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ABSTRACT
Inferring human activity is of interest for various ubiquitous
computing applications, particularly if it can be done using
ambient information that can be collected non intrusively.
In this paper, we explore human activity inference, in the
context of energy consumption within a home, where we de-
fine an “activity” as the usage of an electrical appliance, its
usage duration and its location. We also explore the dimen-
sion of identifying the occupant who performed the activity.
Our goal is to answer questions such as “Who is watching
TV in the Dining Room and during what times?”. This
information is particularly important for scenarios such as
the apportionment of energy use to individuals in shared
settings for better understanding of occupant’s energy con-
sumption behavioral patterns. Unfortunately, accurate ac-
tivity inference in realistic settings is challenging, especially
when considering ease of deployment. One of the key differ-
ences between our work and prior research in this space is
that we seek to combine readily available sensor data (i.e.
home level electricity meters and sensors on smartphones
carried by the occupants) and metadata information (e.g.
appliance power ratings and their location) for activity in-
ference.

Our proposed EnergyLens system intelligently fuses elec-
tricity meter data with sensors on commodity smartphones
– the Wifi radio and the microphone – to infer, with high ac-
curacy, which appliance is being used, when its being used,
where its being used in the home, and who is using it. Ener-
gyLens exploits easily available metadata to further improve
the detection accuracy. Real world experiments show that
EnergyLens significantly improves the inference of energy
usage activities (average precision= 75.2%, average recall=
77.8%) as compared to traditional approaches that use the
meter data only (average precision = 28.4%, average recall
= 22.3%).
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1. INTRODUCTION
Smartphones, over the past few years, have seen unprece-

dented growth across the world. In many markets, such as
the US, they have long since surpassed sales of traditional
feature phones. While many factors have contributed to
their popularity, the most important perhaps is the increase
in device capabilities as supported by higher end components
such as multi-core processors, ample memory and storage,
and a plethora of embedded sensors. These sensors in turn
are used in novel ways by smartphone apps as well as by
researchers to build context aware systems [15, 20, 30].

Our work explores the use of these pervasive smartphone
platforms for detailed activity inference of individuals within
a home setting, which can help occupants make better deci-
sions around their routine daily activities. In particular, we
consider the context of activities that lead to energy usage
by occupants in a residential setting. This is particularly
important since buildings are known to consume significant
proportion of energy consumption in both developed and
developing countries (45% to 47% of the total energy con-
sumption in the US [5] and India [35] respectively). Smart
electricity meters have also been widely deployed with the
intention of having complete coverage over the next decade
even in the developing countries such as India. Wide scale
adoption of smart meters is motivated by several reasons in-
cluding remote and easy data collection for billing purposes
and implementation of new billing practices such as time of
day based pricing.

To provide users with finer grained breakdown of their
energy usage, there has been much research within the con-
text of direct energy metering [34] or indirect inference using
Non-Intrusive Load Monitoring (NILM) techniques [13, 22].
NILM techniques in particular are attractive since they of-
ten require a single smart meter and then employ complex
machine learning algorithms [14] to disaggregate energy us-
age at the appliance level. To further improve the accuracy
of NILM algorithms, researchers have proposed additional
sensors such as EMI detectors[8, 26] and room-level motion
and light sensors [27], which are often impractical from an
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ease of deployment perspective. To our knowledge, the com-
bination of smartphones and smart electricity meters have
not been used before for activity inference in the context of
understanding energy usage.

In this paper, we present EnergyLens, a system that lever-
ages two easily available data sources within homes – energy
usage data from smart meters and sensor data from smart-
phones – for accurate activity inference and its annotation to
individual home occupants. We define an activity as the us-
age (when) of an electrical appliance (what) within a home,
as attributed to a specific occupant (who), along with the
room (where) the appliance is located. In other words, our
goal with EnergyLens is to answer questions such as “Who
is watching the TV in the dining room and during what
times?”. Energy consumption information at this granular-
ity is particularly useful to apportion energy usage among
occupants in a shared setting as well as understand behav-
ioral patterns for energy usage. Prior work [6] shows, for
example, that providing feedback to users about their en-
ergy use can help bring about a change in their usage.

Our primary goals in the design of EnergyLens were ease
of deployment, widespread applicability and low cost data
collection. As a result, while there are numerous sensors
available on a modern smartphone we chose to use only WiFi
and audio from the microphone since they are available even
on low cost devices. Similarly, we only assume the availabil-
ity of total real power data from a smart meter. While
meters that provide additional information such as power
factor are available, they are typically more expensive and
are not widely deployed in our experience. This information
is augmented with metadata information that tags appli-
ances with their power consumption and room location for
use by EnergyLens. This metadata was chosen since it is
primarily static and requires a one time effort to collect it
per home.

EnergyLens therefore combines WiFi based localization
and audio-based appliance detection with NILM for appli-
ance classification using meter data. Importantly, we show
that even simple algorithms for each of the components –
localization, audio classification, and NILM – when used
in combination yield good overall accuracy for user activity
detection. To show the effectiveness of EnergyLens for accu-
rate activity inference (appliance, location and the identity
of the occupant), we validated it in three different residential
scenarios: (a) a controlled residential setting with a single
occupant; (b) a controlled shared residence with multiple
occupants; and (c) a real residential setting with a single
occupant over multiple days. Note, we discuss the chal-
lenges of evaluating EnergyLens in a real home setting with
multiple occupants in Section 6.

