
The VLDB Journal manuscript No.
(will be inserted by the editor)

Retrospective on Aurora

Hari Balakrishnan3, Magdalena Balazinska3, Don Carney2, Uğur Çetintemel2, Mitch Cherniack1, Christian Convey2,
Eddie Galvez1, Jon Salz3, Michael Stonebraker3, Nesime Tatbul2, Richard Tibbetts3, Stan Zdonik2

1 Department of Computer Science, Brandeis University, Waltham, MA 02454, USA
email: {mfc, eddie}@cs.brandeis.edu

2 Department of Computer Science, Brown University, Providence, RI 02912, USA
email: {dpc, ugur, cjc, tatbul, sbz}@cs.brown.edu

3 Department of EECS and Laboratory of Computer Science, M.I.T., Cambridge, MA 02139, USA
email: {hari, mbalazin, jsalz, stonebraker, tibbetts}@lcs.mit.edu

Received: date / Revised version: date

Abstract This experience paper summarizes the key lessons
we learned throughout the design and implementation of the
Aurora stream processing engine. For the past two years, we
have built five stream-based applications using Aurora. We
first describe in detail these applications and their implemen-
tation in Aurora. We then reflect on the design of Aurora
based on this experience. Finally, we discuss our initial ideas
on a follow-on project, called Borealis, whose goal is to elim-
inate the limitations of Aurora, as well as to address new key
challenges and applications in the stream processing domain.

Key words Data stream management – Stream processing
engines – Monitoring applications – Distributed stream pro-
cessing – Quality-of-Service

1 Introduction and History

Over the last several years, a great deal of progress has been
made in the area of stream processing engines (SPEs) [7,9,
15]. Three basic tenets distinguish SPEs from current data
processing engines. First, they must support primitives for
streaming applications. Unlike OLTP, which processes mes-
sages in isolation, streaming applications entail time series
operations on streams of messages. Although a time series
“blade” was added to the Illustra Object-Relational DBMS,
generally speaking, time series operations are not well sup-
ported by current DBMSs. Second, streaming applications
entail a real-time component. If one is content to see an an-
swer later, then one can store incoming messages in a data
warehouse and run a historical query on the warehouse to
find information of interest. This tactic does not work if the

answer must be constructed in real time. Real time also dic-
tates a fundamentally different storage architecture. DBMSs
universally store and index data records before making them
available for query activity. Such outbound processing, where
data is stored before being processed cannot deliver real-time
latency, as required from SPEs. To meet more stringent la-
tency requirements, SPEs must adopt an alternate model, in-
bound processing, where query processing is performed di-
rectly on incoming messages before (or instead of) storing
them. Lastly, an SPE must have capabilities to gracefully deal
with spikes in message load. Fundamentally incoming traffic
is bursty, and it is desirable to selectively degrade the perfor-
mance of the applications running on an SPE.

The Aurora stream processing engine, motivated by these
three tenets, is currently operational. It consists of some 100K
lines of C++ and Java and runs on both Unix- and Linux-
based platforms. It was constructed with the cooperation of
students and faculty at Brown, Brandeis, and M.I.T. The fun-
damental design of the engine has been well documented
elsewhere: the architecture of the engine is described in [7],
while the scheduling algorithms are presented in [8]. Load
shedding algorithms are presented in [18], and our approach
to high availability in a multi-site Aurora installation is cov-
ered in [10,13]. Lastly, we have been involved in a collective
effort to define a benchmark that described the sort of mon-
itoring applications that we have in mind. The result of this
effort is called Linear Road, and is described in [4].

Recently, we have used Aurora to build five different ap-
plication systems. Throughout the process, we have learned
a great deal about the key requirements of streaming applica-
tions. In this paper, we reflect on the design of Aurora based
on this experience.

The first application is an Aurora implementation of Lin-
ear Road, mentioned above. In addition to Linear Road, we

2 Hari Balakrishnan et al.

Fig. 1 Aurora Graphical User Interface

have implemented a pilot application that detects late arrival
of messages in a financial-services feed-processing environ-
ment. Furthermore, one of our collaborators, a military med-
ical research laboratory [20], asked us to build a system to
monitor the levels of hazardous materials in fish. We have
also worked with a major defense contractor on a pilot ap-
plication that deals with battlefield monitoring in a hostile
environment. Lastly, we have used Aurora to build Medusa,
a distributed version of Aurora that is intended to be used by
multiple enterprises that operate in different administrate do-
mains. Medusa uses an innovative agoric model to deal with
cross system resource allocation, and is described in more
detail in [5].

We start with a short review of the Aurora design in Sec-
tion 2. Following this, we discuss the five case studies men-
tioned above in detail in Section 3, so the reader can under-
stand the context for the retrospection that follows. In Sec-
tion 4, we present the lessons we have learned on the design
of SPEs. These include the necessity of supporting stored ta-
bles, the requirement of synchronization primitives to main
consistency of stored data in a streaming environment, the
need for supporting primitives for late arriving or missing
messages, the requirement for a myriad of adaptors for other
feed formats, and the need for globally-accessible catalogs
and a programming notation to specify Aurora networks (in
addition to the “boxes and arrows” GUI). Since stream pro-
cessing applications are usually time critical, we also discuss
the importance of light-weight scheduling and quantify the
performance of the current Aurora prototype using a micro-

benchmark on basic stream operators. Aurora performance
on the Linear Road benchmark is documented elsewhere [4].

The current Aurora prototype is being transferred to the
commercial domain, with venture capital backing. As such,
the academic project is hard at work on a complete redesign
of Aurora, which we call Borealis. The intent of Borealis is
to overcome some of the shortcomings of Aurora, as well as
make a major leap forward in several areas. Hence, in Section
5, we discuss the ideas we have for Borealis in several new ar-
eas including mechanisms for dynamic modification of query
specification and query results, and a distributed optimization
framework that operates across server and sensor networks.

2 Aurora Architecture

Aurora is based on a dataflow-style “boxes and arrows” para-
digm. Unlike other stream processing systems that use SQL-
style declarative query interfaces (e.g., STREAM [15]), this
approach was chosen because it allows query activity to be
interspersed with message processing (e.g., cleaning, corre-
lation, etc.). Systems that only perform the query piece must
ping-pong back and forth to an application for the rest of the
work, thereby adding to system overhead and latency. An Au-
rora network can be spread across any number of machines
to achieve high scalability and availability characteristics.

In Aurora, a developer uses the GUI to wire together a
network of boxes and arcs that will process streams in a man-
ner that produces the outputs necessary to his or her appli-
cation. A screen shot of the GUI used to create Aurora net-
works is shown in Figure 1: the black boxes indicate input and

Retrospective on Aurora 3

Fig. 2 Aurora Operators

output streams that connect Aurora with the stream sources
and applications, respectively. The other boxes are Aurora
operators and the arcs represent data flow among the oper-
ators. Users can drag-and-drop operators from the palette on
the left and connect them by simply drawing arrows between
them. It should be noted that a developer can name a collec-
tion of boxes and replace it with a “superbox”. This “macro-
definition” mechanism drastically eases the development of
big networks.

The Aurora operators are presented in detail in [3] and
are summarized in Figure 2. Aurora’s operator choices were
influenced by numerous systems. The basic operators Filter,
Map and Union are modeled after the Select, Project and
Union operations of the relational algebra. Join’s use of a dis-
tance metric to relate joinable elements on opposing streams
is reminiscent of the relational band join [12]. Aggregate’s
sliding window semantics is a generalized version of the slid-
ing window constructs of SEQ [17] and SQL-99 (with gen-
eralizations including allowance for disorder (SLACK), time-
outs, value-based windows etc.). The ASSUME ORDER clause
(used in Aggregate and Join), which defines a result in terms
of an order which may or may not be manifested, is borrowed
from AQuery [14].

