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Figure 1: In an 18-month deployment study of Project Sidewalk, we collected 205,385 sidewalk accessibility labels, including
curb ramps, missing curb ramps, sidewalk obstacles, and surface problems. Each dot above represents a geo-located label
rendered at 50% translucency. Try out the tool at http://projectsidewalk.io.

ABSTRACT
We introduce Project Sidewalk, a new web-based tool that
enables online crowdworkers to remotely label pedestrian-
related accessibility problems by virtually walking through
city streets in Google Street View. To train, engage, and sus-
tain users, we apply basic game design principles such as
interactive onboarding, mission-based tasks, and progress
dashboards. In an 18-month deployment study, 797 online
users contributed 205,385 labels and audited 2,941 miles of
Washington DC streets. We compare behavioral and label-
ing quality differences between paid crowdworkers and vol-
unteers, investigate the effects of label type, label severity,
and majority vote on accuracy, and analyze common label-
ing errors. To complement these findings, we report on an
interview study with three key stakeholder groups (N=14)
soliciting reactions to our tool and methods. Our findings
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demonstrate the potential of virtually auditing urban accessi-
bility and highlight tradeoffs between scalability and quality
compared to traditional approaches.
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1 INTRODUCTION
Geographic Information Systems (GIS) such as Google Maps,
Waze, and Yelp have transformed the way people travel
and access information about the physical world. While
these systems contain terabytes of data about road networks
and points of interest (POIs), their information about physi-
cal accessibility is commensurately poor. GIS websites like
Axsmap.com,Wheelmap.org, and AccessTogether.org aim to
address this problem by collecting location-based accessibil-
ity information provided by volunteers (i.e., crowdsourcing).
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While these efforts are important and commendable, their
value propositions are intrinsically tied to the amount and
quality of data they collect. In a recent review of accessibility-
oriented GIS sites, Ding et al. [15] found that most suffered
from serious data sparseness issues. For example, only 1.6%
of the Wheelmap POIs had data entered on accessibility. One
key limiting factor is the reliance on local populations with
physical experience of a place for data collection. While local
users who report data are likely to be reliable, the dependence
on in situ reporting dramatically limits scalability—both who
can supply data and how much data they can easily supply.

In contrast, we are exploring a different approach embod-
ied in a new interactive tool called Project Sidewalk (Figure 2),
which enables online crowdworkers to contribute physical-
world accessibility information by virtually walking through
city streets in Google Street View (GSV)—similar to a first-
person video game. Rather than pulling solely from local
populations, our potential pool of users scales to anyone
with an Internet connection and a web browser. Project Side-
walk extends previous work in streetscape imagery auditing
tools like Canvas [4], Spotlight [7], BusStop CSI [23], and
Tohme [26], all which demonstrate the feasibility of virtual
auditing and, crucially, that virtual audit data has high con-
cordance with traditional physical audits. However, this past
work has focused on small spatial regions, relied on special-
ized user populations such as public health researchers [4, 7]
and paid crowdworkers [23, 26], and has not been publicly
deployed.
In this paper, we present an 18-month deployment study

of Project Sidewalk in Washington DC. In total, 797 users
contributed 205,385 geo-located accessibility labels and vir-
tually audited the entirety of Washington DC (1,075 miles of
city streets; see Figure 2). As the first public deployment of a
virtual auditing tool, our research questions are exploratory:
How can we engage, train, and sustain crowd workers in
virtual accessibility audits? Are there behavioral and/or la-
beling quality differences between paid crowd workers and
volunteers? What are some common labeling mistakes and
how may we correct them in future tools? Finally, how do
key stakeholder groups react to crowdsourcing accessibility
and what are their concerns?
To address these questions, we analyzed interaction logs

from our DC deployment, performed a semi-controlled data
validation study, and conducted semi-structured interviews
with three stakeholder groups (N=14): government officials,
people with mobility impairments (MI), and caretakers. In
our deployment study, we found that registered volunteers
completed significantly more missions, on average, than
our anonymous volunteers (M=5.8 vs. 1.5) and that our paid
workers—who were compensated per mission—completed
more than both (M=35.4 missions). In the data validation

study, paid workers also significantly outperformed regis-
tered and anonymous volunteers in finding accessibility prob-
lems (recall=68% vs. 61% and 49%, respectively) but precision
was roughly equivalent for all groups (~70%). Our findings
also show that the number of found issues significantly in-
creases with the number of labelers per street—with five
labelers, recall rose from 68% to 92%.