In summary, we make the following contributions:

• We present the design and implementation of Ener-
gyLens, a novel algorithm that fuses sensor data from
smartphones and energy meter data for activity infer-
ence in a residential setting;

• We deployed EnergyLens in both controlled and real
world settings, to evaluate different use scenarios. Ex-
tensive data collection from these deployments show
that EnergyLens is significantly accurate than using
the energy meter data alone, particularly in real set-
tings;

• Using empirical data, we extensively discuss the im-
pact of different factors such as simultaneous usage of

appliances with similar power consumption and phone’s
orientation, on detection accuracy of EnergyLens and
challenges thereof for real world activity classification
for energy consumption in buildings.

2. USAGE SCENARIO
We now describe the underlying assumptions and the us-

age mode of the EnergyLens system. We assume that users
have an installed smart meter to measure power usage (real
power) for their home. While additional information such as
power factor can be further useful to improve EnergyLens ac-
curacy, we do not assume that it is readily available. We fur-
ther assume that this power data is accessible by the server
running EnergyLens over the web.

Training using Smartphones: EnergyLens users are
assumed to have a basic Android smartphone with the abil-
ity to sample microphone audio and WiFi signal strength.
During an initial training phase, users run the EnergyLens
application and visit each room in their house for a few
minutes to provide room-level location annotations. Within
each room, the users are required to switch on the appliances
they want EnergyLens to identify, wait for some time for its
power consumption to reach a steady state and then turn
it off. Each of these appliance on-off durations are then an-
notated, with a recognizable name such as ‘Fan’ or ‘Kettle’
or ‘Microwave’, in the EnergyLens smartphone application.
These appliance annotations are then used to train both the
audio based classifier (Section 3.1.3) and the meter based
NILM algorithm (Section 5). In a home with multiple occu-
pants, where the smartphone models are not identical, this
training process has to be repeated for each device type. This
is due to our observation that microphone audio and WiFi
fingerprints vary significantly across different phone mod-
els. After the training phase, EnergyLens server learns the
necessary models that can then be applied to infer activity
during actual usage.

Actual Usage Scenario: As the users start to use Ener-
gyLens in their daily lives, we assume that they mostly carry
their phones with them as they move around the house.
In other words, EnergyLens assumes that the energy us-
age events – such as turning an appliance ON or OFF –
takes place in the same location as the smartphone’s loca-
tion. During the activity, microphone audio is sampled and
necessary features are extracted from it on the phone itself.
Extracted features from the audio stream, along with the
data from WiFi scans are sent to the server. Our Ener-
gyLens algorithm executes on the server and identifies who
performed what activity where in the home, and when they
performed it. This annotated energy usage activity can then
be presented to the user through the EnergyLens app, or by
logging on to a website, or sent to them using a different
modality.

3. ENERGYLENS OVERVIEW
At a high level, the goal of EnergyLens is to infer appliance

activity and associate it with an occupant by fusing sensory
data from smartphones, energy data from smart electricity
meters, and metadata information about the appliances in a
home. The two main aspects of EnergyLens are therefore the
different sensor data sources, and the EnergyLens algorithm
that we have developed to perform the activity inferences.
We describe these components in detail below.
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Figure 1: EnergyLens Overview. Smart meter data, appliance metadata and phone data (WiFi scans and audio signals) are
taken as inputs. Time Slice Generation (Stage I) generates time slices (shown in dotted lines) from meter data. These time
slices are used by Location and Appliance Detection Stages (II and III shown together here). This generates a set of annotated
time slices. If location or appliance were misclassified, then Location and Appliance Correction Stages (IV and V) rectify the
errors and generate the final set of annotated time slices.

3.1 System Components and Data Sources

3.1.1 Meter data for NILM
We use the total power measurements, sampled at 1Hz,

from the whole house electricity meter to create time slices
which define a period of activity for each appliance. En-
ergyLens uses a simple edge detection and edge matching
algorithm to retrieve these time slices which are then la-
beled during the localization and appliance detection stages
(see Section 3.2 for details).

3.1.2 WiFi-based localization
WiFi fingerprinting has been a popular technique for in-

door localization for many years. EnergyLens uses a simple
WiFi fingerprinting technique that has been adapted from
RADAR [2]. Our EnergyLens app captures the received
signal strengths (RSS) of the nearby access points by doing
periodic WiFi scans. For every scan, the phone logs a times-
tamp and the MAC address, SSID and RSSI values of all the
visible APs. These logs are then periodically uploaded to the
server for further processing. At the server side, kNN algo-
rithm is used to match and classify the received fingerprints
with the stored fingerprints (collected during the training
phase) to infer the room-level location for a given time slice.

3.1.3 Audio-based appliance detection
EnergyLens uses the smartphone microphone to capture

audio samples when appliances are in use. Collected au-
dio data is then processed by an audio processing pipeline

implemented in our EnergyLens mobile app. This audio pro-
cessing pipeline has primarily two stages: (1) pre-processing;
and (2) feature extraction. The first stage involves sampling
audio at 8kHz for a period of 10 seconds at every 20 seconds
interval (i.e. duty-cycle = 10/20 = 50%). These samples
are then combined together into frames with a frame size
of 500ms. Next, we apply a Hamming window function to
each of the frames before passing it on to the next stage.
For each of the resulting frames, 13 Mel-Frequency Cepstral
Coefficient (MFCC) features are computed on the phone.
Prior work on acoustic background recognition [19, 28] have
shown that MFCC is effective in non-speech audio recogni-
tion. These features are then periodically sent to the server
for audio classification using the model learned from the
training data, while the raw audio data is discarded. Per-
forming the feature computation on the phone helps preserve
user privacy, while also significantly reducing the amount of
data uploaded to the server.

