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ABSTRACT
Cascadia is a system that provides RFID-based pervasive
computing applications with an infrastructure for specify-
ing, extracting and managing meaningful high-level events
from raw RFID data. Cascadia provides three important
services. First, it allows application developers and even
users to specify events using either a declarative query lan-
guage or an intuitive visual language based on direct manip-
ulation. Second, it provides an API that facilitates the de-
velopment of applications which rely on RFID-based events.
Third, it automatically detects the specified events, forwards
them to registered applications and stores them for later use
(e.g., for historical queries).

We present the design and implementation of Cascadia
along with an evaluation that includes both a user study and
measurements on traces collected in a building-wide RFID
deployment. To demonstrate how Cascadia facilitates ap-
plication development, we built a simple digital diary ap-
plication in the form of a calendar that populates itself
with RFID-based events. Cascadia copes with ambiguous
RFID data and limitations in an RFID deployment by trans-
forming RFID readings into probabilistic events. We show
that this approach outperforms deterministic event detec-
tion techniques while avoiding the need to specify and train
sophisticated models.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous; H.4
[Information Storage and Retrieval]: Miscellaneous

General Terms
Design

Keywords
RFID, event specification, event detection, data manage-
ment, pervasive computing
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1. INTRODUCTION
Radio Frequency Identification (RFID) technology has be-

come increasingly popular in the last several years. New
applications that use this technology are emerging both in
industrial settings (e.g., supply-chain management [22, 56])
and pervasive computing environments (e.g., elder-care [46]
and hospitals [50]). RFID enables applications to track the
movements of objects and people carrying small RFID tags
in an environment equipped with RFID readers.

In an RFID system, RFID readers produce streams of tag-
read events (TREs) of the form (time, tag_id, antenna_id)

that indicate when and where tags are being detected. The
antenna_id is a unique identifier for the RFID antenna1 that
detected the tag. RFID applications transform low-level
TRE streams into meaningful higher-level events. In supply-
chain management, for example, TREs can be used to ana-
lyze the efficiency of the supply-chain process by tracking the
locations that products visit (e.g., factory, distribution cen-
ter, store). In a friend-finder application [55], TRE streams
can serve to automate sharing of a user’s current or historical
location, as well as the activities they perform (e.g., having
lunch). TREs can be used in the hospital scenario to mon-
itor the location and status of patients, staff members, and
equipment [50]. In the interest of simplicity, we use a digi-
tal diary application as a running example throughout this
paper. This application automatically populates a user’s
calendar with higher-level events (e.g.meetings, encounters,
breaks) which are generated as the user moves through an
office building with his or her RFID tags.

We propose Cascadia, a new infrastructure that greatly
simplifies the development of pervasive RFID applications
such as those described above. Our focus is on large-scale,
passive RFID deployments with fixed-location readers that
exist within a single administrative domain such as a hos-
pital, corporate or academic campus. We experiment with
our own RFID deployment, the RFID Ecosystem [55], which
includes hundreds of RFID readers and thousands of pas-
sive EPC Gen 2 tags throughout the Paul G. Allen Center
for Computer Science and Engineering at the University of
Washington.

1An RFID reader typically has multiple antennas (readers in
our deployment have four) that can be spread several meters
away from the reader and from each other.
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1.1 Motivation
A common way to architect a large-scale RFID appli-

cation is to use a relational database management system
(RDBMS). The TREs are stored directly in an RDBMS ta-
ble. New events are expressed as queries and alerts are han-
dled with triggers. This approach is perfectly adequate when
applications change infrequently and are based primarily on
TREs from readers at a few key locations – precisely the
context of supply-chain management systems. In fact, all
major RDBMS vendors now provide support for these types
of applications (e.g., [43]). However, in a pervasive com-
puting environment, the mix of applications is much more
dynamic and events are based on complex and often user-
specific conditions. Moreover, events in a pervasive setting
are likely to occur throughout a denser, more diverse set of
locations, not all of which are likely to be equipped with an
RFID reader.

As an example, a typical event in the supply-chain setting
is the transition of a package from its source to its desti-
nation [56]. Detecting this event amounts to executing a
simple query over TREs and computing a time difference.
In contrast, a typical pervasive computing event is a meet-
ing among a particular group of individuals. This is a more
complex event as those individuals may be only a subset
of a larger group and may meet in any one of many loca-
tions. Furthermore, the chance of incomplete information
and missed readings is likely to be much higher in a per-
vasive environment [58] due to deployment limitations and
because the movements of people are less easily regulated
and constrained than those of packages passing through a
loading dock door. As a result, the higher-level events used
by RFID applications are more difficult to specify, detect
and manage.

1.2 Contributions
Cascadia addresses the above challenges by providing

an infrastructure for building pervasive RFID applications.
In general, Cascadia simplifies application development in
three ways: (1) it hides the low-level details of limited de-
ployments and dirty TRE streams by exposing a high-level
model of probabilistic entity movements through space; (2)
it provides declarative and visual means for specifying so-
phisticated events on top of location information; and (3)
it facilitates management of these high-level events with a
simple event-based API. These high-level properties trans-
late into the following detailed services.

1. Decoupling applications from low-level RFID
data. Because RFID data is incomplete, dirty and
often ambiguous, Cascadia uses a probabilistic model
for tag movements through an environment and for the
resulting events. Applications operate on that model
rather than on the raw TREs (Sections 2 and 3.1).

2. Enabling developers and users to define high-
level events. In Cascadia, applications specify high-
level RFID events in a declarative fashion using PeexL,
a sequence language with a SQL-like syntax but de-
signed to handle dirty data and uncertain events (Sec-
tion 3.2). Cascadia also provides an intuitive graphical
interface, called Scenic, for generating event specifica-
tions in PeexL (Section 3.3).

3. Enabling continuous high-level event detection
from lower-level event streams. Cascadia includes
PEEX, a Probabilistic Event EXtractor that continu-

ously extracts developer and user-defined events from
streams of lower-level events (Section 3.2).

4. Facilitating management of events and meta-
data. Cascadia stores all detected events in an
RDBMS and simplifies their management with stan-
dard event-driven and query-based APIs (Section 3.4).

A variety of access control techniques can be used to en-
force privacy in Cascadia. Our baseline privacy policy is
Physical Access Control (PAC), which allows a user to access
events that occurred only when and where she was physically
present. Users may extend PAC with additional context-
dependent access control policies. We refer the reader to
our prior work for details [40, 49].

Overall, Cascadia is intended to support user-oriented per-
vasive computing applications with services for event speci-
fication, notification, and near real-time detection on top of
an existing RFID deployment within a single administrative
domain. In this paper, we present the design, implementa-
tion, and evaluation of Cascadia. We demonstrate Casca-
dia’s practicality with results from experiments on (1) the
usability of Cascadia’s graphical interface, (2) the precision
and recall for event detection, and (3) measurements of la-
tency for event notification. All measurements were made
on real traces collected in our building-wide RFID deploy-
ment [55, 58]. To demonstrate how Cascadia facilitates ap-
plication development, we build the digital diary application
mentioned above.

We present Cascadia’s data model in Section 2 and de-
scribe its architecture in Section 3. We mention important
implementation details in Section 4 before describing the
digital diary application in Section 5. Finally, we present
an evaluation of Cascadia in Section 6, related work in Sec-
tion 7, and conclude in Section 8.

2. CASCADIA DATA MODEL
In this section we present Cascadia’s data model, which

comprises a location model, an entity model, and an event
model. The data model abstracts away the many technical
details and difficulties of an RFID deployment to present
applications with data in a form that is easier to work with.
The location model hides the details of the RFID infrastruc-
ture while capturing an abstract notion of tag location and
movement. The entity model allows applications to work
with meaningful entities (e.g. people, places, things). Fi-
nally, the event model defines how entity movements and
relationships can map to high-level events and how these
events are represented.