To complement these findings, our interview study asked
about perceptions of and experiences with urban accessibil-
ity and solicited reactions to Project Sidewalk and the idea of
crowdsourcing accessibility in general. All three stakeholder
groups were positive: while government officials emphasized
cost-savings and civic engagement, the MI and caregiver
groups focused more on personal utility and enhanced inde-
pendence. Key concerns also arose, including data reliability,
maintenance, and, for the MI participants, whether labels
properly reflected their accessibility challenges (the latter
echoes findings from [24]).
In summary, the contributions of this paper include: (i)

Project Sidewalk, a novel web-based virtual auditing tool
for collecting urban accessibility data at scale; (ii) results
from an 18-month deployment and complementary data val-
idation study exploring key behavioral and labeling quality
differences between volunteer and paid crowdworkers; (iii)
findings from semi-structured interviews with three stake-
holder groups soliciting reactions to Project Sidewalk and
identifying key concerns and design suggestions; (iv) and our
large, open-source sidewalk accessibility dataset1, which we
believe is the largest of its kind. By scaling up data collection
methods for sidewalk accessibility, our overarching aim is
to enable the development of new accessibility-aware map-
ping tools (e.g., [24, 32]), provide increased transparency and
accountability about city accessibility, and work with and
complement government efforts in monitoring pedestrian
infrastructure.

2 RELATEDWORK
We present background on sidewalk accessibility, survey
existing methods for collecting street-level accessibility data,
and review volunteer geographic information (VGI) systems.

Street-Level Accessibility
Accessible infrastructure has a significant impact on the in-
dependence and mobility of citizens [1, 40]. In the U.S., the
Americans with Disability Act (ADA) [53] and its revision,
the 2010 ADA Standards for Accessible Design [52], mandate
that new constructions and renovations meet modern ac-
cessibility guidelines. Despite these regulations, pedestrian
infrastructure remains inaccessible [18, 28]. The problem is

1http://projectsidewalk.io/api
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not just inaccessible public rights-of-way but a lack of re-
liable, comprehensive, and open information. Unlike road
networks, there are no widely accepted standards governing
sidewalk data (though some recent initiatives are emerging,
such as OpenSidewalks.com [41]). While accessible infras-
tructure is intended to benefit broad user populations from
those with unique sensory or physical needs to people with
situational impairments [58], our current focus is supporting
those with ambulatory disabilities. In Project Sidewalk, we
focus on five high-priority areas that impact MI pedestri-
ans drawn from ADA standards [51, 52, 55] and prior work
[35, 37]: curb ramps, missing curb ramps, sidewalk obstacles,
surface problems, and the lack of a sidewalk on a pedestrian
pathway.

Collecting Street-Level Accessibility Data
Traditionally, collecting data on street-level accessibility has
been the purview of local and state governments; however,
with widespread access to the Internet and smartphones,
three alternatives have emerged: in situ crowdsourcingwhere
a user explicitly captures and reports data [11, 15, 36, 38],
automatic or hybrid reporting using sensors [8, 29, 31, 44,
48], and remote crowdsourcing using streetscape imagery
[19, 23, 25, 26]. Each approach has benefits and drawbacks—
e.g., in terms of data type, maintenance, and coverage—and
should be considered complementary. While in situ crowd-
sourcing relies on local knowledge and is likely to produce
high-quality data, both academic and commercial tools have
struggled with data sparsity [15], perhaps because of high
user burden and low adoption. Automatic reporting tools
lower user burden by implicitly capturing accessibility data
using smartphone- or wheelchair-based sensors; however,
accurately converting these quantitative measurements (e.g.,
accelerometer data) to useful sidewalk assessments is still
an open research area. Moreover, these tools are limited to
capturing where wheelchair users already go, not where they
are unable to go (though [30] is attempting to address this
limitation, in part, by combining sensor data with continuous
video recording).