3.1.4 Metadata
EnergyLens further uses additional information, that is

static and can be easily collected. This additional data
consists of two different meta information about appliances
present in the home:

• Appliance Location Mapping: Room-level location tag-
ged for each appliance.

• Appliance Power Mapping: Measured power for each
appliance, extracted from the meter data collected dur-
ing the training phase (Section 2), is used to tag each
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Appliance Location Power(W)
AC Dining Room 1950
Microwave Kitchen 1150
Kettle Kitchen 950
AC Bedroom 670
TV Dining Room 80
Fan Dining Room 45
Fan Bedroom 45
Light Bedroom 45

Table 1: Metadata: Appliance Location Power Mapping

appliance with its power consumption. This informa-
tion is critical for standard NILM algorithm as well.

Using these two pieces of metadata, we create a table
with this information – Appliance Location Power Mapping
(hereafter labeled as Metadata). A snapshot of the Metadata
for an example home is shown in Table 1.

3.2 EnergyLens Algorithm
Our proposed EnergyLens algorithm itself comprises of

five key stages, as illustrated in Figure 1, with each stage
described in detail below.
Stage I: Time Slice Generation
In this stage, the electricity meter data is used to gener-
ate time slices i.e. “when” different activities are performed.
Each time slice is annotated with its observed power con-
sumption, using meter data, for further stages. The sensor
stream for the total real power from the electricity meter is
taken as the input. This stage primarily involves two steps
- Edge Detection and Edge Matching.

Edge Detection: In this step, we generate all the rising
and falling edges from the meter data stream Si. Each edge
ei = (mi, ti) ∈ Ei consists of a tuple containing magnitude
mi and time ti at which the event occurred. mi is a signed
value that captures the power change of an electrical event
above a minimum threshold mt. From the detected edges,
we discard edges where:

• A falling edge occurs before a rising edge of similar
magnitude.

• Rising and falling edges of similar magnitude occur
within a very small time duration. This results in fil-
tering out immediate ON and OFF events.

• Multiple rising (or falling) edges (of similar magnitude)
are generated within a time duration. Only the last
rising or falling edge is retained amongst such a set
while the rest are discarded.

Edge Matching: The filtered edges from the previous
step are converted into time slices using a threshold based
matching algorithm. We use edge magnitude mi to match
rising and falling edges. Due to an initial surge of power
when an appliance is turned on, the magnitude of rising
edges are typically higher than the corresponding falling
edges. However, in some cases e.g. when there is a heat-
ing element that increasingly consumes higher power, the
magnitude of falling edges turns out to be higher. There-
fore, for each falling edge, the matching algorithm looks for
rising edges with magnitude within ±p% of the falling edge.
Amongst such candidate rising edges for a falling edge, we
select the rising edge with the least difference in magnitude
with the falling edge. Selected rising and falling edges are

paired to create a time slice ts = (tr, tf ,magt) where tr is
the start time (time for the rising edge), tf is the end time
(time for the falling edge) and magt is the power consump-
tion of the time slice. The final set of time slices Ts, thus
created, is passed onto the next stage.
Stage II: Location Detection
In this stage, every time slice in Ts is annotated with a lo-
cation. For each of the time slices inferred, the WiFi scan
data from the phone is used to infer “where” an activity is
performed. From the WiFi scan data stream, we first sum-
marize a minute’s worth of data by taking the mean of sig-
nal strength samples received from each of the access points
(APs) separately. Using these individual summarized values
from the different access points, we form a feature vector
< rssi1, rssi2, . . . , rssik > where k is the number of visible
access points. We ignore APs with less than -85dBm signal
strength since they are close to the noise floor. This fea-
ture vector is fed into the kNN algorithm to classify every
time period (here, a minute) with one of the room locations.
Thereafter, a location label which is in majority for the du-
ration of a given time slice is selected as the location for the
corresponding time slice. If the duration of the time slice
is smaller than the sampling rate of WiFi scan, they are
discarded at this stage.
Stage III: Appliance Detection
For all the location annotated time slices, audio recognition
is performed to determine the appliance in use. We use an
SVM classifier on the 13 MFCC features (extracted from the
audio data) received from the phone. Prior work has shown
SVM to perform the best for appliance recognition [36, 32].
From the predicted labels for a time slice, the label which
is in majority is selected as the appliance being used during
that period.

At the end of Stage III, EnergyLens obtains “what” appli-
ance is used, “when” it is used and “where” it is used, which
are collectively referred to as an “activity”. The identity is
implicit for a single occupant setting. For a multiple occu-
pant scenario, “User Association” is done after the Location
and Appliance Detection stages (explained in the next sub-
section). Hereafter, we compare the classified detection for
both appliance and location and verify if the combination of
classified appliance and location match with the metadata.
For all the unmatched entries, we perform the Location and
Appliance Correction stages as described below.
Stage IV: Location Correction
In this stage, we use the Metadata to extract all the ap-
pliances listed to be at the same location as the classified
location for a given time slice. For each of these appliances,
we compare their power consumption from the Metadata
with the observed power from the meter. For all time slices
where the comparison results do not match (indicator of
incorrect location classification), the classified location of
the time slice is corrected to the location of the appliance
(from amongst all the appliances in the Metadata) with the
closest match in terms of power consumption. For a non-
unique match, if all the matched entries have the same ap-
pliance and location (indicating multiple same appliances in
the same location), then we use this location for correction.
Otherwise, the misclassified location of the time slice is left
unchanged.
Stage V: Appliance Correction
We detect an incorrect appliance classification by comparing
the power consumption (from Metadata) of the classified ap-
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Setting Experiment Type Appliances Used Duration
Controlled Single Occupant Fans, Lights, AC, TV, Microwave, Kettle 6 hours
Controlled Multi-Occupant Fans, Lights, AC, TV, Microwave, Kettle 3 hours