Each input must obey a particular schema (a fixed number
of fixed or variable length fields of the standard data types).
Every output is similarly constrained. An Aurora network
accepts inputs, performs message filtering, computation, ag-
gregation, and correlation, and then delivers output messages
to applications. Moreover, every output is optionally tagged
with a Quality of Service (QoS) specification. This specifi-
cation indicates how much latency the connected application
can tolerate, as well as what to do if adequate responsive-
ness cannot be assured under overload situations. Note that

the Aurora notion of QoS is different from the traditional QoS
notion that typically implies hard performance guarantees, re-
source reservations and strict admission control.

On various arcs in an Aurora network, the developer can
note that Aurora should remember historical messages. The
amount of history to be kept by such “connection points” can
be specified by a time range or a message count. The his-
torical storage is achieved by extending the basic message-
queue management mechanism. New boxes can be added to
an Aurora network at connection points at any time. History
is replayed through the added boxes, and then conventional
Aurora processing continues. This processing continues until
the extra boxes are deleted.

The Aurora optimizer can rearrange a network by per-
forming box swapping when it thinks the result will be favor-
able. Such box swapping cannot occur across a connection
point; hence connection points are arcs that restrict the be-
havior of the optimizer as well as remember history.

When a developer is satisfied with an Aurora network,
he or she can compile it into an intermediate form, which is
stored in an embedded database. At run time this data struc-
ture is read into virtual memory and drives a real-time sched-
uler. The scheduler makes decisions based on the form of the
network, the QoS specifications present, and the length of
the various queues. When queues overflow the buffer pool in
virtual memory, they are spooled to the embedded database.
More detailed information on these various topics can be ob-
tained from the referenced papers [3,7,8,18].

3 Aurora Case Studies

In this section, we present five case studies of applications
built using the Aurora engine and tools.

4 Hari Balakrishnan et al.

Fig. 3 Aurora Query Network for the Alarm Correlation Application

3.1 Financial Services Application

Financial service organizations purchase stock ticker feeds
from multiple providers and need to switch in real time be-
tween these feeds if they experience too many problems. We
worked with a major financial services company on devel-
oping an Aurora application that detects feed problems and
triggers the switch in real time. In this section, we summarize
the application (as specified by the financial services com-
pany) and its implementation in Aurora.

An unexpected delay in the reporting of new prices is an
example of a feed problem. Each security has an expected re-
porting interval and the application needs to report an alarm
if a reporting interval exceeds its expected value. Further-
more, if more than some number of alarms are recorded, a
more serious alarm is raised that could indicate that it is time
to switch feeds. The delay can be caused by the underlying
exchange (e.g., NYSE, NASDAQ) or by the feed provider
(e.g., Comstock, Reuters). If it is the former, switching to an-
other provider will not help so the application must be able to
rapidly distinguish between these two cases.

Ticker information is provided as a real-time data feed
from one or more providers and a feed typically reports more
than one exchange. As an example, let us assume that there
are 500 securities within a feed that update at least once ev-
ery 5 seconds and they are called “fast updates”. Let us also

assume that there are 4000 securities that update at least once
every 60 seconds and they are called “slow updates”.

If a ticker update is not seen within its update interval, the
monitoring system should raise a low alarm. For example, if
MSFT is expected to update within 5 seconds, and 5 seconds
or more elapse since the last update, a low alarm is raised.

Since the source of the problem could be in the feed or the
exchange, the monitoring application must count the number
of low alarms that are found in each exchange and the number
of low alarms that are found in each feed. If the number for
each of these categories exceeds a threshold (100 in the fol-
lowing example), a high alarm is raised. The particular high
alarm will indicate what action should be taken. When a high
alarm is raised, the low alarm count is reset and the counting
of low alarms begins again. In this way, the system produces
a high alarm for every 100 low alarms of a particular type.

Furthermore, the posting of a high alarm is a serious con-
dition and low alarms are suppressed when the threshold is
reached to avoid distracting the operator with a large number
of low alarms.

Figure 3 presents our solution realized with an Aurora
query network. We assume for simplicity that the securities
within each feed are already separated into the 500 fast up-
dating tickers and the 4000 slowly updating tickers. If this is
not the case, then the separation can be easily achieved with
a lookup. The query network in Figure 3 actually represents

Retrospective on Aurora 5

six different queries (one for each output). Notice that much
of the processing is shared.

The core of this application is in the detection of late tick-
ers. Boxes 1, 2, 3, and 4 are all Aggregate boxes that perform
the bulk of this computation. An Aggregate box groups input
tuples by common value of one or more of their attributes,
thus effectively creating a sub-stream for each possible com-
bination of these attribute values. In this case, the aggregates
are grouping the input on common value of ticker symbol.
For each grouping or sub-stream, a window is defined that
demarcates interesting runs of consecutive tuples called win-
dows. For each of the tuples in one of these windows, some
memory is allocated and an aggregating function (e.g., Av-
erage) is applied. In this example, the window is defined to
be every consecutive pair (e.g., tuples 1 and 2, tuples 2 and
3, etc.) and the aggregating function generates one output tu-
ple per window with a boolean flag called Alarm, which is a
one when the second tuple in the pair is delayed (call this an
Alarm tuple), and a zero when it is on time.

Aurora’s operators have been designed to react to imper-
fections such as delayed tuples. Thus, the triggering of an
Alarm tuple is accomplished directly using this built-in mech-
anism. The window defined on each pair of tuples will time-
out if the second tuple does not arrive within the given thresh-
old (5 seconds in this case). In other words, the operator will
produce one alarm each time a new tuple fails to arrive within
five seconds, as the corresponding window will automatically
timeout and close. The high-level specification of Aggregate
boxes 1 through 4 is:

Aggregate(Group by ticker,
Order on arrival,
Window (Size = 2 tuples,

Step = 1 tuple,
Timeout = 5 sec))

Boxes 5 through 8 are Filters that eliminate the normal
outputs, thereby letting only the Alarm tuples through. Box
9 is a Union operator that merges all Reuters Alarms onto a
single stream. Box 10 performs the same operation for Com-
stock.

The rest of the network determines when a large number
of Alarms is occurring and what the cause of the problem
might be.

Boxes 11 and 15 count Reuters Alarms and raise a high
alarm when a threshold (100) is reached. Until that time, they
simply pass through the normal (low) alarms. Boxes 14 and
18 do the same for Comstock. Note that the boxes labeled
Count 100 are actually Map boxes. Map takes a user-defined
function as a parameter and applies it to each input tuple. That
is, for each tuple t in the input stream, a Map box parame-
terized by a function f , produces the tuple f(x). In this ex-
ample, Count 100 simply applies the following user-supplied
function (written in pseudo code) to each tuple that passes
through:

F (x:tuple) = cnt++
if (cnt % 100 != 0)

if !suppress
emit lo-alarm

else
emit drop-alarm

else
emit hi-alarm
set suppress = true

Boxes 12, 13, 16, and 17 separate the alarms from both
Reuters and Comstock into alarms from NYSE and alarms
from NASDAQ. This is achieved by using Filters to take NYSE
alarms from both feed sources (Boxes 12 and 13) and merg-
ing them using a Union (Box 16). A similar path exists for
NASDAQ Alarms. The results of each of these streams are
counted and filtered as explained above.