Most related to ourwork are virtual auditing tools of street-
level accessibility using streetscape imagery. While initial
research focused on establishing the reliability of GSV-based
audits compared with traditional, physical-based methods
[5, 9, 47, 57], more recent work has introduced and evalu-
ated web-based tools in controlled studies [19, 23, 25, 26].
Project Sidewalk builds on these systems by gamifying the
user experience and supporting open-world exploring via
missions—similar to first-person video games. Additionally,
we present the first public deployment study, which enables
us to uniquely compare user behavior and labeling perfor-
mance across user groups and contributes the largest open
dataset on sidewalk quality in existence.

Volunteered Geographic Information (VGI)
Project Sidewalk is a new type of volunteered geographic infor-
mation (VGI) system [21]. In VGI, non-experts contribute GIS-
related data through open mapping tools—e.g., Wikimapia,
Mapillary, CycloPath [42], and most notably, OpenStreetMap
(OSM). In comparison to more authoritative sources, VGI
data quality and spatial coverage are key concerns [3]. While
some studies have shown comparable quality between VGI
and government maps [20, 22, 34], recent work has identi-
fied strong biases in contributions correlated with population
density [33, 45]. We address this limitation by combining
both volunteer and paid crowd workers and by eliminating
the need to have physical access to a place to contribute
data. Our work contributes to VGI by analyzing contribution
patterns and labeling quality differences between these two
user groups.

3 PROJECT SIDEWALK
To use Project Sidewalk, users visit http://projectsidewalk.io
on a laptop or desktop (touchscreens are not currently sup-
ported). The landing page provides a brief description of the
tool—both its purpose and how to use it—along with basic
statistics and visualizations to encourage participation. Upon
clicking the ‘Start Mapping’ button, new users are greeted
by a multi-stage interactive tutorial to learn both about the
user interface and basic accessibility concepts. Once the tu-
torial is completed, users are auto-assigned a neighborhood
in DC and given their first mission. Missions guide users
through specific neighborhood streets: as the user walks vir-
tually along their route, they are asked to find, label and rate
street-level accessibility issues. After completing a mission, a
“mission complete” screen is displayed and a new mission is
assigned. Users can choose to contribute anonymously or to
register and login. We prompt anonymous users to register
after finishing their first street segment. Registered users
can resume missions and check their contribution activity
on an interactive dashboard. Currently, however, there is
no way to view or compare performance to others (e.g., a
leaderboard).

Training users. Training crowdworkers is difficult, espe-
cially for subjective judgment tasks like classifying entities
[2]. While a wide range of training approaches are possible—
from ground truth seeding with real-time performance feed-
back to qualification tasks that ensure proficiency [46]—our
current training strategy is three-pronged. First, new users
are presented with an interactive tutorial, a technique com-
mon to modern video games called onboarding [43]. We on-
board users through an initial guided mission that explains
the UI and key game mechanics, provides information about
street-level accessibility concepts, and monitors and helps

http://projectsidewalk.io
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Figure 2: In Project Sidewalk, users are given missions to explore city neighborhoods and find accessibility problems. The UI
is comprised of four parts: (center) GSV-based exploration and labeling pane; (top) buttonmenu bar; (right) mission pane with
progress tracking and navigation; (left) and settings menu. See the Supplementary Video for a demonstration.

the user correct mistakes. As users step through the onboard-
ing experience, their mission status pane is updated just like
a normal mission. In total, there are 37 onboarding parts,
which are designed to take less than four minutes.