2.1 Location Model
Reasoning about location and movement using raw RFID

data is challenging for two reasons. First, RFID antennas
often fail to detect tags in their vicinity [17, 32]. Second, due
to budgetary constraints or lack of foresight, a deployment
may not have antennas in all locations of interest. These two
issues make it impossible for applications to define events
on raw RFID data. We address this problem with a proba-
bilistic model of tag location over time that decouples raw
RFID data from the application-level view of it. The model
must be probabilistic to account for missing sensor informa-
tion. For example, in our deployment antennas are posi-
tioned solely in hallways, leaving us with no sensor data to
affirm that a tag has entered a particular room - instead this
must be inferred with some uncertainty. Location must be
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Location Model

• At(time,tagID,loc,prob)

Event Model

• EventType(time,a1,. . .,an,prob)

Entity Model

• People(tagID,name)
• Things(tagID,name,owner)
• Places(name,coordinates)

Event Primitives

• with and without
• inside and outside
• near and far

- Also includes the relations
that encode the entity lattice

Event Operators

• AND: Conjunction
• LASTS: Duration
• SEQ: Sequence

Table 1: Cascadia data model.

similarly inferred when an antenna fails to detect a nearby
tag. This situation is common to most pervasive computing
and sensor systems [14].

Cascadia’s location model is embodied by the At relation
which has the schema: At(time,tagID,loc,prob). Here, the
location attribute contains not an antenna identifier but a
value that is meaningful to applications, which we call a
place [27]. For example, the tuple (1:10pm,10,room230,0.75)

indicates that at 1:10pm, the tag with ID 10 was lo-
cated in room 230 with probability 0.75. For each unique
(tagID,time) combination, At stores the probability distri-
bution over the tag’s place at the given time. Thus, for
(10,1:10pm), the system may store the tuple above but also
the tuple (1:10pm,10,room231,0.25), indicating that there
was also a 0.25 probability the tag was in the adjacent room
231.

Logical views are as old as databases and have been ap-
plied to a variety of domains, including models [13]. Casca-
dia’s contribution is to adopt and support a model that (1)
abstracts away the details of missing sensor data but (2) is
sufficiently low-level so as to not restrict the types of event
an application can define on the data.

2.2 Entity Model
User-oriented applications need to reason about meaning-

ful entities, not RFID tags. As such, we model people, things,
and places as relations People, Things, and Places with pre-
defined attributes (see Table 1). We also distinguish mobile
entities, which include people and objects from static enti-
ties which are places.

Cascadia also allows applications to organize entities into
a hierarchy (or lattice) with varying levels of abstraction.
For example, a person, “Ana”, can also be a member of a
group, such as “student”. The student group can in turn be
part of a larger group such as “person”, and so on (hierar-
chies for things and places are similar). The entity model
allows applications to specify this type of hierarchy at run-
time by adding separate relations. For example, a relation
Role might map RFID tag numbers to groups identifying stu-
dents, staff, and faculty. A relation TypeWorker could further
group students and faculty as “flexible-schedule” workers,
and staff as “fixed-schedule” workers.

2.3 Event Model
Events are at the heart of Cascadia and the services it

provides. As such, the event model must be optimized to
support the specification, extraction, and management of
common RFID-based events. The model must also be prob-
abilistic so that developers and users can decide how to han-
dle uncertainty in events.

Event % of Apps
1) X enters the proximity of an entity 36%
2) X enters a place 21%
3) X leaves the proximity of an entity 17%
5) Object is next to/touching object 14%
6) X leaves a place 11%
7) X stays in proximity of a entity 9%
8) X stays at a place 6%
9) X is not in a place 2%
10) X and Y move to distance D apart 2%

Table 2: The most common RFID events ranked by

frequency of use in the literature.

To better understand the type and structure of common
RFID events we surveyed over 100 papers from past Ubi-
comp conferences. For each application scenario we studied
the use of any meaningful events that were or could be ex-
tracted from RFID data. We consider an event to be mean-
ingful if it could be understood and directly valued by aver-
age users: e.g., a person’s entrance into a room is considered
meaningful but a recent Fourier transform of a sensor signal
is not.

We further categorize events as complex or simple. Com-
plex events are complex relationships among two or more
subjects (e.g., “Ana takes a coffee break”) and can be de-
composed into simpler meaningful events (e.g., “Ana left her
office, is in the kitchen and has her mug”). Simple events
involve two subjects in some basic relation and cannot be
further decomposed. RFID offers two types of simple event:
location (e.g., “X is at location L”) and proximity (e.g., “X
and Y are proximate”). We noted all uses of complex and
simple events, we also recursively decomposed all complex
events into simple events, noting one use for each sub-event.
We then clustered all events into groups of similar events
and counted the number of events in each cluster. Table 2
shows the most common events along with the fraction of
applications in which they were used.

From Table 2 we abstract six event primitives defined as:
(1) with and without: some mobile entities are next to or
touching each other or not. (2) inside and outside: some
mobile entities are inside or outside a place. (3) near and far:
some mobile entities are within or beyond a given distance
of each other or of a particular place. Each primitive defines
a point event which occurs at a single point in time.

The analysis of events in the survey also showed that
events are typically composed in three ways: conjunction,
duration, and sequencing. Conjunction combines events
which occur nearly simultaneously into a more complex
event. Duration can be used to extend an event primitive
in time, for example: “Ying stays in the lab for 10 min-
utes”. Finally, sequencing composes events as a sequence in
time. As an alternative to these methods, machine learning
techniques have been used to derive higher-level events [45,
46]. However, as we discuss in Section 7, these techniques
are typically specialized for identifying events that are pre-
defined by a model or by labeled data.

Cascadia’s event model is thus implemented on top of the
entity relations, the base events in the At relation, and using
the six event primitives and three operators (conjunction,
sequencing, and duration) defined above. In addition, all
events have a probability that represents the uncertainty
which comes from the At relation and propagates to higher-
level events. For example, low probability ENTERED-ROOM

events could be composed to form a START-STUDYING event
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Figure 1: Cascadia system architecture.

with accordingly low probability. Events are stored in rela-
tions that bear the event’s name and which can be queried
using the Cascadia API. All events also have a timestamp.
For example, Ana’s START-STUDYING event might be stored
in a table with schema START-STUDYING (time, person1, per-

son2, room, prob). An example tuple is (1:10pm, Ana, Bill,

room605, 0.4), which represents Cascadia’s belief that Ana
and Bill started a study session at 1:10 pm with probability
0.4.

Currently, we adopt point semantics for time; the details
of interval semantics (e.g., ordering and overlap of events)
are much more complicated to support. With point seman-
tics, the time of the last point event in a sequence defines
the time of the event, making event ordering easy. Thus, an
event’s timestamp marks the time when the event ended. In
the example above, if the START-STUDYING session is defined
as Ana, Bill, and their notebooks all entering a study room,
then the timestamp, 1:10pm, is the time when the last of
the four tags was detected entering the room and the time
when the START-STUDYING event ends.

It is important to note that the time of each point event in
a sequence can be exposed as an attribute of the higher-level
event. For example, a Meeting can be defined as a Meeting-

Started followed by a Meeting-Ended. The Meeting-Started

event can itself be defined as two people entering a room,
with its timestamp marking the time of the second person’s
entrance into the room. It exposes the start time of the
meeting. The Meeting-Ended event exposes the end time of
the meeting and can occur either when the first or second
person leaves the room, depending on its definition.