In summary, this example illustrates the ability to share
computation among queries, the ability to extend functional-
ity through user-defined Aggregate and Map functions, and
the need to detect and exploit stream imperfections.

3.2 The Linear Road Benchmark

Linear Road is a benchmark for stream processing engines
[2,4]. This benchmark simulates an urban highway system
that uses “variable tolling” (also known as “congestion pric-
ing”) [11,1,16], where tolls are determined according to such
dynamic factors as congestion, accident proximity, and travel
frequency. As a benchmark, Linear Road specifies input data
schemas and workloads, a suite of continuous and historical
queries that must be supported, and performance (query and
transaction response time) requirements.

Variable tolling is becoming increasingly prevalent in ur-
ban settings because it is effective at reducing traffic conges-
tion and because recent advances in micro-sensor technology
make it feasible. Traffic congestion in major metropolitan ar-
eas is an increasing problem as expressways cannot be built
fast enough to keep traffic flowing freely at peak periods. The
idea behind variable tolling is to issue tolls that vary accord-
ing to time-dependent factors such as congestion levels and
accident proximity with the motivation of charging higher
tolls during peak traffic periods to discourage vehicles from
using the roads and contributing to the congestion. Illinois,
California, and Finland are among the highway systems that
have pilot programs utilizing this concept.

The benchmark itself assumes a fictional metropolitan area
(called “Linear City”) that consists of 10 expressways of 100
mile-long segments each, and 1,000,000 vehicles that report
their positions via GPS-based sensors every 30 seconds. Tolls
must be issued on a per-segment basis automatically, based
on statistics gathered over the previous 5 minutes concern-
ing average speed and number of reporting cars. A segment’s

6 Hari Balakrishnan et al.

tolls are overridden when accidents are detected in the vicin-
ity (an accident is detected when multiple cars report close
positions at the same time), and vehicles that use a particular
expressway often are issued “frequent traveler” discounts.

The Linear Road benchmark demands support for 5 quer-
ies: two continuous and three historical. The first continuous
query calculates and reports a segment toll every time a ve-
hicle enters a segment. This toll must then be charged to the
vehicle’s account when the vehicle exits that segment with-
out exiting the expressway. Again, tolls are based on cur-
rent congestion conditions on the segment, recent accidents
in the vicinity, and the frequency of use of the expressway
for the given vehicle. The second continuous query involves
detecting and reporting accidents and adjusting tolls accord-
ingly. The historical queries involve requesting an account
balance or a day’s total expenditure for a given vehicle on
a given expressway, and a prediction of travel time between
two segments on the basis of average speeds on the segments
recorded previously. Each of the queries must be answered
with a specified accuracy and within a specified response time.
The degree of success for this benchmark is measured in terms
of the number of expressways the system can support, assum-
ing 1000 position reports issued per second per expressway,
while answering each of the 5 queries within the specified
latency bounds.

An early Aurora implementation of this benchmark sup-
porting one expressway was demonstrated at SIGMOD 2003
[2].

3.3 Battalion Monitoring

We have worked closely with a major defense contractor on a
battlefield monitoring application. In this application, an ad-
vanced aircraft gathers reconnaissance data and sends it to
monitoring stations on the ground. This data includes posi-
tions and images of friendly and enemy units. At some point,
the enemy units cross a given demarcation line and move to-
ward the friendly units thereby signaling an attack.

Commanders in the ground stations monitor this data for
analysis and tactical decision making. Each ground station is
interested in particular subsets of the data, each with differ-
ing priorities. In the real application, the limiting resource is
the bandwidth between the aircraft and the ground. When an
attack is initiated, the priorities for the data classes change.
More data becomes critical, and the bandwidth likely satu-
rates. In this case, selective dropping of data is allowed in
order to service the more important classes.

For our purposes, we built a simplified version of this
application to test our load shedding techniques. Instead of
modeling bandwidth, we assume that the limited resource is
the CPU. We introduce load shedding as a way to save cycles.

Aurora supports two kinds of load shedding. The first
technique inserts random drop boxes into the network. These

Fig. 4 Aurora Query Network for the Battlefield Monitoring Appli-
cation

boxes discard a fraction of their input tuples chosen randomly.
The second technique inserts semantic, predicate-based drop
filters into the network. Based on QoS functions, system statis-
tics (like operator cost and selectivity), and input rates, our al-
gorithms choose the best drop locations, and the drop amount
as indicated by a drop rate (random drop) or a predicate (se-
mantic drop). Drop insertion plans are constructed and stored
in a table in advance. As load levels change, drops are au-
tomatically inserted and removed from the query networks
based on these plans [18].

One of the query networks that we used in this study is
shown in Figure 4. There are four queries in this network. The
Analysis query merges all tuples about positions of all units
for analysis and archiving. The next two queries labeled En-
emy Tanks and Enemy Aircraft select enemy tank and enemy
aircraft tuples using predicates on their ids. The last query,
Across The Line, selects all the objects that have crossed the
demarcation line towards the friendly side.

Each query has a value-based QoS function attached to
its output. A value-based QoS function maps the tuple val-
ues observed at an output to utility values that express the
importance of a given result tuple. In this example, the func-
tions are defined on the x-coordinate attribute of the output
tuple which indicates where an object is positioned horizon-
tally. The functions take values in the range [0, 500], of which
350 corresponds to the position of the vertical demarcation
line. Initially all friendly units are on [0, 350] side of this line
whereas enemy units are on the [350, 500] side. The QoS
functions are specified by an application administrator and
reflect the basic fact that tuples for enemy objects that have
crossed the demarcation line are more important than others.

We ran this query network with tuples generated by the
Aurora workload generator based on a battle scenario that
we got from the defense contractor. We fed the input tuples

Retrospective on Aurora 7

Fig. 5 Comparison of Various Load Shedding Approaches (%ex-
cess load vs. % value utility loss)

at different rates to create specific levels of overload in the
network; then we let the load shedding algorithm remove the
excess load by inserting drops to the network. Figure 5 shows
the result. We compare the performance of three different
load shedding algorithms in terms of their value utility loss
(i.e., the average degradation in the QoS provided by the sys-
tem) across all outputs at increasing levels of load.

We make the following important observations: First, our
semantic load shedding algorithm, which drops tuples based
on attribute values, achieves the least value utility loss at all
load levels. Second, our random load shedding algorithm in-
serts drops of the same amounts at the same network loca-
tions as the semantic load shedder. Since tuples are dropped
randomly, however, loss in value utility is higher compared
to the semantic load shedder. As excess load increases the
performance of the two algorithms becomes similar. The rea-
son is that at high load levels, our semantic load shedder also
drops tuples from the high utility value ranges. Lastly, we
compare both of our algorithms against a simple admission
control algorithm which sheds random tuples at the network
inputs. Both our algorithms achieve lower utility loss com-
pared to this algorithm. Our load shedding algorithms may
sometimes decide to insert drops on inner arcs of the query
network. On networks with box sharing among queries (e.g.,
the union box is shared among all four queries in Figure 4),
inner arcs may be preferable to avoid utility loss at multi-
ple query outputs. On the other hand, at very high load lev-
els, since drops at inner arcs become insufficient to save the
needed CPU cycles, our algorithms also insert drops close to
the network inputs. Hence, all algorithms tend to converge to
the same utility loss levels at very high loads.

3.4 Environmental Monitoring

We have also worked with a military medical research labora-
tory on an application that involves monitoring toxins in the

water. This application is fed streams of data indicating fish
behavior (e.g., breathing rate) and water quality (e.g., tem-
perature, pH, oxygenation, and conductivity). When the fish
behave abnormally, an alarm is sounded.