Second, after completing onboarding, initial missions in-
clude pre-scripted help dialogs that are triggered based on
user behavior. For example, after panning 360° around their
first street intersection, Project Sidewalk helps the user use
the top-down mission map to take a step in the right direc-
tion. These help dialogs are complementary to onboarding:
there is an inherent tradeoff between building skills and
knowledge through initial training time, and actually having
the user begin using the tool in earnest.
Finally, throughout every mission, our tool continuously

observes user behavior and provides brief, transient usage
tips to encourage proper labeling behavior and increase user
efficiency. For example, if we observe that a user is not pro-
viding severity ratings, we provide a friendly reminder. If we
observe only mouse clicks, we encourage keyboard shortcuts.
These one-line tips auto-disappear and can also be explicitly
dismissed. Importantly, we cannot provide corrective labeling

feedback because we do not know about a label’s correctness
a priori.
Exploring and labeling. Similar to [23, 26], Project Side-

walk has twomodes of interaction: explorermode and labeling
mode. In explorer mode, users follow turn-by-turn directions
to explore their assigned mission routes using GSV’s native
navigation controls. If users get lost exploring, they receive
reminders to return to their mission routes, which can be
clicked to auto-jump back. At any location, the user can
pan (360° horizontally and 35° vertically) and zoom to assess
sidewalks more closely. The user’s FOV is 89.75°.
Users enter the labeling mode by clicking on a labeling

button. There are five primary label types: curb ramp, no curb
ramp, obstacle, surface problem, and no sidewalk (Figure 3). In
this mode, all interactions for controlling movement and the
first-person camera view (e.g., pan, pitch) are disabled and
the mouse cursor changes to a circular icon representing the
selected label. To place a label, the user clicks directly on the
accessibility target in the GSV image. A context menu then
appears, which asks the user to rate problem severity on a
5-point scale where ‘5’ represents an impassable barrier for
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Figure 3: Project Sidewalk has five primary color-coded label types: curb ramps, missing curb ramps, obstacles, surface prob-
lems, and no sidewalk. The images above are example accessibility issues found by users in our public deployment.

someone in a manual wheelchair. The user can also enter
additional notes in a description text field or mark a prob-
lem as temporary (e.g., due to construction). After closing
the context menu, Project Sidewalk automatically reverts to
explorer mode.
Project Sidewalk seamlessly repositions applied labels in

their correct location as the user pans or zooms—thus, labels
appear to “stick” to their associated target. However, once
a user takes a step, their labels are no longer visible in the
GSV interface (unless they return to their original labeling
location). This is due to GSV API limitations. Instead, previ-
ously placed labels can be viewed on the top-down mission
map.

Missions. Missions serve a two-fold purpose: first, as a
game mechanic, they provide an easy-to-understand and en-
gaging narrative for directing data collection tasks. Second,
from a system design perspective, missions provide a flexible
approach to discretize, assign, and distribute work. Though
we envision a variety of future mission types—e.g., data vali-
dation missions, labeling user supplied imagery—our current
system focuses on encouraging exploration and labeling in
the GSV interface. Users are assigned a high-level goal of
auditing a neighborhood and then routed on missions of
increasing length and complexity within that neighborhood.
Mission lengths increase from 500ft to a maximum of 0.5mi
(2,640ft). Mission feedback is provided via a mission status
pane, completion screens, and, for registered users, an inter-
active dashboard. If a user gets stuck during a mission, they
can choose to “jump” to a different part of their assigned
neighborhood or manually choose a new neighborhood. For
finishing a mission or completing a neighborhood, users
are rewarded with mission completion screens and sound
effects.

4 IMPLEMENTATION, DATA, AND API
Creating a robust, usable, and publicly deployable system re-
quired a significant human-centered design and engineering
effort. Our open-source GitHub repository2 has 2,747 com-
mits from 20 team members and 43,898 lines of developed

2https://github.com/ProjectSidewalk/SidewalkWebpage

Figure 4: DC’s 179 neighborhoods and 14,037 street segments
(1,075mi), which we used in the Deployment Study.

code (excluding comments). Project Sidewalk’s backend is
built in Scala and PostgreSQL with the PostGIS spatial exten-
sion, and the frontend is in JavaScript and HTML/CSS. Below,
we describe four key implementation areas: preparing a city
for deployment, work allocation algorithms, triangulating
and clustering labels, and our API.

