer asks for refunds. While asking for refunds,

the buyer proves to the seller that she has been charged multiple times for the same

data. The proofs are constructed so as to protect against tampering by the buyer even
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when the buyer is not truthful or can collude with other buyers.

We also propose a generic and extensible framework to support refunds. We then show

how it can be extended to accommodate multiple buyers, updates, and optimizations

to reduce the computational and communication overheads of using refunds.

Refund-based pricing has other benefits too. First, it only requires constant overheads

for the seller. Second, it also provide anonymity to the buyers about what data they

purchase and when the purchases are made. That is, the seller need not retain any

identifying information about the user that can recreate a user’s query history.

We evaluate empirically and compare the refund based approaches to approaches that

store user history at the server as well as approaches that do not provide optimal

pricing. We show that significant cost savings of 10× to 99× can be obtained through

the use of refunds while sustaining performance overheads that are no larger than 2×

in the best case and 5× in the worst case.

In summary, we provide new models to represent license agreements in a form that enables

a DBMS to automatically and efficiently verify that user queries comply with the agreements.

We provide new mechanisms for pricing shared cloud resources. Lastly, we provide a light-

weight framework that augments existing data APIs so that they can provide optimal pricing

of workloads consisting of queries that may return the same data.



10

Chapter 2

MANAGING DATA USE AGREEMENTS

Whether sold online or offline, data typically comes with terms of use, which limit how

the buyer can use the data. These are usually written by lawyers, span multiple pages, are

difficult to read and are sometimes ambiguous. We performed an informal survey of 13 data

providers1 and found that terms of use accompanied all of the datasets or the APIs to acquire

those datasets. Table 2.1 lists some examples of the terms we found. These terms restrict, in

various ways, how the data can be used: for example P1 says that Navteq prohibits users from

joining their map data with other datasets: if the user wants to join, she needs to purchase

the data at a higher price; P2 limits which users can access a given data item depending

on the context; P3 limits the amount of data that can be retrieved in a time window, etc.

These are much simplified descriptions. In our survey, the average length of the terms of

use document was 4489 words or about 8.3 pages; all were written in natural language, most

often using legal terms, were often difficult to read, understand, and remember, and were

sometimes ambiguous.

While individual end-users happily ignore terms of use (commonly clicking the I-agree box

without even opening the accompanying document), when a major firm acquires a valuable

database, it cannot ignore its terms of use; they risk significant losses if their employees fail

to adhere to the terms of use. This means that the company is responsible for, and interested

in monitoring how its employees access, view, use, and manipulate data from its valuable

databases. This often applies also to data produced internally by a company. For example,

all large Internet companies put significant value on their user data (and their user privacy)

and restrict both the employees who can access the data and what they can do with that

1Foursquare [41], Yelp [121], Azure Marketplace [117], Twitter [107], Infochimps [54], Socrata [100], Xignite [120], Digital
Folio [33], DataSift [30], World Bank [118], Navteq [76], data.gov.uk [27], and DataMarket [29].
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Examples of terms of use Restriction type

P1 Overlaying Navteq data with any other data is prohibited (Navteq [76]) Prohibit joins

P2 Each book may be lent once for 2 weeks while being inaccessible by the lender (Amazon

Kindle [58])

Group licenses

P3 All queries, totaled over a month, may return up to 2M chars at the free tier (MS Transla-

tor [75])

Generating free samples

P4 OAuth calls are permitted 350 requests per hour (from Twitter [107] and a similar policy at

Foursquare [41])

Rate limiting

P5 Queries that try to identify an individual referenced in the database are prohibited

(MIMIC II [72])

Limit information disclo-

sure

P6 You are required to display all attribution information and any proprietary notices associated

with the Foursquare Data (Foursquare [41] and similar policies in Yelp [121] and World

Bank [118])

Attribution and prove-

nance

P7 Don’t aggregate or blend our star ratings and review counts with other providers. You may

show content from multiple providers, but Yelp data should stand on its own (Yelp [121])

Disallow aggregations

but allow joins and

unions

Table 2.1: Example policies from commercial data sellers and their informal classification.

data: e.g., end-users may have agreed that their data be used to improve a certain product

but for no other purpose. The company must respect this restriction.

To date, firms have few ways to enforce terms of use and typically rely on access restric-

tions and extensive employee training.

In this chapter, we propose to specify the usage policies formally, and check them au-

tomatically at query time. We start by introducing a formal language, based on SQL, for

specifying usage policies, which is rich enough to express all policies encountered in our sur-

vey (such as those in Table 2.1). Then, we present the DataLawyer system for enforcing

data use policies automatically, inside a relational database management system (DBMS).

DataLawyer is used as a middleware layer on top of a relational DBMS that allows users to

run normal SQL queries, but before letting a query execute, it checks all policies. If any pol-

icy is violated, the query is rejected and the user is informed about the violation; otherwise,

the query is evaluated in normal fashion.
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The major challenge in any policy enforcement system is performance. Without the

system, users would issue regular SQL queries. In the case of long-running analytical queries,

the overhead of policy checking is easily amortized. In all other cases, however, policy

checking can significantly slow down performance (Figure 2.1 in §2.4, for example, shows

how a baseline non-optimized policy checking approach can impose a high and growing

overhead).

Automatic policy enforcement is expensive because the system needs to record a signif-

icant amount of information about each query in a usage log : e.g., the user identifier and

query time, the query text, the query result, the provenance expression. In addition, it needs

to execute every policy against the data and the usage log in order to check compliance. Done

näıvely, this can become multiple orders of magnitude slower than running the SQL query

alone. High overhead presents a major barrier for adoption: a company would not adopt a

policy enforcement system, if it significantly slows down its daily operations.

To address the performance challenge, we propose novel algorithms to efficiently evaluate

policies. These algorithms are based on query-rewriting techniques that leverage the sepa-

ration of policies into data (the usage log component) and query (the declaratively specified

policies). We develop two major optimizations.

The first optimization log compaction, addresses the problem of high and growing over-

head of policy evaluation due to a growing usage log. This optimization removes from the log

tuples that are no longer necessary for future policy checking. This optimization is based on

the observation that, while in principle one could write policies that check the log arbitrarily

far in the past, in practice policies tend to look for specific event patterns that are restricted

to a limited subset of the log. For example, P1 in Table 2.1 checks that Navteq data is not

joined with other data sets. Since we know this policy was enforced for all past queries,

we only need to keep the tail of the log generated by the current query. P3 only requires

the maintenance of the past month of data related to the free tier of service. Notice that

log compaction is much harder than the tail-compaction used in recovery logs, which simply

deletes the tail of the log after the last checkpoint: in our case we need to reason about the
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semantics of the policies. We show that, for each policy specified in the system, one can

compute an absolute witness, which is a subset of the log that is guaranteed to be sufficient

to evaluate that policy, both now and in the future. The log compaction is obtained by

replacing the log with the union of all absolute witnesses for all policies.

The second optimization, interleaved evaluation, represents an advanced method to ef-

ficiently evaluate expensive policies. We start from the observation that, by far, the most

common case is when all policies are satisfied: this is when users issue queries that comply

with the policies, and this is when they expect to see no significant slowdown over using the

system without policy enforcement. Our second observation is that, when a policy is satis-

fied, it is usually because there is a fragment of the policy that already proves it is satisfied.

In interleaved evaluation, we evaluate simplified versions of the original policies, and stop

evaluation early, when we have determined that there are no violations.

Contributions In summary, this chapter makes the following contributions:

1. In §2.2, we propose a novel model to specify policies with the desiderata that any such

model be sufficiently flexible to express a variety of policies, while being compact and

precise. Our key idea is to first capture a relevant subset of user and database actions

taken during query execution; and then to specify the policies declaratively over those

logs as states of the log that are inconsistent with the intent of the policies. We describe

the semantics of our data model and show how the common policies found in real world

terms of use can be concisely and precisely expressed in our data model.

2. In §2.3, we present our optimized policy evaluation methods including log compaction

and interleaved evaluation.

3. Lastly, in §2.4, we show experimental results from evaluating variants of policies defined

in Table 2.1 on the MIMIC II [72] database. Our results demonstrate the practicality

of our approach and the importance of our optimizations. While it is possible with

DataLawyer to write policies that perform expensive checks, DataLawyer’s optimiza-
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tions enable the system to keep the overhead constant and, in many cases, cut that

overhead to a few percent of the total query runtime, which is from 10× up to 330×

less than an unoptimized implementation.

The source code [28] for DataLawyer’s implementation for PostgreSQL is available pub-

licly.

2.1 Motivation

DataLawyer’s goal is to enable data sellers to specify precise data use policies and to help

data buyers to use the data without violating any of the policies.

DataLawyer should not be confused with an access control system [40]; such systems

restrict users to a fixed set of authorization privileges (or access modes), which are strictly

limited to reading or writing columns or rows. In contrast, terms of use refer to complex

scenarios, e.g., in Table 2.1, P1 specifies that the data may not be joined with any external

datasets, P4 limits the rate of queries, P7 disallows aggregation; none of these are captured

by access control systems.

DataLawyer is also not intended to protect against a malicious user; with some patience

and effort a malicious user can extract the entire data without breaching any policy, then

store it on her own device and use at will. The system is designed to help honest users

comply with terms of use that are difficult to read, understand, and remember. It is also

meant to help large corporations monitor how their valuable data is used internally by their

employees.

Finally, we note another potential application of DataLawyer: usage-based data pricing.

Wang et al. [114] postulate that the value of data is both intrinsic (e.g., based on its com-

pleteness and accuracy) and extrinsic (i.e., it depends on the context in which it is used).

Data owners frequently control the extrinsic value of data by limiting the kind of operations

allowed on it. For example, Factual [36], an online data vendor, prices its data based both

on volume and on what the buyer uses the data for: data used in ads is priced differently
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from data used in applications and prices can also vary between applications. DataLawyer

can be used to compute the price of the data dynamically, e.g., based on how the data was

used during the last billing period.

2.2 Policies

In this section, we present the policy specification formalism, the usage log, and their se-

mantics.

2.2.1 Policy Specification

For each term of use, the data owner defines a policy π, which is a SQL query of the following

form:

SELECT DISTINCT [error-message] FROM ...

WHERE ... GROUP BY ... HAVING ...

The FROM clause contains base tables, or select-from-where-groupby-having sub-

queries. The WHERE and HAVING clauses are conjunctions of atomic predicates without sub-

queries.

The SQL query may refer both to the database and to a usage log that we describe in

§2.2.2. If the policy π returns the empty set, denoted π = ∅, then the policy is satisfied.

Otherwise, we say that π returns true, denoted π 6= ∅; in that case a violation has been

detected and the error-message specified in the policy is returned to the user.

We illustrate our policy language with two examples.

Example 2.2.1. P5b is a concrete variant of P5 in Table 2.1:

P5b: Stop queries where fewer than 10 patients contribute to any output tuple.

Policy P5 is from the MIMIC II (Multiparameter Intelligent Monitoring in Intensive Care) [72]

database that contains readings from patient monitoring systems and clinical data collected

at an ICU over seven years. In our system, the policy is specified as follows:
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SELECT DISTINCT ‘P5b violated: Fewer than 10

patients contribute to an answer’ AS errorMessage

FROM Provenance p

WHERE p.irid = ‘patients’

GROUP BY p.ts, p.otid

HAVING COUNT(distinct p.itid) < 10

The table Provenance(ts, otid, irid, itid) in the FROM clause is part of the usage

log (described in detail below). A record in Provenance represents the fact that input tuple

itid from input relation irid belongs to the provenance of the output tuple otid of the query

executed at time ts. To simplify the presentation, we assume that timestamps are taken

from an integer clock with sufficient granularity that each query has a unique ts attribute.2

In the examples, we further assume that timestamps are expressed in seconds. Thus, the

policy simply checks if there exists some query that has an output tuple whose provenance

has fewer than 10 distinct input tuples from the patients table, which is one of the tables

in the MIMIC II database3. If the answer is non-empty, then the policy has been violated.

The policy appears to check all queries, but our system only evaluates it on the last query,

namely the query currently requested by the user (because all previous queries have already

been checked and are known to satisfy all policies); we explain this and other optimizations

in §2.3.

Example 2.2.2. We now illustrate a more complex policy, involving temporal restrictions:

P2b: At most 10 distinct users from the group ‘Students’ are allowed to query

patients in any window of 14 days.

This policy generalizes P2 in Table 2.1, and is adapted to the same MIMIC database, for

illustration purposes. The policy is expressed as follows in our language:

2We could relax this assumption by adding a separate, unique query id attribute but that complicates examples.

3Its schema is patients(pid, dob, sex).
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SELECT DISTINCT ‘P2b violated: More than 10 users

executed queries in 14 days.’ AS errorMessage

FROM Users u, Schema s, Groups g, Clock c

WHERE u.ts = s.ts and s.irid = ‘patients’

and u.uid = g.uid AND g.gid = ‘Students’

and u.ts > c.ts - 1209600

HAVING COUNT(distinct u.uid) > 10

Notice that the query has no GROUP BY clause: it checks if the total number of distinct

user id’s that referred to patients over the last 14 days is greater than 10. This policy refers

to two other tables in the log: Users, which records the user id of the user issuing the query,

and Schema, which records the schema information for each query; both are described below.

The Clock relation has a single row and a single column updated by the system4.

2.2.2 Usage Log

We now describe the usage log, denoted by L, that captures all features of queries executed

on the database that are necessary to enforce a set of data use policies. The log consists

of m relations, L = (R1, . . . , Rm), where each relation Ri captures features of a particular

type. Any feature can be stored in the log; the only requirement is that each relation has a

timestamp attribute, Ri(ts,...). In addition, the system defines m log-generating functions

(referred to as functions for brevity), f = (f1, . . . , fm). When a query q is executed on the

database instance D, if it satisfies all policies then, for each relation Ri, the system uses

the function fi to compute the set of features Si = fi(q,D) to be appended to Ri: it then

updates Ri = Ri ∪ ({t} × Si), where t is the current timestamp.

In addition to the usage log, the system also exposes the Clock relation that has a single

row with a single attribute corresponding to the current time (see Example 2.2.2).

Example 2.2.3. The usage log in our DataLawyer system prototype consists of the following

three relations:

4Alternatively, we could have used a function like CURRENT TIMESTAMP(), with the same semantics as c.ts.



18

Schema(ts, ocid, irid, icid, agg)

Users(ts, uid)

Provenance(ts, otid, irid, itid)

Schema records the schema information of each query: a record (ts, ocid, irid,

icid, agg) represents the fact that the answer to the query executed at time ts contains

a column ocid, which stores a value derived from the input column icid from the input

relation irid; agg indicates whether an aggregate was used. For example, the query, SELECT

T.A AS K, (T.B + T.C) AS L FROM T, generates three rows in Schema:

(ts, K, T, A, false)

(ts, L, T, B, false)

(ts, L, T, C, false)

The log-generating function fSchema(q,D) takes as input a SQL query q and computes all

tuples that need to be inserted in Schema on behalf of q, by performing static analysis on q;

this function does not need the database instance D.

The Provenance relation contains complete provenance information. We use the set of

contributing tuples provenance, also called lineage [103], where, for each output tuple otid

we record all contributing input tuples irid, itid. The function fProvenance(q,D) computes

the provenance of q on D by running a SELECT * ... query derived from q, similarly to

Perm [43]. Finally, Users stores, for each query, the id of the user who executed that query.

In the rest of the chapter, we assume that the schema of the usage log is that given in

Example 2.2.3. We emphasize, however, that all our optimization techniques apply to an

arbitrary schema: to add a new relation Ri to the log, the systems administrator only has

to write the corresponding log-generating function fi(q,D).

2.2.3 Semantics

We can now define the semantics of our policy manager. We denote by Lt the log up

to timestamp t, and denote Π = {π1, . . . , πp} the set of policies defined in the system.
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Informally, when a user asks a query q over the database D at time t, the system first

appends {t}× fi(q,D) to each log relation Ri, to produce a tentative log L′t. Then, it checks

all policies on the new log; if all return ∅, in notation Π(t,L′t, D) = ∅, then the query is

executed and the answer is returned to the user; otherwise the query is rejected and the log

is reverted to Lt−1. Formally:

L0 = ∅

L′t = Lt−1 ∪ ({t} × f(q,D))

Lt =

L′t if Π(t,L′t, D)) = ∅

Lt−1 otherwise

(2.1)

Here f(q,D) denotes all functions f1, . . . , fm. Each policy π(t,Lt, D) may refer to the

log, the database, and also the timestamp t, obtained from Clock (see Example 2.2.2).

2.3 The DataLawyer System

When the user issues a new query, a näıve way to check the policies is to apply directly

the semantics of Eq.(2.1): generate the increment of the log L, write it to disk, then iterate

over the policies and evaluate them. If any violation is found, revert the log. We do not

consider this näıve strategy. Instead, our NoOpt Algorithm 1 incorporates the following

straightforward optimizations:

1. Generate only those logs Ri mentioned in the policy definitions. For example, if no

policy uses Provenance, then do not generate that log at all.

2. Store the generated increments to the logs f(q,D) in temporary tables in memory and

keep them there while checking the policies. Write them to disk only when all policies

are satisfied. Without this optimization, in the case of failure, the log increments have

to be deleted from disk.

Even with these two optimizations, checking policies with the NoOpt algorithm is im-

practical because (as we show) it can be 1-2 orders of magnitude slower than the query that
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the user wants to run. Additionally, with NoOpt, policy checking times increase as more

queries execute against the database. In this section, we first present optimizations that (1)

reduce the size of the log to keep policy-checking times constant (and low), and (2) use an

optimized evaluation strategy for the set of policies to reduce policy-checking times compared

to NoOpt. We then put these optimizations together and show how to apply them for a set

of policies defined on a dataset.

Algorithm 1: The NoOpt Algorithm
Input : Timestamp t, query q, database D.

Output: Update the log or abort.

begin
BEGIN TRANSACTION

L← L ∪ ({t} × f(q,D))

1 πunion ← π1 ∪ · · · ∪ πk
2 if πunion(t,L, D) = ∅ then COMMIT;

3 else ABORT;

2.3.1 Data Minimization

In theory, the log can grow forever, and the policies may inspect the entire log, from the

beginning of time. In practice this never happens. We describe optimization techniques that

exploit the fact that policies look only for restricted events back in time.

Time-Independent Policies

We start with a very simple optimization, which identifies when a policy depends only on

the current query, and not on the log history. For example, policy P1 in Table 2.1 prohibits

joins of a dataset with other datasets: it only depends on the current query q and not the log

history. In other words, we do not need to examine the entire log and check what previous

queries have done.

We call a policy time-independent if it can be checked by examining only the increment

of the log instead of the entire log: formally, denoting Lpast = Lt−1 and Lpresent = Lt−Lt−1,
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then π(Lt, D) = π(Lpast, D) ∪ π(Lpresent, D). We give here a syntactic criterion for time-

independence. One subtlety is that a time-independent policy is usually not written in a

way in which it refers only to the current time, but checks a property for all timestamps:

we need to use the fact that the policy was true in the past to infer that it suffices to

check only the current time. Formally, a SQL policy π is time-independent if it, and all its

subqueries in the FROM clause, satisfy the following conditions: (a) all timestamp attributes

from all relations are joined, and (b) if π contains any aggregates then the group-by attributes

include the timestamp. If π is time-independent, we rewrite it to a policy denoted by πind

by adding a selection requiring that the timestamps, ts, refer to the current clock, c.ts.

Example 2.3.1. Policy P1 and its optimization are:

P1: SELECT DISTINCT ‘No external joins allowed’

FROM Schema p1, Schema p2

WHERE p1.ts=p2.ts and p1.irid=‘Navteq’ and p2.irid != ‘Navteq’

P1_IND: SELECT DISTINCT ‘No external joins allowed’

FROM Schema p1, Schema p2, Clock c

WHERE p1.ts = c.ts and p2.ts = c.ts and p1.ts = p2.ts

and p1.irid = ‘Navteq’ and p2.irid != ‘Navteq’

Thus, we restrict the policy to check only the current timestamp. This is correct only

because we know that the policy was satisfied in the past. In addition to restricting policy

evaluation to the log increment, we can further optimize the system by not appending to the

log at all: this is handled by the log-compaction optimization, discussed next.

Log Compaction

The log compaction optimization removes from the log those entries that are guaranteed to

be unnecessary now, and at any time in the future5. Notice that this is far more complex

that the tail compaction in recovery logs, which deletes the entire log preceding the last

successful checkpoint. In our case, the compaction must take into account the semantics of

5If a new policy is added at time t, DataLawyer restricts its history to start at time t by adding extra predicates on the
timestamp attributes.
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the policies and reason about which tuples will never be used in the future.

Example 2.3.2. Consider policy P2b from Example 2.2.2: no more than 10 distinct users

from group ‘Student’ may execute a query on patients in any window of 14 days. Assume

for a moment that this is the only policy in our system. Then, it is obvious that we can (a)

store in the log only entries belonging to users in the group ‘Student’ and referring to table

patients, and (b) remove all entries older than 14 days. By repeating this kind of reasoning

to all policies we can compute a subset of the log that is sufficient to check all policies in the

future.

We give now the formal definition. Fan [38] defines a witness for a query Q to be a subset

of the database s.t. Q returns the same answer on the witness as on the entire database.

Adapting to our setting, let π be any query (Boolean or not), and Lt, D be the current log and

the current database. A witness for π is a subset Lw
t ⊆ Lt such that π(t,Lt, D) = π(t,Lw

t , D).

We call the tuples T = Lt − Lw
t dispensable tuples (for the given witness). We could remove

the dispensable tuples from the log without affecting the policy at the current time. They

may, however, become necessary in the future. If t ≤ t′ then we write Lt ≤ Lt′ to denote the

fact that Lt′ is an extension of the log from time t to time t′.

Definition 2.3.1. Let π be a query (Boolean or not). A set of tuples T ⊆ Lt is called

absolutely dispensable for π, if for any future evolution of the log Lt′ ≥ Lt, π(t′,Lt′ , D) =

π(t′,Lt′ − T,D). We call Lw
t = Lt − T an absolute witness.

For simplicity, we will refer to absolute witness as witness. The Log Compaction Algo-

rithm 2 examines each policy π in turn, and computes a witness Rw
i,π required by that policy,

for each log relation Ri. Then, it takes the union of all witnesses required by all policies, as

well as by their subqueries occurring in the FROM clause. The heart of the algorithm consist

of computing Rw
i,π, the witness for Ri required by the policy (or subquery) π. Computing

a minimal witness is NP-hard in general since computing a witness [38] is NP-hard and we

can reduce the problem of computing the witness to a query π on a database D to com-

puting the absolute witness of a query π′ over a database D′. D′ has an extra timestamp
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Algorithm 2: Log Compaction Algorithm: compact
Input : A set of policies Π

Output: Witness tuples for each log relations Ri ∈ Lt

begin

1 foreach Ri do Rw
i ← ∅

2 foreach π ∈ Π do

foreach subquery Qi in π’s FROM-clause do

3 (Rw
1 , . . . ,R

w
m)← (Rw

1 , . . . ,R
w
m) ∪ compact({Qi})

foreach log relation Ri in π’s FROM-clause do

4 Rw
i ← Rw

i ∪Rw
i,π // See text.

return (Rw
1 , . . . ,R

w
m)

attribute, set to 0 for every tuple, for each relation; while π′ is equal to π but with a pred-

icate that only selects tuples with a timestamp equal to 0. Thus, any new tuples added

to D′ (with a larger timestamp) would be irrelevant for computing absolute witnesses and

hence, the absolute witness would be identical to the witness at time timestamp 0. Thus,

we settle for heuristics, based on the structure of the policy π. If the policy has subqueries

in the FROM clause, when we handle them separately. For example, to compute the witness

for SELECT ...FROM Subquery, R1, R2 WHERE ...HAVING ... we compute separately the

witness for Subquery and for the modified query π = SELECT * FROM R1, R2 WHERE ...,

then union the witnesses. In the remainder of this section we assume that π is a policy

without subqueries, and show how to compute a witness Rwi,π.