In the remainder of this paper, however, we use an alter-
nate definition of Meeting which consists of only a Meeting-

Started event.

3. CASCADIA ARCHITECTURE
In this section, we present Cascadia’s system architecture

(see Figure 1). At the lowest level, Cascadia receives and
stores raw RFID data from a network of RFID readers.
The TREs are processed with a particle filter to populate
the At relation with smoothed, probabilistic location events.
This base data is then processed by the Probabilistic Event
EXtractor (PEEX), which continuously extracts and stores
higher-level events. Above PEEX is the Event Manager,
which is responsible for managing event definitions, sub-
scriptions, and notifications as well as for executing queries
on behalf of applications. Subscription and query services

H1 H2 H3

H4

O1 O2 O3

O5BO4
A

H2H1 H3

H4

O1 O2 O3

O5B

A
O4

(a)

(b)

Figure 2: A particle filter’s sample-based representa-

tion of the distribution over a single tag’s place at two

timesteps. (a) Antenna A detects the tag, creating a

focused distribution. (b) No antennas detect the tag,

creating a distribution with more uncertainty.

are exposed to applications with an API that supports both
declarative queries and event-driven programming. Finally,
Cascadia further simplifies the process of event specifica-
tion with Scenic, a user-level tool that assists non-experts in
specifying common higher-level events. We present each of
these components in detail below.

3.1 Particle Filter
As discussed in 2.1, the exact location of a tag in an RFID

system is low-level and uncertain. The At relation thus gives
the location of a tag, x, at each timestep, t, as a distribution
over x’s possible place at t. To populate the At relation
using RFID data requires (1) a definition of place and (2)
a method for inferring distributions over place. We discuss
our approach to these requirements below.

3.1.1 Defining Place
In Cascadia, the space within a building is discretized into

places by an administrator (using mechanisms described in
Section 3.4.1). In our experiments, each room is a place and
hallways are sliced into non-uniform segments based upon
the adjoining doorways. Places can have varying size, ours
are all at least several square feet in size.

3.1.2 Inferring Location
To infer place distributions from RFID readings, Casca-

dia uses a particle filter [18]. Particle filtering is a standard
technique for inferring a “hidden” state (e.g., the location of
a tag) from observations (e.g., TREs). This technique lends
itself well to the asymmetric, multi-modal distributions typ-
ical of location estimates. While our use of particle filtering
is not a research contribution, we describe the process below
for completeness.

A particle filter represents the distribution over a tag’s
possible place with a set of samples, or particles, such that
more likely places are associated with more samples. Each
particle is associated with a specific position (i.e.location
coordinate tuple) within a place. During updates, particles
move along the edges of a connectivity graph (also defined
by an administrator) that connects these positions. For the
purposes of event detection, however, only the containing
places (not the positions or graph edges) are considered.
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To update its estimate of a tag’s place as time progresses,
the particle filter first moves each particle forward accord-
ing to a motion model. Cascadia’s default motion model
(used in our experiments) moves particles straight down
hallways at roughly 1.0 meter/second, and chooses direction
uniformly at intersections (doorways are considered inter-
sections). The set of moved particles captures the updated
distribution over the tag’s place. Upon receiving a TRE, the
particle filter re-weights the particles using a sensor model:
particles having coordinates consistent with the TRE are
given higher weights than those with inconsistent coordi-
nates. The default sensor model (used in our experiments)
assigns a fixed, high weight (e.g. .8) to particles within the
read range of the detecting antenna2 and a low weight (e.g.
.01) to particles beyond this range. After re-weighting, a
new set of uniformly-weighted particles is produced from the
weighted set using importance sampling with replacement,
and the process repeats. The default motion and sensor
models can be tweaked or replaced by an administrator.

This update process is concretely depicted in Figure 2. In
the first timestep, (a), antenna A detects the tag. Parti-
cles close to A get high weights and are more likely to be
resampled, producing a distribution that is fairly concen-
trated around A: i.e., the tag’s place is fairly certain at that
time (in the figure, hallway H1 has roughly 0.85 probabil-
ity). In the next timestep, (b), no antennas detect the tag.
Without any sensor input, the particle filter cannot deter-
mine whether the tag entered an office or whether it perhaps
remained in the hallway and simply was missed by the read-
ers. The particle distribution reflects this ambiguity–it is
more diffuse and covers a larger set of places than the dis-
tribution in (a). These particles will continue to disperse
with each timestep until another TRE re-focuses the dis-
tribution. It is important to note that when another TRE
finally occurs, particles within range of the antenna will be
more heavily weighted and hence probably resampled, caus-
ing many particles with non-viable location coordinates to
disappear. However, the particle filter does not “teleport”
to the coordinates of the TRE any particles that were not
already there.

The At relation is populated at each timestep using the
corresponding set of particles: each place P containing at
least one particle produces a new At tuple for P with a prob

that is the sum of the particle weights inside that place. An
important consequence of this construction is that when a
particle distribution is diffuse, as in Figure 2(b), the proba-
bilities of all At tuples for this timestep–including the correct
one–are low because the probability mass is spread across
many places. Thus low absolute probabilities can still iden-
tify meaningful events. As an example consider a distri-
bution in which place P1 has probability .2 and all other
places have probability .01. This distribution suggests that
it is twenty times more likely that the tag is in P1 than
anywhere else. In contrast, a distribution where P1 and P2

both have probability .5 actually has less certainty about
the tag’s place, despite the high absolute probability values.

Finally, we note that particle filters generally produce dis-
tributions in which a small number (1-3) of places have sig-
nificant probability (e.g.> .2), while all remaining places
have diminutive probabilities (e.g.< .01).

2Our antennas are mounted on hallway ceilings at 3-5 meter
intervals. Read range can be approximately described as a
circle with a 9 foot radius that is centered at an antenna.

1 FORALL At A1, At A2,
2 CTABLE none
3 WHERE SEQ(A1, A2)
4 AND A1.loc <> ’DB Lab’
5 AND A2.loc = ’DB Lab’
6 AND A1.tag = A2.tag
7 CREATE EVENT ENTERED-ROOM E
8 SET E.person = A1.tag,
9 E.room = A2.loc;

Figure 3: ENTERED-ROOM Event in PeexL

3.2 PEEX
PEEX [38, 39] is Cascadia’s event detection subsystem. It

takes declarative event specifications as input and continu-
ously extracts the specified events from base data in the At

relation. For example, in our calendar application, PEEX
takes specifications for events like Meeting and extracts the
events while the particle filter populates the At relation.

3.2.1 PeexL Query Language
PeexL is a declarative query language for specifying high-

level probabilistic events for PEEX. Event specifications in
PeexL have the form:

FORALL I1, I2,..., In

[ CTABLE C ]

WHERE Condition

CREATE EVENT E

SET Assignments

The arguments to the FORALL clause, I1, . . ., In, corre-
spond to At events, other composite events, or to regular
database tables and may optionally be preceded by a nega-
tion !. The CTABLE clause specifies an optional, developer-
defined confidence table, which helps in handling ambiguity
as we discuss in the following section. The WHERE clause is as
in SQL with the addition of the SEQ predicate which we bor-
row from [6, 60]. SEQ(I1, I2, . . ., Im) states that Ij.time

≤ Ij+1.time for j ∈ [1,m − 1]. One can also specify that
an argument to the SEQ operator LASTS for a specified time.
Finally, the CREATE EVENT and SET clauses define the name
and the attributes of the new event.