Real Single Occupant Lights, TV, Microwave, Kettle 4 days

Table 2: Empirical Dataset Description

Exp# Description Appliances Used Objective
1 Ideal scenario - use of dissimilar appliances

with phone kept outside the pocket

Fans, Lights, AC, TV,
Microwave, Kettle

Assess algorithm performance

2 Use of dissimilar appliances with phone
kept inside the pocket

3 Use of both similar and dissimilar appli-
ances simultaneously

4 Realistic scenario - multiple events with
combination of similar and dissimilar ap-
pliances used simultaneously

5 Use of similar appliances simultaneously
across different rooms

Lights, Fans, TV

Assess impact on time slice accuracy

6 Use of dissimilar appliances used simulta-
neously across different rooms

Fans, AC, TV, Microwave,
Kettle

Table 3: Controlled experiments for single occupant setting. Here, similar appliances refers to those that lie within the same
power consumption range. E.g. Microwave and Kettle lie within 800 – 1200W range; Fans and Lights fall within 30 – 45W
range.

pliance with the power consumption observed in the location
corrected time slices from the previous stage. For correct-
ing these misclassified appliances, we find all the appliances
in the predicted location (using Metadata) and select the
one with the closest match in terms of power consumption.
Again, for a non-unique match, if all the matched entries
have the same appliance label then we use this label for cor-
rection. Else, we leave the entry with misclassified appliance
unchanged.

Multi-Occupant Setting
User Association Stage: For a multi-occupant setting,
each time slice further needs to be associated with a user
to specify “who” is performing the activity. For each of the
generated time slices after Stage I, location and appliance
detection (Stages II and III) are performed on data from
each of the occupant’s smartphones. Note that each smart-
phone acts as a proxy for an occupant. At the end of Stage
III, each time slice gets multiple sets of <location, appli-
ance> tuples associated with it. The number of occupants
determines the number of sets generated for each time slice.

We take the generated set of annotations (each set cor-
responding to an occupant) for every time slice and match
the classified location and inferred power consumption with
the Metadata. If only one of the sets match with the meta-
data, then the corresponding occupant is associated with
this time slice. If, however, the matching process results in
a non-unique match, then we select the set with the least
difference from the metadata in terms of power consump-
tion. A non-unique match at the end of this process indi-
cates that the corresponding occupants were all present at
the same location where the activity was being done during
that period and hence the time slice is associated with all of
these occupants.

4. EXPERIMENTAL SETUP
We now describe the experimental setup that we used

to evaluate EnergyLens. We conducted experiments in two
phases: (1) student volunteers from IIIT-Delhi conducting
the experiments in controlled settings; (2) involved experi-
ments in a real world setting.

Controlled Experiments
We used a well furnished 3 room apartment with common
appliances such as a refrigerator, television, microwave, ket-
tle, room level air conditioning units, multiple lights and
fans. All the appliances were used during the experiments.
Multiple experiments were performed to emulate the single
occupant and the multi-occupant settings. The participants
were closely monitored to observe their behavior while per-
forming the activity. They were given a script to follow
which mentioned the appliances they had to use and the
duration of use. Their actions were not influenced in any
way by the authors monitoring these experiments. We col-
lected ground truth manually by annotating each event by
the authors as it was being done.

Real World Experiments
The second phase experiments were done in the one of fac-
ulty residences at IIIT-Delhi. An apartment with a sin-
gle occupant, consisting of 6 rooms and 8 different types of
appliances, was selected. The appliances in the apartment
include TV, lights, fans, microwave, room level Air Condi-
tioner (AC), refrigerator, washing machine and kettle. No
fans or AC were used during the data collection phase as
the experiments were conducted during early winter. The
refrigerator was not considered in our approach but it was
running in the background for the entire experiment dura-
tion of a week. Appliances used during the week were TV,
lights, microwave and kettle. The smartphone used by the
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(d) Accuracy for Overall Activity Detection

Figure 2: Component wise Precision and Recall for all the controlled experiments (single occupant). Refer Table 3 for
experiment details. Here, MM stands for Meter + Metadata (as explained in Section 5).

occupant was a Samsung Galaxy S4 with our EnergyLens
application installed. Data description is presented in Ta-
ble 2. Out of a total 7 experimental days, we obtained 4
days of useful data.

For collecting ground truth, we used the paper-pen method
wherein we stuck a paper next to each appliance of inter-
est. The occupant of the home was requested to enter the
ON and OFF time as she used appliances during the ex-
periment week. Labeled ground truth was collected every
evening from the apartment and was compared with smart
meter data for the previous day. Any discrepancies observed
in the labels, through manual comparison with smart me-
ter data, were duly discussed with the home occupant and
rectified to ensure true validity of the ground truth.

For both phases, the smart meter data was collected at
1Hz. The phone sensors namely, WiFi scan and audio, were
sampled every 20 seconds. Audio sampling was performed
for 10 seconds every 20 seconds. The phone uploaded data
every 5 minutes to the central server. Appliance metadata
(appliances, their location and observed power) for both
apartments was collected before the experiments and was
done by measuring the real power consumption of the appli-
ances as described in Section 2.