Note that setting Rwi,π = Ri always gives us a correct witness, which is equivalent to not

doing any log compaction. We now describe how to compute a smaller witness for certain

policies π, starting with simple ones and successively generalizing to more complex ones.

No Clock, Full Query Consider a query π that does not refer to the clock (current time),

and also has no projections:

π = SELECT * FROM R1, . . . , Rm, D1, . . . , Dq WHERE . . .



24

Here, Ri, i = 1,m are part of the usage log, and Dj, j = 1, q are part of the database, e.g.

Groups in Example 2.2.2. Note that, while all policies in our system are Boolean queries,

Def. 2.3.1 also applies to full queries and we start here by describing how to derive the witness

Rw
i,π for a full query π. Let Ri’s neighborhood N(Ri) = {Ri1 , . . . , Riv} be the set of all other

log relations that equijoin on the timestamp with Ri, directly or indirectly. Note that this

set may be empty.

Lemma 2.3.1. The following queries define a witness for the policy π and relations Ri:

Rwi,π = SELECT DISTINCT Ri.* (2.2)

FROM Ri, Ri1 , . . . , Riv , D1, ..., Dq WHERE . . .

The FROM clause contains Ri, its neighborhood, and the database relations, and the WHERE

clause contains all conditions in π that refer only to the relations in the FROM clause. If

the same relation name Ri occurs multiple times in π (self-joins), then the witness Rwi,π is

obtained as the union of the queries (2.2), one for each occurrence of Ri in the FROM clause

(see Example 2.3.4 below).

(Proof sketch) We outline the proof that Rwi,π, in Eq. 2.2, correctly computes an absolute

witness of relation Ri for policy π. We consider the possible cases. First, the case when

Ri’s neighborhood is empty: then the query simply selects those tuples in Ri that satisfy all

predicates on Ri in the policy: obviously, all tuples that do not satisfy these predicates are

dispensable for evaluating the policy, both now and in the future. Second, if the neighborhood

is non-empty, then Ri is semi-joined with the other Rij ’s (this is a semi-join reduction [1]):

all other tuples are dispensable now, and are also dispensable in the future because all the

Rij ’s are joined on the timestamp, and no new tuples are being added at a current, or past

timestamp.
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No Clock, Boolean queries We now generalize the algorithm to Boolean queries π,

still without reference to the Clock. If π has a HAVING clause, then we drop the GROUP-BY

and HAVING clauses, replace SELECT with SELECT * to treat the policy as a full query, and

compute an absolute witness for the full query using Eq.(2.2); in other words, we do not take

advantage of the fact that π is Boolean. Otherwise:

π = SELECT DISTINCT ‘Error’ FROM R1, . . . , Rm, D1, . . . , Dq WHERE . . .

In this case we can compute a smaller witness than that for the full query. Let N(Ri) =

{Ri1 , . . .}, be the neighborhood of Ri, and denote X the set of all attributes of Ri occurring

in a join predicate.

Lemma 2.3.2. The following query (obtained by modifying Eq.(2.2)) computes an absolute

witness to π:

Rwi,π = SELECT DISTINCT ON (Ri.X), Ri.* (2.3)

FROM Ri, Ri1 , . . . , Riv , D1, ..., Dq WHERE . . .

(Proof sketch) Recall that the DISTINCT ON statement in SQL nondeterministically chooses

a single witness from an entire group of tuples. For example, SELECT DISTINCT ON (R.A),

R.B FROM R chooses nondeterministically a value R.B for each distinct value R.A. In other

words, the witness is computed by nondeterministically choosing any tuple that contributes

to the output. Notice that the absolute witness is not unique: for each distinct value of X,

the algorithm can choose any tuple with those values of the attributes X.

Adding the Clock Finally, we consider queries (Boolean or not) referring to Clock; recall

that this is done through an expression Clock c in the FROM clause. We assume all predicates

on the clock are of the form c.ts op expression, where op is one of <,≤, >,≥,=, in other

words op cannot be 6=; we apply a set of simple transformation rules to rewrite expressions
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like u.ts > c.ts − 5 into c.ts < u.ts + 5. We don’t perform log compaction on policies

that have an inequality operator, 6=, on the clock. Furthermore, we replace every equality

predicate c.ts = expr with c.ts ≤ expr and c.ts ≥ expr.

Lemma 2.3.3. Let π be a policy where all predicates on the clock are of the form c.ts op expr

where op ∈ {<,≤, >,≥}. Then, an absolute witness can be computed by the query (Eq. 2.2)

or (Eq. 2.3) (depending on whether π is Boolean or not), with the following modifications:

(a) Drop predicates of the form c.ts > expression, (b) Replace every predicates of the

form c.ts < expression (or ≤), with currenttime + 1 < expression (or ≤), where

currenttime is a constant that represents the current value of the clock.

Notice that a time-independent policy πind (Sect. 2.3.1) will return an empty witness, in

other words it does not contribute anything to the log. Indeed, such a policy contains the

predicate c.ts = Ri.ts, which is rewritten to currenttime + 1 ≤ Ri.ts, which evaluates to

false because all new tuples in Ri have the current time-stamp.

(Proof sketch) Without dropping or modifying the predicates referring to the clock, the

expressions (Eq. 2.2) or (Eq. 2.3) will compute a witness, but not necessarily an absolute

witness; we note that, for (Eq. 2.3), all attributes occurring in expression of c.ts <

expression are included in the DISTINCT ON attributes Ri.X (they are considered as occurring

in a join). By dropping the predicate c.ts > expression we increase the set of witnesses,

and ensure that we also include all witnesses in the future, when c.ts will be larger. Similarly,

by modifying c.ts < expression to currenttime+1 < expression we drop all tuples that

will be dispensable starting with the next time stamp.

We illustrate log compaction with two examples.

Example 2.3.3. Continuing Example 2.3.2, we show how DataLawyer computes the ab-

solute witness for the query P2b in Example 2.2.2. First, transform the policy into a full

query. Since the join is on the timestamp, the neighborhood of Users and of Schema in-

cludes the other: N(Users) = {Schema} and N(Schema) = {Users}. Moreover, we update

the predicate on time. Therefore, our system computes the absolute witness for Users as:
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SELECT DISTINCT u.*

FROM Users u, Schema s, Groups g

WHERE u.ts = s.ts and s.irid = ‘patients’ and u.uid = g.uid

and g.gid = ‘Student’ and u.ts > currentTime + 1 - 1209600

In other words, we only record users from ‘Student’ and only if they have issued a query

on Patients in the last 14 days, less one time unit. Note that other policies compute their

own absolute witnesses for Users: the system takes their union. Similarly for Schema:

SELECT DISTINCT s.*

FROM Users u, Schema s, Groups g

WHERE u.ts = s.ts and s.irid = ‘patients’ and u.uid = g.uid

and g.gid = ‘Student’ and u.ts > currentTime + 1 - 1209600

Example 2.3.4. We now illustrate how we do log compaction for P1 OPT in Example 2.3.1.

Notice that this is a DISTINCT query, and has a self-join, so the absolute witness is obtained

by taking the union of two queries:

Schema_w:

(SELECT DISTINCT ON (p1.ts), p1.*

FROM Schema p1, Schema p2

WHERE p1.ts = currentTime+1 and p2.ts = currentTime+1

and p1.ts = p2.ts and p1.irid = ‘Navteq’ and p2 != ‘Navteq’)

UNION

(SELECT DISTINCT ON (p2.ts), p2.*

FROM Schema p1, Schema p2

WHERE p1.ts = currentTime+1 and p2.ts = currentTime+1

and p1.ts = p2.ts and p1.irid = ‘Navteq’ and p2 != ‘Navteq’)

This query, however, returns the empty set, because all occurrences in Schema have the

timestamp strictly less than currentTime. As a consequence, if this were the only policy,

then the system will not generate any log at all.

2.3.2 Policy Minimization

Next, we focus on the policies themselves, Π = {π1, . . . , πk} and describe optimized ways to

compute them.
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Interleaved Policy Evaluation

Recall that a policy i is satisfied when πi returns false. Hence, a query can proceed when

all πi return false. We make two observations. First, by far the most common case is when

the policies evaluate to false. This is the normal use of the database, when users ask queries

that comply with the policies: our main goal is to speed up this case. Second, if a policy πi

returns false (the common case), it is often for a simple reason, for example because some

part of πi is false, e.g. one predicate or a join of only two relations; it suffices to find a partial

expression of πi that evaluates to false, then we do not need to compute the entire policy.

Based on this intuition we develop the following optimization.

We review two standard definitions. (1) A policy query π is monotone if, for any two

instances L ⊆ L′ and D ⊆ D′, we have π(t,L, D) ⊆ π(t,L′, D′). All SPJU queries, and

Boolean queries with aggregate conditions of the form having count([distinct] x) > k

are monotone. In contrast, conditions of the form having count(...) < k are non-

monotone. (2) Given two policy queries π, π′ we say that π is contained in π′ if, for all

L, D, π(t,L, D) ⊆ π′(t,L, D). Since policies are Boolean queries, we denote containment by

π ⇒ π′, which means that if π is true then π′ is necessarily true (but not the other way

around).

Let S ⊆ L be a subset of the log relations. The partial policy for π and S, in notation

πS, is the policy obtained from π by simply removing all references to relations in L−S and

also removing the having condition if it refers to any relations in L−S. That is, the partial

policy performs only the joins on the relations in S and in the database D. Note that the

query is always syntactically correct. We prove the following:

Lemma 2.3.4. Suppose π is a monotone policy without aggregates. Then, for any partial

policy, we have π ⇒ πS. The same holds for a monotone policy with aggregates, if all

relations in L− S are joined on their keys.

Proof. (Sketch) First, if π is a Conjunctive Query without aggregates, then, there exists a

query homomorphism from πS → π, which maps every atom of πS to the same atom in
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π; by the classic result on conjunctive query containment [22] we conclude that π ⇒ πS.

For queries that have an aggregate condition having count(...) > k we note that the

relations in L− S cannot raise the count, because they are joined on their keys.

Algorithm 3: Interleaved Policy Evaluation
input : A set of monotone policies Π and a query q

output: true if a violation occurs, false otherwise

begin

S← ∅

for fi ∈ f do

// Update log with its increment and timestamp t

Ri ← Ri ∪ ({t} × fi(q,D))

S← S ∪Ri
for πk ∈ Π do

π′ ← πk,S

if π′(t,S, D) = ∅ then Π← Π− {πk}

// See §2.3.3, Improved Partial Policies

if Π = ∅ then break;

return Π 6= ∅

Based on the lemma, Algorithm 3 describes an optimized strategy for evaluating a set of

monotone policies Π. We add one by one the log relations Ri to the set S. At each step,

we compute the log function fi to obtain all new tuples added by the current query q to Ri,

then check for all policies πk the conditions that refer just to the current log relations in S:

if any such policy returns false, we remove it from Π. In §2.3.3, we present an extension to

interleaved that can also remove policies that do not return false. Next, we add a new log

relation Ri to S and iterate. We stop when either all log relations have been added to S or

when Π becomes empty. If Π = ∅, then it means that all policies have been found to be

false (the common case); otherwise, there was at least one violation.

An important decision is in which order to add the log relations Ri to S. Our current

system uses a fixed order, which is chosen experimentally, offline, by optimizing over an

existing log. In our prototype implementation, the order was experimentally found to be:

Users followed by Schema followed by Provenance.
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Example 2.3.5. Consider policy P2b from Example 2.2.2, and suppose we add the log rela-

tions in this order to S: Users, Schema. Then we obtain two partial policies in addition to

the full policy P2b:

P2d: SELECT DISTINCT 1

FROM Groups g, Clock c

WHERE g.gid = ‘Student’

P2c: SELECT DISTINCT 1

FROM Users u, Groups g, Clock c

WHERE u.uid = g.uid AND g.gid = ‘Student’

and u.ts > c.ts - 1209600

HAVING COUNT(distinct u.uid) > 10

P2b: SELECT DISTINCT 1

FROM Users u, Schema s, Groups g, Clock c

WHERE u.ts = s.ts and s.irid = ‘patients’

and u.uid = g.uid AND g.gid = ‘Student’

and u.ts > c.ts - 1209600

HAVING COUNT(distinct u.uid) > 10

The system starts optimistically by checking the first partial policy, P2d; if there are no

users in the Student group, then the policy is guaranteed to be satisfied. Otherwise the

system proceeds with the second partial policy P2c, which checks if at least 10 users from that

group have asked any queries in the last 14 days; if there are no such users then the policy

is satisfied. Only if there are such users does the system proceeds with the full policy P2b.

Policy Unification

Finally, we describe a simple, but very effective optimization, which consolidates multiple

policies with the same structure but different constants into a single policy that uses a

separate table for the constants. Variants of this technique have been employed in different

settings in prior research [42] and is an example of transforming queries into data. We explain

this technique through an example.

Example 2.3.6. Consider parameterized policies:

Px = SELECT DISTINCT ‘Error’ FROM Users u, Groups g

WHERE u.uid = g.uid AND g.gid = X

HAVING COUNT(distinct u.uid) > 10
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Here X = {‘Student’, ‘Postdoc’, ...}. We unify them in a single policy:

P1 = SELECT DISTINCT ‘Error’ FROM Users u, Groups g, Constants c

WHERE u.uid = g.uid AND g.gid = c.const

GROUP BY c.const HAVING COUNT(distinct u.uid) > 10

The new table Constants contains all constants ‘Student’, ‘Postdoc’, ... used in

the policies.

2.3.3 Advanced Optimizations

We describe two advanced optimizations that extend the previous optimizations. Both apply

to policies where all log-generating functions join on the timestamp.

Preemptive Log Compaction. The optimization is to compute the partial query LCQ’

for the log compaction query LCQ using only the logs that have been generated. If LCQ’ is

empty, LCQ would also be empty, so we might as well not generate the remaining logs.

Improved Partial Policies. For interleaved execution (§2.3.2), we only stop early, if

a partial policy is satisfied (i.e., produces the empty output). But we can do better. If the

partial policy produces a non-empty output, and that output does not depend on the latest

increment to the logs (at the current time), then no tuple from the current timestamp would

contribute to the output of the policy. But since the policy was tested to be valid in the

past, it will continue to be valid in the current timestamp. We evaluate this technique in

Section 2.4.4.

Combining Preemptive Log Compaction and Improved Partial Policies In prac-

tice, both the above advanced optimizations can be used together. The idea behind improved

partial policies also extends to preemptive log compaction where further logs need not be gen-

erated if the partial query LCQ’ for the log compaction query LCQ does not depend on any

tuples of the newly generated log increments.
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2.3.4 Putting It All Together

DataLawyer puts all optimizations together as follows: Offline Phase. Perform the follow-

ing static analysis on the policies:

1. Apply policy unification (§2.3.2). Denote Π the resulting set of policies.

2. For each time-independent policy π ∈ Π, replace it by its optimized rewriting πind

(§2.3.1). Let Πmon ⊆ Π denote the set of monotone policies (§2.3.2).

Online Phase. For each query q, perform the following actions, in order.

1. Run the Interleaved Policy Evaluation Algorithm 3 on the monotone policies Πmon. If

it returns true, abort and make no changes to the usage logs. Else, let Lgen denote

the log relations computed by the algorithm.

2. For each non-monotone policy π ∈ Π \ Πmon, compute the log relations R not yet

in Lgen and add them to Lgen, by applying the corresponding log function f . Then,

evaluate π. If any policy returns true, abort.

3. Run log compaction (Algorithm 2) over Π. Recall (§2.3.1) that only time-dependent

policies contribute anything to the log. As a further optimization, do Preemptive Log

Compaction (§2.3.3) to prune out policies that do not require log compaction.

4. Flush log to disk. Execute q.

2.4 Evaluation

We evaluate the overhead of policy checking with DataLawyer compared to only executing

queries in PostgreSQL (§2.4.1). We also study the performance of DataLawyer’s optimiza-

tions compared to the NoOpt strategy: log compaction (§2.4.2), time-independent policies

(§2.4.3), interleaved policy evaluation (§2.4.4), and policy unification (§2.4.5).
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Policy

P1 A maximum of 10 distinct users can query the database from the group of users from university ‘X’ in any window

of 200ms

P2 User with uid = 1 can not join poe order with any other relation except poe med

P3 User with uid = 1 can not execute any query on relation d patients that returns more than 100 tuples

P4 No output tuple on a query over chartevents for uid = 1 should have less than or equal to 3 input tuples contributing

to it

P5 In no span of 3s, aggregated over all queries, can user with uid = 1 produce output that uses more than half the total

tuples in d patients.

P6 In any span of 300ms, user with uid = 1 should not use the same input tuple from d patients more than 1000 times.

Table 2.2: The policies used in the experiments. P1 uses the cheapest log-generating function

(Users). Note, group ‘X’ contains user 1 but not user 0. P2 uses both Users and Schema

log-generation functions. The remaining policies are the most expensive policies and use the

Provenance log-generating function.

We run all experiments on the MIMIC-II dataset, which is an anonymized dataset of

readings from advanced Intensive Care Unit patient monitoring systems for over 33000 pa-

tients, collected over a period of seven years. The subset of data we experiment on is over

21GB in size. All experiments are conducted on a single server running PostgreSQL 9.2 over

OS X 10.9.4, equipped with a 2.7 GHz Intel Core i7 processor and 16 GB DDR3 RAM.

The experimental setup consists of enforcing the policies in Table 2.2, which are adapted

to our dataset from the policies we introduced in Table 2.1. We experiment with two users,

with uid = 0 or uid = 1. The users repeatedly submit one of four distinct queries as shown

in Table 2.3. The query times range from 0.25ms to approximately 2s.

2.4.1 Overhead of DataLawyer with All Optimizations Enabled

We first address the fundamental question of DataLawyer’s overall practicality: What is the

overhead of policy evaluation with DataLawyer compared with plain query evaluation with
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Time Query

W1 0.25ms SELECT * FROM d patients WHERE subject id = 186

W2 15.69ms SELECT c.subject id, p.sex, COUNT(c.subject id) FROM chartevents c, d patients p WHERE

c.subject id = 489 AND p.subject id = c.subject id AND itemid = 211 GROUP BY c.subject id,

p.sex HAVING COUNT(c.subject id) > 1

W3 170.43ms SELECT c.subject id, p.sex, COUNT(c.subject id) FROM chartevents c, d patients p WHERE

c.subject id < 1000 AND c.subject id > 930 AND p.subject id = c.subject id AND itemid = 211

GROUP BY c.subject id, p.sex HAVING COUNT(c.subject id) > 23

W4 1756.6ms SELECT c.subject id, p.sex, COUNT(c.subject id) FROM chartevents c, d patients p WHERE

c.subject id < 1450 AND c.subject id > 800 AND p.subject id = c.subject id AND itemid = 211

GROUP BY c.subject id, p.sex HAVING COUNT(c.subject id) > 1000

Table 2.3: Queries used in experiments. Queries selected to cover a wide range of runtimes.
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Figure 2.1: Policy and query evaluation time for DataLawyer and NoOpt on policy P6 and query

W1 (fastest). DataLawyer’s overhead stabilizes while NoOpt’s grows continuously and quickly

exceeds DataLawyer’s overhead. Queries are submitted in batches of 120. The x-axis shows the

batch number. The y-axis shows the average query and policy evaluation time for each batch.
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(a) (b)

(c)

Figure 2.2: Policy and query evaluation time (in ms) for DataLawyer and NoOpt for all policies.

Figures 2.2a and 2.2b show times for query W4 for users with uid=0 and uid=1, respectively;

Figure 2.2c shows times for query W2 for uid=1. The topmost bar is the query’s evaluation time

on an unmodified PostgreSQL (warm cache). DataLawyer’s numbers were measured over a warm

cache, once the overhead stabilizes. For NoOpt, we show the time for the first query (cold cache)

and for the 10th query (warm) for the first two figures, and the 400th query (warm) for the last

one. Error bars show the standard deviation over 12 runs for NoOpt and 50 runs (or more) for

DataLawyer.
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PostgreSQL and compared with NoOpt?

To answer these questions, we execute (multiple times) each query from Table 2.3 while

enforcing one policy at the time. This lets us measure the performance of DataLawyer

(with all optimizations turned on) and NoOpt, both with increasingly expensive policies and

with increasingly expensive queries. We measure the query execution time, the overhead

of tracking usage, the overhead of evaluating policies, and additionally, for DataLawyer,

the overhead of compacting the logs. Further, for each policy-query combination, we run

the experiment as user 0 (where DataLawyer can quickly infer through interleaved policy

evaluation that no policy is applicable) and as user 1 (where the policies must eventually be

evaluated in full to determine compliance).

Figure 2.1 shows how policy checking overhead grows continuously for NoOpt, while it

quickly stabilizes to an approximately constant overhead for DataLawyer. The figure shows

what happens for query W1 and policy P6 but the same trends occur for all policies and

queries. In fact, for user 0, query W4, and policy P4, the overhead is 14ms for DataLawyer,

while exceeding 2.7s for NoOpt after just 10 queries, leading to an almost 330× reduction in

overhead. The cause for the growing overhead with NoOpt is the increasing usage history.

DataLawyer’s log compaction optimization prunes the parts of the log that are no longer

needed, keeping the overhead constant after an initial ramp-up period. Of course, this

pruning initially adds overhead compared with NoOpt.

We consider the overhead of policy evaluation in more detail, focusing on W4 (long query)

and W2 (short query). For NoOpt, because the overhead grows, we measure the overhead

after the first and tenth query for W4 and the first and 400th query for W2. For DataLawyer,

we measure the overhead once it stabilizes. Figure 4.4 shows the results.

As seen, for long queries (W4) and cheap policies (P1 and P2), the overhead of policy

checking is negligible for both DataLawyer and NoOpt6. For short queries (W2), even for

cheap policies, the overhead becomes visible. But, the policy checking overhead remains low

6For policies 1 and 2, it appears as if the later evaluations are faster for NoOpt, but that is because the first query was over
a cold cache. In the long run, this advantage vanishes.



37

(below 50 ms), maintaining the interactive speeds of these short queries.