Figure 3 illustrates a trivial PeexL query that extracts
ENTERED-ROOM events. This query specifies that if a tag is
At a location outside of the database lab (line 4) followed
by inside the database lab (line 5), then the tag is enter-
ing the database lab (lines 7-9). This specification uses no
confidence tables. This means that the probability of the
ENTERED-ROOM event is exactly the product of the probabili-
ties of the underlying At events.

A more complex example is shown in Figure 4. Figure 4
illustrates a PeexL query that extracts MEETING events. This
query specifies that if Ana and Bill are outside the database
lab (lines 4-5), and then they are inside the database lab
(lines 6-7), then they may be having a meeting in the
database lab (lines 10-13). The ordering of events is de-
termined by the SEQ construct (line 3) which specifies that
both Ana and Bill are outside and then inside. The CTABLE

clause specifies the confidence table for the event.

3.2.2 PEEX Event Detector
Event extraction in PEEX is performed by an Event De-

tector that runs periodically. Like base events in the At re-
lation, all extracted events are stored persistently using one
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1 FORALL At A1, At A2, At A3, At A4
2 CTABLE MeetingStats C
3 WHERE SEQ(AND(A1, A2), AND(A3, A4))
4 AND A1.tag = ’Bill’ AND A2.tag = ’Ana’
5 AND A1.loc <> ’DB Lab’ AND A2.loc <> ’DB Lab’
6 AND A3.tag = ’Bill’ AND A4.tag = ’Ana’
7 AND A3.loc = ’DB Lab’ AND A4.loc = ’DB Lab’
8 AND C.person1= A1.tag AND C.person2= A2.tag AND
9 AND C.room = A3.loc
10 CREATE EVENT MEETING E
11 SET E.person1 = A1.tag,
12 E.person2 = A2.tag,
13 E.room = A3.loc;

Figure 4: MEETING Event in PeexL

relation per event specification. The Event Detector assigns
a probability to each newly detected event before storing it
in the appropriate relation.

The Event Detector operates with two time windows. The
first window, ∆, is a longer window (e.g., one day worth of
data). It bounds the time range in which the Event De-
tector searches for events to ensure constant performance in
face of a growing data archive. ∆ should be small enough
to ensure good system performance while still covering the
most common types of events (Table 2). The second win-
dow, δ, specifies the frequency at which the Event Detector
executes. δ determines the latency of event detection but
does not affect what events are being detected. Both time
windows are set by an administrator.

Extracting Events. During event extraction, the Event
Detector leverages the underlying RDBMS where events are
stored. To do so, it transforms PeexL event definitions into
SQL queries that it executes every δ seconds. There are
six key parts to this transformation. (1) All SEQ(I1, I2,..)

constructs are transformed into explicit predicates on input
event timestamps. (2) LASTS predicates are translated into
count sub-queries. For example, if an underlying event must
last for 10 seconds, the translated SQL specifies that the
event must occur once, then again ten seconds later, and also
at the eight distinct timesteps in between (thus the count is
10). (3) Negations are re-written into outer-joins, which join
two relations but include tuples without matches in the re-
sult. (4) To avoid repeatedly detecting the same events on
successive runs, the Event Detector transforms event def-
initions into stateful, incremental queries. These queries
only retrieve combinations of low-level events in which at
least one has occurred in the most recent δ window. (5)
Additionally, the Event Detector inserts a predicate stating
that all the underlying events must occur within the larger
time window (∆ seconds). (6) Finally, the generated SQL
includes a calculation that computes the probability of the
event as a function of the probabilities of the events on which
it depends as well as the appropriate probability from the
corresponding confidence table.

Computing Event Probabilities. The intuition be-
hind confidence tables is that many higher-level events
are correlated with the attributes of underlying lower-level
events. For example, it may be that when Ana and Bill are
outside the lab and then inside the lab, they usually start
a meeting. In contrast, when Ana and Ying enter the lab,
it may be more likely that they are simply crossing paths.
Confidence tables help capture such correlations.

In the absence of confidence tables, PEEX computes the
probability of an event as the product of the probabilities of

person1 person2 room comb-prob prob

Ana Ying DB Lab 0.5 0.1

Ana Bill DB Lab 0.2 0.9

Table 3: Confidence table for the Meeting event

all underlying events, since all these events must occur for
the higher-level event to occur. In case of negations, PEEX
uses (1 − p), where p is the probability of the underlying
negated event.

If confidence tables are to be used, a developer or an ad-
ministrator must populate them by providing PEEX with
training data. In this case, training data amounts to At

traces that are labeled with complex events. The At traces
in this data are probabilistic while the labels are determin-
istic (i.e., have probability 1).

Confidence tables take the form:

CONF_TABLE(A1,A2,...,An,comb-prob,prob)

They aim to capture the probability that a complex event
occurs given that the underlying event combination occurs
with some probability.

For example, consider the Meeting event. The Meeting

event has four underlying At events, two indicating that Ana
and Bill are outside a room followed by two indicating they
are both inside the room. If the combination of At events
occurs with probability 0.2 a total of ten times in the training
data, and nine of those times, the Meeting event actually
occurs, then PEEX appends to the end of the confidence
table the following tuple: (’Ana’, ’Bill’, ’DB Lab’, 0.2,

0.9). Table 3 shows the confidence table for this event. The
last line in the table is the newly appended one.

One can think of the confidence table as a set of functions.
In the case of the Meeting event, there is one function for each
(person1, person2, room) tuple. This function maps comb-

prob (the probability of the underlying event combination)
to prob (the probability that the composite event occurs).
Let’s call this function f(person1,person2,room).

In practice, it is impossible to learn these functions
precisely, especially with a small amount of training
data. For example, the training data may tell us that
f(Ana,Bill,DBLab)(0.2) = 0.9. However, we do not know the
value of f(Ana,Bill,DBLab)(0.04) unless we see the underlying At

combination with probability 0.04 in the training data.
As such, PEEX assumes that the functions are linear and

it only learns the gradient for each function. PEEX also as-
sumes that if the underlying event combination occurs with
probability 0, then the higher-level event also appears with
probability 0. (i.e., it assumes that f(0) = 0 for all the func-
tions f). PEEX can also use the gradient to easily calculate
the probability of a complex event. It simply multiplies the
probability of the underlying event combination by the gra-
dient value found in the estimated confidence table. Our
linearity assumption means that the result of this calcula-
tion is sometimes greater than 1. If this is the case, PEEX
assigns probability 1 to the extracted event.

As an example, consider again the confidence table
in Table 3. Given that f(Ana,Bill,DBLab)(0) = 0 and
f(Ana,Bill,DBLab)(0.2) = 0.9, we know that the gradient of
f(Ana,Bill,DBLab) is 4.5. Now imagine the following scenario:
the four underlying At events occur with probabilities 0.4,
0.5, 0.4, 0.5 respectively. PEEX calculates the probability of
the underlying event combination as 0.04 (the product of the
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four probabilities). Now to calculate the probability of the
Meeting event, PEEX multiplies 0.04 by the gradient value
4.5. Finally, it generates the Meeting event with probability
0.18.

Ideally, the points we learn about the function would all
fall on one line. However, in practice they do not. There are
many methods for estimating the gradient of the function
given a few training points. In our experiments, we take
the gradient of the line going through the origin and the
centroid of the training data points to be the gradient for
the function.

The attributes of a confidence table are defined by the
developer or administrator who creates it. For example, an
administrator may assert that the probability of a Meeting

event never depends on which people enter the lab but in-
stead only on the lab and the time of day at which they
enter it. To do this, the administrator would specify a con-
fidence table with schema MeetingStats(room, time-of-day,

comb-prob, prob) and alter the event specification to indicate
which attributes of the underlying event combination match
which attributes of the confidence table. Another interest-
ing attribute that could be used in a confidence table is the
duration between the underlying events. For example, when
defining the Meeting-Ended event (described in Section 2.3),
the confidence table can include the duration of the meeting
(i.e., difference in time between the Meeting-Started event
and the time at which the first person left the room).