5. EVALUATION
We evaluate our EnergyLens system (combining phone

sensors with meter data), as described in Section 3.2, by
comparing its performance (in terms of activity detection
accuracy) with a NILM only approach. For the NILM only
approach, which we refer to as Meter + Metadata (MM),
Metadata information is used in combination with smart

meter power data to determine the appliance and its loca-
tion. For the MM approach, the time slices are generated
(as described in Section 3.2 – Stage I), and are labeled with
the appropriate appliance and location by matching the ob-
served power from the meter with the Metadata. Activity
detection accuracy is measured in terms of:

Precision: calculated as the ratio of the number of activi-
ties correctly identified and the total number of iden-
tified activities.

Recall: calculated as the ratio of the number of activities
correctly identified and the total number of activities
done during the experiment duration.

5.1 Performance Analysis
We conducted several experiments, as listed in Table 3,

to emulate different realistic scenarios for evaluating the de-
tection accuracy of EnergyLens.

5.1.1 EnergyLens inference evaluation
In this section, we show the activity detection accuracy

of EnergyLens together with the accuracy of its individual
components, namely, time slice generation (“when”), loca-
tion detection (“where”) and appliance detection (“what”).
We present the results for both controlled and real world ex-
periments in a single occupant setting. To present the com-
ponent wise accuracy, we use the ground truth after Stage
I. In other words, to report the location and appliance de-
tection accuracy, we use ground truth time slices over which
we run the detection algorithm and report the accuracy for
the individual components.
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Day Approach Time Slice
Generation

Location
Detection

Appliance
Detection

Activity
Detection

1
MM 33.3 / 27.3 66.4 / 62.9 55.3 / 57.9 49.6 / 29.3

EnergyLens 37.5 / 27.3 90.6 / 87.5 100 / 100 91.7 / 87.5

2
MM 30.7 / 50.0 51.9 / 61.2 62.5 / 50.0 14.3 / 11.2

EnergyLens 33.3 / 50.0 76.2 / 85.7 100 / 100 76.2 / 85.7

3
MM 70.0 / 77.8 85.0 / 80.0 35.5 / 46.7 22.4 / 26.7

EnergyLens 70.0 / 77.8 88.1 / 85.7 88.6 / 85.7 68.6 / 71.4

4
MM 70.0 / 63.6 63.7 / 72.0 28.3 / 50.0 27.4 / 22.0

EnergyLens 77.8 / 63.6 91.1 / 88.9 61.1 / 77.8 64.5 / 66.7

Table 4: Precision/Recall (P/R) of activity detection accuracy for a single occupant real setting. MM stands for Meter +
Metadata (as explained in Section 5).

Exp# Approach User Association Activity Detection

User 1 User 2 User 1 User 2

1
MM NA 44.7 / 46.4 75.0 / 75.0

EnergyLens 80.0 / 80.0 80.0 / 80.0 60.0 / 100 100 / 100

2
MM NA 100 / 100 25.0 / 25.0

EnergyLens 66.7 / 50.0 75.0 / 60.0 100 / 100 75.0 / 75.0

3
MM NA 30.0 / 40.0 66.7 / 66.7

EnergyLens 83.3 / 83.3 20.0 / 20.0 70.0 / 80.0 80.0 / 80.0

Table 5: Precision/Recall (P/R) of activity detection and user association accuracy for a multi occupant controlled setting.
To report activity detection accuracy per occupant for MM approach, the occupant labels are taken from the ground truth.

Figure 2 shows the precision and recall achieved across
experiments 1 – 4 (See Table 3). For Experiment 1, wherein
the participant complied with all the assumptions made by
the algorithm and kept the phone out of their pocket most of
the times, EnergyLens achieved 100% precision and recall for
activity detection. With phone being kept inside the pocket
for Experiment 2, the overall inference accuracy for Ener-
gyLens reduces, primarily due to the poor location detection
accuracy caused due to the varying orientation of the phone
(as explained in Section 5.1.3). Similarly, in Experiment 3,
the accuracy of EnergyLens was lower due to reduced appli-
ance detection accuracy, caused due to mis-classifications by
the audio recognition algorithm. Appliance correction stage
was unable to rectify these misclassifications as Metadata
had multiple appliances with similar power consumption at
the classified location.

During complex appliance usage events, as emulated in
Experiment 4 wherein multiple appliances (combination of
similar and dissimilar appliances in terms of power consump-
tion) were used simultaneously across different rooms, Ener-
gyLens is able to achieve 68.93% precision and 68.75% recall
which is higher than MM approach which achieves 58.19%
precision and 58.23% recall.

Real world experiments for the single occupant setting,
as shown in Table 4, further corroborate that EnergyLens
always performs at least as good and in most cases much
better than the meter only approach (MM). The average
precision and recall for EnergyLens was 75.2% and 77.8%
while for MM approach, it was 28.4% and 22.3%. MM ap-
proach compares the observed power consumption obtained
from meter data with the metadata to determine location
and appliance. For similar appliances (e.g. lights and fans),
which were used extensively by the occupant, MM was not

able to distinguish them. This resulted in low appliance de-
tection accuracy which brought down the activity detection
accuracy. In contrast, EnergyLens used phone data for de-
termining the location and appliance which if misclassified
was corrected with the help of metadata. This combination
of phone with meter improved the activity detection accu-
racy significantly as seen in Table 4.

5.1.2 User Association Accuracy
In this section, we report the accuracy of the user associa-

tion component of EnergyLens wherein Precision and Recall
are calculated separately for each user. We only present the
results of controlled experiments for the multi-occupant set-
ting. Real world scenarios present a lot of challenges (as
discussed in Section 6) which makes the problem of user as-
sociation non-trivial. Further, obtaining ground truth for
such settings is a significant challenge. Detailed instrumen-
tation is required to monitor the occupants’ activities to
identify their actual location and appliance activity which
we plan to undertake in the future.