Overheads become significant for the more expensive policies P3 through P6, which all

use the Provenance log-generating function. As seen in Figure 2.1, the overhead with NoOpt

grows quickly. For example, the total time taken to check and execute queries for policy P3

increases by 1.8× and 1.9× for Figures 2.2a and 2.2b, respectively, between the first and

the tenth query while increasing by 8.8× for Figure 2.2c between the 1st and the 400th. In

contrast, DataLawyer maintains a significantly lower and constant overhead.

These overheads have two components: the overhead of tracking usage and the overhead

of evaluating the policies. For NoOpt, the overhead of the former is solely dependent on

the usage logs mentioned in the policy definition. For a given query, the overhead is thus

approximately constant across policies that use the same logs (e.g., P3 through P6). For

DataLawyer, the overhead of tracking usage is split into tracking the usage and compacting

the log. Here, interleaved query evaluation and preemptive log compaction (§2.3.3) enable

DataLawyer to avoid generating any usage logs in some cases such as for user 0 on query

W4 in Figure 2.2a. In other cases, DataLawyer generates the logs and stores them in tem-

porary tables in memory. Unlike NoOpt, DataLawyer compacts these tables before writing

anything to disk, which is why the overhead of tracking usage is smaller for DataLawyer

than for NoOpt even when both use the same logs, especially apparent for query W2. Log

compaction can add a significant overhead, which nevertheless pays off within the first 10

to 400 queries in this experiment. Log compaction’s overhead is a function of existing log

size, log increment size, and policy complexity. Hence, for policies P1 and P2 that rely on

small usage logs, the overhead is tiny, while for policies P5 and P6, that rely on all three logs

and require multiple joins and aggregations, the overheads are noticeable. Interestingly, in

multi-threaded systems, one can return the result of the query to the user before log com-

paction finishes, thus the effective latency seen by the user may, in some cases such as for W2

(policies P5 and P6), be as little as 23% of the time reported by a single-threaded system.

The overhead for evaluating policies is what dominates the overhead for NoOpt in later

stages, while it stays constant and small for DataLawyer. Log compaction helps to keep
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the policy evaluation time small and constant for DataLawyer as illustrated in Figure 2.2b.

Additionally, when applicable, as it does in case of user 0, interleaved evaluation allows Data-

Lawyer to evaluate policies with practically no overhead; in our experiments, the maximum

overhead over all policies and queries for user 0 was 3ms whereas the corresponding overhead

for user 1 was 540ms.

Even with all optimizations, for expensive queries like W4, and for the most expensive

policies, DataLawyer imposes a relative overhead up to 2× to 3× for uid=1. In general,

for uid=1, a 100% overhead is unavoidable for policies P3 through P6, since they need the

provenance, which is usually more expensive to generate than evaluating the query.

2.4.2 Log Compaction Optimization

As the end-to-end results show, log compaction (§2.3.1) is crucial for DataLawyer to maintain

a constant overhead as more queries are executed against the database.

Log compaction removes dispensable tuples from the usage log and this reduces the

time spent in policy evaluation for policies that are not time-independent. Note that both

DataLawyer and NoOpt keep the newly generated usage log increments in memory, only

pushing them to disk after verifying all policies. Thus, log compaction may also reduce

the tuples from the latest log increment that are appended to the usage log, after checking

each valid query. Here, we measure three phases of log compaction: (a) marking: the log

compaction queries are executed over the disk-resident log and its in-memory increment, to

determine which tuples to retain, and they are marked, (b) delete: the unmarked tuples are

deleted, and (c) insert: the remaining tuples in the increment are appended to the log on

disk.

To determine which tuples need to be removed DataLawyer must execute possibly mul-

tiple log compaction queries. Therefore, unless enough tuples are pruned this can be a

significant overhead. Figure 2.3 shows the overhead of this optimization for three of the six

policies: policies 1, 5, and 6 for the four queries by user with uid=1. No log pruning is

needed for time-independent policies 2, 3, and 4 and hence they are not shown in the graph.
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Figure 2.3: Overheads of Log Compaction: Time taken in the three phases of log compaction.

Mark identifies the tuples to discard; Delete removes them; Insert appends the new tuples that

were not marked for deletion. A configuration such as P6.W3 is interpreted as query W3 tested for

policy 6. The percentages in parenthesis is the fraction of time spent in log compaction compared

to the total policy checking and query evaluation time.

We explain what DataLawyer prunes for each policy: for P1, the algorithm only retains

the latest timestamp of the latest query, and only by the users in the group ‘X’; for P5, it

only retains log entries for user 1’s queries over d patients in the window specified and only

retains the latest instance of the tuples accessed by the user; and for P6, it prunes out the

tuples outside the sliding window.

For policies 1, 5, and 6, and for all queries, the bulk of the overhead of compacting the

usage log is the “marking” stage where the tuples to be retained are selected. The high

overhead is because 3 passes are made over the usage logs: the first to unmark all tuples, the

next to compute the log compaction query which generates a set of tuple ids to retain, and

the third pass to mark these tuples for retention. In contrast, NoOpt’s overhead, apart from

computing the usage logs, is about the same as the “insert” phase (since NoOpt does not

prune any tuples, it may take slightly longer). Interestingly, as Figure 4.4 shows, in spite of
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Count P2 P2 - No ti P3 P3 - No ti P4 P4 - No ti

1 205 222 491 924 653 1355

5 198 208 473 881 643 2732

10 202 211 471 900 685 5110

15 212 229 480 949 648 8046

20 199 210 475 894 655 11809

Table 2.4: Policy and query evaluation time (in ms) for DataLawyer after executing multiple counts

of query W3 with time-independent policies 2, 3, and 4. Runtimes are reported with and without

(represented as “No ti”) the time-independent optimization. In both cases, all other optimizations

are enabled.

such high overhead for pruning the log, the optimization pays off rapidly.

In our experiments, DataLawyer prunes the log after each new query. Such eager pruning,

however, is not necessary. Instead, DataLawyer could compact the log less frequently or

whenever the system has idle resources to further reduce the policy checking overhead.

2.4.3 Time-Independent Policies Optimization

We now test the impact of the time-independent optimization (§2.3.1) in the presence of

the other optimizations. Recall that for this optimization, DataLawyer automatically adds

extra constraints on the ts attribute, to enable log compaction to later prune the entire log.

In fact, in our implementation, DataLawyer flags time-independent policies and never stores

the log on disk in the first place thus completely avoiding any log-compaction-related checks

and deletes.

Policies 2, 3, and 4 are time independent. Table 2.4 shows the time taken by DataLawyer

to evaluate these policies on query W3, once with this optimization on, and once without.

The primary benefit of the time-independent optimization over basic log compaction, is that

this optimization allows DataLawyer to prune the log even for policies that involve aggregates

but have no sliding time windows. For example, for policies 3 and 4, log compaction on the
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original policies without the added predicates on time does not prune any tuples. As a

result, the overhead for both policies grows over time. The log compaction algorithm can

not reason over aggregates and instead, we compact the corresponding full query, which ends

up selecting all tuples for retention. In contrast, identifying the policies as time-independent

permits the system to discard these tuples.

A secondary benefit is that, although the optimization can not avoid generating the logs,

it avoids running the log compaction tests or appending any tuples to the disk.

Overall, in our experiments, this optimization halved the policy evaluation and query

time for policies 3 and 4. Not much difference is seen in the case of policy 2 since it is a

much cheaper policy to check and it produces a tiny log.

Thus, to ensure high performance, both optimizations, time-independence and log com-

paction prove beneficial.

2.4.4 Interleaved Policy Evaluation

We now evaluate the benefit of interleaved policy evaluation (§2.3.2). We quantify both the

benefit when the optimization leads to early pruning as well the extra overhead when it does

not. The overhead is due to executing multiple queries, each an approximation of the policy,

instead of directly executing the original policy.

We evaluate each policy in isolation, for each query, once for user 0 and then for user 1.

By design, interleaved execution prunes the policy after generating the cheapest log, Users,

for user 0; and this provides an upper bound on its benefits. For the other user, interleaved

execution only leads to an overhead with no pruning. For comparison, we provide the runtime

with this optimization turned off.

Figure 2.4 shows that for user 0, interleaved policy evaluation can cut the runtime by

more than half compared with not using the optimization. The resulting policy checking

overhead drops to within 2.5% of the query evaluation time and remains nearly constant

across all policies.

In user 1 though, interleaved execution does not lead to early pruning. DataLawyer
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Figure 2.4: Policy and query evaluation time (in msecs) for each policy and query W4. We consider

two users, uid=0 and uid=1, and for two versions of DataLawyer, one with all the optimizations

and one with all optimizations but interleaved execution (indicated by “no int”).

without interleaved performs better than with interleaved. However, the differences are

small. For the query shown, the maximum difference was of 1.7% of the runtime without

interleaved. Even for the other queries (not shown), the differences are small, both in absolute

as well as relative terms.

Finally, we test a mix of both the easy and the hard cases to highlight the benefit of the

advanced optimizations (§2.3.3). Figure 2.5 shows a run of 10 queries from W4 with a single

policy P5. Here, we alternate between a query from user with uid = 0, the easy case, and a

query from the user with uid = 1, the hard case. Without the advanced optimizations, all

but the first easy-case queries take about the same amount of time as the hard case to check

the policy and execute the query; this is because the partial policies do not return empty

answers, instead, they return the tuples in the logs generated and stored by the hard cases.

However, with the improved partial policies, DataLawyer can check that the partial policy

is not using any part of the log generated by the easy case and hence can terminate early,

and using preemptive log compaction, it can also avoid the log compaction overhead for the

easy case. Thus, with advanced optimizations, the policy checking overheads of queries can
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Figure 2.5: Advanced Interleaved Optimization: A comparison of the time to verify P5 on an

easy and hard mix of queries from workload W4 with and without the advanced optimizations

of §2.3.3. The easy and hard queries alternate with a total of 5 such queries each.

be isolated from each other.

Another benefit of interleaved optimization is that in the presence of multiple policies,

as opposed to a single policy as in this experiment, the benefits are additive, while the

overheads are sub-additive. The benefits add up since the time saved by early pruning for

each policy is independent of whether another policy is pruned or not, whereas the overheads

are sub-additive since the log generation, which can be expensive as for policies 3, 4, 5, and

6 for Provenance, is done once and the output is shared across the policies.

2.4.5 Policy Unification Optimization

We now answer how the time to evaluate policies changes as we increase the number of

policies, where policies are identical except for their parameters.
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union, serial, or interleaved policy evaluation) and execute the query as we scale up the number of

policies that can be unified to a single policy.

In this experiment, we check policy P1 for query W1. We vary the number of policies

by two orders of magnitude by running three experiments: (a) 10 users each running 1000

queries (and a policy like P1 for each user), (b) 100 users and 100 queries each (and a policy

like P1 for each user), and (c) 1000 users running one query each (and a policy like P1 for

each user). All queries execute in a round robin fashion. In this setting, the total number of

queries executed remains constant but the number of users and thus the number of policies

grows from 10 to 1000.

For the case when the policies are not unified, we compare three policy evaluation strate-

gies : 1) union: Union all the (boolean) policies and execute one large policy, 2) serial:

Execute policies one at a time, and 3) interleaved: Use interleaved execution (§2.3.2). For

the case of the single unified policy, we compare serial (serial and union are identical with

one policy) to interleaved.

Figure 2.6 shows that irrespective of the strategy, without unification, policy checking
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time grows linearly with the number of policies. The union is the most efficient because

it avoids the overhead of multiple JDBC calls (serial takes from 23% to 87% more time to

check the same policies); while interleaved is costlier (up to 16% for 1000 users) than serial

since interleaved makes 2× more JDBC calls that serial for the specific policy used in this

experiment.

Alternatively, after unifying policies to one, to evaluate all the policies takes constant

time, even after scaling up by two orders of magnitude, and independently of the policy

evaluation algorithm used. This is because the unified policy introduces a small dataset (a

max of 1000 rows in this experiment) to join with, which easily fits in memory.

This shows that näıve policy checking time is linear in the number of policies; but the

equivalent unified policy runs in constant time irrespective of the number of merged policies.

2.5 Discussion

DataLawyer’s approach enables the expression of a wide variety of policies, but there are

limitations to what can be expressed. We identify two limitations: First, boolean policies only

allow accept/reject semantics. As a result, DataLawyer cannot support policies that require

other semantics, such as for example creating a log entry when a violation occurs. Second,

DataLawyer does not support policies defined over the actions of DataLawyer itself. Were

that allowed, we could define a policy preventing DataLawyer from rejecting two successive

queries from the same user leading to unenforceable sets of policies.

Another limitation of DataLawyer is that it cannot enforce all expressible policies ef-

ficiently. Currently, we only have full support for policies with monotone aggregate con-

ditions (e.g.having count([distinct] x) > k, see §2.3.2), and only limited support for

non-monotonic aggregates. Additionally, some policies are “hard” because they require stor-

ing a significant amount of history. An interesting area of future work is to use approximate

policies to improve performance: The system first runs a simpler test that quickly validates

most queries, but occasionally flags a valid query as suspicious and spends extra time to do

the precise check.
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A benefit of DataLawyer’s approach is its potential extensibility to new domains by

defining one or more new log-generating functions. These functions can be arbitrary pieces

of code. We give two examples. First, consider a policy that restricts queries from ‘mobile’

devices to output sizes of 10 tuples. To enable such a policy in DataLawyer one has to write

a new log-generating function that parses the database connection string or the user-agent

headers and populates a new table in the usage log with device information; the policy itself

is a simple SQL query over the new usage log. As another example, consider a tweak on

policy P4 from Table 2.1 to make it sensitive to the server load: “no user should be able to

issue more than 50 requests per hour when the system load exceeds 80%.” To implement

such a policy one must, (a) define a log-generating function to populate the usage log with

the current system load, and (b) write the corresponding SQL query.

Two important future research problems are both related to usability. The first is to

help users debug queries that are deemed non-compliant. The other is to reduce the effort

of translating text policies to our framework. Our survey indicated that there is a lot more

structure to these policies and it may be possible to come up with templates (domain specific,

if required) that can be later tweaked to get the set of policies for an organization. Policy

generation by example might be another useful direction for future work.

Finally, we note that, while DataLawyer is an important step toward automatic enforce-

ment of data use policies, it does not obviate the need for signed agreements and lawyers,

because it does not control what happens to the data once it leaves the system.

2.6 Conclusion

We developed DataLawyer, a middleware system to specify and enforce data use policies

on relational databases. Our approach includes a SQL-based formalism to precisely define

policies and novel algorithms to automatically and efficiently evaluate them. Experiments on

a real dataset from the health-care domain demonstrate overhead reductions of up to 330×

compared to a direct implementation of such a system on existing databases.
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Chapter 3

PRICING COMPUTATION

Over the past several years, “cloud computing” has emerged as an important new paradigm

for building and using software systems. Multiple vendors offer cloud computing infrastruc-

tures, platforms, and software systems including Amazon [7], Microsoft [14], Google [47],

Salesforce [95], and others. As part of their services, cloud providers now offer data-

management-in-the-cloud options ranging from highly-scalable systems with simplified query

interfaces (e.g., Windows Azure Storage [15], Amazon SimpleDB [12], Google App Engine

Datastore [48]), to smaller-scale but fully relational systems (SQL Azure [71], Amazon

RDS [9]), to data intensive scalable computing systems (Amazon Elastic MapReduce [8],

to highly-scalable unstructured data stores (Amazon S3 [11]), and to systems that focus on

small-scale data integration (Google Fusion Tables [46]).

Existing data-management-as-a-service systems offer multiple options for users to trade-

off price and performance, which we call generically optimizations. They include views [3]

and indexes (e.g., users can create indexes in SQL Azure and Amazon RDSautomatically

indexes data), but also the choice of physical location of data –which affects latency and price

(e.g., Amazon S3)– how data is partitioned (e.g., Amazon SimpleDB data “domains”across

SQL Azure instances), and the degree of data replication (e.g., Amazon S3 standard and

reduced-redundancy storagedeployment, Amazon ). Cloud systems have an incentive to

enable all the right optimizations, because this increases their customer’s satisfaction and

can also optimize the cloud’s overall performance.

Today, data owners most commonly pay all costs associated with hosting and querying

their data, whether by themselves or by others. Data owners also choose, when possible,

the optimizations that should be applied to their data. However, there is a growing trend
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toward letting users collaborate with each other by sharing data and splitting data access

costs. For example, in the Amazon S3 storage service, users can currently share their data

with select other users, with each user paying his or her own data access charges [10].

The combination of data sharing and optimizations creates a major challenge: how to

price optimizations when one optimization can benefit multiple users. Implementing these

optimizations imposes a cost on the cloud that needs to be recovered: resources spent on

implementing and maintaining optimizations are resources that cannot be sold for query

processing. The question is how to decide what optimization to implement and how to share

its cost among users.

A recently-proposed approach by Kantere, Dash, et al., [26, 56] addresses this problem

by asking users to indicate their willingness to pay for different query performance values,

observing the query workload, and deciding on the optimizations to implement based on

optimizations that would have been helpful in the past (i.e., based on regret). The cost of

implemented optimizations is amortized to future queries that use them. This approach,

however, has two key limitations as we show in Section 5.2. First, it assumes that users

in the cloud will truthfully reveal their valuations. In practice, users will try to game the

system if doing so improves their utility. Second, this approach does not guarantee that the

cost of an optimization is recovered.

Given these two observations, we develop a new approach to select and price optimizations

in the cloud based on Mechanism Design [79, 87]. Mechanism Design (see Section 3.2) is an

area of game theory whose goal is to choose a game structure and payment scheme such as

to obtain the best possible outcome to an optimization problem in spite of selfish players

having to provide some input to the optimization. Our goal is to enable the cloud to find the

best configuration of optimizations. For this, it needs users (i.e., selfish players) to reveal

their valuation for these optimizations.

The most closely related approaches from the Mechanism Design literature are cost-

sharing mechanisms [74]. Given a service with some cost, these mechanisms decide what

users to service and how much the users should pay for the service. In this chapter, we show,
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in Section 3.3, how to easily adapt this technique from the theory community to the simplest

problem of pricing a single optimization when all users will access the system for a single

time-period (i.e., offline game).

The problem of pricing optimizations in the cloud, however, raises two additional chal-

lenges. First, in the cloud, users change their workloads, join and leave the system at any

time. Such dynamism complicates the problem because users now have new ways of gam-

ing the system: they can lie about the time when they need an optimization and they can

emulate multiple users. Dynamism requires an online mechanism. Second, multiple opti-

mizations are available in the cloud. In the simple case, the value that a user derives from a

set of optimizations is simply the sum of individual optimization values. We call such opti-

mizations additive. In other cases, the total value from a set of optimizations may be given

by a more complex function. In this chapter, as a first step, we consider substitutive opti-

mizations, where the user only wants to pay for one optimization in a set (see Section 3.4).

For example, a user may be willing to pay either for an index that accelerates a join or for a

materialized view that pre-computes the join but not both. Prior work in mechanism design

does not handle all the requirements at a time (See Section 5.2). We develop a suite of

mechanisms, that can handle all these challenges at the same time.

We seek the following three standard properties for our mechanisms. First, we want

the mechanisms to be truthful, also known as strategy-proof [79], which means that every

player should have an incentive to reveal her true value obtained from each optimization.

The approach by Dash, Kantere et al. [26, 56] mentioned above is not truthful as we discuss

in Section 5.2: users can benefit from lying about their value for an optimization. We

also want online mechanisms to be resilient to multiple identities, which is another way to

lie about value, and to misrepresentation of the time when a user needs an optimization.

Second, we want the mechanisms to be cost-recovering, which means that the cloud should

not lose money from performing the optimizations. In the approach by Dash, Kantere, et

al. [26, 56], the cloud first decides to implement an optimization and then it amortizes the

cost to future queries that use it. Cost-recovery is thus not guaranteed. Finally, we want the
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mechanisms to be efficient, also known as value-maximizing [79], which means that we want

it to maximize the total social utility of the system i.e., the sum of user values minus the

cost of the alternative selected. For example, if several users could benefit from an expensive

optimization that none of them can afford to pay for individually, then the cloud should

perform the optimization and divide the cost among the users.

In summary, we make the following four contributions:

We first show how the optimization pricing problem maps onto a cost-recovery mecha-

nism design problem (Section 3.2). We also show how the Shapley Value Mechanism [74],

which is known to be both cost-recovering and truthful, solves the problem of pricing a single

optimization. We propose a direct extension of the mechanism to the case of additive opti-

mizations in an offline scenario, where all users access the system for the same time-period.

We call this basic mechanism AddOff Mechanism (Section 3.3).

Second, we present a novel mechanism for the online scenario, where users come and go,

called the AddOn Mechanism. Users of cloud services constantly join and leave the cloud, so

in practice, optimizations in the cloud need to be designed for a dynamic setting. However, it

turns out to be much more difficult to design mechanisms for the online setting: algorithms

that are truthful or cost recovering in the static setting cease to be so in the dynamic setting,

see [79, pp 412]. We prove our new mechanism to be both cost-recovering and truthful in

the dynamic setting (Section 3.4).

Third, we extend both the AddOff Mechanism and the AddOn Mechanism to the case

where optimizations are inter-dependent: In this chapter, we consider substitutive opti-

mizations, where the user derives a single value for any optimization in a set. However,

implementing multiple optimizations from the set does not improve the user value. We call

these mechanisms SubstOff Mechanism and SubstOn Mechanism and prove them truthful and

cost-recovering (Section 3.5).

A known result is that achieving both truthfulness in face of selfish agents and cost-

recovery comes at the expense of total utility [74]. We experimentally compare our mecha-

nisms against the state-of-the art approach based on regret accumulation [26]. We show that
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our mechanisms produce up to a 3× higher utility and provide the same utility for ranges

of optimization costs up to 12.5× higher than the state-of-the-art approach in addition to

handling selfish users and while ensuring that the cloud recovers all costs.

3.1 Motivating Use-Case

Sciences are increasingly data rich [49]: A new model for discovery is to collect large, shared

datasets and enable multiple researchers to analyze them. Examples of such shared datasets

include the Sloan Digital Sky Survey [99] which resulted in the publication of over 9000

papers, the upcoming LSST [66], and others [55].

These scientific collaborations are the prime motivation for this work: a non-profit orga-

nization hosts the shared data and needs to recover all associated costs by fairly charging

the investigators who use the data.

In this section, we present a concrete use-case for such shared data analysis from our

colleagues in the astronomy department at the University of Washington.

An important component of astronomy research involves large universe simulations, where

the universe is represented by a set of particles, which include dark matter, gas, and stars.

All particles are points in a 3D space with properties that include position, mass, and

velocity. Every few simulation time steps, the simulator outputs a snapshot of the state

of the simulated universe. Each snapshot records all properties of all particles at the time

of the snapshot. Simulations of this type currently have between 108 to 109 particles (with

approximately 100 bytes per particle) and output a few dozen to a few hundred snapshots

per run.