3.3 Scenic
Authoring PeexL event specifications may be difficult for

developers and impossible for users. As such, Cascadia pro-
vides Scenic, a tool for visual specification of events. Scenic
is primarily intended to allow end-users to quickly and easily
create or customize event specifications at run-time. Non-
expert developers can also use Scenic at design-time to gen-
erate PeexL for their applications. For simplicity, Scenic
does not allow specification of confidence tables, this is left
to developers and administrators.

The Scenic interface is entirely web-based and can be ac-
cessed through a web browser as a standalone application.
Alternatively, Scenic can be embedded within another web
application. For example, in our digital diary application
users can launch Scenic as a toolbar for specifying or cus-
tomizing events to be detected and inserted into their calen-
dars. Developers can specify events with standalone Scenic
to generate valid PeexL event definitions which they can cut
and paste into their application code.

3.3.1 Scenic Components
Scenic uses an iconic visual language that represents event

primitives and entities as icons which can be dragged and
dropped onto a storyboard to specify a sequence of point
events, or scenes. Thus, to specify an event users just “tell
the story” of the event, scene by scene. Figure 5 shows the
Scenic interface, which consists of a toolbar, below which is
a working area called the sequence panel.

Scenes. Scenes represent point events in a sequence and
are displayed as white panels over the grey sequence panel.
Users can compose scenes as sequences (i.e., apply the SEQ

operator) by arranging them horizontally on the sequence
panel; time is assumed to flow from left to right, with each
scene strictly following the previous one (i.e., not overlap-
ping). Scenes can be inserted and deleted with a few clicks.

Figure 5: A screenshot of Scenic showing scenes, ac-

tors, primitives and a properties dialog for an actor.

Actors. Actors represent entities in a point event and
map to relations People, Things, and Places in Cascadia’s
entity model. Scenic also supports groups of people or things
which map to higher levels in the entity lattice (e.g., a group
of four “students”). Each type of actor is displayed in the
toolbar as a separate icon; by clicking on an icon, users can
create and drag a new actor into a scene. Each successively
created actor is represented by a different color icon and
a distinct, anonymous unique identifier (i.e., “Person #4”).
After dropping an actor into a scene a user can right-click
and set the actor’s identity as either specific (e.g., “Ana”) or
general (e.g., “student”). Bounds for the size of a group can
also be set this way. The list of available identities for an
actor is retrieved from the entity tables when Scenic starts.

Primitives. Scenic provides icons for the event primitives
and the LASTS operator. Conjunctions (AND) are indicated by
dragging multiple primitives onto the same scene. Primi-
tives are created and used in a similar way to actors. By
dragging an event primitive onto a scene, a user can specify
a relationship between actors in that scene. The near, far,
and lasts primitives also have properties that can be set to
indicate how near or far actors must be from each other, or
how long a scene must last.

3.3.2 Scenic Grammar
Figure 6 shows the grammar for Scenic event specifica-

tions. Each EventSpec consists of one or more ExtScenes

(extended scenes). Each ExtScene is either an instantaneous
Scene or a Scene with a duration. Scenes can be: (1) a set
of MobileEntities in the same unspecified place, (2) a Mo-

bileEntity without another specified MobileEntity, (3) a Mo-

bileEntity near or far from another specified MobileEntity,
or (4) a set of MobileEntities inside, outside, near, or far
from some place.

When an event is specified in Scenic, it either has exactly
one translation in the grammar or is rejected by the gram-
mar. Figure 7(a) shows an example of an event that is in the
grammar. It is parsed as shown in Figure 8. Figure 7(b) can
not be translated using the grammar because it is not clear
whether the user means ’Bill is inside the DB lab without
his umbrella’ or ’Bill’s umbrella is inside the DB lab without
Bill’.

3.3.3 Converting Scenic Specifications into PeexL
After specifying an event in Scenic, a pop-up dialog ap-

pears, prompting the user to name the new event and select
its attributes from a list. This process specifies the schema
of the new event which is then sent to PEEX along with a
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〈EventSpec〉 ::= 〈ExtScene〉+
〈ExtScene〉 ::= 〈Scene〉 | 〈Scene〉 ’lasts’ int

〈Scene〉 ::= 〈WithEntity〉
|〈WoEntity〉
|〈MobileEntity〉 (’near’|’far’) int 〈MobileEntity〉
|〈WithEntity〉 (’in’|’out’|’near’|’far’) Loc

〈WithEntity〉 ::= 〈MobileEntity〉
|〈WithEntity〉 (’w’) 〈MobileEntity〉

〈WoEntity〉 ::= 〈MobileEntity〉 ’wo’ 〈MobileEntity〉
〈Entity〉 ::= 〈MobileEntity〉 | Loc

〈MobileEntity〉 ::= (Person)+ |Group-of-people
|(Thing)+ |Group-of-things

Figure 6: Grammar for Scenic.

a)

b)

Figure 7: (a) In the grammar. (b) Not in the grammar.

PeexL translation of the event specification. Table 4 illus-
trates the correspondence between components of the Scenic
grammar and components of a PeexL event specification.
Predicates on actor attributes are translated into SQL pred-
icates, possibly including a join with a relation in the entity
lattice. For example, Figure 8 is translated into PeexL (Fig-
ure 4 without the CTABLE) as follows. First, we add an At

relation in the FORALL clause for each Person. Second, we
add a SEQ predicate with two arguments, one for each Scene.
Because both Scenes include WithEntity, we use the AND pred-
icate, thus producing SEQ(AND(A1, A2), AND(A3,A4)). Next
we add a predicate for A1, A2 specifying that their location
is not the ’DB Lab’, and one for A3,A4 specifying that their
location is the DB lab. Finally, we add the remaining pred-
icates that specify the tag for each of A1, A2, A3 and A4.

3.4 Event Manager
The Event Manager serves as the intermediary between

applications and Cascadia’s services for storage and event
detection (Figure 1).

3.4.1 Application Interface
The Event Manager’s services are exposed with a Java

API that presents entities and events as first-class objects
and supports both query-based and event-driven program-
ming models. The API’s central class is CascadiaClient,
which contains methods for creating, deleting, and querying
entities and events, and for subscribing to streams of events.
Figure 9 lists the methods in CascadiaClient.

Figure 8: Parse tree for the example meeting event.

Scenic construct PeexL construct
EventSpec SEQ operator

Scene one component in SEQ
ExtScene as Scene but with a lasts clause
with/wo AND clause (an ! for without) + loc is same
near/far using auxiliary table Loc2LocDist

in/outside check if loc is equal (or not) to a room
Person/Obj one At in the FORALL clause

Group multiple Ats in the FORALL clause

Table 4: Translation table

The Person, Thing, and Place classes can be used to cre-
ate, update, or delete persistent entities. Each has a set of
attributes that match the entity model (see Table 1) and dy-
namic attributes (e.g., location for a Person and occupants

for a Place) that are continuously updated with a list of
K most likely values. The API provides addPersonGroup and
similar methods to define the lattice of entity values. For ap-
plications with admin privileges, addLocNode and addLocEdge

can be used to define the connectivity graph (i.e., Voronoi
diagram) for places.