In order to test the performance of our user attribution al-
gorithm, we conducted several controlled experiments where
we emulated realistic scenarios. Each experiment involved
doing a set of activities by two participants based on a script
given to them. The results of these experiments are shown
in Table 5. The table lists user association accuracy along
with the activity detection accuracy for each occupant. For
the MM approach, it is evident that meter data cannot be
used in isolation to determine the identity of the occupant
who did an activity. Therefore, to determine the activity de-
tection accuracy per occupant, we feed pre-annotated user
time slices to the MM algorithm. This reduced the multi-
occupant case to the single occupant case for this approach.
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Figure 3: Illustration of signal attenuation caused due to phone orientation. Each color represents the signal strength from a
different access point (maroon representing the AP inside the apartment where experiment was conducted). The line drawn
at -85dBm denotes that all signal strength values below -85dBm are discarded by EnergyLens.

The results listed in Table 5 look promising and they
demonstrate the importance of smartphones in attributing
energy to individuals. As pointed out earlier, the accuracy
of individual components affect the overall activity detec-
tion and user association accuracy. We see the effect of
poor location detection accuracy on user association in Ex-
periment 3 for the second occupant. The misclassifications
caused by the detection algorithm was due to the poor qual-
ity of location data obtained from the phone when it was
kept in the pocket during the experiment. The next section
(Section 5.1.3) explains the impact of phone’s orientation in
detail.

5.1.3 Impact of Phone Orientation on Location De-
tection Accuracy

In this section, we analyze how the orientation of phone,
i.e. phone’s position while performing activities, affects lo-
cation detection accuracy.

We performed two experiments, referred as Exp 1 and 2
in Table 3. In the first experiment, the phone was carried
in hand or placed on the table while doing the activities. In
experiment 2, the phone was kept inside the pocket all the
time. Four access points (APs) were seen in the vicinity of
the apartment; one of them being the AP of the apartment
in which experiments were conducted. Out of the four, two
APs had less than -85dBm signal strength and were therefore
not used by EnergyLens. Two APs were visible across all
three rooms. The AP in the apartment was kept in the
dining room.

Figure 3 shows the signal strength received from the two
visible APs for each room. Observations obtains from ex-
periment 1 and 2 are shown in Figure 3a – Figure 3c and
Figure 3d – Figure 3f respectively. Since the apartment AP
was in the dining room, the signal attenuation is negligible
and thus doesn’t affect the detection accuracy for this room.
However, signals from the second AP which were compar-
atively weaker in the Bedroom and Kitchen, gets further
attenuated due to phone’s orientation and affects the local-
ization accuracy for these rooms.

The experiments were conducted in an apartment build-
ing inside IIIT-Delhi campus in India where very few access
points were seen in the vicinity. The accuracy is expected
to be much more when the number of access points increase
in number (which is relatively common in the US).

5.1.4 Impact of Sampling Intervals on Appliance De-
tection Accuracy

To assess the impact of the sampling interval on the ac-
curacy of appliance detection, we conducted an experiment
where multiple appliances were used (experiment 4 in Ta-
ble 3) with audio sampling done every 20 seconds for a pe-
riod of 10 seconds. We sub-sampled this data to obtain
data with sampling intervals from 40 seconds to 180 sec-
onds. Table 6 shows the appliance detection accuracy of the
algorithm for different sampling intervals. Since the usage
of appliances during this experiment was well separated in
terms of power consumption and usage times, and 10 sec-
ond audio data was observed to be sufficient for classification
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Figure 4: Microbenchmarking of EnergyLens in terms of CPU, memory and battery usage. The four cases are: (1) Wifi
sampling only (2) Audio Sampling only (3) Wifi and Audio sampling together (4) EnergyLens with sampling and data upload

Sampling Interval(s)
EnergyLens

Precision(%) Recall(%)
20 69.8 75.0
40 66.0 68.8
60 67.3 71.9
80 67.2 71.9
100 68.9 75.0
120 64.1 65.6
140 59.3 62.5
160 62.8 62.5
180 64.1 65.6

Table 6: Impact of Sampling Intervals on Precision/Recall
of Appliance Detection Accuracy

purposes, the appliance detection accuracy remains approx-
imately constant across different sampling intervals. This
shows that for such infrequent appliance usages (which are
common in real world settings as well), we can reduce the
sampling interval for audio sampling without significantly
affecting the inference accuracy.

5.1.5 Impact of Simultaneous Activity on Time Slice
Generation Accuracy

Simple edge detection and edge matching algorithm for
inferring usage durations, as used in the current implemen-
tation of EnergyLens, are accurate when the used appliances
differ in terms of their power consumption. However, when
appliances with similar power consumption (such as fans
and lights; microwave and electric kettle) are used simul-
taneously then it becomes difficult for the edge matching
algorithm to correctly associate an ON event with a corre-
sponding OFF event.

We conducted three controlled experiments (refer Table 3):
first with dissimilar appliances (fan, microwave, TV, AC,
kettle) working at the same time (experiment 6), second with
multiple similar appliances (mostly lights and fans) used si-
multaneously across rooms (experiment 5), and the third
with a combination of similar and dissimilar appliances used
concurrently (experiment 3). These experiments yielded
100/80, 62.5/45.5 and 100/87.5 of precision/recall respec-
tively, illustrating that the current time slice generation al-
gorithm finds it difficult to differentiate between appliances

with similar power consumption. We believe that additional
use of power factor will help differentiate between appliances
of similar power consumption and will significantly improve
the accuracy for such usage scenarios.