Preparing a City
Project Sidewalk has two data prerequisites for deployment:
GSV and OSM availability. To construct a street network
topology, we extract OSM <way> elementsmarkedwith street-
related tags within a city’s geographic boundary. We also
extract <node> and <nd> elements for metadata (e.g., lat-long
coordinates) and links between nodes and edges. Because
<way> polylines can extend multiple city blocks, we create
smaller units, called street segments, by partitioning streets
at each intersection. For DC, this resulted in 15,014 street
segments with a total length of 1,164 miles. We filtered 892
segments that contained highways and/or where GSV im-
agery was unavailable due to government security precau-
tions. In total, we were left with 14,037 segments over 1,075
miles (Figure 4).

Allocating and Distributing Work via Missions
Allocating and distributing work is a two-step process con-
sisting of assigning neighborhoods then street segments. We
use the mission construct to do both. We iterated on these
task allocation algorithms throughout our deployment as we
discovered inefficiencies or mistakes. Below, we present our

https://github.com/ProjectSidewalk/SidewalkWebpage
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current approach, which was used for the last three months
of our deployment, and briefly mention old approaches.

Our current version is based on a “work quality” threshold
determined by analyzing labeling behavior from our research
group and informal manual reviews of end-user contribu-
tions. We define a “good” user as someone who contributes
a minimum of 3.75 labels per 100 meters on average. While
labeling frequency is an imperfect proxy for worker quality,
it is easy to implement and fast to compute. We integrate
this quality metric to prioritize street segments:

prioritystr eet =

{
1, if cnt(‘good’ users)=0
1/(1+x ), otherwise

where, x = cnt(“good” users) + 0.25 * cnt(“bad” users). This
algorithm prioritizes street segments inversely proportional
to the number of previous audits with a weight penalty as-
signed for “bad” users.

Allocating neighborhoods. Users are given missions to
explore and label assigned neighborhoods. Neighborhoods
are allocated at two points: after a user completes onboarding
and after they complete a previously assigned neighborhood.
In earlier versions of Project Sidewalk, we randomly assigned
users to neighborhoods within the top ten lowest comple-
tion rates. This approach, however, treated all previous work
equivalently. In the current version, we incorporate street
segment priority by first calculating the mean priority of all
street segments for each neighborhood and then randomly
assigning neighborhoods from a list with the top five highest
means. Users can also choose their own neighborhoods; how-
ever, this feature was somewhat hidden and not prominently
used in our deployment.

Calculating mission routes. Mission routes are com-
posed of street segments, which are dynamically selected
when a user reaches an intersection (i.e., the end of a seg-
ment). To enhance immersion and limit user confusion, the
routing algorithm attempts to select contiguous segments
whenever possible. In older versions of Project Sidewalk,
the segment selection algorithm simply chose a randomly
connected segment that the current user had not already au-
dited. However, this failed to incorporate work completed by
other users, which was inefficient. In our current implemen-
tation, for each neighborhood, we maintain a discretized list
of unaudited street segment priorities (bin size=0.25). When
a user reaches an intersection, we randomly select any unau-
dited connected street segment with the same discretized
priority as the highest one in the neighborhood list. If none
exist, we inform the user that they have completed this part
of the neighborhood and automatically transport them to
the highest priority remaining neighborhood street. We use
a similar process for positioning users when they first begin

a new neighborhood—we place them at the beginning of the
highest priority street segment.

Project Sidewalk Data
In Project Sidewalk, users label streetscape panoramas pro-
jected into 3D space [17]. We need to convert these 3D-point
labels to 2D lat-lng coordinates and then aggregate multiple
labels for the same target into a single cluster.