For each snapshot, astronomers first run a clustering algorithm to detect clusters, called

halos. Some halos correspond to galaxies. A significant component of the research involves

studying the evolution of these halos over time. Different researchers focus on different types

of halos. In particular, our astronomer colleague indicated that: “There are in general three

or four different halo mass ranges that different people focus on: high mass which corresponds

to a cluster, Milky Way mass, slightly less than Milky Way mass and low mass/dwarf galaxies.
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[...] For example, I’ve been looking for Milky Way Mass galaxies, but another person in our

group might be interested in the same sort of galaxies, but at a lower mass range. [The

simulation] also helps us identify what environment a given halo forms in – one person might

be interested in a Milky Way mass galaxy that forms in relative isolation, another person

might be interested in finding a Milky Way mass galaxy that forms near many other galaxies

(a rich, cluster-like environment).” [65]. Different scientists focus on different particle types

and on the simulation time steps that correspond to interesting time-periods in the evolution

of the halos that they study [65]. Thus, different users may need different optimizations, and

the challenge is to decide which ones to implement, and who pays for them.

Both indexes and materialized views improve the performance of the SQL queries in

this use-case. In Section 3.6.2, we evaluate our mechanisms on real data and queries from

this use-case. We consider optimizations in the form of materialized views. Since different

scientists query different parts of the data, they benefit from different materialized views.

3.2 A Mechanism Design Problem

In this section, we show how to model the problem of selecting and pricing optimizations in

the cloud as a mechanism design [79] problem. We further show that our problem requires

a type of mechanism called cost-sharing mechanism. In this chapter, we assume that every

optimization is binary, i.e., the cloud either implements it or not. We do not consider

continuous optimizations (e.g., degree of replication).

We consider a set of users, I = {1, . . . ,m}, who are using a cloud service provider (a.k.a.,

cloud) to access and query several data sets. Any user can potentially access any data set.

Let J = {1, . . . , n} denote the set of all potential optimizations that the cloud could offer

for these datasets. For example, j may represent an index; or the fact that a data set is

replicated in a second data center; or may represent an expensive fuzzy join between two

popular public datasets, which is precomputed and stored as a materialized view. Once the

cloud decides to do an optimization j, it may restrict access to j to only certain users; a grant

pair (i, j) indicates that user i has been granted permission to use the optimization j. While
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grant permissions artificially prevent a user from accessing an optimization, this restriction is

necessary to ensure that users reveal their true value for an optimization and pay accordingly.

A configuration, also called alternative is a set of optimizations j and a set of grant pairs1

(i, j). We denote an alternative with a and the set of all possible alternatives with A. We

also denote Sj = {i | (i, j) ∈ a} the set of users who are serviced by the optimization j in

alternative a.

The goal of the mechanism will be to select a configuration a ∈ A. The decision will be

based on the optimization costs and their values to users, which will determine the users’

willingness to pay for various optimizations.

Values to Users. Each user i obtains a certain value vij ≥ 0 from each optimization

j: e.g., monetary savings obtained from increased performance or the ability to do a more

complex data analysis. When multiple optimizations are performed, the total value to a

user is given by Vi(a) ≥ 0, and is obtained by aggregating the values vij for all grant pairs

(i, j) ∈ a. In this and the following two sections, we consider additive optimizations, where

the value is given by:

Vi(a) =
∑

(i,j)∈a

vij ≥ 0 (3.1)

In Section 3.5 we will consider substitutive optimizations.

An important assumption in mechanism design is that users try to lie about their true

values: when asked for their value vij, user i replies with a bid bij. In the case of an additive

value function, we denote Bi(a) =
∑

(i,j)∈a bij, where Bi(a) is user i’s bid about her value

Vi(a).

Cost to the Cloud. For each implemented optimization j ∈ J , the cloud incurs an

optimization cost Cj > 0, which includes the initial cost of implementing the optimization

(e.g., building an index) and any possible maintenance costs (e.g., updating the index) for

the duration of the service. This cost is an opportunity cost: the resources used to perform

1We assume that, if an alternative contains a grant pair (i, j), then it also contains the optimization j.
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the optimization cannot be sold to other users. The cost of an alternative a is then given by:

C(a) =
∑
j∈a

Cj (3.2)

While each cost Cj is small, the combined cost C(a) may be large since the number of

potential optimizations is large.

Payments. Once an outcome a is determined, each user i who is granted access to an

optimization j must pay some amount pij. This payment is called the user’s cost-share, and is

determined based on all users’ bids2, (bij)i=1,m;j=1,n. Denoting Pi =
∑

j pij the total payment

for user i, her utility is defined as Ui(a) = Vi(a)− Pi. A standard assumption in Mechanism

Design is that users are “utility maximizers”, i.e., they try to bid so as to maximize their

utility [79, 87].

Cost-Sharing Mechanism Design Problem. After collecting all bids, a mechanism

chooses an outcome a0 ∈ A that optimizes some global value function. In the case of cloud

based optimizations, we will always aim to optimize the total social utility (“total utility” for

short): The outcome’s total value (Eq. 3.1) minus the outcome’s cost (Eq. 3.2). Formally,

the mechanism chooses the following outcome a0:

a0 = arg max
a∈A

(∑
i∈I

Bi(a)− C(a)

)
(3.3)

Such a mechanism is called efficient [74]. Note that the mechanism does not know the true

values Vi(a), but uses the bids Bi(a) instead. The goal of mechanism design is to define the

payment functions pij in such a way that all users have an incentive to bid their true values,

Bi = Vi. A mechanism is called strategy-proof [79, 87], or truthful, if no user can improve

her utility Ui(a) by bidding untruthfully Bi 6= Vi. Truthful mechanisms are highly desirable,

because when users reveal their true values, the mechanism is in a better position to select

the optimal alternative.

2This is a very important point: the payment depends not only on the outcome a, but on all bids. For
example, in the second bidders’ auction, the payment of the winner is the second highest bid [87].
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Another desired property for cost-sharing mechanisms is to be cost-recovering, i.e., to

only pick outcomes a0 so that:

C(a0) ≤
∑
i

Pi (3.4)

Example 3.2.1. Consider the following mechanism. The cloud collects all bids bij. If

cj ≤
∑

i bij then it performs the optimization j and asks each user to pay bij (pij = bij).

Clearly it is cost recovering. However, it is not truthful: a user i will simply lie and declare

a much lower value bij � vij, hoping that the optimization will be performed anyway and she

will end up paying much less. The challenge in designing any mechanism is to ensure that

it is truthful.

Formally, a mechanism is defined as follows:

Definition 3.2.1. A mechanism (f, P1, · · · , Pm) consists of a function f :
(
RA
)m → A

(called social choice function) and a vector of payment functions P1, · · · , Pm, where Pi :(
RA
)m → R is the amount that user i pays.

The mechanisms works as follows. After collecting bids B1, . . . , Bm from all users3, it

chooses the alternative a = f(B1, . . . , Bm), and each user i must pay Pi(B1, . . . , Bm).

While we would like to design mechanisms that maximize the total social utility Eq.(3.3),

it is a well-known result that one cannot achieve cost-recovery (a.k.a.budget balance), truth-

fulness and efficiency [74] at the same time. In our setting, we choose to ensure only truthful-

ness and cost-recovery, Eq.(3.4), at the expense of some efficiency loss. Indeed, if the cloud

cannot recover its cost, it will not implement the loss-making optimization.

3.3 A Mechanism for Static Collaborations

We now show how to use the Shapley Value Mechanism [74], which has many desirable

properties, to solve the problem of selecting and pricing additive optimizations for one time-

3Each bid Bi is a function A→ R.
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Symbol Description

i, j, t,a index for users, optimizations, time-slots, and outcomes.

I,J,T,A sets of users, optimizations, time-slots, and outcomes.

Sj(t) users serviced by optimization j at time t.

CSj(t) all users serviced by optimization j up until time t.

vij(t) user i’s true (private) value for opt j at time t.

bij(t) user i’s stated (public) value for opt j at time t.

Bi Bi = (bij)i=1,m;j=1,n.

Vi(a) user i’s total, true (private) value for outcome a.

Bi(a) the stated (public) value of outcome a for user i.

pij user i’s payment for optimization j.

Pi user i’s total payment.

Ui(a) i’s utility for outcome a.

C(a) outcome a’s cost.

Cj optimization j’s cost.

si slot when user i enters the system.

ei slot when user i pays and leaves the system.

Table 3.1: Symbol Table. For symbols with the argument time t, we drop t for offline mechanisms.

period (i.e., offline game). We extend it to online settings, where users come and go across

multiple time-periods in Sec. 3.4 and to substitutive optimizations in Sec. 3.5.

3.3.1 Background: Shapley Value Mechanism

We start by reviewing the Shapley Value Mechanism [74], shown in Mechanism 3.3.1. Fix a

single optimization j, let Cj be its cost and b1j, . . . , bmj the users’ bids for this optimization.

The Shapley Value Mechanism determines whether to perform the optimization or not,

and, computes the set of serviced users Sj ⊆ {1, . . . ,m}, and how much they have to pay,
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pij. Recall that a configuration, a, contains all grant pairs (i, j) such that i ∈ Sj. The

mechanism starts by setting Sj to the set of all users, and divides the cost Cj evenly among

them: p = Cj/|Sj|. If p is larger than a user’s bid bij, that user is removed from Sj. The

mechanism then re-computes a new price by dividing the cost evenly among the smaller set

of users. As a result, the cost per user, Cj/|Sj|, may increase and additional users may need

to be removed from the set Sj. The process continues until either no users remain or no

further users need to be removed from Sj. Each serviced user, i ∈ Sj, pays the same amount,

pij = Cj/|Sj|; each non-serviced user, i 6∈ Sj, pays nothing, pij = 0. If Sj = ∅ then no subset

of users has bid enough to pay for the optimization, and it is not implemented at all. It is

obvious that this mechanism is cost recovering, since
∑

i pij = Cj. The mechanism has also

been proven to be truthful [74]: if the user i bids the true value bij = vij then her utility

(which is vij − pij, if i ∈ Sj, and 0 otherwise) is no smaller than her utility under any other

bid. Indeed, suppose she bids low, bij < vij. Then one of two cases holds. Either she is

removed from the set of serviced users Sj: in this case her utility drops to 0. Or she remains

in Sj: in this case her payment pij remains unchanged, and so does her utility. Hence, she

cannot increase her utility by underbidding; the reader may check that she cannot increase

it by overbidding.

3.3.2 AddOff Mechanism

We now propose our first mechanism for cloud optimization, under the simplest setting,

when the optimizations are done offline and are additive; we remove these restrictions in the

next sections. Our mechanism, called AddOff, iterates over all optimizations and runs the

Shapley Value Mechanism for each one. It adds to a, the grant pairs for all serviced users,

and it implements the optimization when the set is not empty. A user pays the sum of all

per-optimization payments. Since AddOff runs the Shapley Value Mechanism, independently,

for each optimization, it follows directly that it remains truthful and cost-recovering, as the

latter.

As mentioned above, it is a known result that no mechanism achieves truthfulness and
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budget-balance while also being efficient. An important property of the Shapley Value mech-

anism is that it minimizes utility lost due to the cost-recovery constraint [74]. We show, in

Section 4.5, how this property lets AddOff achieve high utility in face of selfish users compared

to existing optimization pricing techniques.

Mechanism 3.3.1 Shapley Value Mechanism for computing the set of users to be serviced

by an optimization j, and their cost-share pij .

Shapley-Mech

Require: Optimization cost Cj ; bids b1j , . . . , bmj .

Ensure: Serviced users Sj ; cost shares p1j , . . . , pmj

Sj ← {1, . . . ,m} /* the set of serviced users */

repeat

p← Cj
|Sj | /* divide cost evenly */

Sj ← {i | i ∈ Sj , p ≥ bij} /* users still willing to pay */

until Sj remains unchanged, or Sj = ∅

pij ← p if i ∈ Sj /* serviced users pay same amount */

pij ← 0 if i 6∈ Sj . /* non-serviced users don’t pay */

return (Sj , (pij)i=1,m)

3.4 A Mechanism for Dynamic Collaborations

The simple offline mechanism in the previous section is insufficient for optimizations in the

cloud, because cloud users change over time. In this section, we develop a new online

mechanism for pricing cloud optimizations, which assumes users join and leave the system

at any time. In general, if one applies a truthful offline mechanism to an online setting,

the resulting mechanism is no longer truthful [79, pp.412]; similarly, applying an offline

cost recovering mechanisms to an online setting may render it non-recovering. Our new

mechanism is specifically designed for an online setting, and we prove that it is both truthful

and cost recovering. We continue to restrict our discussion to additive optimizations (we drop
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this assumption in the next section), and therefore, without loss of generality, we discuss the

mechanism assuming a single optimization j.

The cost of an optimization has two components: an initial implementation cost (e.g.,

building an index) and a maintenance cost (i.e., cost of index storage and index maintenance).

To avoid oscillations where users can afford the initial cost of implementing an optimization

but not its maintenance cost, we propose an approach where the cloud computes a single,

fixed cost Cj for each optimization, j. That cost captures both the initial implementation

cost and the maintenance cost for some extended period of time T (e.g., a month). Users

are allowed to join and leave at anytime during T . However, at the end of the time-period

T , the cost of the optimization is re-computed and all interested users must purchase the

optimization again.

3.4.1 AddOn Mechanism

We divide T into time-slots numbered 1 . . . z. These time-slots denote the smallest time

interval for which a service is provided to any user. If T is a month, slots could correspond

to hours, days, or weeks. The value for user i is a tuple θij = (si, ei, vij), where si ∈ 1 . . . z

is the time when i enters the system (for e.g., by opening an account) and ei ∈ 1 . . . z is the

time when the user exits from the system, and vij(t) is a function representing her value at

time t. vij(t) can be any arbitrary non-negative function and may be such that the user only

uses the optimization for a subset of time-slots in [si, ei]. The interpretation is the following.

At each time t, if t ∈ [si, ei] and the user gets access to optimization i at time t, then she

obtains a value equal to vij(t); otherwise she does not obtain any value at time t. Her total

value is the sum of these unit values over all time slots t. We assume that whenever t < si

or t > ei then vij(t) = 0. Of special interest to us is the case when vij(t) = vij is a constant

value throughout the interval t ∈ [si, ei].

Users bid for the optimization j, by declaring their values as θij = (si, ei, bij), where

bij(t) is a function of time over the interval t ∈ [si, ei]. Bids are collected by the cloud

at each time slot t ∈ [1, z]: a bid cannot be retroactive (si < t), but users are allowed to
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revise their future bids (bij(t
′), t′ ≥ t) upwards4. For example, at time t = 1, user 1 bids

(1, 3, [10, 10, 10]), meaning b1j(1) = b1j(2) = b1j(3) = 10; at time t = 2 she may revise her

bids as b1j(2) = 20, b1j(3) = 10. At each time slot t, the cloud needs to determine the set of

serviced users Sj(t), based on the current bids. When a user i leaves the system at time ei,

then she has to pay a certain amount pij.

Example 3.4.1. Consider one optimization j, with cost Cj = 100, and two users with

values: θ1j = (1, 1, [101]), θ2j = (1, 2, [26, 26]). Thus, user 1 obtains a value of 101 at t = 1 if

she can access the optimization; user 2 obtains a value 26 at each of the times t = 1, 2, if she

has access to the optimization. Consider the following näıve adaptation of the Shapley Value

Mechanism to a dynamic setting. Run the mechanism at each time slot, until it decides to

implement the optimization: at that point the cloud has recovered the cost, and will continue

to offer the optimization for free to new users. In our example, the optimization will be

performed at t = 1, each user pays 50, and user 2’s utility is 52 − 50 = 2. The problem is

that the mechanism is not truthful: user 2 may cheat by bidding (2, 2, [26]), in other words

she hides her value during the first time slot. Now the entire cost of the optimization is paid

by user 1, at t = 1, and user 2 gets a free ride at t = 2, obtaining a utility of 26− 0 = 26.

AddOn Mechanism, shown in Mechanism 3.4.1, computes for each time slot t ∈ [1, z] the

set of serviced users Sj(t), and computes the payment pij for each user i leaving at time t. It

works by running a modified Shapley-Value Mechanism at each time-slot t, which we explain

next.

Suppose that no users are serviced yet. Then, the regular Shapley-Value Mechanism is

run at time t, on the bids
∑

τ>t bij(τ). The sum is computed separately for each user and

each optimization. If the outcome is not to perform the optimization, then Sj(t) = ∅ and

the system tries the next time slot t+ 1. If the outcome is to perform the optimization, then

the system sets Sj(t) to the set of all users served at that time slot, and also continues with

the next time slot t+ 1. As new bids arrive, or future bids bij(τ), τ > t are revised upwards,

4As a consequence, ei can only increase.
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the cost-shares for all users are re-computed and may be lowered: as a consequence, users

that could not be serviced at time t may be serviced at time t+ 1. Of course, users who no

longer need the optimization (because ei < t) are removed from Sj. Denote the cumulative

set of serviced users as CSj(t) =
⋃
τ≤t Sj(τ). The key modification to the Shapley-Value

mechanism is to have it operate on CSj(t) rather than Sj(t). This is ensured as follows:

once a user is serviced at some time τ , i ∈ Sj(τ), all its future bid are assumed to be ∞:

this ensures that the Shapley-Value Mechanism will always include i in CSj(t). Finally,

whenever a user’s bid expires, i.e.t = ei, then the user’s payment is computed at that time

slot, by dividing Cj by the number of all serviced users CSj(t): this is precisely the payment

returned by the Shapley-Value mechanism. The users actually serviced, Sj(t), are the active

users in CSj(t), i.e.i ∈ CSj(t) and t ≤ ei: the set of grant permissions (i, j) at time t is

{(i, j) | i ∈ Sj(t)}. In other words, once a user i is serviced, then she is guaranteed to pay

her cost-share, and this helps to service more users in the future.

Example 3.4.2. Let’s revisit Example 3.4.1, and assume the users bid truthfully (1, 1, [101])

and (1, 2, [26, 26]) respectively. At time t = 1 both users are serviced, Sj(1) = CSj(1) =

{1, 2}. User 1 leaves at this time, so she pays Cj/2 = 50. At time t = 2 user 2 is serviced,

hence the cumulative set of serviced users is CSj(2) = {1, 2}. User 2 leaves at this time, so

she pays Cj/2 = 50: her total utility is 52 − 50 = 2. Assume that user 2 is lying and bids

(2, 2, [26]). Then CSj(1) = {1} and user 1 pays 100 when leaving. At time 2, user 2 is in no

feasible set since the payment required of her is 50 (with CSj(2) = {1, 2}) but it exceeds her

reported value. Thus user 2 gets a utility of 0 and has reduced her utility by lying.

Example 3.4.3. For a more complex example, consider an optimization with cost Cj =

100 and with four users bidding (1, 1, [101]), (1, 3, [16, 16, 16]), (2, 2, [26]), (2, 2, [26]). Then

CSj(1) = {1}, CSj(2) = {1, 2, 3, 4}, CSj(3) = {1, 2, 3, 4}. Note that user 2 is not included

in CSj(1) because her bid 48 is below Cj/2. At time t = 2 her remaining total value is only

32: however, since now there are four users, each users’ share is Cj/4 and therefore all users

are included in CSj(2), and in CSj(3). Users 1,2,3,4 leave at times t = 1, t = 3, t = 2,
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t = 2 respectively, so they pay 100, 25, 25, 25.

Mechanism 3.4.1 AddOn Mechanism.
Require: Optimization j; cost Cj ; bids (si, ei, bij)i=1,m.

Ensure: Serviced users (Sj(t))t=1,z; payments (pij)i=1,m

CSj(0)← ∅ pij ← 0,∀i = 1,m

for each time slot t = 1, z do

for each user i = 1,m do

if i ∈ CSj(t− 1) then

b′ij ←∞ /* force user i to be serviced */

else if t ≥ si then

b′ij ←
∑

τ≥t bij(τ) /* remaining value know at t */

else

b′ij ← 0 /* prune users not yet seen */

end if

end for

/* Update the set of serviced users */

(CSj(t), (p
′
ij)i=1,m)← Shapley-Mech(Cj , (b

′
ij)i=1,m)

Sj(t)← {i | i ∈ CSj(t), t ≤ ei} /*service active users*/

for i = 1,m do

if ei = t then

pij ← p′ij /* user i pays when her bid expires */

end if

end for

end for

return ((Sj(t))t=1,z, (pij)i=1,m).
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3.4.2 Properties

We prove that AddOn has three important properties: (1) it is truthful, (2) it is cost recov-

ering, and (3) it is resilient to multiple identities, which is another way of cheating.

Truthful The definition of a truthful mechanism in the dynamic setting is more subtle

than in the static setting. In a static scenario, the mechanism is called truthful if for any set

of bids, user i cannot obtain more utility by bidding bij 6= vij than by bidding her true value

bij = vij. In the dynamic case, user utilities depend not only on the other bids happening until

now, but also on what will happen in the future. We assume the model-free [79] framework

to define truthfulness in the dynamic case: it assumes that bidders have no knowledge of the

future agents and their preferences. At each time t, every agent assumes their worst utility

over all future bids, and they bid to maximize this worst utility [79].

Example 3.4.4. Consider Example 3.4.3. User 2 bids (1, 3, [16, 16, 16]), thus she could

obtain a value 16 at each of the three time slots t = 1, 2, 3; but she is serviced only at time

slots t = 2, 3, hence her value is 16 + 16 = 32. She pays 25, thus her utility is 32− 25 = 7.

Suppose that she cheats, by overbidding (1, 3, [17, 17, 17]). Now she is serviced at all three

time slots, but still pays only 25 (because when she leaves there are four users in CSj). Thus,

for the particular bids in Example 3.4.3, user 2 could improve her utility by cheating. In a

model-free framework, however, users do not know the future, and they must assume the

worst case scenario. In our example, the worst case utility for user 2 at t = 1 (when she

places her bid) corresponds to the case when no new bids arrive in the future: in this case, if

she overbids ≥ 50, she ends up paying 50, and her utility is 48− 50 = −2. If she underbids,

her worst case utility is still 0. By cheating at t = 1, user 3 cannot increase her worst case

utility.

With the model-free notion of truthfulness [79], a dynamic mechanism is called truthful if,

for each user, revealing her true preferences maximize the minimum utility she can receive,

over all possible future user preferences. This definition of truthfulness reduces to the classic
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definition of truthfulness for the static case (with a single time slot).

Proposition 3.4.1. AddOn Mechanism is truthful.

Proof. (Sketch) Consider a user i bidding at time t, i.e., her bid is (si, ei, bij) and t ≤ si

(bids cannot be placed for the past). We claim that its minimum utility over all future user’s

preferences (at times t + 1, t + 2, . . .) is when no new bids arrive in the future. Indeed, any

new bids in the future can only decrease the payment due by user i (by increasing the set

Sj(ei), hence decreasing her payment pij =
Cj

|Sj(ei)|), and can only increase her value at every

future time slot t′ ≤ si, by including i in a set Sj(t
′) where it was previously not included.

Thus, the minimum utility for user i is when no new bids arrive after time t. But in that

case, AddOn degenerates to one round of the Shapley-Value Mechanism, run at time t, which

we saw was truthful.

Cost-recovering Intuitively, AddOn is cost-recovering since it is like the Shapley-Value

Mechanism applied to a modified game. We now prove that AddOn is cost-recovering.

Proposition 3.4.2. AddOn Mechanism is cost-recovering.