The API also provides an SQL query interface for query-
ing entity and event relations. This interface is implemented
as a wrapper around a read-only JDBC Connection with only
the createStatement and prepareStatement methods exposed
(as createQuery and prepareQuery respectively). Queries are
currently answered using a standard RDBMS, which is suf-
ficient for simple selections on past events. For more sophis-
ticated queries over probabilistic events, we will eventually
replace the RDBMS with a probabilistic database such as
MystiQ [10].

Events are defined and handled using a set of classes that
encapsulate event-related concepts. Figure 10 illustrates
how an application can use these classes to connect to Cas-
cadia, register a PeexL event definition, and subscribe to
receive specified events. In addition to the event, a subscrip-
tion also specifies a minimum probability threshold and the
max number K of most likely events the application wants to
receive after each time window. To process newly detected
events, applications implement an EventHandler interface.
The CascadiaListener interface allows applications to receive
system-level events such as the addition of a new entity.

3.4.2 User-Specific Data and Event Templates
To facilitate management of user-specific data, the Event

Manager maintains user-specific repositories of events and
entities. All events and entities that have been defined for
a given user are stored in these tables and may be accessed
by any application authorized by that user.
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// Entity methods (similar for places and things)
boolean addPerson(Person p);
boolean addPersonGroup(PersonGroup pg);
boolean removePerson(Person p);
boolean removePersonGroup(PersonGroup pg);
List<Person> listPeople();
Person getPerson(String name);
PersonGroup getPersonGroup(String name);

// SQL query interface
Query createQuery();
PreparedQuery prepareQuery(String sql);

// Event methods
RegEvent addEvent(EventDef definition);
boolean removeEvent(EventDef definition);
List<Event> getEvent(String name);
List<Event> listEvents();
EventStream subscribeEvent(Subscription subscription);
boolean unsubscribeEvent(EventStream stream);
List<Event> queryEvent(RegEvent re, long startTime,

long stopTime, double probThreshold);

// For receiving system-related events
void addListener(CascadiaListener listener);

Figure 9: List of methods in the Cascadia client API.

1 CascadiaClient c =
2 new CascadiaClient(user,password,host,1234);
3
4 String peexL = <definition>
5 String schema = <schema>
6 EventDef ed = new EventDef(peexL, schema,
7 "My Event", "Example Event");
8
9 RegistedEvent re = c.registerEvent(ed);
10 Subscription sub = new Subscription(re,3,0.75);
10 EventStream stream = c.subscribe(sub);
11
12 stream.addEventHandler(this);

Figure 10: A code snippet which shows event defini-

tion, registration, subscription to an event stream, and

addition of event handlers.

Though users can define and store their own events us-
ing Scenic, many applications are developed with particular
types of events in mind. As such, the Event Manager allows
event templates in which all entities are variables. Users
can load event templates in Scenic to customize their spec-
ification. For example, a developer might define an event
template, MEETING that specifies a meeting between two peo-
ple in some room. Ana may edit MEETING with Scenic to
refer to she and Bill in the DB lab. Applications store event
templates in the event repository with a special template
flag, and Scenic can be invoked with a query string which
indicates that it should load a particular event template.

3.4.3 Event Filtering
The Event Manager filters the top-K events provided by

eventOccurred to exclude those with probability below the
subscription’s threshold. Entity objects also support entity-
based filtering. Applications can implement an entity event
handler (e.g., PersonEventHandler) to handle events about a
given entity. The entity object will then invoke the applica-
tion’s entity event handler with itself and a list of the top-K
most likely events (if any) involving that entity for the time
window.

4. CASCADIA IMPLEMENTATION
Cascadia’s Event Manager, PEEX, and Particle Filter

comprise 122 classes and over 14,000 lines of Java code, not
including comments or parser code generated by ANTLR.
We use Microsoft’s SQL Server RDBMS with the Java JDBC
API. Secure network communications are implemented us-
ing Apache’s MINA framework. Scenic consists of DHTML
with about 9,000 lines of custom Javascript code. AJAX is
used to support a streamlined connection to a Java Servlet
which has 15 classes, 2,000 lines of code and runs on the
Apache Tomcat web server.

5. EXAMPLE APPLICATION
To demonstrate how Cascadia can facilitate application

development, we implemented a digital diary application
which records occurrences of user and developer defined
events in a Google calendar [23]. This application could
be a useful tool for analyzing how, where, and with whom
one has spent one’s time.

The digital diary has two components: a daemon that
continuously receives and posts newly extracted events, and
a web-based calendar that the user loads to review her di-
ary and edit its settings. The calendar supports three views
in which the top-1, top-2, or top-3 detected events for each
time period are displayed. The calendar also offers con-
trols for adding, specifying, and customizing the events for
the diary. Clicking “create new event” or “customize event”
launches Scenic as a floating tool-bar above the calendar in
the browser.

The core logic of the diary daemon uses Cascadia’s event-
driven programming interface to receive and post newly ex-
tracted events. The daemon also implements event-specific
logic for advanced handling of developer-defined events. For
example, the diary comes with the built-in event ENCOUNTER,
for recording encounters between people, as well as pairs
of MEETING-START and MEETING-END events which record long
duration meetings between people. However, the diary fil-
ters out redundant ENCOUNTER events that occur close in time
to MEETING-START or MEETING-END events as people gather or
disperse. An additional filtering thread which processes a
queue of recently received events is used to implement this
logic. We discuss how Cascadia facilitated the development
of the digital diary application in Section 6.3.

6. EVALUATION
In this section, we present an evaluation of Cascadia’s key

components.

6.1 Scenic Evaluation
We evaluated Scenic with a laboratory study that in-

cluded 11 participants: 6 with computer science (CS) back-
grounds and 5 with non-technical or non-programming (non-
CS) backgrounds. Participants were offered $20 to partic-
ipate in a 90 minute study session. After a 10 minute tu-
torial and practice period, participants were given a series
of 22 timed event specification tasks. Each task included a
general, high-level English description of an event from the
literature that participants were asked to specify as precisely
as possible. Of the tasks, 12 were simple tasks, which pre-
sented descriptions of simple events, likely to be specified in
one scene with one primitive. Another 10 were complex tasks
which presented descriptions of complex events, likely to be
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(b)

Figure 11: Min, avg, max specification times. (a) For

CS and Non-CS. (b) For increasing number of elements.

specified with multiple scenes and primitives. The study ses-
sion concluded with a questionnaire that asked participants
to rate various aspects of Scenic on expressiveness, precision,
and ease-of-use. Finally, we hired 2 coders (both CS) to rate
the how well each event specification from each participant
captured the original English event description. The coders
were trained as experts with Scenic and the basic workings
of RFID systems during the first hour of a 2 hour session in
which they rated every event specification.

Overall, CS participants spent 93 seconds per event spec-
ification task on average, with a standard deviation of 21
seconds, while non-CS participants spent an average of 111
seconds with a standard deviation of 42 seconds. Figure 11
describes the timing results in detail. The first plot shows
that on average, participants could complete simple tasks
within 1 minute and complex tasks within 3 minutes. A
few participants took significantly longer on complex tasks.
In the second plot we clustered tasks by the number of el-
ements in the event (i.e., number of actors + number of
relations between actors). This metric directly correlates
with the number of operations (e.g., click and drag, dialog
interaction) that must be performed to complete the speci-
fication. As the number of elements increases, the average
time taken per event remains flat for small numbers of ele-
ments (< 5) and afterwards increases approximately linearly
with the number of elements in the event. The maximum
time, however, may increase much more rapidly, showing
again that some participants needed to think longer about
more complex events. The slight drop in time taken for the
events with 10 and 15 elements is due to the fact that these
events were logically quite simple but involved many entities
- so they required less thought and the time was dominated
by manual operations.