Input data streams were supplied by the army laboratory
as a text file. The single data file interleaved fish observations
with water quality observations. The alarm message emitted
by Aurora contains fields describing the fish behavior, and
two different water quality reports: the water quality at the
time the alarm occurred and the water quality from the last
time the fish behaved normally. The water quality reports
contain not only the simple measurements, but also the 1-
/2-/4-hour sliding window deltas for those values.

The application’s Aurora processing network is shown
in Figure 6 (snapshot taken from the Aurora GUI): The in-
put port (1) shows where tuples enter Aurora from the out-
side data source. In this case, it is the application’s C++ pro-
gram that reads in the sensor log file. A Union box (2) serves
merely to split the stream into two identical streams. A Map
box (3) eliminates all tuple fields except those related to wa-
ter quality. Each superbox (4) calculates the sliding window
statistics for one of the water quality attributes. The parallel
paths (5) form a binary join network that brings the results of
(4)’s sub-networks back into a single stream. The top branch
in (6) has all the tuples where the fish act oddly, and the bot-
tom branch has the tuples where the fish act normally. For
each of the tuples sent into (1) describing abnormal fish be-
havior, (6) emits an alarm message tuple. This output tuple
has the sliding window water quality statistics for both the
moment the fish acted oddly, and for the most recent previous
moment that the fish acted normally. Finally the output port
(7) shows where result tuples are made available to the C++-
based monitoring application. Overall, the entire application
ended up consisting of 3400 lines of C++ code (primarily for
file-parsing and a simple monitoring GUI) and a 53-operator
Aurora query network.

During the development of the application, we observed
that Aurora’s stream model proved very convenient for de-
scribing the required sliding-window calculations. For exam-
ple, a single instance of the aggregate operator computed the
4-hour sliding-window deltas of water temperature.

Aurora’s GUI for designing query networks also proved
invaluable. As the query network grew large in the number of
operators used, there was great potential for overwhelming
complexity. The ability to manually place the operators and
arcs on a workspace, however, permitted a visual represen-
tation of “subroutine” boundaries that let us comprehend the
entire query network as we refined it.

We found that small changes in the operator language
design would have greatly reduced our processing network
complexity. For example, Aggregate boxes apply some win-
dow function (such as DELTA(water-pH)), to the tuples
in a sliding window. Had an Aggregate box been capable of

8 Hari Balakrishnan et al.

1
3

2

4
5

6

7

Fig. 6 Aurora Query Network for the Environmental Contamination Detection Applications (GUI snapshot)

evaluating multiple functions at the same time on a single
window (such as DELTA(water-pH) andDELTA(water-
temp)), we could have used significantly fewer boxes. Many
of these changes have since been made to Aurora’s operator
language.

The ease with which the processing flow could be exper-
imentally reconfigured during development, while remaining
comprehensible, was surprising. It appears that this was only
possible by having both a well-suited operator set, and a GUI
tool that let us visualize the processing. It seems likely that
this application was developed at least as quickly in Aurora
as it would have been with standard procedural programming.

We note that, for this particular application, real-time re-
sponse was not required. The main value Aurora added in this
case was the ease of developing stream-oriented applications.

3.5 Medusa: Distributed Stream Processing

Medusa is a distributed stream-processing system built using
Aurora as the single-site query processing engine. Medusa
takes Aurora queries and distributes them across multiple nodes.
These nodes can all be under the control of one entity or can
be organized as a loosely coupled federation under the control
of different autonomous participants.

A distributed stream-processing system such as Medusa
offers several benefits:

1. It allows stream processing to be incrementally scaled
over multiple nodes.

2. It enables high-availability because the processing nodes
can monitor and take over for each other when failures
occur.

3. It allows the composition of stream feeds from different
participants to produce end-to-end services, and to take
advantage of the distribution inherent in many stream pro-
cessing applications (e.g., climate monitoring, financial
analysis, etc.).

4. It allows participants to cope with load spikes without
individually having to maintain and administer the com-
puting, network, and storage resources required for peak
operation. When organized as a loosely coupled feder-
ated system, load movements between participants based
on pre-defined contracts can significantly improve perfor-
mance.

Figure 7 shows the software structure of a Medusa node.
There are two components in addition to the Aurora query
processor. The Lookup component is a client of an inter-node
distributed catalog that holds information on streams, schemas,
and queries running in the system. The Brain handles query
setup operations and monitors local load using information
about the queues (IOQueues) feeding Aurora and statistics
on box load. The Brain uses this information as input to a
bounded-price distributed load management mechanism that
converges efficiently to good load allocations [5].

The development of Medusa prompted two important chan-
ges to the Aurora processing engine. First, it became apparent
that it would be useful to offer Aurora not only as a stand-
alone system, but also as a library that could easily be inte-
grated within a larger system. Second, we felt the need for an

Retrospective on Aurora 9

Local Partition of

(Lookup)

Query Processor

IO Queues

(Chord)

DHT

(XML−RPC, TCP−RPC, Local)

Transport Independent RPC

Control Data

Medusa Node

Brain

Aurora

Distributed Catalog

Fig. 7 Medusa Software Architecture

Aurora API, summarized in Table 1. This API is composed
of three types of methods: (1) methods to set up queries and
push or pull tuples from Aurora, (2) methods to modify query
networks at runtime (operator additions and removals) and
(3) methods giving access to performance information.

Load movement. To move operators with a relatively low
effort and overhead compared to full- blown process migra-
tion, Medusa participants use remote definitions. A remote
definition maps an operator defined at a node onto an opera-
tor defined at another. At runtime, when a path of operators in
the boxes-and-arrows diagram needs to be moved to another
node, all that is required is for the corresponding operators to
be instantiated remotely and for the incoming streams to be
diverted to the appropriately named inputs on the new node.

For some operators, internal operator state may need to
be moved when a task moves between machines, unless some
“amnesia” is acceptable to the application. Our current pro-
totype restarts operator processing after a move from a fresh
state and the most recent position of the input streams. To
support the movement of operator state, we are adding two
new functions to the Aurora API and are modifying the Au-
rora engine. The first method freezes a query network and
removes an operator with its state by performing the follow-
ing sequence of actions atomically: stop all processing, re-
move a box from a query network, extract the operator’s in-
ternal state, subscribe an outside client to what used to be the
operator’s input streams, and re- start processing. The sec-
ond method performs the converse actions atomically. It stops
processing, adds a box to a query network, initializes the
box’s state, and re-starts processing. To minimize the amount
of state moved, we are exploring freezing operators around
the windows of tuples on which they operate, rather than at
random instants. When Medusa moves an operator or a group
of operators, it handles the forwarding of tuples to their new
locations.

Medusa employs an agoric system model to create in-
centives for autonomous participants to handle each other’s
load. Clients outside the system pay Medusa participants for

Table 1 Overview of a Subset of the Aurora API

start and shutdown: Respectively starts processing and
shuts down a complete query-network.
modifyNetwork: At runtime, adds or removes schemas,
streams and operator boxes from a query network processed by
a single Aurora engine.
typecheck: Validates (part of) a query network. Computes
properties of intermediate and output streams.
enqueue and dequeue: Push and pull tuples on named
streams.
listEntities and describe(Entity): Provide infor-
mation on entities in the current query network.
getPerfStats: Provides performance and load information.

processing their queries and Medusa participants pay each
other to handle load. Payments and load movements are based
on pairwise contracts negotiated offline between participants.
These contracts set tightly bounded prices for migrating each
unit of load and specify the set of tasks that each participant
is willing to execute on behalf of its partner. Contracts can
also be customized with availability, performance, and other
clauses. Our mechanism, called the bounded-price mecha-
nism, thus allows participants to manage their excess load
through private and customized service agreements. The mech-
anism also achieves a low runtime overhead by bounding
prices through offline negotiations.