Proof. Consider the last time slot, t = z, of the algorithm. Assume w.l.o.g. that CSj(z) 6= ∅:

otherwise, if CSj(z) = ∅, then the optimization is not implemented at all during the time

period T = 1 . . . z, and the cost-recovering property Eq.(3.4) holds trivially. Let p′ij be the

payments determined by Shapley-Value Mechanism for the time slot z (see Mechanism 3.4.1):

by definition, this mechanism ensures
∑

i p
′
ij = Cj. Consider any user i. We claim that its real

payment is pij ≥ p′ij. Indeed, if i 6∈ CSj(z) then pij = p′ij = 0, otherwise pij = Cj/|CSj(ei)|

and p′ij = Cj/|CSj(z)| where ei is the time when the users’ bid expires, and the claim

follows from the fact that CSj(ei) ⊆ CSj(z). Hence,
∑

i pij ≥
∑

i p
′
ij = Cj, proving the

proposition.

Multiple Identities A user could create multiple identities and place a separate bid for

each identity. If at least one identity is given access to the optimization, then the user obtains
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her full value (by running her queries under that identity). However, the user is responsible

for paying on behalf of all identities. It turns out that a user can increase her utility this

way: by creating more identities, she could help many more users to be serviced and thus

decrease her total payment. For a simple example, consider an optimization whose cost is

Cj = 101 and a user Alice whose value is (1, 1, [101]). Suppose there are 99 other users whose

values are (1, 1, [1]). Of the 100 users, only Alice is serviced, because even if all the other 99

users were serviced, each payment would be 101/100 = 1.01 which exceeds their value of 1.

However, if Alice creates two identities, each bidding (say) (1, 1, [101]), then AddOn will see

101 users, and now it can service all of them. Each user pays 101/101 = 1. Alice pays 2,

once for each identity. Thus, her utility has increased from 101 − 101 = 0 to 101 − 2 = 99.

AddOn does not prevent such ways of gaming the system, because they are indistinguishable

from collaborations. For example, instead of cheating, Alice could ask her friend Bob (whose

value is at least 1) to participate in the game, then reimburse her for her payment: this is

indistinguishable from creating a fake identity. On the other hand, there is nothing wrong

with that: through her action, Alice helped more users being serviced, accepting to pay

slightly more than the share of the other users. We can prove that this holds in general.

Proposition 3.4.3. Suppose a user i can increase her utility under AddOff or AddOn by

creating multiple identities i1, i2, . . . Then no other users’ utility decreases.

Proof. (Sketch) Consider two games, one with user i with a single account and one with

user i creating k identities i1, . . . , ik and associated bids. Her utility can increase by creating

dummy identities only if the total payment by the dummies is less than the total payment

without the dummies. Let user i’s payment with no dummies be pi and the total payment

of her dummies be p′i. Since creating dummies increases i’s utility p′i < pi, and the payment

per dummy (which would be the payment per user as well with the dummy accounts) is

p′i/k < p′i < pi. Thus, for all users served in the game with no dummies are surely served

with dummies too since the payment per user did not increase. Hence the utility of no user

decreases.
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Mechanism 3.5.1 SubstOff Mechanism: Cost-sharing mechanism for substitutable opti-

mizations for a single slot.

Require: Opts. J ; costs (Cj)j=1,n; bids (bij)i=1,m;j=1,n

Ensure: Alternative a ∈ A; cost shares (pij)i=1,m;j=1,n

a← ∅ pij ← 0, ∀i = 1,m ∀j = 1, n

loop

for each optimization j in J do

/* Compute serviced users, discard payments */

(Sj , (p
′
ij)i=1,m)← Shapley-Mech(Cj , (bij)i=1,m)

end for

/* Find the smallest cost-share optimization */

Jf ← {j ∈ J |Sj 6= ∅} /* Set of feasible opts */

if Jf 6= ∅ then

jmin ← arg minj∈Jf
(
Cj/|Sj |

)
a← a ∪ {jmin} /* Perform optimization jmin */

for each user i ∈ Sjmin do

a← a ∪ {(i, jmin)}

pijmin ← Cjmin/|Sjmin |

bij ← 0 ∀j ∈ J /* Remove i from future loops */

end for

Cjmin ←∞ /* Remove jmin from future loops */

else

return (a, (pij)i=1,m;j=1,n)

end if

end loop

3.5 Mechanisms for Substitutable Optimizations

In this section, we relax the requirement that optimizations be independent. Indeed,
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Mechanism 3.5.2 SubstOn Mechanism Cost-sharing mechanism for substitutable opti-

mizations, for multiple slots.

Require: Opts J ; costs (Cj)j=1,n; bids (si, ei, (bij)j=1,n)i=1,m.

Ensure: Serviced users (Sj(t))t=1,z; payments (pij)i=1,m

a← ∅ pij ← 0, ∀i = 1,m

for each time slot t = 1, z do

for each user i = 1,m do

if ∃j ∈ J. (i, j) ∈ a then

b′ij ←∞ /* force user i to be serviced */

b′ij′ ← 0 ∀j′ ∈ J, j′ 6= j /* force i to only use j */

else if t ≥ si then

b′ij ←
∑

τ≥t bij(τ) /* remaining value know at t */

else

b′ij ← 0 /* prune users not yet seen*/

end if

end for

/* Update the set of serviced users */

(a, (p′ij)i=1,m;j=1,n)← SubstOff(J, (Cj)j=1,n, (b
′
ij)i=1,m;j=1,n)

Sj(t)← {i | ∃j.(i, j) ∈ a, t ≤ ei}

for i = 1,m do

if ei = t then

pij ← p′ij /* user i pays when her bid expires */

end if

end for

end for

return ((Sj(t))j=1,n;t=1,z, (pij)i=1:m,j=1:n)

when multiple optimizations (e.g., indexes or materialized views) exist, the value to the user

from a set of optimizations can be a complex combination of individual optimization values.
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In this section, we consider the case of substitutable optimizations. Formally, each user

defines a set of substitutable optimizations Ji ⊆ J such that ∀j, k ∈ Ji : vij = vik = vi > 0.

Additionally, given an outcome a, Vi(a) = vi if ∃j ∈ Ji : (i, j) ∈ a and Vi(a) = 0 otherwise.

In comparison to the substitutable valuation, the valuation function that we previously used

was the sum: Vi(a) =
∑

(i,j)∈a vij. With substitutable valuations, a user bid takes the form

θi = (Ji, vi), where Ji is the set of substitutable optimizations and vi is the user value if she

is granted access to at least one optimization in Ji.

Substitutable optimizations capture the case where implementing any optimization from

a set (e.g., indexes, materialized views, or replication) can speed-up a workload by a similar

amount. The user does not have any preference as to which optimization is responsible

for the speed-up. However, she gets no added value from multiple optimizations being

implemented at the same time either because the optimizations cannot be used together

(e.g., a materialized view may remove the need for a specific index) or because she gets no

added value from further performance gains.

3.5.1 SubstOff Mechanism

We first consider the static game where all users bid and use the system for the same time-

period.

Example 3.5.1. Consider a set of three optimizations with costs C1 = 60, C2 = 180, and

C3 = 100. The bid ({1, 2}, 100) indicates that a user has value 100 if she is granted access to

either optimization 1 or 2. Three other example bids include ({3}, 101), ({1, 2, 3}, 60), and

({2}, 70), for users {2, 3, 4}, respectively.

The challenge with substitutable optimizations is that users may define overlapping but

different sets of optimizations as in Example 3.5.1. Users also have several new ways of

cheating. In addition to lying about their value vi, they may lie about the optimizations

they want by either bidding for ones that do not benefit them or by not bidding for the

ones that do. They can also emulate multiple users with different optimization sets. Our
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mechanisms are truthful for all but for the case of cheating with multiple dummy users.

To address this challenge, we develop the mechanism shown in Mechanism 3.5.1. The

SubstOff Mechanism first runs the Shapley Value mechanism for each optimization indepen-

dently. It then selects the optimization that yields the lowest cost-share for a non-empty set

of serviced users. These users will be serviced by that optimization at the computed cost-

share. The mechanism then repeats the analysis for the remaining users and optimizations.

Example 3.5.2. Consider example 3.5.1. SubstOff first identifies optimization 1 as having

the lowest cost-share with S1 = {1, 3} and cost-share 60
2

= 30, and thus implements opti-

mization 1 and services users 1 and 3. Next, SubstOff considers the remaining users {2, 4}

and the remaining optimizations {2, 3}. For these optimizations, S2 = ∅ while S3 = {2}.

Optimization 3 is thus implemented and user 2 is given access to it. User 4 gets access to

no optimization.

We now prove that SubstOff is both truthful and cost-recovering.

Proposition 3.5.1. The SubstOff Mechanism is cost-recovering (budget-balanced).

Proof. This property follows directly from the mechanism construction: When the mecha-

nism implements an optimization, it splits the optimization cost across all serviced users. It

then discards the serviced users from consideration for further optimizations.

Proposition 3.5.2. SubstOff is truthful.

Proof. We prove by induction on |J |. For any user i the following holds.

Base case: When |J | = 1, the mechanism is identical to AddOff Mechanism which is

truthful for single optimizations (refer to Section 3.3.2).

Inductive case: Now, assume that the mechanism is truthful for |J | ≤ n. Consider

|J ′| = n + 1. Let j be the optimization found by Mechanism 3.5.1 with the minimum

cost-per-user, pij, with feasible user set Sj. If i ∈ Sj, increasing her bid bij > vij will not

reduce pij (and hence not change her utility). Similarly, reducing bij < vij leads to either
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the same value for pij (so her utility is unchanged) or increases pij enough to lead to the

denial of optimization j to i and a zero utility. User i might still get serviced a higher-priced

optimization but that would also reduce i’s utility. If i /∈ Sj, then

1. the minimum price to access j is more than i’s value for j and hence increasing her bid

to obtain the optimization would lead to negative utility.

2. vij = 0: in this case, i might want to increase pij for some j with the hope that j

will not get implemented and hence some users from Sj might contribute to another

optimization j′ that i is interested in. However, bidding any non-negative value for j

can only decrease pij further and increasing the bid for an optimization j′ 6= j has no

impact on pij. If i belongs to the feasible set of optimization j′ then increasing her

bid will not reduce pij′ below pij since increasing the bid beyond pij′ does not decrease

pij′ . Reduce bij′ below pij′ will remove i from j′ service set and render a utility of

zero from j′. If i does not belong to the feasible set of any optimization j′ that it is

interested in it implies that the minimum price to access j′ is more that i’s value for

j′ and increasing her bid to obtain the optimization would lead to negative utility.

Thus, the optimization j with the minimum cost per user is implemented and I ← I \ Sj
and J ← J ′ \ {j}.

By induction, the mechanism will be utility-maximizing, and hence truthful, for the

smaller set of users and the smaller set of optimizations.

Example 3.5.3. Consider example 3.5.2. If user 3, with the intent of cheating, bid any

value in the range [30,∞), the outcome and her utility would remain unchanged. If she bid

below 30, however, she would not be serviced by optimization 1 as her bid would be below

the cost-share. She would not get serviced by any other optimization, either, because their

cost-shares are higher than that of 1, which was the optimization with the lowest cost-share.

Her utility would be (0 < 30). Finally, if she, being untruthful, did not bid for optimization

1, even though it benefited her, and bid ({2, 3}, 60), then both optimization 1 and 2 would tie
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for lowest cost-share at 60. Let us assume SubstOff would randomly choose and implement

optimization 2, then she would be granted access to this optimization and would pay the

cost-share of 60 achieving a strictly lower utility of 0.

3.5.2 SubstOn Mechanism

We now consider substitutable optimizations, but in a dynamic setting where users can join

and leave the system in any time-slot. Given substitutable optimizations Ji, user i bids

ωi = (si, ei, bi, Ji), with [si, ei] as the requested interval of service and bi(t) is the value she

gets at time t.

SubstOn Mechanism, shown in Mechanism 3.5.2, works by running SubstOff at each time-

slot t with the residual value of all the users seen. The first time a user i is granted access

to optimization j her bid for j is updated to ∞ (so that she is always in the feasible set of

j), while her bids for the other optimizations are updated to 0 (so that she remains serviced

only by optimization j).

Example 3.5.4. Consider the following bids for three optimizations, {1, 2, 3}, with costs

C1 = 60, C2 = 100, C3 = 50. User 1 bids (1, 2, 100, {1, 2}) that is interpreted as fol-

lows: she values any optimization in {1, 2} at 100 for the time-slots [1, 2]. User 2 bids

(2, 3, 100, {1, 2, 3}) and user 3 bids (3, 3, 100, {3}). At t = 1, SubstOn runs SubstOff with user

1 (the only user at that time) and ends up implementing optimization 1, with payment of 60.

Then, SubstOn updates user 1’s bid to optimization {1} valued at ∞. At time t = 2, SubstOn

runs SubstOff with users {1, 2} and ends up granting user 2 access to optimization 1 with the

new payments for both users being 60/2 = 30. User 1 leaves after paying 30, while user 2’s

bids are updated to optimization {1} valued at ∞. At time t = 3, SubstOn again executes

SubstOff with all three users (although user 1 left, she is included while invoking SubstOff, to

compute the proper cost-share for user 2), and ends up implementing optimization 3, but

only for user 3, at a payment of 50. User 2 is not serviced optimization 3 since she is already

using optimization 1 and SubstOn does not allow her to switch to a new optimization. The
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system ends with user 2 paying 30 and user 3 paying 50. The inability to switch is crucial for

truthfulness: Otherwise, a new user, say user 4, who prefers optimization {1, 3}, arriving at

time t = 3, might only bid for optimization 3 hoping that user 2 switches to optimization 3.

With the switch each would pay 50/3 = 16.7, while without the switch user 2 pays 60/2 = 30

(as before) and users {3, 4} pay 50/2 = 25.

We proof that SubstOn is both truthful and cost-recovering.

Proposition 3.5.3. The SubstOn Mechanism is cost-recovering (budget-balanced).

Proof. This property follows directly from the mechanism construction: When the mecha-

nism implements an optimization, it splits the optimization cost across all serviced users. It

then discards the serviced users from consideration for further optimizations.

Proposition 3.5.4. The SubstOn Mechanism is truthful.

Proof. (Sketch) We claim that for all known users at time t their minimum utility over

all future users’ preference (at times t + 1, t + 2, . . .) is when no bids arrive in the future.

Indeed, any new future bids can only reduce the payment due by user i by increasing the set

Sj(ei), hence decreasing her payment pij = Cj/|Sj(ei)|. It can also only increase her value

at every future time slot t′ ≤ si, by including i in a set Sj(t
′) where it was previously not

included. Thus, the minimum utility for user i is when no new bid arrive after time t. In

that case, however, SubstOn reduces to SubstOff, executed at time t, which is truthful by

Proposition 3.5.2.

Multiple Identities Unlike for AddOff and AddOn Mechanisms, for SubstOff and SubstOn

Mechanisms dummy users can increase their own utility at the expense of other users. Con-

sider users {1, 2, 3} with single-slot bids ({1}, 5), ({1, 2}, 2.51), and ({2}, 7) for optimizations

{1, 2} with costs C1 = 6 and C2 = 5. With no dummy users, optimization 2 is implemented

with a payment of 2.5 and utilities of 0.01 for user 2 and 4.5 for user 3. If user 1 creates two

identities 1′ and 1′′ that make a bid of 2.5 each for optimization 1, then both optimizations
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are implemented with optimization 1 serving {1′, 1′′, 2} with utilities of 1, 0.51, and 2 for

users 1, 2, and 3 respectively. Note that user 3’s utility has reduced. However, to cheat user

1 needed to know the number of other users and their bids. In practice, she is unlikely to

know this information. She may try guessing, but as we now show, in the worst case, her

guess can lead to a reduction in her utility. Thus, being truthful is the optimal strategy

without knowing the other bids.

Proposition 3.5.5. Constructing multiple identities can, in the worst case, lead to a reduc-

tion in utility as compared to the utility with a single identity.

Proof. Consider user 1 who wants optimization {1}, n12 identical users who want any opti-

mization amongst optimizations {1, 2}, and n2 identical users who want optimization {2}.

If optimization 1 is not implemented because the cost-per-user for optimization 2 is lower,

i.e., C1/(1 + n12) > C2/(n12 + n2), then user 1 may create n1 dummy bids (apart from

her original bid) and cause the n12 users who wanted either of {1, 2} to be serviced opti-

mization 1 instead of optimization 2. Thus, the payment-per-user for optimization 1 would

become less than that of optimization 2, i.e., C1/(1 + n1 + n12) ≤ C2/(n12 + n2). This

leads to a total payment of (1 + n1)C1/(1 + n1 + n12) for user 1 and an increase in utility

of C1 − (1 + n1)C1/(1 + n1 + n12) = C1n12/(1 + n1 + n12) ≤ C2n12/(n12 + n2). This gain

can become arbitrarily small depending on the value of C2 and the ratio n2

n12
. Further, the

minimum number of dummy users that need to be created is n1 ≥ C1/C2(n12 +n2)−n12−1.

Again, this value can be made arbitrarily high be increasing n2. Suppose then that user 1

guesses a high enough value of n1 and creates n1 dummy users. Then, although she ends

up increasing her utility in this game, in the worst case (shown below), this may cause her

to pay more for optimization 1 than she would have paid had she not cheated. In the worst

case, consider another game with n0 identical users (apart from 1 and her dummies), who

also bid only for optimization {1}. Without cheating user 1 pays C1/(1 + n0), while with

cheating she pays (1+n1)C1/(1+n0 +n1). The extra money she pays is C1
n1

2(2+n1)
. This value

can be made arbitrarily close to C1/2 as n1 increases. Thus, user 1 may end up paying extra
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while cheating with multiple dummy accounts. Since we assume that she has no a priori

information about the bids by the other players and their numbers, bidding with multiple

identities is no better, in the worst case, than bidding with a single user, and vice versa.

3.6 Evaluation

Our mechanisms guarantee truthfulness and cost-recovery, but they do not optimize total

utility. In this section, we empirically evaluate the total utility that our solutions provide.

We focus on the two online mechanisms (i.e., AddOn Mechanism and SubstOn Mechanism)

and compare them to the state-of-the-art regret-based approach (Section 3.6.1) [26, 56]. The

experiments consist of both the motivating use-case (Section 3.1) and simulated scenario

(Sections 3.6.3 through 3.6.6).

3.6.1 Regret-Based Amortization

Kantere, Dash, et al. [26, 56] proposed a regret-based approach (called Regret, henceforth)

to select optimizations. They developed a detailed economy of the cloud and considered

detailed query plans for computing regret. In this paper, we abstract and evaluate the

performance of the core regret-based approach without the surrounding economy or query

plan details. We briefly describe the algorithm.

The regret for an optimization j at time t, termed Rj(t), is defined as the total value

that would have been realized, over all users, until time t (and excluding it) had j been

implemented and the users serviced. Formally, Rj(t) =
∑

τ<t

∑
i∈I vij(τ), where I is the set

of all users and vij is the value that user i has for optimization j. The policy we adopt as to

when to implement the optimization is the greedy approach [79] where the optimization is

implemented at time slot t when cj ≤ Rj(t). For the case of substitutable optimizations, once

an optimization j is implemented for a user i, user i stops benefiting from and contributing

to the regret of other optimizations in J \ {j}.

To recoup the cost cj, each future user who gets access to optimization j pays a price pj

until the cost is amortized. Let tjr be the time at which the Regret algorithm implements
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j. To fix pj, we look at the remaining value in the game assuming perfect knowledge of

future users and their values. We then choose a pj that minimizes the cloud loss. Let

Ij(p, t
j
r) = {i |

∑
t>tjr

vij(t) ≥ p}. Then pj = arg minp max{c − p × |Ij(p, tjr)|, 0}. (In case of

multiple choices for pj we choose the one with the lowest magnitude since that maximizes

the user utilities.) Thus, our price point is the optimal choice to minimize the cloud loss. It

upper-bounds how well Regret would work in practice. The total social utility (a.k.a.total

utility) for Regret is defined the same way as for the mechanisms: the total value realized

by the users for the slots they are serviced minus the implemented optimizations’ costs. The

cloud balance is the costs of the optimizations minus the total payments by the users. A

negative balance means that the cloud incurs a loss.

Our approach thus computes regret the same way as Kantere, Dash, et al. [56, 26] except

that, in their approach, users assign values to individual queries. Our approach aggregates

this information and assigns values to workloads spanning over larger ranges of time.

3.6.2 Evaluation on the Motivating Use-Case

The workload from the motivating use-case in Section 3.1 traces the evolution of halos over

27 snapshots of a universe simulation. Each astronomer starts with a subset of halos, γ,

in the final snapshot at t27 and, for each halo g ∈ γ, she (a) computes the halos in each

previous snapshot contributing the most particles to g, and (b) recursively computes a chain

of halos hg1, . . . , h
g
26, h

g
27 = g such that hgt contributes the most mass to the halo hgt+1 in

the next snapshot. Our optimizations materialize the following relation for each snapshot:

(particleID, haloID) to speed-up the queries.

We experiment with six users with differing workloads: two workloads (provided to us

by the astronomers) use all 27 snapshots to determine the ancestors of halo sets γ1 and γ2,

respectively. Based on the astronomers’ feedback, we construct two extra users for each of

γ1 and γ2: one user examines every 2nd snapshot and the other every 4th snapshot. This

simulates faster, exploratory studies of the data.

In this experiment, we measure the total utility (Sec. 3.2) for the AddOn and Regret
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approaches.

We take each optimization’s cost to be the cost of storing the materialized view. To

compute this cost, we use the dollar amount per GB of storage of a yearly subscription of

the Amazon EC2 High-Memory Extra Large Instance. This yields an average cost of $2.31

per optimization.5

We take the money saved by completing queries early to be the value of an optimization

(one has to pay Amazon for each hour of use in addition to the subscription). For the

six users, the runtime of their workload without any optimizations is 81, 36, 16, 83, 44 and

17 min. Materializing the view on the last snapshot saves 44, 18, 8, 39, 23, and 9 min which

corresponds to monetary savings of 18, 7, 3, 16, 9, and 4 cents for a single execution of the

workloads. The other optimizations reduce runtime by 2.5 min each for a saving of 1 cent.

Since, the optimizations affect different queries in the workload, we take them to be additive.

We now consider a year-long time-period and assume that users use the service in mul-

tiples of a quarter (3 months). We exhaustively explore all the ways that the six users can

bid for slots. For each alternative, we further vary the number of times that each user ex-

ecutes her workload while using the system and compute the total utility achieved by each

approach. Figure 3.1 shows the average and standard deviation of the total utilities across

the 106 alternatives. The figure shows results for low (1 workload execution/quarter) to

medium (1 workload execution/day) intensity use. In these conditions, AddOn yields a total

utility between 28% and 47% higher than Regret. Additionally, the cloud never makes a loss

with AddOn while the loss by Regret can be up to a substantial 92% of Regret’s utility.6 The

baseline cost is the total cost of executing the workloads with no optimizations. AddOn and

Regret yield utilities of 28%-47% and 16%-40% of the base line cost, respectively. In the case

of AddOn, since the users pay entirely for the cost, the utility is the savings for the group;

5We could have used other cloud storage costs. We chose this one as is was the most similar to our local
machine where we obtained this experiment’s space and runtime numbers.