5.2 EnergyLens Application Profiling
In order to characterize the system and energy impact

of EnergyLens mobile application, we conducted tests to
benchmark the impact of different components of EnergyLens.
We used a Sony Xperia SP smartphone with 1.7 GHz dual
core processor and 1 GB RAM for the evaluation. The audio
sampling rate was set to 8kHz and was sampled for 10 sec-
onds at an interval of 20 seconds. The phone also scanned
for WiFi APs every 20 seconds. The collected and processed
data was uploaded every 5 minutes to the central server.

5.2.1 Application Overhead
We collected system’s total CPU and memory usage for

a duration of 3 hours each, for the cases: (a) System with
Wifi turned ON and without EnergyLens installed (baseline
case) (b) System with EnergyLens installed and background
data collection process enabled. Background running pro-
cesses were constant for both cases. Mean memory usage
of the system for the baseline case was found to be 240MB
and 256MB for EnergyLens. The memory overhead of En-
ergyLens was observed to be 16MB, only a 6% increase in
usage. The mean CPU usage was 13% and 22% for cases
(a) and (b) respectively. Therefore, the difference in usage
(CPU overhead of EnergyLens ) was found to be 9%. This
increase in CPU utilization of EnergyLens can be reduced
with adaptive sampling techniques which we leave as a fu-
ture work.

5.2.2 Microbenchmarking
The microbenchmarking tests were conducted to quan-

tify the effect of the individual components of EnergyLens,
namely Wifi sampling, audio sampling and data upload.
We measured the CPU, memory and battery usage for four
cases: (1) App with Wifi sampling only (2) App with au-
dio sampling only (3) App with Wifi and audio sampling
together (4) EnergyLens App with audio and Wifi sampling
with periodic data uploads. CPU and memory measure-
ments were taken every second using Android’s adb utility
over a period of 3 hours each. Battery runs were done over
a period of 6 hours each where the residual battery level
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was logged once every 20 seconds by the mobile application
during data sampling.

CPU and Memory Footprint: Figure 4a and Fig-
ure 4b show the CPU and memory usage of the smartphone
for each of the four cases. The mean memory usage is 17MB,
4MB, 10MB and 11MB for cases 1 – 4 respectively and the
mean CPU usage of the four cases is 23%, 21%, 32% and
30% respectively. From Figure 4a and Figure 4b, we see
that the audio sampling (case 2) component’s impact is less
than Wifi sampling component (case 1) in terms of CPU and
memory usage both. The upload component (case 4) doesn’t
add much memory overhead (only 1MB) when compared to
case 3. Similarly, the mean CPU usage of case 3 and case
4 also remains the same. Thus, we can conclude that the
additional periodic uploads (case 4) doesn’t add any signifi-
cant overhead on the system’s performance when compared
to case 3.

Energy footprint: The battery drain was observed to
be 2.67%, 3%, 3.33% and 3.5% per hour for cases 1 – 4
respectively. They correspond to 37.4 hours, 33.3 hours,
30.0 hours and 28.5 hours of battery life. From Figure 4c,
we observe that the difference in battery usage for case 3
and case 4 is not remarkable (just 5% increase from case 3)
which reaffirms that the upload component doesn’t add any
significant overhead on the system’s performance. On the
contrary, the audio sampling (case 2) component’s battery
usage is 12% more than Wifi sampling component (case 1),
making it the most power hungry component of EnergyLens
(case 4). With the battery lifetime of approximately 28.5
hours for the smartphone with EnergyLens application run-
ning in the background, we can conclude that EnergyLens
is comparable to the normal usage scenarios and it does not
reduce battery life of a device perceptibly.

6. DISCUSSION AND LIMITATIONS
EnergyLens seeks to address a very complex problem of

identifying and disaggregating energy usage per appliance
and associating each usage with a particular user. The cur-
rent implementation of EnergyLens tries to achieve this ob-
jective with a basic set of sensors from mobile phones and
home level electricity meters, chosen to keep the overall cost
of deployment and maintenance low. We now discuss sev-
eral challenges that arise while using such a restricted set of
sensing modalities for this complex problem.

We note that energy attribution in a multi-occupant set-
ting can not be done by using meter data alone and therefore
adding phone information becomes critical. We further show
that, by combining even the most simplistic algorithms for
localization, appliance detection and NILM, EnergyLens can
provide better accuracy for activity inference as compared
to NILM only techniques. A natural extension of our work
is to investigate more complex algorithms, such as Facto-
rial HMM for NILM [24], sound separation techniques such
as Computational Auditory Scene Analysis (CASA) [3] for
audio-based appliance detection and localization techniques
such as UnLoc [31] and Ariel [12], to further improve ac-
curacy, particularly for more complex scenarios such as in
multi-occupant homes. Use of additional sensors for both
smartphones and energy meters can provide additional con-
textual information that can be used to further improve the
accuracy. Examples of these additional context information
include detection of ambient light using the phone light sen-
sor, improved location classification using camera [1], radio

ranging such as the one provided by Bluetooth Low Energy
and power factor to help distinguish loads. Finally, a sim-
ple extension of EnergyLens can be to use events on the
meter data to trigger sensing for mobile phone audio and
WiFi, thereby reducing the overall energy burden due to
EnergyLens.