Figure 8 shows the simulation results of a 995-node Medu-
sa system running the bounded-price load management mech-
anism. Figure 8(a) shows that convergence from an unbal-
anced load assignment to an almost optimal distribution is
fast with our approach. Figure 8(b) shows the excess load re-
maining at various nodes for increasing numbers of contracts.
A minimum of just seven contracts per node in a network
of 995 nodes ensures that all nodes operate within capac-
ity when capacity exists in the system. The key advantages
of our approach over previous distributed load management
schemes are (1) lower runtime overhead, (2) possibility of
service customization and price discrimination, and (3) rela-
tively invariant prices that a participant pays another for pro-
cessing a unit of load.

High availability. We are also currently exploring the
runtime overhead and recovery time tradeoffs between dif-
ferent approaches to achieve high-availability (HA) in dis-
tributed stream processing, in the context of Medusa and Au-
rora* [4]. These approaches range from classical Tandem-
style process-pairs [6] to using upstream nodes in the pro-
cessing flow as backup for their downstream neighbors. Dif-
ferent approaches also provide different recovery semantics
where either: (1) some tuples are lost, (2) some tuples are
re-processed, or (3) operations take-over precisely where the
failure happened. We discuss these algorithms in more de-

10 Hari Balakrishnan et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60

C
os

t

Time (sec)

Medusa Protocol
Optimal Total Cost

(a) convergence speed with a minimum of 7 contracts/node

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6 7 8

E
xc

es
s

Lo
ad

Minimum Number of Contracts

(b) final allocation for increasing number of contracts

Fig. 8 Performance of Medusa Load Management Protocol

tail in [13]. An important HA goal for the future is handling
network partitions in addition to individual node failures.

4 Lessons Learned

4.1 Support for Historical Data

From our work on a variety of streaming applications, it be-
came apparent that each required maintaining and accessing
a collection of historical data. For example, the Linear Road
benchmark, which represents a realistic application, required
maintaining ten weeks of toll history for each driver, as well
as the current positions of every vehicle and the locations of
accidents tying up traffic. Historical data might be used to
support historical queries (e.g., tell me how much driver X
has spent on tolls on expressway Y over the past 10 weeks),
or serve as inputs to hybrid queries involving both streaming
and historical data (e.g., report the current toll for vehicle X
based on its current position (streamed data) and the presence
of any accidents in its vicinity (historical data)).

In the applications we have looked at, historical data takes
three different forms. These forms differ by their update pat-
terns: the means by which incoming stream data is used to
update the contents of a historical collection. These forms are
summarized below.

1. Open Windows (Connection Points): Linear Road re-
quires maintaining the last 10 weeks worth of toll data
for each driver to support both historical queries and in-
tegrated queries. This form of historical data resembles
a window in its FIFO-based update pattern, but must be
shared by multiple queries and therefore openly accessi-
ble.

2. Aggregate Summaries (Latches): Linear Road requires
maintaining such aggregated historical data as: the cur-
rent toll balance for every vehicle (SUM(Toll)), the last
reported position of every vehicle (MAX(Time)), and the
average speed on a given segment over the past 5 minutes
(AVG(Speed)). In all cases, the update patterns involve
maintaining data by key value (e.g., vehicle or segment
id) and using incoming tuples to update the aggregate
value that has the appropriate key. As with open windows,
aggregate summaries must be shared by multiple queries
and therefore must be openly accessible.

3. Tables: Linear Road requires maintaining tables of his-
torical data whose update patterns are arbitrary and de-
termined by the values of streaming data. For example,
a table must be maintained that holds every accident that
has yet to be cleared (such that an accident is detected
when multiple vehicles report the same position at the
same time). This table is used to determine tolls for seg-
ments in the vicinity of the accident and to alert drivers
approaching the scene of the accident. The update pat-
tern for this table resembles neither an open window nor
an aggregate summary. Rather, accidents must be deleted
from the table when an incoming tuple reports that the ac-
cident has been cleared. This requires the declaration of
an arbitrary update pattern.

Whereas open windows and aggregate summaries have
fixed update patterns, tables require update patterns to be ex-
plicitly specified. Therefore, the Aurora query algebra (SQuAl)
includes an “Update box” that permits an update pattern to be
specified in SQL. This box has the form,

UPDATE (Assume O, SQL U, Report t)

Retrospective on Aurora 11

such that U is an SQL update issued with every incoming tu-
ple, and including variables that get instantiated with the val-
ues contained in that tuple. O specifies the assumed ordering
of input tuples, and t specifies a tuple to output whenever an
update takes place. Further, because all three forms of histor-
ical collections require random access, SQuAl also includes a
“Read box” that initiates a query over stored data (also spec-
ified in SQL) and returns the result as a stream. This box has
the form,

READ (Assume O, SQL Q)

such that Q is an SQL query issued with every incoming tu-
ple, and including variables that get instantiated with the val-
ues contained in that tuple.

In short, the streaming applications we have looked at
share the need for maintaining and randomly accessing col-
lections of historical data. These collections, used for both
historical and hybrid queries, are of three forms differing by
their update patterns. To support historical data in Aurora,
we include an update operation (to update tables with user-
specified update patterns) and a read operation (to read any
of the forms of historical data).

4.2 Synchronization

As continuous queries, stream applications inherently rely on
shared data and computation. Shared data might be contained
in a table that one query updates and another query reads. For
example, the Linear Road application requires that vehicle
position data be used to update statistics on highway usage
which in turn are read to determine tolls for each segment on
the highway. Alternatively, box output can be shared by mul-
tiple queries to exploit common sub-expressions, or even by a
single query as a way of merging intermediate computations
after parallelization.

Transactions are required in traditional databases because
data sharing can lead to data inconsistencies. An equivalent
synchronization mechanism is required in streaming settings,
as data sharing in this setting can also lead to inconsistencies.
For example, if a toll charge can expire, then a toll assessment
to a given vehicle should be delayed until a new toll charge is
determined. The need for synchronization with data sharing
is achieved in SQuAl via the “WaitFor box” whose syntax is
shown below:

WaitFor (P: Predicate, T: Timeout)

This binary operator buffers each tuple t on one input stream
until a tuple arrives on the second input stream that with t

satisfies P (or until the timeout expires, in which case t is
discarded). If a Read operation must follow a given Update
operation, then a WaitFor can buffer the Read request (tuple)

until a tuple output by the Update box (and input to the sec-
ond input of WaitFor) indicates that the Read operation can
proceed.

In short, the inherent sharing possible in streaming envi-
ronments makes it sometimes necessary to synchronize op-
erations to ensure data consistency. We currently implement
synchronization in SQuAl with a dedicated operator.

4.3 Resilience to Unpredictable Stream Behavior

Streams are by their nature unpredictable. Monitoring appli-
cations require the system to continue operation even when
the unpredictable happens. Sometimes, the only way to do
this is to produce approximate answers. Obviously, in these
cases, the system should try to minimize errors.

We have seen examples of streams that do not behave as
expected. The financial services application that we described
earlier requires the ability to detect a problem in the arrival
rate of a stream. The military application must fundamen-
tally adjust its processing to fit the available resources during
times of stress. In both of these cases, Aurora primitives for
unpredictable stream behavior were brought to bear on the
problem.