6In the case of a scientific collaboration, we can also assume that one of the researchers pays the cloud
to implement the optimization. She then asks the others to pay her back. That researcher is then the one
to incur the loss. In this case, the utilities represent the amount saved by the group.
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Figure 3.1: Operating expenses without optimization and total utility (equal to total money

saved) by AddOn and Regret for the astronomy workload and an Amazon EC2 subscription, as

users execute their workloads more frequently.

for Regret, since the users do not always pay the entire cost, the users save more than the

utility, but at the expense of the cloud, who subsidizes upto 48% of their savings.

3.6.3 Collaboration Size

In this section and the following, we use a variety of simulated configurations to explore

how our mechanisms and the Regret approach compare in different settings. In all cases, we

measure the total utility. The goal of the approaches is to maximize this value.

The first key parameter affecting utility is the cost of optimizations as a proportion of the

user values. This ratio affects the number of users that are necessary to cover the optimiza-

tions’ cost. In all simulations, we change this proportion by varying the per-optimization

cost along the x-axis while keeping the average user values fixed. In this section, we mea-

sure the utility of both approaches when the total number of users available to cover the

optimizations’ cost is either small (small collaborations) or large (large collaborations). For

both approaches, larger collaborations allow users to collectively buy costlier optimizations

and yield higher utilities. We experiment with a small group of 6 users and a large one with
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(a) Small Collaboration
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(d) Large Collaboration

Figure 3.2: Total utility as a function of optimization cost for different collaboration sizes. Also

showing regret balance (optimization costs minus user payments). AddOn and SubstOn outperform

Regret for a large range of optimization costs, for both additive and substitutive optimizations,

and for both low and high degree of collaboration amongst users. Further, they never incur a loss,

while Regret can incur significant loss. Detailed analysis in §3.6.3.

24 users. We let users pick one service slot, uniformly at random, from 12 slots7. This gives

us an expected number of users/slot of 0.5 and 2, respectively.

7The number 12 was chosen since 2, 3, 4, and 6 divide it perfectly and give us a larger space of parameter
values to experiment with as compared to some other number like 10 or 15. The other parameter values
were chosen to be multiples of 12 for ease of understanding.
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Additive Optimizations

We first consider additive optimizations. We only consider one optimization since optimiza-

tions are independent.

For small collaborations, Figure 3.2a shows that as we move from cheap to costly opti-

mizations, Regret provides good total utility, but then quickly leads to cloud loss, followed

by negative total utility; while AddOn never leads to cloud loss or negative utilities. Nega-

tive utilities by Regret imply that the optimization was implemented but it failed to provide

enough value to justify its implementation. Restricting our attention to the costs where

Regret yields a positive utility, AddOn achieves an average total utility 1.43× higher than

Regret. Further, while Regret leads to cloud loss (curve “Regret Balance” in the figure) at a

cost of 0.18, even for optimizations 7× costlier, AddOn yields substantial utility (taken to be

0.3, 10% of total user value). Regret under-performs against AddOn for two reasons. First,

for cheap optimizations that should be implemented, Regret loses user value while building

up regret. Second, for costly optimizations, Regret suffers a loss and negative total utility

since it implements the optimization even when the available future values is insufficient to

recoup the cost.

For larger collaborations, Figure 3.2b shows that as we move to costlier optimizations,

AddOn provides worse utility than Regret. Intuitively, AddOn looses some opportunities to

implement optimizations because it is more cautious than Regret: To avoid losses, AddOn

only implements an optimization when it is certain to recoup the costs given current informa-

tion. The benefit of Regret, however, is limited: Regret soon starts losing money and leads

to negative total utility. In fact, only in less than 10% of the range where Regret achieves a

positive utility ([0, 4.92]), does it also outperform AddOnand yields no loss. Over the entire

range of costs in [0, 3.0] the average total utility of AddOn is 0.87 while that of Regret is

−0.63.

For large collaborations, AddOn utilities sharply decrease after a point because when

costs increase, the payment per user increases super-linearly, since AddOn prunes out users



80

for whom the payments are larger than the value. No users are pruned by Regret and thus

it sees a linear reduction in utilities with increasing costs.

Interestingly, the range of costs for which Regret makes a loss depends on the number of

users who bid. It yields a loss at a cost of 0.18 for the small group (Figure 3.2a) and 1.80

for the large one (Figure 3.2b). Thus, without knowing the future users, the cloud can not

know when to avoid Regret.

Substitutive Optimizations

To compare SubstOn and Regret in the case of substitutive optimizations, we consider a

scenario with 12 optimizations. Each user selects 3 optimizations, uniformly at random, as

the set of substitutes (Section 3.6.6 experiments with other ratios). Unlike the additive case,

the costs of the 12 optimizations are sampled uniformly from [0, 2c] so that c is the average

optimization cost: this is to simulate that not all substitutes are equally expensive. Thus

the x-axes of Figures 3.2c and 3.2d are the mean value of the optimizations.

Compared to the corresponding additive optimizations in Figures 3.2a and 3.2b, both

SubstOn and Regret achieve lower overall utility. Indeed, with substitutes, each optimization

has fewer users bidding for it and, once an optimization is implemented, the serviced users

no longer pay for the other optimizations. Hence, fewer optimizations are implemented and,

in the case of Regret, there are fewer users over whom the costs can be amortized. In the

scenarios shown, Regret yields a loss earlier than in the additive case.

When averaged over those costs for which Regret yields positive utility, SubstOn yields

1.63× and 3× more utility than Regret for group sizes of 24 and 6, respectively.

3.6.4 Overlap in Usage

The second key parameter that affects utility is how the user values are distributed across

time. We study this parameter using a small group of 6 users collaborating on a single,

additive optimization. We vary the degree of user overlap and its manner. First, we repeat

the experiment from Figure 3.2a while decreasing the total number of slots from 12 to 1.
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Figure 3.3: AddOn vs Regret performance with varying degree of collaboration. (§3.6.4)

Figure 3.3a shows that, with fewer slots to sample from and hence with increased overlap

amongst users, AddOn generates 0.77 to 2.75 more utility, on average, than Regret. Thus,

AddOn gets 25%-91% of the total user value (3.0) as additional utility over Regret. Decreasing

the number of slots, increases the probability that AddOn finds enough value in some slot to

justify implementing the optimization. In contrast, regret accumulation stays unchanged.

Next, we study what happens when user values are spread across an interval rather than

being concentrated in a single time-slot. The setup in Figure 3.3b is identical to the additive

case with the group size of 6 in Figure 3.2a except that instead of bidding for only one slot,

users bid as (si, si + d− 1), where d is the duration of the service and is varied on the x-axis.

si is chosen uniformly at random from 12 slots. Users divide their values, chosen uniformly

at random from [0, 1), equally among all d time slots in their bids. The average extra value

that AddOn generates over Regret increases from 0.77 to 0.98. Indeed, as users spread their

value across multiple time-slots, AddOn becomes more likely to find a single time-slot with

sufficient value to justify implementing the optimization.
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utility of AddOn with users clustered early. (Section 3.6.5)

3.6.5 Arrival Skew

We now consider the small collaboration of 6 users bidding for a single optimization, where

they arrive: (a) uniformly at random in one of 12 slots, (b) early following an exponential

distribution with mean 1.28, (c) late following a distribution that is 12 − t with t sampled

exponentially with mean 1.2. Case (b) simulates datasets that become stale, while (c)

simulates datasets that become popular over time. We look at the ratio of the utility in

different settings to that of the utility of AddOn with early arrivals. Figure 3.4 shows that

total utility by AddOn improves while that for Regret worsens with irregular arrivals. AddOn

outperforms Regret substantially as user arrival becomes non-uniform (and Regret soon

starts generating negative utilities). With skew, AddOn improves due to increased chances

of finding a slot with enough value to pay for all costs. For e.g., with AddOn, early arrivals

can be 6.7× and 1.8× more efficient that uniform and late, respectively. On the other

hand, Regret worsens since skew increases the chance that more regret is accumulated than

8With mean 1.2, the maximum starting time slot of 6 users in 1000 runs was 12 as it is in case (a).
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required9. For e.g., with Regret, at the cost of 0.54, late and uniform arrivals have 16%

and 40% higher total utility than early arrivals, respectively. This points to an interesting

property of the mechanism-design-based approach: the approach performs much better as

non-uniformity increases.

3.6.6 Selectivity of Substitutes

We now vary the selectivity of the substitutes, that is defined as the ratio of the number of

substitutable optimizations to the total number of optimizations. Figures 3.5a and 3.5b show

the total utility for selectivities of 0.75 and 0.25, where each user chooses 3 optimizations

uniformly at random from 4 and 12 optimizations, respectively. The figures show that, with

more selective users, absolute utilities derived by both algorithms decrease. For e.g., Regret

goes from a utility of 1.10 to -0.23 while SubstOn goes from 2.38 to 1.90 for the optimization

cost of 0.36 as selectivity increases. Indeed, with more selective users, the number of users

per optimization decreases and more optimizations have to be be implemented to satisfy

the users. For Figures 3.5a and 3.5b, SubstOn yields an average total utility of 1.0 for

optimizations that are 2.5× and 12.5× costlier than those at which Regret generates utilities

of 1.0, respectively.

Summary. In summary, our mechanism-based approaches not only guarantee truth-

fullness and cost-recovery but also yield utility that frequently exceeds that of Regret. Our

approaches work especially well in scenarios where many users derive significant value from

an optimization during the same time-slot. They under-perform compared to Regret in

scenarios where users value the same optimization but during non-overlapping periods.

3.7 Conclusions

We studied how a cloud data service provider should activate and price optimizations that

benefit many users. We have shown how the problem can be modeled as an instance of

9Regret is computed after every time slot hence it increases in discrete values. The difference in regret
and the optimization cost is wasted value and is smaller for uniform arrival.
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Figure 3.5: Effect of change in selectivities of substitutable optimization on total utility. (Sec-

tion 3.6.6)

cost-recovery mechanism design. We also showed how the Shapley Value mechanism solves

the problem of pricing a single optimization in an offline game. We then developed a series of

mechanisms that enable the pricing of either additive or substitutive optimizations in either

an offline or an online game. We proved analytically that our mechanisms are truthful and

cost-recovering. Through simulations, we demonstrated that our mechanisms also yield high

utility compared with a regret-based state-of-the-art approach.
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Chapter 4

PRICING DATA

In this chapter, we consider the problem of building applications on top of data purchased

online. In particular, we focus on the challenge of keeping track of the data purchased by

applications to avoid charging applications twice in the case they request the same data

twice.

The most common method for selling data online is to make it available through a REST-

ful API [45, 31, 100, 37, 117, 120, 92, 21]. Existing APIs enable buyers to submit requests

for data in the form of parameterized queries. For example, to purchase data from Twitter,

one can specify keywords of interest, say a username, in the API call and Twitter returns all

activity, up to an API defined limit, from the user. Typically, sellers charge buyers based on

how much data they purchase. That is, the cost of an API call is the sum of the cost of the

tuples returned by that call [117].

In many scenarios, buyers need to make repeated calls to the seller’s API. One example

is when purchased data drives an application and the use of that application determines the

data that needs to be purchased. In those scenarios, buyers may inadvertently purchase the

same data twice. In fact, it is hard to build applications that never purchase the same data

again. We illustrate with a concrete example:

Example 4.0.1. Bob sells data on how many people have visited a given business (exam-

ples of such services are Yelp [121] and Foursquare [41]). To do so, Bob provides an API

checkins(lat, long, r, t), where (lat, long) define the latitude and longitude of a

circle’s center with radius r. checkins returns the list of users who have visited businesses,

after a timestamp t, that lie in the circle.

In our example, Alice first makes an API call, checkins(x1, y1, r, t), waits for some
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1 2 3 4 

Figure 4.1: An illustration of the limitations of REST data APIs. Bob sells data that returns a

list of users who have visted any business in a user-specified region after a certain timestamp.

The data API takes a center point, a radius, and the time; it then returns the user list, who

have visited a business that lies in the circle defined by the center after the specified time. In

the illustration, Alice makes two API calls with identical radius and times. The first API call

returns users in the regions 1, 2, and 3. Then, new users visit the region 3. Following this,

Alice makes another API call with a different center point such that the resulting region

partially overlaps with the region from the first API call. With today’s pricing methods,

Alive will pay twice for data in region 2 and the old data from region 3.

time, and makes another API call, checkins(x2, y2, r, t), for a different center but the same

radius. In Figure 4.1, the first call refers to the areas 1, 2, and 3; while the second refers to

the areas 2, 3, and 4. Between the two calls, some businesses in area 3 recieve new visits.

Currently, if Alice executes the two queries, she will pay twice for the data in area 2 and

for the old data from area 3. Since she does not know what updates were made to the data,

she must make the API call to know if the data were updated.

To alleviate this problem, Alice can change the time in the second call to t + 1 so that

she only gets the updates. But even then, she may end up paying for redundant data if there

were any checkins with time t > t + 1 in her first call. This happens when such customers
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visit a business in regions 2, 3, or 4 after time t + 1, thus, being part of the answer returned

to Alice during both API calls. In fact, in this example, it is impossible to avoid overpaying

with the current APIs.

However, even for static datasets for which Alice is aware that no updates will be made

to the data, to avoid paying twice for the data in regions 2 and 3, Alice must make multiple

calls representing many tiny circles that exactly cover the area 4 and nothing outside it1.

Today, sellers only keep track of the total amount of data purchased by a buyer but not

the details of the purchased data. A primary drawback of only storing limited data about

user purchases is that they put the burden on the buyer to never purchase the same data

twice. However, for a buyer who makes multiple calls to the APIs where some tuples that

were purchased previously are purchased again, she will pay more than once for data that

she already bought through earlier queries.

Sellers may store additional information to enable pricing that accounts for prior API

calls, but that can impose space and time overheads that are in the order of the data size

and the number of previous API calls.

Alternatively, buyers may attempt to cache the result of API calls and modify their API

calls to only ask for new data. Caching will, however, be unusable in the following cases:

• Updates: For datasets such as weather and traffic, the underlying data is updated over

time. In such cases, it may not be possible to predict when the updates are made to

the subset of data that a buyer is interested in and the only way to know of an update

is to redo the call to the data API.

• Caching restrictions: Some APIs such as Yelp [121] prohibit all forms of caching of the

their data, while others, such as Twitter [107], prohibit caching of certain forms of data

while permitting caching for the other parts of the data. Thus, even if the buyer knew

1Only a finite number of such API calls are needed since we assume the domains for lat, long, radius

to be finite.



88

that they would require a newly purchased data item in the future, they are prohibited

from caching it and reusing it when the need arises.

Thus, in both circumstances above, the buyer can not avoid making multiple API calls

and must incur the cost of repeat purchases of the same data.

An alternative is to store enough information about a buyer’s purchase history so that

the seller can figure out if a data item has already been paid for by the buyer. It may be

beneficial for sellers to provide a service that only charges for data once so as to enable price

discrimination. Although there are customers who may pay the full price of the data and not

worry about paying extra, there are price-conscious customers who may not buy the dataset

unless the data is available within their budget. Providing an avenue for such customers to

optimize and reduce their data costs can increase revenues.

As we evaluate in §4.5, the computational overhead of storing the purchase history at the

seller is significant. Moreover, this might dissusade those customers who prefer that their

querying history not be stored permanently at the seller.

To address the above challenges, in this chapter, we propose lightweight modifications to

data APIs to achieve the following three goals:

1. Optimal history-aware pricing: We provide a method to price API calls so that buyers

are only charged once for data that they have purchased and that has not been updated.

We refer to this as history-aware pricing.

2. Constant overheads: We provide a method to support history-aware pricing that only

requires the seller to store a constant amount of state per buyer. Currently, sellers do

store such information so as to keep track of a user’s aggregate use of their services.

3. Anonymity: In addition to the above cost and performance properties, we also provide

anonymity to the buyers about what data they purchase and when the purchases are

made. That is, the seller need not retain any identifying information about the user

that can recreate a user’s query history.
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The key idea behind our approach is the notion of refunds: buyers buy data as needed

but have the ability to ask for refunds of data that they had already purchased before. Thus,

the payment for data is conducted in two steps: the usual payment when data is received

and another round where the buyer asks for refunds. While asking for refunds, the buyer

proves to the seller that she has been charged multiple times for the same data. The proofs

are constructed so as to protect against tampering by the buyer even when the buyer is not

truthful or can collude with other buyers.

In this chapter, we make the following contributions:

1. In §4.3, we propose the notion of refunds as a way to provide optimal, history-aware

pricing for data APIs. We describe the construction of refunds for a single-buyer setting

with no updates and prove properties about the correctness and optimality of such a

system.

2. In §4.4, we propose a generic and extensible framework to support refunds. We then

show how it can be extended to accommodate multiple buyers, updates, and optimiza-

tions to reduce the computational and communication overheads of using refunds.

3. In §4.5, we evaluate empirically and compare the refund-based approaches to ap-

proaches that store user history at the server as well as approaches that do not provide

optimal pricing. We show that even for workloads that make 100 API calls, significant

cost savings, from 10× to 99×, can be obtained through the use of refunds, compared to

history-agnostic pricing. The associated performance overheads, compared to history-

agnostic pricing, are no larger than 2× in the best case (when no refunds need to be

asked) and 5× in the worst case (when the entire query is repeated). We find that the

optimizations we develop in §4.4 cut overheads by a factor of 12× for group coupons

as compared to individual tuple-based coupons.

We first define our problem setting and describe two algorithms, that are not based on

refunds, to manage the pricing of API calls. In §4.5, we compare these algorithms against

the refund-based pricing framework.
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4.1 Problem Description

We first define the pricing functions, our settings and the attack model for the buyer. In our

setting, Alice runs an application that acquires data from Bob, the data seller. Bob charges

Alice separately for each output tuple in her answer set.

We assume a single relation D with schema R(tid, ver, A1, . . . , Am). Here the column tid

is a primary key and ver indicates the version number of the tuple. The version numbers are

initialized to 0 and are incremented every time an update is made to the tuple. We treat the

version numbers as a space overhead of our approach. The pricing function generates a price

per output tuple; that is, for a query Q over D, there is a pricing function p that assigns a

price to each output tuple t ∈ Q, and the price of the result is
∑

t∈Q p(t). This is a common

way [117] to price relational data in commercial data markets. In the rest of the chapter, we

assume that all tuples have the same price (taken to be a unit of some currency), but the

techniques generalize to cases with non-uniform prices.

The query Q is a conjunctive query with unions but without joins and has the following

form in SQL:

SELECT tid, ...

FROM R

WHERE ...

The WHERE clause contains a list of predicates and the SELECT clause does not contain

any aggregates.

When Alice issues a query Q, Bob executes it and computes its price. Informally, our

goal is to price a sequence of Alice’s queries (Q1, Q2, . . . , Qm) so that she only pays once for

each tuple that belongs to any query, irrespective of how many queries the tuple belongs to.

For any framework that provides optimal history-aware pricing, our desiderata are:

1. Minimize state at the seller.

2. Minimize processing at the seller.
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3. Keep data transfer overheads low.

4. Minimize query latency overheads.

4.2 Näıve Approaches

We now look at two classes of solutions to manage pricing: the first does not provide optimal

pricing, in the sense that Alice would pay multiple times for the same tuple she purchases;

the other does provide optimal history-aware pricing, but does not satisfy the first two

requirements of the desiderata.

The näıve way to compute the prices in our setting is through two queries: ‘result =

Q(D)’ followed by ‘SELECT COUNT(*) FROM result’. Bob charges the amount calculated in

the second query to Alice and returns a cursor to result. The two queries belong to a

single transaction to prevent the data from being updated between the time when the price

is computed and the cursor to Q is returned. We call this method CountBlock, where ‘Block’

indicates that the query’s cost is computed before the cursor to the query’s answer is returned

to Alice. Another approach is to count the query cardinality as Alice advances the cursor.

We call the latter approach CountStream. Note that both CountBlock and CountStream

store no user query history at the seller, and hence they will charge Alice for each tuple that

is returned, even if the tuple was purchased by Alice in a previous query.

Another approach is for Bob to track the tuples purchased by Alice. Bob stores a bit

for each tuple from relation R and does so for each user. Whenever Alice buys a tuple,

the associated bit is set; while, whenever Bob updates a tuple, the corresponding bit is

cleared. Algorithm 4 captures the details of this approach. As before, the above steps are

encapsulated in a single transaction to prevent updates to the data between the time when

the price is computed and when the cursor to Q is returned. We refer to this approach as

HistoryPricing. One drawback of this approach is that the seller must provide durable

storage for user history. Another drawback is that buyer purchases can no longer be anony-

mous.
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Algorithm 4: HistoryPricing
Input : Query Q and user id u.

Output: Maintains the total cost of data purchased by Alice and computes the query answer.

begin
// costs(uid, cost) stores the cost of all of user uid’s purchased tuples.

// history(uid, history) stores a bit vector, for user uid, to remember their purchased tuples.

cost ← SELECT cost FROM costs WHERE uid = u

history ← SELECT history FROM historyStore WHERE uid = u

tidList ← SELECT t.tid FROM (Q) AS t

foreach id in tidList do

if history[id] == 0 then
cost ← cost + 1

history[id] ← 1

UPDATE costs AS t SET t.cost = cost WHERE t.uid = u

UPDATE historyStore AS t SET t.history = history WHERE t.uid = u

return cost, Q

4.3 Refunds

In this section, we propose refunds as a new mechanism to achieve optimal, history-aware

pricing of a sequence of queries. With support for refunds, Alice can make multiple API calls

without any modification to her queries. If she makes repeated purchases, they are identified

and the extra amount she paid for the repeated purchases are refunded by Bob to Alice.

To support refunds, Bob computes additional information, called refund coupons, which

he returns along with the results of Alice’s queries. Bob continues to charge Alice as he

normally would, without accounting for any previous queries from Alice. The coupons are

designed so that if there is a common tuple tid = id in the result of two different queries,

there is a coupon from the first query and a corresponding coupon from the second query

such that Bob can inspect the two coupons to determine that they refer to the same tuple

with tid = id. Given this, Bob knows that Alice was charged twice for id and he can

refund the price of the tuple. It is Alice’s responsibility to store the coupons, to detect

repeat purchases, and to use the coupons to ask for refunds.

We now formally define the protocol to support refunds for a single seller and a single
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buyer over a static database. We then generalize the protocol to multiple buyers and to

support updates. In §4.4, we consider specialized optimizations to reduce the overheads of

supporting refunds.

We define the protocol by the messages Alice and Bob send to each other. The proto-

col begins when Alice sends a query Q to Bob. Bob sends back two messages: Q(D) and

refunds(Q, D). Both messages are sets of tuples with the following properties:

1. The schema for refunds(Q, D) is (tid, qid, digest), where tid is a tuple identifier,

qid is a query identifier, and digest is the output of a hash function. The schema for

refunds is independent of the schemas for Q and D. We call each tuple in refunds(Q,

D) a coupon where coupon c is defined as

c = (id, τ,H(id⊕ τ ⊕ κ)) (4.1)

Here id is the tuple identifier; τ is a unique identifier assigned by the server to each

query such that τ is monotonically increasing; H is a cryptographic hash function, SHA1

in our implementation; ⊕ is the XOR operation2; and, κ is a secret key only known to

Bob. In the single-buyer protocol over static data, τ is an integer that is initialized to

0 and is incremented for each query Alice sends to Bob.