Dimension EXP PR EASE
Choice of words for primitives 3.8 3.6 3.7
Properties of primitives 4.3 4.2 3.9
Overall use of primitives 3.6 3.4 3.8
Choice of icons for actors 4.5 4.3 4.4
Choice of types for actors 4.3 4.4 4.5
Overall use of actors 4.4 4.2 4.4
Overall use of Scenic 3.9 3.4 4.1

Table 5: Table showing the average questionnaire rat-

ings for expressiveness (EXP), precision (PR), and ease

of use (EASE) on a 5 point scale where 5 is the best.

Scenic received an overall average rating of 3.9 for expres-
siveness, 3.4 for precision, and 4.1 for ease of use on a 5 point
scale where 5 is the most and 1 is the least (detailed ratings
are shown in Figure 5). The lowest ratings received were
for precision; participants explained that they were unsure
whether the system would correctly interpret their intended
meaning for some complex events. For example, in speci-
fying the event “Bill prints his meeting notes, picks them
up from the printer room, and returns to his office”, one
participant did not specify that Bill picked up the meeting
notes in the printer room, only that he had them after he
returned. The user later expressed concern about whether
the system would be able to infer what was intended. The
highest ratings were for actors, showing that participants
appreciated the direct representation and manipulation of
entities. Some participants (both CS and non-CS) really
enjoyed using the prototype and even spent extra time to
neatly arrange their icons before submitting an event. Par-
ticipants requested features to improve the usability such as:
copy-and-paste for actors and scenes and some explicit sup-
port for representing conjunctions of simultaneous events.
We plan to add these extensions in future work.

On average, the coders gave a rating of 6 to specifications
for simple tasks and 5.5 to specifications for complex tasks,
with standard deviation under 1.5 for both on a 7 point scale
(where 7 is the most similar and 1 is the least similar). The
mode rating for specifications from each simple task was 7.
Events specifications for three of the complex tasks had a
mode rating of 6, while specifications for the other complex
tasks had mode rating of 7. Coders explained that ratings
less that 7 were assigned most often due to missing details in
the specification (e.g., exemplified in the above example with
Bill). These results show that not only could users quickly
create event specifications, but they could create specifica-
tions which were arguably correct.

6.2 PEEX Evaluation
In order to evaluate PEEX we collected data for 1 hour

with 10 participants in our building-wide RFID deployment.
Each participant had with them several tags including their
badge, keys, laptop, and mug tags. There were a total of
44 unique tags in our trace. We collected 11585 TREs. The
Particle Filter tracked tag movements at a granularity of
1 second using 500 particles per tag, producing a total of
16,141,789 At events. For efficiency, PEEX ran only over
At events with probability greater than 1%, of which there
were 2,303,702.

We evaluate PEEX using the ENTERED-ROOM event defined
as a sequence of two At events one outside a particular room
and one inside that room. To collect ground truth, we asked
participants to label when they traveled between rooms and
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which objects they carried with them for each trip. We use
the labeled data for the first half-hour to populate confidence
tables and the remainder to evaluate PEEX’ performance.

For this evaluation, we say that an extracted event E cor-
rectly captures a labeled event E′ if E is within 60 seconds
of E′. We use an approximate 60 second window to cope
with the varying degrees of inaccuracy in the labeled data.
Indeed, participants typically noted when they entered or
exited rooms either several seconds before or several seconds
after the event actually occurred.

We measure the recall and precision achieved by PEEX.
Recall is the fraction of labeled events that are captured by
some extracted event. Precision is the fraction of extracted
events that capture a labeled event. Figure 12 shows the
results. The x-axis shows the probability threshold, x: for
each such threshold, we measure the precision or recall only
for those events that were assigned a probability equal to or
higher than the threshold. Hence, x = 0, shows the preci-
sion and recall for all detected events, while x = 1 shows
the precision and recall only for certain events. For each
probability threshold, the graph shows the minimum, first
quartile, median, third quartile and maximum across all tags
(for the recall graph, the minimum and maximum are 0 and
1 for each threshold). More specifically, we measure recall
and precision per tag and the graph summarizes the results
across 30 out of 44 tags. The results for the remaining 14
tags were unusable. Either not even one TRE was generated
for these tags or the tags failed to be detected for tens of
seconds at a time. For the most part, these abnormally high
error rates were due to tags being attached to water bottles
(water absorbs RF signals) or laptops (metal reflects RF sig-
nals). In all cases, tags attached to participants and most
of their objects were properly detected and their results are
shown in Figure 12.

As the graph shows, PEEX can achieve both a precision
and recall of up to 100% with many tags. In general, how-
ever, PEEX offers a flexible trade-off between precision and
recall unlike a deterministic approach. Indeed, there are
two possible deterministic approaches. The first determin-
istic approach is to extract only events that have occurred
with certainty. In the graph, this corresponds to x = 1.
The second deterministic approach is to generate all events
that have any chance of having occurred (x = 0). PEEX can
provide a higher recall than the first deterministic approach:
the median recall improves from 29% for x = 1 to 87% for
x = 0. PEEX can also deliver higher precision than the sec-
ond deterministic approach to applications that require it.
The median precision increases from 40% for x = 0 to 96%
for x = 1.

Figure 12 shows that, unlike a deterministic approach,
PEEX allows applications to choose their desired trade-
off between recall and precision by considering only events
above some probability threshold. In our example, for
x = 0.4, the recall for the third quartile is 0.75 while the
precision is 0.94. While it seems low, 0.4 is a reasonable
probability threshold for two reasons. First, higher-level
event probabilities are misleadingly low due to the multi-
plicative way in which they are computed. For example, an
ENTERED-ROOM event comprises two lower-level events (out-
side and inside room) and will be detected with probability
equal to the product of these event probabilities (e.g., even
fairly high probabilities for the lower-level events such as
0.63 and 0.63 or 0.8 and 0.5 will result in a probability of

(a)

(b)

Figure 12: Recall and precision graphs for Entered-Room

events. Results show all quartiles.

0.4 for ENTERED-ROOM). Second, recall from Section 3.1 that
primitive At events can be significant even when detected
with only low (e.g., 0.2 or higher) probability. Taken to-
gether, these two facts indicate that an application should
not use a particularly high probability threshold to achieve
meaningful results. Overall, Figure 12 shows that PEEX can
effectively detect events over data collected in a real RFID
deployment, providing good recall and precision in spite of
the high uncertainty in the data.

In addition to measuring recall and precision for different
probability thresholds we also measured them for different
values of k, in a top-K approach. Here, for each time win-
dow, we keep only the top K events (ordered by probabil-
ity). However, the graph is almost identical to Figure 12 and
we omit it. The top-K approach does not have a significant
benefit in our experiments because there was little ambiguity
in event definitions. Participants entered rooms that were
far apart from each other; they never entered a room with
many adjacent rooms which would cause ambiguous event
detections. The main source of ambiguity came from the
fact that participants sometimes entered rooms and other
times simply passed in front of them. In this case, the top-
K approach does not help. In other deployments, however,
we expect the combination of top-K and threshold to yield
almost the same recall for a better precision than using a
threshold alone.

6.3 Application Development
The digital diary implementation shows how Cascadia can

greatly simplify application logic in RFID event-based appli-
cations. The diary took only 3 days to develop and consists
of about 1,200 lines of Java code in 12 classes. The code
break down is presented in Table 6. As shown in the table,
the bulk of the application logic dealt with the filtering of
Cascadia events (i.e., event management).
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Diary Component Classes Lines of code
Parsing config files and startup 8 400
Creating events and event streams 1 50
Incorporating user-defined events 1 50
Event handlers 1 25
Entity management 1 200
Event management and processing 3 300
Populating Diary with Google APIs 1 150

Table 6: Table showing the approximate break down of

code for the digital diary application.