Aurora makes no assumptions that a data stream arrive
in any particular order or with any temporal regularity. Tu-
ples can be late or out of order due to the nature of the data
sources, the network that carries the streams, or due to the be-
havior of the operators themselves. Accordingly, our opera-
tor set includes user-specified parameters that allow handling
such “damaged” streams gracefully.

For many of the operators, an input stream can be speci-
fied to obey an expected order. If out-of-order data is known
to the network designer not to be of relevance, the operator
will simply drop such data tuples immediately. Nonetheless,
Aurora understands that this may at times be too drastic a
constraint, and provides an optional slack parameter to allow
for some tolerance in the number of data tuples that may ar-
rive out of order. A tuple that arrives out-of-order within the
slack bounds will be processed as if it had arrived in order.

With respect to possible irregularity in the arrival rate of
data streams, the Aurora operator set offers all windowed-
operators an optional timeout parameter. The timeout param-
eter tells the operator how long to wait for the next data tuple
to arrive. This has two benefits: it prevents blocking (i.e. no
output) when one stream is stalled, and it offers another way
for the network designer to characterize the value of data that
arrives later than it should, as in the financial services appli-
cation in which the timeout parameter was used to determine
when a particular data packet arrived late.

12 Hari Balakrishnan et al.

4.4 XML and Other Feed Formats Adaptor Required

Aurora provides a network protocol that may be used to en-
queue and dequeue tuples via Unix or TCP sockets. The pro-
tocol is intentionally very low-level: to eliminate copies and
improve throughput, the tuple format is closely tied to the
format of Aurora’s internal queue format. For instance, the
protocol requires that each packet contain a fixed amount
of padding reserved for bookkeeping, and that integer and
floating-point fields in the packet match the architecture’s na-
tive format.

While we anticipate that performance-critical applications
will use our low-level protocol, we also recognize that the for-
mats of Aurora’s input streams may be outside the immediate
control of the Aurora user or administrator; e.g., stock quote
data arriving in XML format from a third-party information
source. Also, even if the streams are being generated or con-
sumed by an application within an organization’s control, in
some cases protocol stability and portability (e.g., not requir-
ing the client to be aware of the endian-ness of the server
architecture) are important enough to justify a minor perfor-
mance loss.

One approach to address these concerns is to simply re-
quire the user to build a proxy application that accepts tu-
ples in the appropriate format, converts them to Aurora’s in-
ternal format, and pipes them into the Aurora process. This
approach, while simple, conflicts with one of Aurora’s key
design goals-to minimize the number of boundary crossings
in the system-since the proxy application would be external
to Aurora and hence live in its own address space.

We resolve this problem by allowing the user to provide
plug-ins called converter boxes. Converter boxes are shared
libraries that are dynamically linked into the Aurora process
space; hence their use incurs no boundary crossings. A user-
defined input converter box provides a hook that is invoked
when data arrive over the network. The implementation may
examine the data and inject tuples into the appropriate streams
in the Aurora network. This may be as simple as consum-
ing fixed-length packets and enforcing the correct byte-order
on fields, or as complex as transforming fully-formed XML
documents into tuples. An output converter box performs the
inverse function: it accepts tuples from streams in Aurora’s
internal format and converts them into a byte stream to be
consumed by an external application.

Input and output converter boxes are powerful connec-
tivity mechanisms: they provide a high level of flexibility in
dealing with external feeds and sinks without incurring a per-
formance hit. This combination of flexibility and high perfor-
mance is essential in a streaming database that must assimi-
late data from a wide variety of sources.

4.5 Programmatic Interfaces and Globally-Accessible
Catalogs are a Good Idea

Initially, Aurora networks were created using the GUI and
all Aurora metadata (i.e., catalogs) were stored in an inter-
nal representation. Our experience with the Medusa system
quickly made us realize that, in order for Aurora to be easily
integrated within a larger system, a higher-level, program-
matic interface is needed to script Aurora networks and meta-
data need to be globally accessible and updatable.

Although we initially assumed that only Aurora itself (i.e.,
the runtime and the GUI) would need direct access to the cat-
alog representation, we encountered several situations where
this assumption did not hold. For instance, in order to manage
distribution operation across multiple Aurora nodes, Medusa
required knowledge of the contents of nodes’ catalogs and
the ability to selectively move parts of catalogs from node
to node. Medusa needed to be able to create catalog objects
(schema, streams, and boxes) without direct access to the Au-
rora catalog database, which would have violated abstraction.
In other words, relying on the Aurora runtime and GUI as the
sole software components able to examine and modify cata-
log structures turned out to be an unworkable solution when
we tried to build sophisticated applications on the Aurora
platform. We concluded that we needed a simple, transpar-
ent, catalog representation that is easily readable and writable
by external applications. This would make it much easier to
write higher-level systems that use Aurora (such as Medusa)
and alternative authoring tools for catalogs.

To this end, Aurora currently incorporates appropriate in-
terfaces and mechanisms (see Section 3.5) to make it easy to
develop external applications to inspect and modify Aurora
query networks. A universally readable and writable catalog
representation is crucial in an environment where multiple
applications may operate on Aurora catalogs.

4.6 Performance Critical

During the development of Aurora, our primary tool for keep-
ing performance in mind was a series of “micro-benchmarks”.
Each of these benchmarks measured the performance of a
small part of our system, such as a single operator, or the raw
performance of the message bus. These benchmarks allowed
us to measure the merits of changes to our implementation
quickly and easily.

Fundamental to an SPE is a high performance “message
bus”. This is the system that moves tuples from one opera-
tor to the next, storing them temporarily, as well as in to and
out of the query network. Since every tuple is passed on the
bus a number of times, this is definitely a performance bot-
tleneck. Even such trivial optimizations as choosing the right
memcpy() implementation gave substantial improvements
to the whole system.

Retrospective on Aurora 13

Table 2 Micro-benchmark results

Query(q) # Dequers(d) Batch size(b) Average Latency
A NULL 0 1 1211 ns
B NULL 0 10 176 ns
C NULL 0 100 70 ns
D NULL 0 1000 60 ns
E NULL 1 10 321 ns
F NULL 1 100 204 ns
G NULL 1 1000 191 ns
H NULL 5 1000 764 ns
I NULL 10 1000 1748 ns
J FILTER 1 1000 484 ns
K UNION 1 1000 322 ns
L UNION-CHAIN 1 1000 858 ns

Second to the message bus, the scheduler is the core el-
ement of an SPE. The scheduler is responsible for allocat-
ing processor time to operators. It is tempting to decorate the
scheduler with all sorts of high level optimization, such as
intelligent allocation of processor time or real-time profiling
of query plans. But it is important to remember that sched-
uler overhead can be substantial in networks where there are
many operators, and that the scheduler makes no contribution
to the actual processing. All addition of scheduler function-
ality must be greeted with skepticism, and should be aggres-
sively profiled.

Once the core of the engine has been aggressively op-
timized, the remaining hot spots for performance are to be
found in the implementation of the operators. In our imple-
mentation, each operator has a “tight loop”, which processes
batches of input tuples. This loop is a prime target for op-
timization. We make sure nothing other than necessary pro-
cessing occurs in the loop. In particular, housekeeping of data
structures such as memory allocations and deallocation needs
to be done outside of this loop, so that its cost can be amor-
tized across many tuples.

Data structures are another opportunity for operator opti-
mization. Many of our operators are stateful; they retain in-
formation or even copies of previous input. Because these op-
erators are asked to process and store large numbers of tuples,
efficiency of these data structures is important. Ideally, pro-
cessing of each input tuple is accomplished in constant time.
In our experience, processing that is linear in the amount of
state stored is unacceptable.