2. There is a one-to-one correspondence between tuples in refunds(Q, D) and tuples in

Q(D). That is,

∀t ∈ Q(D),∃ρ ∈ refunds(Q, D) : t[tid] = ρ[tid], and

∀ρ ∈ refunds(Q, D),∃t ∈ Q(D) : ρ[tid] = t[tid]

We assume that Alice asks for full queries, that is Q does not project out any columns.

In case Alice gets the same tuple, with tid = id twice, from queries Q1 and Q2, she will

also get two coupons c1 and c2 such that c1[tid] = c2[tid] = id. Note that we have assumed

2For simplicity, we assume that the different ids are integers. If not, they can be cast into a string type,
such as text in PostgreSQL, along with the use of string concatenation in place of XOR.



94

that all tuples are identically priced3. If Alice detects repeat purchases, she can ask Bob

for a refund by sending a message consisting of a pair of coupons for the same tuples. Bob

verifies that the hash values of the returned coupons are the ones he previously computed

and credits the refund to Alice. We call this protocol BasicRefunds. Formally, BasicRefunds

is defined as follows:

1. Alice sends a refund message ρ = 〈c1 = (id1, τ1, h1), c2 = (id2, τ2, h2)〉.

2. Bob verifies the following: (a) id1 = id2, (b) τ1 < τ2, and (c) ∀i ∈ {1, 2} : hi =

H(idi ⊕ τi ⊕ κ).

Intuitively, the refund message ρ asks a refund for tuple id = id1 = id2 purchased for a

query with qid = τ2 using the coupon for the same tuple purchased with a previous query

with qid = τ1.

We now define the criteria for safety and optimality of any refund-based pricing protocol.

Let W = (M1, . . . ,Mnq+nr) be a sequence of messages from Alice to Bob consisting of nq

queries and nr refund requests, where each Mi is either a query Q or a refund request ρ.

Let T (W ) = {(t1, n1), . . . , (tm, nm)} be the set of all tuples purchased by Alice over the nq

(possibly different) queries in W along with their counts. Given that p : tid → R is the

function that assigns prices to tuples, we denote by P (W ) the amount Alice pays for the

queries in W :

P (W ) =
∑
Q∈W

∑
t∈Q(D)

p(t[tid]) =
∑

(t,i)∈T (W )

i ∗ p(t[tid]) (4.2)

Similarly, R(W ) denotes the amount Bob refunds to Alice after processing W :

R(W ) =
∑
ρ∈W

p(ρ[tid]) (4.3)

The two properties are now defined as:

3For non-uniform prices, use the coupon c = (id, p,H(id⊕ p⊕ κ)), where p is the tuple’s price.
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Safety A refund protocol is safe if Alice must pay at least once for each tuple she has

purchased. Formally,

∀W : P (W )−R(W ) ≥
∑

(t,n)∈T (W )

p(t[tid]) (4.4)

Optimality A refund protocol is optimal if there is a way to ask for refunds so that Alice

never overpays. Formally, if Q1, . . . , Qnq are the queries in W and ρ′i are refunds, then,

∀W ∃W ′ = (Q1, . . . , Qnq , ρ
′
1, . . . , ρ

′
nr′

) : P (W ′)−R(W ′) =
∑

(t,n)∈T (W )

p(t[tid]) (4.5)

That is, given the queries in a message sequence W , it is always possible to request

refunds to obtain the maximum possible safe refund.

Before we analyze the safety and optimality of the BasicRefunds, we note that Alice

only controls three aspects of the refund protocol: when she asks for refunds, the number of

refund messages, and the coupons she uses for her refund messages. Note that she can not

forge or create coupons of her own since H is a cryptographic hash and the secret key κ is

only known to Bob. Thus, any hash value that Alice may try to forge will differ from the

one Bob will compute when he verifies a refund request.

Lemma 4.3.1. BasicRefunds is optimal.

Proof. We use induction on the number of queries in W . The base case is of an empty

sequence. It is easy to see that in this case no refunds are required. For the inductive case,

we assume that for i − 1 queries (Q1, . . . , Qi−1), there is a sequence, Wi−1, of queries and

refunds, that computes the optimal refund. For a new query Qi, let the refund messages be

(ρi1, . . . ρik) where each ρij is a refund for a tuple t that has been purchased before. Refund

ρij is constructed by taking the coupon for t, received with query Qi, and any coupon for

the same tuple id tid = t[tid] received with a previous purchase. Then the sequence is

Wi = Wi−1 · Qi · ρi1 · . . . · ρik is optimal. Let Tnew = {t ∈ Qi(D) ∧ (t, n) /∈ T (Wi−1)} and

Told = {t ∈ Qi(D) ∧ (t, n) ∈ T (Wi−1)}. Then,
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P (Wi)−R(Wi) = P (Wi−1) + P (Qi)−R(Wi−1)−
k∑
j=1

R(ρij)

= P (Wi−1)−R(Wi−1) +
∑

t∈Tnew

p(t[tid]) +
∑

t∈Told

p(t[tid])−
k∑
j=1

R(ρij)

= P (Wi−1)−R(Wi−1) +
∑

t∈Tnew

p(t[tid]) +
∑

t∈Told

p(t[tid])−
∑

t∈Told

p(t[tid])

= P (Wi−1)−R(Wi−1) +
∑

t∈Tnew

p(t[tid])

=
∑

(t,n)∈T (Wi−1)

p(t[tid]) +
∑

t∈Tnew

p(t[tid])

=
∑

(t,n)∈T (Wi)

p(t[tid])

Hence, Wi is optimal.

BasicRefunds is not safe, though. Given any non-empty sequence of messages W , W can

repeat a non-empty query q, and repeatedly ask for refunds of a single tuple. That is, if

〈c1, c2〉 is a legitimate refund request, Alice keeps sending the request multiple times and can

thus get more as refunds than the cost of the data itself.

To handle this case, we modify BasicRefunds to MonotoneRefunds. MonotoneRefunds is

both safe and optimal. To implement the protocol, Bob maintains an expected query id τexp

for refunds by Alice. This is initialized to 0 when Alice registers with Bob. The protocol is

as follows:

1. Alice sends a 〈 BEGIN REFUND τ 〉 message. Here τ is a query id.

2. Alice sends one or more refund messages. Each refund message ρ = 〈c1 = (id, τ1, h1), c2 =

(id, τ, h2)〉 uses the same query id τ for the second coupon as the τ specified in the 〈

BEGIN REFUND τ 〉 message.

3. Alice sends a 〈 END REFUND τ 〉 message.

4. Apart from checking that the digest of the message is equal to the computed hash value

as in BasicRefunds, Bob also checks that (a) there is only one refund message for each

tuple with tid = id, (b) the query id of all second coupons, τ are identical and equal

to the τ is the 〈 BEGIN REFUND τ 〉 message, and (c) τ ≥ τexp.
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5. If any of the conditions are not met, all the coupons in the BEING ...END block are

rejected. Otherwise, Bob credits the total refund to Alice and updates τexp to τ + 1.

To check the uniqueness of refund messages in Step 4, Bob can use a hash table. To

directly check the uniqueness within a DBMS, Bob can also store the refunds in a tem-

porary table, tempRefunds, and run: SELECT 1 FROM tempRefunds GROUP BY tid HAVING

COUNT(*) > 1. A non-empty answer indicates a repeated refund.

Lemma 4.3.2. MonotoneRefunds is optimal.

Proof. If τlatest is the latest query id whose coupons have not been used for refunds, then

τexp ≤ τlatest. This is because all refunds issued in W must have a query id τ ≤ τlatest−1 and

hence, τexp ≤ τlatest by definition. Given this, the construction of the refunds in the proof for

Lemma 4.3.1 is also valid for MonotoneRefunds and hence, it is optimal.

We prove a stronger safety property about individual tuples that implies our original

safety definition for queries.

Lemma 4.3.3. For each tuple t, let k ≥ 1 be the number of queries by Alice that con-

tain t, and let r be the number of valid refund messages that request a refund for t, then,

MonotoneRefunds ensures that k − r ≥ 1 at all times.

Proof. Let the tuple be t. We prove the safety by induction on the length of W . The base

case is trivially true when the first query that includes t is executed. Note that with a single

query including t, valid refund messages can not be constructed, since the two coupons in

the refunds must have different query ids τ . Thus k = 1 and r = 0 and the base case is

satisfied.

For the inductive case, given a message sequence Wn−1 of length n−1 with kn−1 = k ≥ 1

queries containing t and rn−1 = r − 1 refunds, such that kn−1 − rn−1 ≥ 1, we consider Mn,

the nth message. There are four cases:
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1. Mn is a query Q. If it returns the tuple t, then, kn = kn−1 + 1, else kn = kn−1. Since

there are no refunds, rn = rn−1. Thus, kn − rn ≥ 1.

2. Mn is a BEGIN REFUND message. In this case, kn = kn−1 and rn = rn−1 and thus,

kn − rn ≥ 1.

3. Mn is a valid refund message ρ = 〈c1 = (t′, τ, h1), c2 = (t′, τ, h2)〉. If Mn is not a valid

message for t, that is t′ 6= t, neither k nor r change. Otherwise, by the induction

hypothesis: k − (r − 1) ≥ 1. Thus, k ≥ r.

(1) If k ≥ r + 1, then the ρ makes rn = rn−1 + 1 = r and kn − rn = k − r ≥ 1 by

assumption.

(2) If k = r, then consider the r − 1 previous refunds. They must use coupons from

r distinct query ids. This is because the first refund uses two distinct query ids (by

the construction of coupons) and all r− 1 refunds use their second coupons from r− 1

different queries, since only one refund coupon for a tuple is allowed in a BEGIN REFUND

...END REFUND block and τexp is incremented after each valid END REFUND. Thus, the

r − 1 previous refunds have used coupons from r queries. Since k = r, the expected

query id in the refund Mn must be at least one more than the query id of the kth query

that contains t. But since no unused coupon for t exists, the refund Mn is not a valid

coupon. This is a contradiction.

Thus, the kn − rn = k − r ≥ 1 holds.

4. Mn is a END REFUND message. In this case, kn = kn−1 and rn = rn−1 and thus,

kn − rn ≥ 1.

Thus, MonotoneRefunds is safe for tuple t.

Lemma 4.3.3 implies Definition 4.4. Givne that I(t, ρ) is an indicator variable that gives
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1 if ρ[tid] = t[tid] (ρ is a valid refund for tuple t) and 0 otherwise,

P (W )−R(W ) =
∑

(t,k)∈T (W )

k ∗ p(t[tid])−
∑
ρ∈W

p(ρ[tid]) (Defs 4.2, 4.3)

=
∑

(t,k)∈T (W )

k ∗ p(t[tid])−
∑

(t,n)∈T (W )

∑
ρ∈W

I(t, ρ) ∗ p(t[tid])

=
∑

(t,k)∈T (W )

k ∗ p(t[tid])−
∑

(t,n)∈T (W )

p(t[tid])
∑
ρ∈W

I(t, ρ)

=
∑

(t,k)∈T (W )

k ∗ p(t[tid])−
∑

(t,n)∈T (W )

r ∗ p(t[tid])

=
∑

(t,k)∈T (W )

(k − r) ∗ p(t[tid])

≥
∑

(t,k)∈T (W )

p(t[tid]) (Lemma 4.3.3)

Thus, MonotoneRefunds is both optimal and safe.

4.4 Extensions and Optimizations

We now consider extensions and performance optimizations that generalize the protocols to

more realistic settings.

4.4.1 Extensions

In the protocols described in the previous section, the safety and optimality proofs continue

to hold as long as the tuple ids are such that different tuples have different ids and identical

tuples have the same id, irrespective of the query to which the tuple belongs. This observation

allows us to easily extend the protocols to support more than one user and handle updates.

Multiple Buyers If there is more than one buyer, we change the tuple identifiers to also

incorporate the user id. That is, the new tuple id is (id, uid) where id is the tuple’s id (as in

the single-buyer protocols) and uid is a unique id assigned to each user. The coupons thus



100

look as follows:

c = ((id, uid), τ,H(id⊕ uid⊕ τ ⊕ κ))

With the updated construction for the coupons, different users will be assigned different

tuple ids for the same tuple, while identical tuples for a user will continue to be assigned

identical tuple ids. Thus, a buyer can not use refund coupons from another buyer, but can

continue to use her own coupons as in the single-buyer setting.

Updates We can also support updates by modifying the tuple ids. This is applicable when

updates to a tuple are priced as if the update is a new tuple. Thus, if Alice purchases tuple

t1 in her first query, then purchases t1 again in her second query, followed by an update to

t1, denoted now by t2, followed by another purchase of t2, then, she should be charged for t1

in her first query, then refunded in the second, and eventually charged only once more for

t2.

To support updates, Bob maintains a version number, v, for each tuple that is incremented

after each update. This version number is now included in the tuple id used for constructing

the refund coupons:

c = ((id, uid, v), τ,H(id⊕ uid⊕ v⊕ τ ⊕ κ))

Thus, only identical versions of a tuple have the same tuple id. Version numbers impose a

storage overhead but they are useful for other purposes and are maintained by many systems

by default. For example, the SDSS [99] adds version numbers to their data releases and

SciDB [98] provides a no-overwrite storage system with versioning. So, in many applications,

versions already exist.

4.4.2 Group Coupons

MonotoneRefunds, described in §4.3, only computes one coupon per tuple. This leads to a

large number of refund messages, each of which is an API call to Bob, when asking for refunds.



101

As Figure 4.5 shows, the overhead of processing refunds can be an order of magnitude larger

than the query time.

To reduce this overhead, we generalize coupons to allow Bob to group coupons that can

be used to refund a group of purchased tuples with a single coupon. With group refunds,

Bob sends back both the coupon for individual tuples, which are represented as groups of

cardinality 1, as well as group coupons for tuple groups of his choosing.

The key idea to construct group coupons is to make a unique group id (instead of a tuple

id) such that no two groups with different tuples (and with possibly different versions) have

the same group id and all groups with identical tuples have the same group id. Bob must

provide a way to compute such group ids and also provide a function, contains : id, gid →

{true, false}, that returns true if a tuple with tuple id id belongs to the group with id gid.

The group coupon is constructed as follows:

c = ((gid, uid, gv), τ,H(gid⊕ uid⊕ gv⊕ τ ⊕ κ))

Here gv is the group version number and is equal to the sum of the version numbers of the

tuples that belong to the group. Another interpretation of gv is that it is the total number

of updates made to tuples in the group.

For group refunds, the amount Bob refunds to Alice is the total cost of the tuples in the

group. Let I(t, ρ) be an indicator variable with value 1 if contains(t[tid], ρ[gid]) = true (ρ is

a valid group refund for a group containing tuple t), and 0, otherwise. Then, for a workload

W , the total refunds, R(W ), are:

R(W ) =
∑
ρ∈W

∑
(t,n)∈T (W )

I(t, ρ) ∗ p(t[tid]) (4.6)

To use group refunds, we modify MonotoneRefunds to GroupRefunds by changing the

test to validate a refund message ρ = 〈c1, c2〉 in Step 4 as:

Apart from checking that the digest of the message is equal to the computed hash

value as in BasicRefunds, Bob also checks that (a) at most one group coupon
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contains a tuple with tuple id id, (b) the query id of the latest coupon in the

refund message, that is c2[qid], is equal to τ is the 〈 BEGIN REFUND τ 〉 message,

and (c) τ ≥ τexp.

We emphasize that Bob may compute coupons where the same tuple may belong to more

than one group coupon, but in the refund protocol, Alice can only request refunds using one

group coupon for each tuple. Thus, more than one group coupon that include a common

tuple can not be used simultaneously in the same refund round.

Lemma 4.4.1. GroupRefunds is both optimal and safe.

Proof. GroupRefunds is optimal since all the refunds for individual tuples are also returned

to Alice by Bob, along with group refunds with more than one tuple in the group. Thus,

the construction for optimal refunds, as outlined in Lemma 4.3.2, continues to work for

GroupRefunds as well.

Similarly, the only change in the safety proof for MonotoneRefunds, Lemma 4.3.3, occurs

in Step 3, where instead of checking if the tuple t has the same id as the refund message, we

check if the tuple belongs to the group denoted by the id in the refund message. Given that

GroupRefunds is safe for individual tuples, the following holds:

P (W )−R(W ) =
∑

(t,k)∈T (W )

k ∗ p(t[tid])−
∑
ρ∈W

∑
(t,n)∈T (W )

I(t, ρ) ∗ p(t[tid]) (Defs 4.2, 4.6)

=
∑

(t,k)∈T (W )

k ∗ p(t[tid])−
∑

(t,n)∈T (W )

p(t[tid])
∑
ρ∈W

I(t, ρ)

=
∑

(t,k)∈T (W )

k ∗ p(t[tid])−
∑

(t,n)∈T (W )

r ∗ p(t[tid])

=
∑

(t,k)∈T (W )

(k − r) ∗ p(t[tid])

≥
∑

(t,k)∈T (W )

p(t[tid]) (From the paragraph above.)

Hence, GroupRefunds is both safe and optimal.
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Figure 4.2: Group identifier assignment for tree-structured group coupons. The tree is built

for a database with 8 tuples. It is a balanced binary tree where each node, including the

leaves, is assigned an identifier (height, id), where height is the height of the node (leaves

are at height 0), and id is the node’s order amongst the nodes at its height, where the leftmost

node is assigned the id 0, the next node to the right the id 1, and so on.

There are various ways to group tuples when computing group coupons since any arbitrary

subset of tuples in the answer can be a valid candidate. We now show a tree structured group

coupon construction scheme for general conjunctive queries.

Tree-Structured Group Coupons

We now present a tree structured grouping of tuples. In our construction of tree-structured

coupons, we require that tuple ids be integers.

Figure 4.2 illustrates how the group coupon identifiers are constructed and how the groups

are formed. We construct a binary tree by treating all the tuples of the relation R, order

by id, as leaves. The group identifier of the leaves is (0, id). The next level of the tree is

constructed by successively grouping nodes with ids 2n and 2n+ 1 to give a group identifier

(1, n). Here, 1 represents the height of the node. The higher levels of the tree are constructed

recursively, by combining the nodes at the lower levels. We stop combining nodes when we



104

only have one node, which forms the root of the tree. Note that we pad the database so that

its cardinality is always a power of 2. With this construction, a group node with group id

(h, n) is a group that includes all rows with ids in {2hn, . . . , 2h(n+ 1)− 1}.

Formally, the hash digest for tree coupons is computed as follows:

treeHash(uid, height, id, version, qid) = H(uid⊕ height⊕ id⊕ version⊕ qid⊕ κ)

(4.7)

While asking for a refund, and to reduce the number of refund requests Alice makes, she

asks for the largest valid group refund, that is the group refund with the maximum height

such that all the tuples in that group are eligible for a refund.

There are different ways to compute tree-structured coupons and we find that the spe-

cific algorithm affects performance. We now describe two algorithms to construct the tree-

structured coupons given a query.

We construct the coupon trees in two ways: StreamTree (Algorithm 6) and BlockTree

(Algorithm 5). In the BlockTree algorithm, the entire set of certificates are computed before

the query’s answer is returned to the user; while for the StreamTree algorithm, the certificates

are computed as the cursor moves forward through the query’s result set.

BlockTree, outlined in Algorithm 5, works by inserting the leaves for the current query

Q into the working space, table tempTable. It then performs a series of group-by-having

aggregation SQL queries to construct the layer one level above, and so on. The algorithm

is blocking in nature, since the ids of the query’s output tuples must be first inserted into

tempTable before the query’s answer can be returned.

We can also define a modification to BlockTree that avoids computing the query twice,

once at Line 2 while populating tempTable with the leaves and another at the end in Line 3.

We call this modification BlockTreeInt where the query Q is evaluated once and stored in

a relation result in memory. This is done before Line 1. Subsequently, references to Q in

Lines 2 and 3 are replaced by references to result. This approach can be potentially useful

when evaluating the query is expensive.
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Algorithm 5: BlockTree Coupon Construction
Input : Query id τ , query Q, user id u.

Output: Compute the coupons and the query.

begin
// tempTable has schema (height, id, version).

// refunds has schema (uid, height, id, version, qid, digest).

tempTable ← ∅

refunds ← ∅

shiftval ← 1

height c ← 0

1 INSERT INTO tempTable

2 SELECT height, t.id, sum(t.ver) FROM Q AS t GROUP BY height, t.id;

while true do
INSERT INTO tempTable

SELECT height + 1, t.id >> shiftval

FROM tempTable t

WHERE t.height = height c

GROUP BY height + 1, t.id >> shiftval

HAVING COUNT(*) > 1;

// Below, in PostgreSQL, FOUND returns TRUE if the previous SQL query returns a non-empty answer.

if NOT FOUND then
break

height c ← height c + 1

// treeHash computes the hash as described in Equation 4.7.

INSERT INTO refunds

SELECT u, height, id, τ, treeHash(u, height, id, ver, τ)

FROM tempTable t;

3 return (SELECT * FROM refunds), Q

The StreamTree algorithm works by ordering the results of a query by the primary key

id and making a single pass over the data while adding an extra UDF that includes the

code described in Algorithm 6. As the buyer advances the cursor, the temporary workspace,

tempTable, is gradually populated with the tree for the query. For example, in Figure 4.2,

if a query selects all the nodes, the nodes that are added to tempTable would be the order

seen by a post-order traversal of the tree.
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Algorithm 6: StreamTree Coupon Construction
Input : Query id τ , version ver, user id u, tuple id idIn.

Output: Updates tempTable to incrementally compute the coupons.

begin
// tempTable has schema (height, id, version).

height c ← 0

id c ← idIn

while true do
INSERT INTO tempTable (height, id, version) VALUES (height c, id c, ver);

if id c % 2 == 0 then
break

else if EXISTS (SELECT 1 FROM tempTable WHERE height = height c AND id = id c - 1) then
height c ← height c + 1

id c ← id c >> 1

ver ← ver + (SELECT version FROM tempTable WHERE height = height c AND id = id c - 1)

else
break

4.5 Evaluation

We now experimentally evaluate the performance of the various refund protocols and their

implementations.

We answer the following questions:

1. How much can Alice benefit from paying only once for tuples and what performance

penalty, if any, should she expect in lieu of this benefit?

2. How costly is it to compute group coupons versus computing only per-tuple coupons?

Further, how much time do group coupons save when asking for refunds compared to

single-tuple coupons?

3. How do the näıve approaches (§4.2) to pricing, i.e., CountBlock, CountStream, and

History perform compared to the refund-based approaches (§4.4.2), i.e., MonotoneRefunds,

BlockTree, BlockTreeInt, and StreamTree?

We run all experiments on a single server running PostgreSQL 9.4 over OS X 10.10.5,

equipped with a 2.7 GHz Intel Core i7 processor and 16 GB DDR3 RAM. We use the SHA1
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implementation of the module pgcrypto. The client resides on the same machine as the

database.