6.4 System Performance
We characterize Cascadia’s performance by measuring the

latency introduced by the Particle Filter, PEEX, and the
Event Manager while extracting ENTERED-ROOM events from
the 1 hour trace. Each component was run on a Dual Xeon
3GHz server with 8GB of RAM and 700GB of disk.

The time taken by the Particle Filter per timestep de-
pended on the number of tags being tracked. We found that
the Particle Filter could maintain real-time performance
(one update per second) for at least 175 tags (using 500
particles each). In measuring the performance of PEEX,
we assumed that the At events table, along with any other
helper tables, had an index on time and tagID. PEEX took a
total of 77.5 s to learn the confidences over the 2,303,700 At

events, and an average of 48 ms per 5 s time window to ex-
tract the ENTERED-ROOM events. Finally, the Event Manager
took an average of 2.69 ms to retrieve and send each event
stream update to a remote application. From these results
we conclude that Cascadia can easily run in near real-time
for hundreds of users. Additionally, the system could scale
even more with parallelization and a few additional servers.

Finally, we note that while we currently store a set of
At tuples for every tag and every timestep, compression or
pruning can easily be applied to reduce storage demands.
Most simply, At tuples (or detected events) can be com-
pressed or deleted after an expiration window (say, 48 hours
for At tuples and 1 month for detected events). More so-
phisticated techniques might compress or prune the data to
reduce its size while maintaining a majority of the informa-
tion (e.g. the At tuples over a long interval during which a
tag does not move might be compressed into a single distri-
bution).

7. RELATED WORK
Related work for Cascadia spans a variety of areas.
Infrastructures for pervasive computing. Many sys-

tems have been built to provide event services for pervasive
computing. Many of these systems, such as the Context
Toolkit [53], Gaia [52], Aura [54], Solar [7], and ConFab [28]
have sought to address issues in addition to event services
such as discovery, allocation, and management of resources,
potentially heterogeneous sensors, and distributed comput-
ing. By contrast, Cascadia only uses RFID data and as-
sumes that an infrastructure for aggregating and centrally
storing that data is readily available (as would be the case in
a hospital, corporate campus, or smart home). Furthermore,
none of these systems has focused on providing Cascadia’s
combination of user and developer-level support for expres-
sive, declarative event specification, subscription, notifica-
tion and management on top of a probabilistic data model
that targets pervasive computing.

The ParcTab [57], Sentient Computing [2], Event
Heap [35], and ConFab systems all proposed data models
similar to Cascadia’s, yet they did not support uncertain
base data and streams of probabilistic events. JCAF [5]
presented an event-driven programming API with event sub-
scriptions which is very similar to ours, but requires that de-
velopers write custom modules to perform event detection.
ParcTab, Stick-e Notes [44], and ConFab provide declarative
event specification languages, but they are less expressive
and do not leverage RDBMSs. Liquid [26] and the Data
Furnace project [20] have provided declarative, expressive
event specification languages. Moreover, the Data Furnace
project seeks to manage imprecise sensor data and proba-
bilistic events. However, to the best of our knowledge, no
algorithmic or system implementation details are published
for either system.

RFID data management. Several techniques for com-
pactly representing, summarizing, and efficiently accessing
RFID data have been proposed [22, 29]. Most similar to
our approach is the Siemens RFID middleware [56], an in-
tegrated data management system with a rule-based frame-
work to transform RFID readings into business logic. This
system is intended for supply-chain management and hence
features a data model that emphasizes containment relations
(e.g., tagged cases are inside pallets). Additionally, the rules
used are deterministic and operate on raw RFID readings.

Event specification. Early applications such as Con-
textual Reminders for ParcTab, and SPECs [41] allow ex-
pert end-users to write simple, declarative rules to trigger
a particular application behavior. This type of specification
is infeasible for non-expert users who are not equipped to
reason about the structure and logic of rules and triggers.
The Solar system provides a visual interface for specifying
events, but it requires a knowledge of both the system archi-
tecture and the available sensor processing modules. Most
similar to Cascadia’s Scenic tool is the EventManager [42],
which allows end-users to declaratively specify events using
a forms-based interface. Yet Scenic supports a larger set of
events by allowing sequences and also supports translation
into a sophisticated event detection language.

Programming by demonstration systems such as a CAP-
pella [15] and Exemplar [25] have also been used to specify
events. However, these systems must learn a specification
over a potentially large amount of training data. In con-
trast, Cascadia’s specifications can be created in a few min-
utes without training data, and accuracy can be increased
over time by incrementally improving data PEEX’s confi-
dence tables. Furthermore, in the case of Exemplar, the
event specification interface is intended for developers only.

Event detection. Event detection and processing has
previously been addressed in three main research areas: ac-
tive databases [1, 3, 6, 21, 47], publish-subscribe systems [12,
34], and more recently complex event extraction from sen-
sor and RFID data [16, 51, 60]. In all these systems, how-
ever, event detection is deterministic: these approaches ig-
nore event ambiguity and possible input data errors.

Activity inference. Previous work [45, 46] proposed
dynamic Bayesian networks for inferring human activities
from RFID and other sensor data. These systems infer the
most likely activity performed by the user and defined by the
model. We investigate an alternative technique that allows
users to define new events at runtime and where the system
reports the entire set of possible activities.
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Sensor and RFID data cleaning. Several techniques
for cleaning sensor data have been proposed. In these tech-
niques, users declaratively specify either the data cleaning
algorithm [32, 19] or a pattern over the data with match-
ing cleaning actions [48, 56]. In contrast, our system op-
erates directly on the dirty data, with no requirement for
user-specified cleaning mechanisms. Cascadia, however, can
leverage simple low-level cleaning techniques that average
measurements within a short time-window [33] and across
a group of sensors covering the same area [32]. In previous
work [37], we showed that integrity constraints can serve to
clean sensor data probabilistically. This technique can also
be integrated with Cascadia to improve performance.

Probabilistic databases. There has been much work
in this area [4], with our probabilistic events most similar
to maybe-or tuples in Trio [59], pc-tables in Green and Tan-
nen [24], or disjoint-independent tuples in Dalvi et al., [10].
Query complexity on such databases has been studied in
[10, 9]. Probabilistic temporal databases have been intro-
duced [11], but they use a semantics based on probability
intervals, which is different from ours. Recent work has ex-
plored query processing over probabilistic data streams [8,
30, 31], which could come from a model such as an HMM
or particle filter [36]. These systems focus on selections and
aggregation queries, while Cascadia supports a more nat-
ural set of operators for defining RFID events: selections,
sequences, and negations.

8. CONCLUSION
In this paper, we presented Cascadia, an infrastructure

for the specification, detection, and management of RFID
events in pervasive computing applications. Cascadia pro-
vides applications with a probabilistic model of RFID data.
Cascadia enables developers and users to visually specify
events using Scenic. It detects these events continuously us-
ing PEEX and provides a convenient API for further man-
aging the detected events and the related entities.

We showed that our approach is practical. Users can eas-
ily and effectively express common events with Scenic. The
Particle Filter efficiently smoothes dirty RFID data. PEEX
achieves good recall and precision on extracted events and
allows applications to choose the trade-off between recall
and precision. The digital diary application took just a
few days to build. Additionally, performance results demon-
strate that our current prototype can easily run in near real-
time for hundreds of tags. In future work, we plan to further
enhance the functionality and usability of Scenic, the event
detection performance of PEEX, and the overall system per-
formance.
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