In addition to the operators themselves, any parts of the
system that are used by those operators in the tight loops
must be carefully examined. For example, we have a small
language used to specify expressions for Map operators. Be-
cause these expressions are evaluated in such tight loops, op-
timizing them was important. The addition of an expensive
compilation step may even be appropriate.

To assess the relative performance of various parts of the
Aurora system, we developed a simple series of micro-bench-
marks. Each micro-benchmark follows the following pattern:

1. Initialize Aurora using a query network q.
2. Create d dequeuers receiving data from the output of the

query network. (If d is 0, then there are no dequeuers, i.e.,
tuples are discarded as soon as they are output.)

3. Begin a timer.
4. Enqueue n tuples into the network, in batches of b tuples

at a time. Each tuple is 64 bytes long.
5. Wait until the network is drained, i.e., every box is done

processing every input tuple, and every dequeuer has re-
ceived every output tuple. Stop the timer. Let t be the
amount of time required to process each input tuple, i.e.,
the total amount of time passed divided by n.

For the purposes of this benchmark, we fixed n at 2,000,-
000 tuples. We used several different catalogs. Note that these
networks are functionally identical: every input tuple is out-
put to the dequeuers, and the only difference is the type and
amount of processing done to each the tuple. This is neces-
sary to isolate the impact of each stage of tuple processing;
if some networks returned a different number of tuples, any
performance differential might be attributed simply to there
being less or more work to do because of the different number
of tuples to enqueue or dequeue.

– NULL: A catalog with no boxes, i.e., input values are
passed directly to dequeuers.

– FILTER: A catalog with a filter box whose condition is
true for each tuple.

– UNION: A union box that combines the input stream with
an empty stream.

– UNION-CHAIN: A chain of five union boxes, each of
which combines the input stream with an empty stream.

Table 2 shows the performance of the benchmark with
various settings of q, d, and b.

14 Hari Balakrishnan et al.

We observe that the overhead to enqueue a tuple in Aurora
is highly dependent on the batch size, but for large batch sizes
settles to 60 ns. Dequeuers add a somewhat higher overhead
(between 130 ns (G-D) and 200 ns (I-H)/5] each) because
currently one copy of each tuple is made per dequeuer. Com-
paring cases G and K, or cases G and L, we see that adding
a box on a tuple path incurs a delay of approximately 130
ns per tuple; evaluating a simple comparison predicate on a
tuple adds about 160 ns (J-K).

These micro-benchmarks measure the overhead involved
in passing tuples into and out of Aurora boxes and networks;
they do not measure the time spent in boxes performing non-
trivial operations such as joining and aggregation. Messaging
passing overhead, however, can be significant time sink in
streaming databases (as it was in earlier versions of Aurora).
Micro benchmarking was very useful in eliminating perfor-
mance bottlenecks in Aurora’s message-passing infrastruc-
ture. This infrastructure is now fast enough in Aurora that
non-trivial box operations are the only noticeable bottleneck;
i.e., CPU time is overwhelmingly devoted to useful work and
not simply shuffling around tuples.

5 Future Plans: Borealis

The Aurora team has secured venture capital backing to com-
mercialize the current code line. Some of the group is mor-
phing into pursuing this venture. Because of this event, there
is no reason for the Aurora team to improve the current sys-
tem. This section presents the initial ideas that we plan to
explore in a follow-on system, called Borealis, which is a
distributed stream processing system. Borealis inherits core
stream processing functionality from Aurora and distribution
functionality from Medusa. Borealis modifies and extends
both systems in non-trivial and critical ways to provide ad-
vanced capabilities that are commonly required by newly-
emerging stream processing applications.

The Borealis design is driven by our experience in using
Aurora and Medusa, in developing several streaming appli-
cations including the Linear Road Benchmark, and several
commercial opportunities. Borealis will address the follow-
ing requirements of newly-emerging streaming applications.

5.1 Dynamic Revision of Query Results

In many real-world streams, corrections or updates to previ-
ously processed data are available only after the fact. For in-
stance, many popular data streams, such as the Reuters stock
market feed, often include messages that allow the feed orig-
inator to correct errors in previously reported data. Further-
more, stream sources (such as sensors), as well as their con-
nectivity, can be highly volatile and unpredictable. As a re-
sult, data may arrive late and miss its processing window, or

may be ignored temporarily due to an overload situation. In
all these cases, applications are forced to live with imperfect
results, unless the system has means to correct its process-
ing and results to take into account newly available data or
updates.

The Borealis data model will extend that of Aurora by
supporting such corrections by way of revision records. The
goal is to process revisions intelligently, correcting query re-
sults that have already been emitted in a manner that is con-
sistent with the corrected data. Processing of a revision mes-
sage must replay a portion of the past with a new or modified
value. Thus, to process revision messages correctly, we must
make a query diagram “replayable”. In theory, we could pro-
cess each revision message by replaying processing from the
point of the revision to the present. In most cases, however,
revisions on the input affect only a limited subset of output
tuples, and to regenerate unaffected output is wasteful and
unnecessary. To minimize run-time overhead and message
proliferation, we assume a closed model for replay that gen-
erates revision messages when processing revision messages.
In other words, our model processes and generates “deltas”
showing only the effects of revisions rather than regenerat-
ing the entire result. The primary challenge here is to develop
efficient revision processing techniques that can work with
bounded history.

5.2 Dynamic Query Modification

In many stream processing applications, it is desirable to chan-
ge certain attributes of the query at run time. For example,
in the financial services domain, traders typically wish to be
alerted of interesting events, where the definition of “interest-
ing” (i.e., the corresponding filter predicate) varies based on
current context and results. In network monitoring, the sys-
tem may want to obtain more precise results on a specific sub-
network, if there are signs of a potential Denial-of-Service
attack. Finally, in a military stream application that MITRE
[19] explained to us, they wish to switch to a “cheaper” query
when the system is overloaded. For the first two applications,
it is sufficient to simply alter the operator parameters (e.g.,
window size, filter predicate), whereas the last one calls for
altering the operators that compose the running query. An-
other motivating application comes again from the financial
services community. Universally, people working on trading
engines wish to test out new trading strategies as well as de-
bug their applications on historical data before they go live.
As such, they wish to perform “time travel” on input streams.
Although this last example can be supported in most cur-
rent SPE prototypes (i.e., by attaching the engine to previ-
ously stored data), a more user- friendly and efficient solution
would obviously be desirable.

Two important features that will facilitate on-line modifi-
cation of continuous queries in Borealis are control lines and

Retrospective on Aurora 15

time travel. Control lines extend Aurora’s basic query model
with the ability to change operator parameters as well as op-
erators themselves on the fly. Control lines carry messages
with revised box parameters and new box functions. For ex-
ample, a control message to a Filter box can contain a ref-
erence to a boolean-valued function to replace its predicate.
Similarly, a control message to an Aggregate box may con-
tain a revised window size parameter. Additionally, each con-
trol message must indicate when the change in box semantics
should take effect. Change is triggered when a monotonically
increasing attribute received on the data line attains a certain
value. Hence, control messages specify an <attribute, value>
pair for this purpose. For windowed operators like Aggregate,
control messages must also contain a flag to indicate if open
windows at the time of change must be prematurely closed
for a clean start.