In terms of deployment and use of our system, there are
a number of practical considerations that affect the over-
all inference accuracy. Examples of these considerations
include phone orientation affecting WiFi-based localization
accuracy, scenarios when the user is not carrying the phone
with them while performing any appliance usage and sce-
narios wherein the user initiates an appliance activity (e.g.
start a microwave) and then leaves the room to return back
after a time when the activity is still underway. Such con-
siderations are further complicated for the multi-occupant
scenario. Examples of complex multi-occupant scenarios in-
clude simultaneous switching of appliances by different users
across different rooms, movement of users across different
rooms while the appliance usage (e.g. television being ON)
in each of the rooms is ongoing and one user’s phone is
in a room where the second user is present, though with-
out her phone, while initiating an appliance usage activity.
These complex scenarios, for both single and multi-occupant
case, potentially require both additional sensing information
and more sophisticated inference algorithms that also decide
when to use or ignore different context information.

Since EnergyLens uses smartphone sensors such as audio
from the microphone, privacy is a natural concern. Pre-
processing the audio on the phone itself while sending only
the inferred values to the EnergyLens server for analysis,
mitigates such privacy concerns in EnergyLens. Further-
more, the data analysis for activity inference is simple enough
to be easily run on a local computer in the occupants’ home,
further alleviating any privacy concerns.

7. RELATED WORK
Location based services using WiFi on phones as a sensor

(e.g. LifeMap [4] and ParkSense [20]) as well as acoustic
sensing applications using phones (e.g. SpeakerSense [16]
and SocioPhone [15]) have been proposed. Smartphones in
a way provide an ideal platform to host many of these ap-
plications. Motivated by the ubiquity of smartphones and
their increasing sensing capabilities, EnergyLens looks at a
previously unexplored dimension of residential energy moni-
toring by leveraging smartphone sensors together with smart
meter data for improved electrical appliance activity detec-
tion accuracy. We now present related work across the three
dimensions of EnergyLens: location inference, audio classi-
fication and appliance detection. To the best of our knowl-
edge, there does not exist any other work that addresses the
complex combination of inference including “who”, “what”,
“when” and “where” for activities in residential setting.

Several techniques, other than the WiFi fingerprinting
methods, have been proposed over the years for indoor lo-
calization. These techniques use additional sensors e.g. mi-
crophone sound, camera [1] and light [25] to improve the
overall localization accuracy. EnergyLens can potentially
improve its localization accuracy by utilizing such additional
smartphone sensors and incorporating some of these sophis-
ticated techniques rather than simple nearest neighbor ap-
proach based on WiFi fingerprinting, currently used in this
work.
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Several frameworks have been proposed for building con-
text aware applications using audio as a sensing modality.
These include SoundSense [17] for distinguishing voice and
music from ambient noise, Jigsaw [18] for human activity in-
ferences and iSleep [9] for detecting sleep quality. Recently,
Auditeur [21], a general purpose acoustic event detection
platform for smartphones was proposed that enable appli-
cations to register for receiving notifications for the desired
audio events as classified within their framework. Several of
the techniques used in these frameworks for audio process-
ing on the phone can also be incorporated into EnergyLens
for improving the overall detection accuracy.

Energy monitoring in a residential setting involves mul-
tiple facets e.g. NILM work using smart meters for energy
monitoring and disaggregation [10, 7, 14]; use of additional
sensing modalities that indirectly monitors the environment
for effects caused due to energy usage [8]; combining meters
with other ambient sensors such as light, temperature, mo-
tion and acoustic signals [13, 23]; and very recently using
smartphones only [30, 29]. EnergyLens does not require de-
ploying and managing additional sensors but endeavors to
better solve the problem of energy monitoring by leveraging
smartphone sensors for improved appliance detection and
recognition.

Of the recent work, AppliSense [33] has some aspects that
are related to our work. AppliSense, propose a NILM algo-
rithm to disaggregate appliance energy use. They also pro-
pose using a smartphone UI to help users label appliances as
part of their training phase. The crucial differentiator is that
they don’t actually propose, or use, any of the smartphone
sensors for the actual disaggregation algorithm. In contrast,
the key contribution of EnergyLens is the idea of combining
sensor readings from smart meters and user’s smartphones
for improved energy use inference in order to answer the
who, what, where and when questions of energy apportion-
ment. Kay et al. [11] presented the case for apportionment
in a building. They studied different apportionment policies
and how sensor systems could be used to further enable this.
EnergyLens takes a step further and proposes an actual sys-
tem to provide the key pieces of information required for
apportioning energy in homes.

8. CONCLUSIONS
This paper presents the design and implementation of En-

ergyLens , a system for accurate activity inference in homes
– specifically to disaggregate energy and apportion usage
to the occupants. The key contribution of EnergyLens is a
novel sensor fusion algorithm that utilizes sensor data from
occupants’ smartphones and that from a smart meter to im-
prove inference accuracy as compared to traditional NILM
approaches. In contrast to prior approaches that propose to
address this problem using additional sensors and complex
algorithms, we show that even simple NILM, audio-based
classification and WiFi-based localization methods provide
sufficient accuracy in realistic settings.

We highlight several challenges that impact the inference
accuracy for the complex problem at hand. These include
the impact of phone orientation, diverse usage scenarios es-
pecially for the multi-occupant case, collection of ground
truth data for establishing the accuracy and simultaneous
switching of appliances with similar power consumption pro-
files. While the current implementation of EnergyLens seeks
reasonable accuracy in many such complex scenarios, we

plan to enrich our system with additional sensing modali-
ties both from the smartphone (e.g. light sensor, camera)
and the smart meter (e.g. power factor) together with more
sophisticated inference algorithms. The flip side, however,
of using sophisticated inference algorithms will be the in-
creased computation demand; EnergyLens is currently light-
weight enough to run on a laptop class machine.
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