The data setup for the experiments consists of a binary relation with two integer columns,

(tid, val) in a table, test, with 524,288 (219) rows. Column tid is a primary key starting

with a value of 0, while val is an integer column where the values are a random permutation

of {0, . . . , N − 1} where N is the size of test.

The query workload consists of queries that ask for tuples satisfying predicates within

a randomly chosen range of sizes in {1, 8, 64, 512, 4096}. We consider the following classes

of queries: pkey.simple performs a range selection on the primary key, which is the key

on which the data is sorted on disk and has a clustered index; and other.simple, which

performs a range query on the column val over which no indices have been constructed.

The queries are:

pkey.simple:

SELECT * FROM test WHERE tid >= l AND tid <= u

other.simple:

SELECT * FROM test WHERE val >= l AND val <= u

For identical values of l and u, the queries return answers with identical cardinalities.

4.5.1 Overall Results

We now investigate the benefits of optimal history-aware pricing and the associated perfor-

mance penalty of approaches that can achieve such pricing.

In Figure 4.3, we simulate the amount of money a buyer must pay with different ap-

proaches. We construct a workload with 100 instances of pkey.simple. On the x-axis we

vary the size of the ranges, that is, u− l+ 1, while we use different distributions for selecting

the value of l: Uniform, which chooses l uniformly at random, and Zipf(α), which selects l

from a heavy-tailed distribution where some values are significantly more likely than others.

We experiment with α ∈ {1.7, 2, 3}, which enables us to vary the degree of the skew. We
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Figure 4.3: Amount paid for data with different distributions for the parameters of

pkey.simple. “Total” is the amount paid if history-aware pricing is not used, while the

other plots show the amount paid with history-aware pricing. “Uniform” denotes the case

when the query’s parameters are chosen uniformly at random, while “Zipf” denotes the

case(s) where the query parameter l is chosen by sampling from the given Zipf distribution.

run 100 such simulations and take the average amount of money that the buyer must pay.

For reference, we also plot the cost of the data if no history-aware pricing is employed such

as with CountBlock. This is denoted by “Total.”

As expected, with Uniform distribution, it is unlikely that the user may buy the same

data across different queries, especially when the range is small. It is only at large ranges

that noticeable differences are seen: refund-based pricing is 1.2× and 1.4× cheaper at ranges

of sizes 2048 and 4096, respectively. But savings are dramatic for skewed distributions. With

α = 1.7, the history-aware pricing for point queries (range size as 1) is 10× cheaper than

history-agnostic pricing, while for α = 3, it is 19× cheaper. For large range sizes, Alice buys

data that is 99× cheaper than a history-agnostic approach such as CountBlock.
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Figure 4.4: Total time, in milliseconds, taken to evaluate pkey.simple with randomly chosen

initialization for l and a range specified on the x-axis. The time also includes the overhead of

counting the cardinality of answers for CountBlock and CountStream, updating the history

bit vector for History, and computing and verifying refunds for the refund-based approaches.

In the figure, “Query” represents the time to execute just the query, “Count” represents the

best time amongst CountBlock and CountStream, “Refunds (query)” represents the fastest

time amongst MonotoneRefunds, BlockTree, BlockTreeInt, and StreamTree to compute

the query and the refund coupons, and “Refunds (total)” is the best time, amongst the

four refund-based pricing technique, including the time to ask for refunds in addition to

computing them and answering the query.

We now look at the overhead of obtaining these cost savings. In Figure 4.4, we show the

time taken to answer queries by the best näıve technique and the best refund-based technique.

The figure shows the total time that includes (a) the time to evaluate pkey.simple with range

lengths specified on the x-axis, and (b) the overhead of the associated pricing technique, that

is, counting for Count, updating the history bit vector for History, computing coupons for

Refunds (query), and both computing coupon and asking for refunds for Refunds (total).
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As the figure shows, all techniques take more time than just executing the query, typically

at least 2× more. Up until and including range lengths of 512, computing coupons is still

cheaper than the history-agnostic approach adopted by Count. If refunds are requested

though, the best refund-based technique becomes at least 4× more expensive than the best

count technique. In all cases, History is at least an order of magnitude slower compared to

counting and refund based techniques.

Thus, in the best case, refund-based pricing provides both reduced costs as well as reduced

query execution time compared with the history-agnostic pricing methods, CountBlock and

CountStream. This best case occurs when refunds can be requested when Bob and Alice are

idle. If this is not the case, refund-based pricing still significantly reduces costs, while adding

a 4× to 5× time penalty against the best history-agnostic pricing method.

4.5.2 Overhead of Refunds

In this section, we compare the time to compute group coupons in GroupRefunds to the

time for computing only per-tuple coupons in MonotoneRefunds. Then, we compare the

time saved in asking for refunds with GroupRefunds versus MonotoneRefunds. We measure

the overhead of using MonotoneRefunds versus GroupRefunds on (a) the time to evaluate

a query and return the result and the coupons, and (b) the time to ask for refunds of data

previously purchased.

We assign random l and u values to pkey.simple to obtain queries that are executed

twice. Thus, all the tuples in the second query are eligible for refunds. We compare the

time it takes to execute the query and compute the coupons using MonotoneRefunds and

BlockTree. Then, for MonotoneRefunds, we ask for refunds one tuple at a time, while for

BlockTree, we ask for the group refunds for the largest groups (while avoiding overlaps)

until all the tuples are covered.

Figure 4.5 shows the results. When comparing only the time to evaluate the query and the

coupons, MonotoneRefunds is faster than BlockTree since BlockTree must compute addi-

tional group coupons along with the singleton group coupons. For point queries, BlockTree
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Figure 4.5: A comparison of MonotoneRefunds and BlockTree runtimes, in ms, to eval-

uate the query and generate the coupons (denoted by “MonotoneRefunds - Query” and

“BlockTree - Query”, respectively) and the time, in ms, for refund requests (denoted by

“MonotoneRefunds - Query” and “BlockTree - Query”, respectively). The parameterized

query used for the workload is pkey.simple and each query is executed twice. The time is

measured for the second query for which the corresponding refund protocols are exectued.

is 12× slower, while for larger ranges, such as 4096, it is 3.1× slower. This is expected since

MonotoneRefunds needs to do just one pass over the table and computes the coupons on the

fly as the cursor is advanced. BlockTree must make two passes of the data, once to select

the leaves of the tree-structured coupons and again to evaluate the query itself. It must also

suffer the additional cost of computing the tree.

But if we also take into account the overhead of asking for refunds, this advantage quickly

vanishes as range sizes are increased. While MonotoneRefunds is 4× and 1.7× faster for

ranges of sizes 1 and 8, respectively, BlockTree is faster by 2.9×, 8.4×, and 12.6× for ranges

of sizes 64, 512, and 4096, respectively.
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Thus, if a query is expected to return a small number of tuples or if it is known that

group refunds can not be constructed, say when the tuples selected do not have adjacent

tuple ids, MonotoneRefunds will outperform GroupRefunds.

One way to improve BlockTree and other tree structured coupons is to increase the

fanout of the internal tree nodes. Then, fewer coupons would be computed during the query.

Further, in an actual deployment, refund requests can be asked when the buyer has spare

computation cycles as opposed to being asked after each query. This does not reduce the

workload on the seller, though.

4.5.3 Näıve Techniques versus Refund-Based Techniques

In this series of experiments, we assign random l and u values to the test queries. These

randomly parameterized queries are executed once along with the additional processing of

the corresponding näıve or refund-based technique. For refund-based techniques, we do not

show the overhead of asking for refunds because the overhead is sensitive to the actual overlap

in the queries.

Figure 4.6 shows the average time per query for pkey.simple. As expected, MonotoneRefunds

outperforms the group-based coupons (note that we do not include the time to ask for re-

funds). MonotoneRefunds also outperforms all the näıve approaches for all but the largest

range size. For the largest range size, CountBlock performs the best and better than

CountStream. This is because CountBlock only uses two SQL statements to execute the

query and compute the count whereas CountStream must execute an UPDATE statement to

update the running count of tuples for the query every time the cursor is advanced. This

overhead becomes significant as the cardinality of the query increases.

In all cases though, History is the worst performing technique since the cost of modifying

bits for each output tuple and writing those edits back to disk become increasingly expensive.

Figure 4.7 shows the average time per query for other.simple. Unlike for pkey.simple,

MonotoneRefunds does not significantly outperform the other alternatives. This is because

the query itself is expensive. In the absence of indices, the database does a full scan of
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Figure 4.6: The total time, in ms, to evaluate the query and run the various pricing tech-

niques. The parameterized query used for the workload was pkey.simple and numbers are

averages of executing a workload of 40 queries. For refund-based techniques, only the time

to run the query and generate coupons is shown.

the table to compute answers and this cost dominates the total cost. As result sizes in-

crease though, the overheads of CountBlock and the refund-based techniques become more

noticeable.

In the figure, we do not show measurements for CountStream since they were always

worse than for CountBlock. We do not show measurements for History because it was

significantly slower: 2×, 43×, and 273× slower than MonotoneRefunds for 64, 512 and 4096

sized ranges. This is because unlike for pkey.simple, since the column val is a random

permutation, the indices in the history bit vector, corresponding to their tuples, are no

longer clustered to adjacent bits in the history bit vector and this increases the overhead of

commits.
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Figure 4.7: The total time, in ms, to evaluate the query and run the various pricing tech-

niques. The parameterized query used for the workload is other.simple and numbers are

averages of executing a workload of 20 queries. For refund-based techniques, only the time

to run the query and generate coupons is shown.

Finally, BlockTree is approximately 2×more expensive than CountBlock and MonotoneRefunds

since the query is more expensive to compute and BlockTree must execute the query twice.

If we only consider the time to compute coupons and the query, then MonotoneRefunds

will always be the fastest amongst the refund-based techniques. But in applications with

high overlap in the data purchased through different queries, the cost of refunds can become

significant. In such cases, GroupRefunds might be more efficient than MonotoneRefunds.

Unfortunately, as can be seen from Figures 4.6 and 4.7, different group refund techniques

do well in different settings and there is no single technique that outperforms others every
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single time. In Figure 4.6, BlockTree does uniformly well across many different ranges while

in Figure 4.7, BlockTreeInt performs uniformly well. Also, for both queries, StreamTree

outperforms other group refunds for queries with small ranges.

4.6 Conclusion

We provide a novel, lightweight and fast method to support optimal, history-aware pricing

of data APIs. With our techniques, even if a buyer makes multiple API calls and ends up

purchasing the same data item more than once, she is only charged once for the purchase. To

enable this, we propose a framework for pricing that allows buyers to refund repeat purchases

of data. We then provide a compact, secure and tamper proof protocol that enables such

refunds and guarantees that if there is a repeat purchase, it is always possible to get refunds.

Subsequently, we generalize the protocol to handle updates and multiple users; and provide

performance improvements through the use of group refunds. We experimentally evaluated

our protocol and compare it to current pricing techniques that do not provide history-aware

pricing. Even with 100 API calls, we identify 10× to 99× potential reduction in data costs,

while experiencing comparatively modest increases in query runtimes, by a factor of 2× to

5×.
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Chapter 5

RELATED WORK

We now present related work for the three previous chapters.

5.1 Managing Data Use Agreements

DataLawyer is related to many different areas of database management research.

Data auditing. Most auditing systems [57, 4, 52, 73, 35] detect data misuses, but only

after the fact. In the online case, some prior techniques such as those that rely on reordering

of queries [57] are not applicable; other techniques are data instance independent [73] and

only make use of the structure of the queries themselves, unlike our semantics, which are

data dependent.

Privacy Mechanisms. DataLawyer’s goal is not to protect privacy, its goal is to verify

that queries follow a pre-defined set of usage policies.

Access control. Access control approaches [4, 40] do not handle the case when users are

allowed to see individual data items but do not have permission to perform certain operations,

such as joins, on these data items.

Usage Models. The UCONABC model [86], is a generic framework that models 16 usage

control scenarios (such as UNIX access control lists and Digital Rights Management). Data-

Lawyer subsumes six of those, the additional complexity is due to the expressiveness of the

relational model.

DBAs may also automatically enforce performance related policies using Teradata’a Ac-

tive Management System [104], but they do not have support for general data usage policies.

Complex Event Processing (CEP). Theoretically, some policies may be encoded as

patterns for a CEP engine [32, 17, 119, 81] that can then search them in a stream of log
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increments as new queries arrive. Unlike CEP engines though, DataLawyer controls if and

when to generate the log stream, which our experiments show to be a critical optimization.

CEPs usually use non-deterministic finite automata to represent patterns. DataLawyer’s

policies are more general since arbitrary code is permitted for log-generating functions.

Multi-Query Optimization (MQO). Many techniques [5, 50, 6] for MQO identify com-

mon sub-expressions in the query and then store the intermediate results to be reused by

multiple queries. SharedDB [42] also provides a complementary set of techniques to ours. Al-

though DataLawyer can use these techniques, our main techniques exploit the boolean nature

of the policies. Further, DataLawyer must also worry about regular and frequent updates to

the underlying data (usage logs) that provide opportunities for significant improvements.

Triggers. Triggers [82, 89] are only executed for DML statements and not for non-DML

statements unlike the policies discussed in this thesis.

Provenance Management. Provenance and annotation management [18, 19] store how

data moves through databases over its life cycle. Their algorithms focus on reducing the

provenance storage overhead and its querying. These techniques are orthogonal to our sys-

tem, for which, provenance is just one possible log generating function.

User Interface. The interface that displays the message to the user and recommends

alternative actions was demonstrated in an early prototype of our system [108].

5.2 Pricing Shared Optimizations

Today, cloud providers use two strategies for pricing optimizations. In the first, the cost

of the optimization is included in the base service price. For e.g., Amazon SimpleDB [12]

automatically indexes user data and includes the corresponding overhead in the base-price

computation (45 bytes of extra storage are added to each item, attribute, and attribute-

value). Similarly, SimpleDB and SQL Azure [71] automatically replicate data and include

that cost in the base service cost. The key limitation with this approach is that the cloud

must decide up-front what optimizations are worth offering and it forces users to pay for

these optimizations. In other cases, users choose desired optimizations and pay their exact
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cost. For example, in Amazon RDS [9] a user can choose to launch and pay-for a desired

number of read-replicas to speed-up her query workload. This approach, however, works well

only in the absence of collaborations.

Significant recent work studies existing cloud pricing schemes, economic models, and their

implications [61, 105, 115]. In contrast we develop a new pricing mechanism.

Most closely related to our work, Dash et al., developed an approach for pricing data

structures (indexes, materialized views, etc.) in a DBMS cloud cache [26]. In their approach,

the cloud selects the structures to build based on the notion of regret and its cost is amortized

to the first N queries that use it. To compute regret, the cloud relies on user supplied budget

functions, that indicate their willingness to pay for various quality of service. In follow-up

work Kantere et al. [56] tuned their approach and developed a regression-based technique

to predict the extent of cost amortization. In contrast to our work, this previous approach

relies on users being truthful and does not guarantee that the cost will be recovered. For

example, consider a user who needs to run one, very expensive query over a private dataset.

No structure will be implemented if she is truthful. Instead, she thus submits a large number

of inexpensive queries over the same dataset while she expresses her willingness to pay zero

for processing the extra queries, yet indicates a preference for low execution times over low

costs. The regret-based approach will let her manually pick slow and cheap service for these

queries. It will then compute the maximum possible regret for the missing data structure

that would have enabled faster plans for these queries. When the cloud accumulates enough

regret, she can run the expensive query and pay a small fraction of the total cost of the

optimization.

Significant research applies economic principles to resource allocation in distributed sys-

tems [2, 16, 20, 24, 39, 93, 96, 113], collaboration promotion in peer-to-peer systems [78, 77,

111], or more recently, VM allocation in the cloud [106]. We study how to choose and price

optimizations rather than allocate processing resources. The Mariposa distributed database

system [101] introduced a microeconomic paradigm for optimizing distributed query evalua-

tion and data placement. This is a problem orthogonal to ours.
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We build on the Shapley Value Mechanism, which is an instance of a Moulin Mecha-

nism [74] that have been designed for various combinatorial cost-sharing problems where the

cost of servicing a set of players is determined by solving a offline combinatorial optimization

problem defined by the set [84]. We design Moulin mechanisms in an online setting.

Online mechanisms [79, Ch. 16] consider games where valuations come one at a time.

While there is work on characterizing truthful mechanisms to maximize social utility in

dynamic games [79, Thm. 16.17], to the best of our knowledge, no work applies to cost-

sharing in dynamic games.

5.3 Optimal History-Aware Pricing with Data APIs

Apart from pricing APIs by summing up the cost of the tuples that are returned due to

an API call, other forms of pricing methods have also been proposed in the literature,

though they are not as widespread as tuple-based pricing. The common idea in all the

approaches is to directly price queries as opposed to pricing individual tuples. Approaches

have been proposed that price data based on minimal why-provenance [102], information

and determinacy [59, 60, 64], and statistical noise [62]. We know of only one approach

that has explicitly looked at history-aware pricing [63, 60]. Optimal history-aware pricing

in the presence of prices assigned to queries as opposed to individual tuples is NP-hard. In

this approach, they explicitly store the queries purchased by user at the seller and incur

significant overhead while pricing new queries.

Our solution relies on explicit support from the seller. In the absence of such support,

as shown in Example 4.0.1, it may be impossible to provide optimal history-aware pricing of

data. But, buyers can still reduce their costs by caching answers to queries they purchase.

They can subsequently use techniques from query answering using views [51] to only acquire

such that that is not present in their caches and integrate the new data with the cached data

to determine the answer to their queries. Systems that provide semantic caching [25, 23, 94]

and transactional caches [90, 91] are examples of such systems.
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Chapter 6

CONCLUSION

Data is transforming science, business, and governance by making decisions increasingly

data-driven and by enabling data-driven applications. The data used in these contexts usu-

ally has significant economic or social value. Frequently, data is purchased from a provider.

The price is often linked to how the data will be used and the allowed usage is typically de-

tailed in a license agreement. While there is significant research to help users easily express

and efficiently execute complex analytics on big data, tools to manage the economic value

of data (prices and licenses) are lacking. Current solutions rely on extensive and expen-

sive support from economists, auditors and lawyers. Further, data analysis and data-driven

applications increasingly rely on public clouds for their computational needs. Clouds offer

scalability and the flexibility to trade-off price and performance and cloud providers know

how to price for individual use. But, cloud resources are frequently shared by multiple users,

especially when users analyze a common dataset. How to price such shared resources is

poorly understood and when pricing ignores the shared nature of use, the cloud resources

are significantly underutilized and users can not realize the full value of their data.

In this thesis, we make three contributions that deal with license agreements for data,

pricing data, and pricing computation.

First, we develop DataLawyer, a middleware system to specify and enforce data use poli-

cies on relational databases. Our approach includes a SQL-based formalism to precisely

define policies and novel algorithms to automatically and efficiently evaluate them. Experi-

ments on a real dataset from the health-care domain demonstrate overhead reductions of up

to 330× compared to a direct implementation of such a system on existing databases.

Next, we study how a cloud data service provider should activate and price optimizations
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that benefit many users. We show how the problem can be modeled as an instance of cost-

recovery mechanism design. We also show how the Shapley Value mechanism solves the

problem of pricing a single optimization in an offline game. We then develop a series of

mechanisms that enable the pricing of either additive or substitutive optimizations in either

an offline or an online game. We prove analytically that our mechanisms are truthful and

cost-recovering. Through simulations, we demonstrate that our mechanisms also yield high

utility compared with a regret-based state-of-the-art approach.

Lastly, we provide a novel, lightweight and fast method to support optimal, history-aware

pricing of data APIs. With our techniques, even if a buyer makes multiple API calls and

ends up purchasing the same data item more than once, she is only charged once for the

purchase. To enable this, we propose a framework for pricing that allows buyers to refund

repeat purchases of data. We provide protocols for refunds, extensions to handle updates

and multiple users, and performance optimizations to reduce the overhead of exercising

refunds. Experimental evaluation identify significant potential reduction in data costs, while

experiencing comparatively modest increases in query runtimes.

We now discuss immediate directions for future research that follow from the thesis.

In managing data use agreements, there are opportunities to extend the existing work

in the way we model policies, to develop algorithms for more efficient policy checks, and to

investigate DataLawyer’s user-friendliness. Specifically,

1. For policy modeling, an important unanswered question is the feasibility of automat-

ically generating policies for materialized views. Materialized views are a powerful

method for creating custom data products as well as a way to increase system perfor-

mance. Given the definition and an instance of a materialized view, it would be useful

to study the possibility of generating more efficient policies for the materialized view,

and thus not rely on the policies defined over the original data.

2. To verify policies, this thesis considered algorithms that rely only on query rewriting.

A promising area of future work would be to consider lightweight modifications to the
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query execution engine to support on-the-fly policy checks while the query is executing.

Further, more efficient algorithms for policy evaluation may exist if we know more

about the structure of the log generating functions, as opposed to treating them as

black box functions. Lastly, adapting policy evaluation to distributed settings and

understanding the implications of data distribution on the efficiency of policy checks

in a shared-nothing computing cluster would be helpful in augmenting distributed,

parallel data processing engines to support data use management functionalities.

3. The thesis does not explore the user experience when DataLawyer rejects a query.

Further research on how to explain query rejections to a user and to automatically

suggest how users should modify their queries would be very useful.

4. Lastly, to handle malicious users and to handle settings where DataLawyer can not

directly observe user actions would require a rethink of both the models and the tech-

niques for enforcing policies.

In the problem of pricing shared computation, there are two promising and useful exten-

sions of our mechanisms that were not explored by the thesis. The first extension is related

to how we can modify the mechanisms to work with value functions for optimizations that

are neither additive nor substitutive, but those that exhibit sub-modularity, which can nat-

urally model economies of scale. The second extension is about how to design mechanisms

for adversarial optimizations, where implementing an optimization for one user can reduce

the utility for another user. An example of such an optimization is database replication.

Although the new replica may improve read performance for one user, it may reduce write

throughput for another user. Adversarial optimizations are increasingly likely as users be-

come less isolated from other users with the adoption of virtualization.

Finally, designing data APIs is a rich area for future extensions and research. The

immediate direction for future work is to design an optimizer to choose the optimal refund

algorithm and to explore alternate ways of computing coupons that may provide safe refunds

for attacker models that are weaker than those assumed for cryptographic hashes. It is
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likely that throughput can be improved with a weaker adversarial attack model. Another

line of interesting research would be to theoretically understand the trade-offs between the

additional overhead of computing coupons by the seller versus the overhead of communication

during the refund phase. Lastly, the problem of pricing data when the price of the individual

tuple is either dependent on other tuples in the answer or the prior purchase history of the

user is another class of rich problems to develop models and protocols for optimal pricing.

The management of premium data is an important, impactful, and novel data manage-

ment problem that companies and researchers regularly encounter. As data markets and

cloud computing mature, these concerns will become increasingly more important. Develop-

ing better tools to handle these concerns provides a rich set of problems that span theory,

economics, systems and security.
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