Time travel allows multiple queries (different queries or
versions of the same query) to be easily defined and exe-
cuted concurrently, starting from different points in the past
or “future” (typically by running a simulation of some sort).
In order to support these capabilities, we leverage three ad-
vanced mechanisms in Borealis: enhanced connection points,
connection point versions, and revision messages. To facil-
itate time travel, we define two new operations on connec-
tion points. The replay operation replays messages that are
stored at a connection point from an arbitrary message in the
past. The offset operation is used to set the connection point
offset in time. When offset into the past, a connection point
delays current messages before pushing them downstream.
When offset into the future, the connection point predicts fu-
ture data. When producing future data, various prediction al-
gorithms can be used based on the application. A connection
point version is a distinctly named logical copy of a connec-
tion point. Each named version can be manipulated indepen-
dently. It is possible to shift a connection point version back-
ward and forward in time without affecting other versions.

To replay history from a previous point in time t, we use
revision messages. When a connection point receives a replay
command, it first generates a set of revision messages that
delete all the messages and revisions that occurred since t. To
avoid the overhead of transmitting one revision per deleted
message, we use a macro message that summarizes all dele-
tions. Once all messages are deleted, the connection point
produces a series of revisions that insert the messages and
possibly their following revisions back into the stream. Dur-
ing replay, all messages and revisions received by the con-
nection point are buffered and processed only after the re-
play terminates thus ensuring that simultaneous replays on
any path in the query diagram are processed in sequence and
do not conflict. When offset into the future, time-offset op-
erators predict future values. As new data becomes available,
these predictors can (but do not have to) produce more ac-
curate revisions to their past predictions. Additionally, when

a predictor receives revision messages, possibly due to time
travel into the past, it can also revise its previous predictions.

5.3 Distributed Optimization

Currently, commercial stream processing applications are pop-
ular in industrial process control (e.g., monitoring oil refiner-
ies and cereal plants), financial services (e.g., feed process-
ing, trading engine support and compliance), and network
monitoring (e.g., intrusion detection, fraud detection). Here
we see a server-heavy optimization problem - the key chal-
lenge is to process high-volume data streams on a collection
of resource-rich “beefy” servers. Over the horizon, we see a
very large number of applications of wireless sensor technol-
ogy (e.g., RFID in retail applications, cell phone services).
Here, we see a sensor-heavy optimization problem - the key
challenges revolve around extracting and processing sensor
data from a network of resource-constrained “tiny” devices.
Further over the horizon, we expect sensor networks to be-
come faster and increase in processing power. In this case
the optimization problem becomes more balanced, becoming
sensor-heavy/server-heavy. To date systems have exclusively
focused on either a server-heavy environment, or a sensor-
heavy environment. Off into the future, there will be a need
for a more flexible optimization structure that can deal with
a very large number of devices and perform cross-network
sensor-heavy/server-heavy resource management and optimi-
zation.

The purpose of the Borealis optimizer is threefold. First,
it is intended to optimize processing across a combined sen-
sor and server network. To the best of our knowledge, no
previous work has studied such a cross-network optimiza-
tion problem. Second, QoS is a metric that is important in
stream-based applications, and optimization must deal with
this issue. Third, scalability, size-wise and geographical, is
becoming a significant design consideration with the prolif-
eration of stream-based applications that deal with large vol-
umes of data generated by multiple distributed sensor net-
works. As a result, Borealis faces a unique, multi-resource,
multi-metric optimization challenge that is significantly dif-
ferent than those explored in the past. Our current thinking is
that Borealis will rely on a hierarchical, distributed optimizer
that runs at different time-granularities.

Another part of the Borealis vision involves addressing
recovery and high availability issues. High availability de-
mands that node failure is masked by seamless handoff of
processing to an alternate node. This is complicated by the
fact that the optimizer will dynamically redistribute process-
ing, making it more difficult to keep backup nodes synchro-
nized. Furthermore, wide-area Borealis applications are not
only vulnerable to node failures but also to network failures
and more importantly to network partitions. We have prelimi-
nary research in this area that leverages Borealis mechanisms

16 Hari Balakrishnan et al.

including connection point versions, revision tuples, and time
travel.

5.4 Implementation Plans

We have started building Borealis. As Borealis inherits much
of its core stream processing functionality from Aurora, we
can effectively borrow many of the Aurora modules, includ-
ing the GUI, the XML representation for query diagrams,
portions of the run-time system, and much of the logic for
boxes. Similarly, we are borrowing some networking and dis-
tribution logic from Medusa. With this starting point, we hope
to have a working prototype within a year.

Acknowledgements This work was supported in part by the Na-
tional Science Foundation under the grants IIS-0086057, IIS-0325525,
IIS-0325703, and IIS-0325838; and by the Army contract DAMD17-
02-2-0048. We would like to thank all members of the Aurora and
the Medusa projects at Brandeis University, Brown University, and
M.I.T. We are also grateful to the anonymous reviewers for their
invaluable comments.

References

1. A guide for hot lane development: A U.S. depart-
ment of transportation federal highway administration.
http://www.itsdocs.fhwa.dot.gov/JPODOCS/
REPTSTE/13668.html.

2. D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, C. Erwin, E. Galvez, M. Hatoun, J. Hwang, A. Maskey,
A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan,
and S. Zdonik. Aurora: A Data Stream Management System
(demo description). In ACM SIGMOD Conference, June 2003.

3. D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora:
A New Model and Architecture for Data Stream Management.
The VLDB Journal, 12(2), August 2003.

4. A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear Road: A
Benchmark for Stream Data Management Systems. In VLDB
Conference, Toronto, Canada, August 2004. (to appear).

5. M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-
Based Load Management in Federated Distributed Systems. In
NSDI Symposium, March 2004.

6. J. Barlett, J. Gray, and B. Horst. Fault Tolerance in Tandem
Computer Systems. Technical Report TR-86.2, Tandem Com-
puters, March 1986.

7. D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Mon-
itoring Streams - A New Class of Data Management Applica-
tions. In VLDB Conference, Hong Kong, China, August 2002.

8. D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack,
and M. Stonebraker. Operator Scheduling in a Data Stream
Manager. In VLDB Conference, Berlin, Germany, September
2003.

9. S. Chandrasekaran, A. Deshpande, M. Franklin, J. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,
and M. Shah. TelegraphCQ: Continuous Dataflow Processing
for an Uncertain World. In CIDR Conference, January 2003.

10. M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. Zdonik. Scalable Distributed
Stream Processing. In CIDR Conference, Asilomar, CA, Jan-
uary 2003.

11. Congestion pricing: A report from intelligent transportation
systems (ITS). http://www.path.berkeley.edu/
leap/TTM/DemandManage/pricing.html.

12. D. DeWitt, J. Naughton, and D. Schneider. An Evaluation of
Non-Equijoin Algorithms. In VLDB Conference, Barcelona,
Catalonia, Spain, September 1991.

13. J. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stone-
braker, and S. Zdonik. A Comparison of Stream-Oriented High-
Availability Algorithms. Technical Report CS-03-17, Depart-
ment of Computer Science, Brown University, October 2003.

14. A. Lerner and D. Shasha. AQuery: Query Language for Ordered
Data, Optimization Techniques, and Experiments. In VLDB
Conference, Berlin, Germany, September 2003.

15. R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query Processing, Approximation, and Resource Management
in a Data Stream Management System. In CIDR Conference,
January 2003.

16. R. W. Poole. Hot lanes prompted by federal program. http:
//www.rppi.org/federalhotlanes.html.

17. P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A Model
for Sequence Databases. In IEEE ICDE Conference, Taipei,
Taiwan, March 1995.

18. N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load Shedding in a Data Stream Manager.
In VLDB Conference, Berlin, Germany, September 2003.

19. The MITRE Corporation. http://www.mitre.org/.
20. The US Army Medical Research and Materiel Command.

http://mrmc-www.army.mil/.