3D to 2D. To obtain geo-located labels from the 3D projec-
tion, we use: (i) the panorama’s 3D-point cloud data, which
is obtained by LiDAR on the GSV cars; (ii) the lng,lat coor-
dinate of the GSV car; and (iii) the ximg,yimg position of the
label on the panorama. More specifically:(

lnдtarдet
lattarдet

)
=

(
lnдGSV _car
latGSV _car

)
+

(
∆lnд
∆lat

)
where, we compute ∆lng, ∆lat by using the ximg,yimg label

position on the panorama and the 3D-point cloud data to
obtain the offset dx,dy,dz at ximg,yimg. The offset is in meters,
which we convert to ∆lng, ∆lat and plug into the equation.
See the function imageCoordinateToLatLng(imageX, imageY,

lat, lng) in MapService.js (Line 1275) in the GitHub repo.
Raw label data. For each label, we record three sets of

information: who provided the label and when, how the
data was collected in GSV (the user’s POV, heading, source
panorama id), and information about the label itself, such as
label type, lat-long position, x,y position on panorama, severity
rating, textual description, and a temporary flag.
Clustering. Because users can find and label the same

accessibility problem from different panoramas, we needed
to develop an algorithm to aggregate labels for the same
target together. We do this by clustering. Each cluster refers
to a single found problem (and may contain one or more raw
labels). We use a two-stage clustering approach: single-user
clustering followed by multi-user clustering. First, we con-
solidate raw labels for each individual user into intermediate
clusters—this is necessary because some users choose to la-
bel a single problem from multiple viewpoints. Second, we
combine these individual user clusters together to create our
final cluster dataset. Both stages use the same hierarchical
agglomerative clustering approach: the Vorhees clustering
algorithm with the haversine formula to compute distances
between labels and clusters.

For stage one, we cluster raw labels of the same type that
are within a certain distance threshold. Because some label
types are often legitimately close together—e.g., two curb
ramps on a corner—we use two different thresholds: 2 meters
for curb and missing curb ramps and 7.5 meters for other
label types. These thresholds were determined empirically by
iteratively computing clusters at different threshold levels
from 0 to 50 meters (step size=1 meter) and qualitatively
analyzing the results. Stage two clustering is similar but
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Volunteers
Turkers
(N=170)

Researchers
(N=28)

Total
Labels

Total
Clusters*

Anon
(N=384)

Registered
(N=243)

Curb Ramp 9,017 27,016 88,466 18,336 142,835 51,098
M. Curb Ramp 1,085 3,239 13,257 1,138 18,719 7,941
Obstacle 934 2,799 16,145 1,498 21,376 12,993
Surf. Prob. 620 1,885 3,213 2,591 8,309 5,647
No Sidewalk 1,185 6,192 28,167 7,919 43,463 23,468
Occlusion 47 310 462 438 1,257 953
Other 62 147 1,137 34 1,380 928

Total Labels 12,950 41,588 150,847 31,954 237,339 103,028

Table 1: The total amount of data collected during our de-
ployment. *Total clusters refers to filtered data only. All
other columns are the full dataset.

uses the centroids of stage one clusters with slightly looser
thresholds (7.5 and 10 meters, respectively).

Public API
To enable the use and broader study of our collected data,
we developed and released an initial public REST API
(http://projectsidewalk.io/api). The API has three endpoint
types: labels for obtaining raw label data, clusters for obtain-
ing label clusters, and scores, which provide computed scores
for street and neighborhood accessibility. Each API requires
a lat-long bounding box to specify an area of interest for
input and returns data in the GeoJSON format. For the score
APIs, we developed a simple scoring model that incorporates
the number of problem labels and returns an accessibility
score between 0 and 1. Providing a robust, personalizable,
and verifiable scoring algorithm is ongoing work.

5 DEPLOYMENT STUDY
In August of 2016, we launched an 18-month deployment
study of Project Sidewalk. Washington DC was selected as
the study site because of its large size (158 km2), diverse
economic and geographic characteristics, and substantial
commuter population—many of whom take public transit
and use pedestrian infrastructure [54]. Additionally, as the
nation’s capital, which draws ~20m visitors/yr [56], there is
increased pressure to follow and model ADA guidelines.
We recruited two types of users: volunteers through so-

cial media, blog posts, and email campaigns, and paid crowd
workers from Amazon Mechanical Turk (turkers). We further
divide volunteers into anonymous and registered groups; the
former was tracked by IP address. For comparison, we also
show data from 28 members of our research lab, who volun-
tarily contributed to help test the tool and received in-person
training on how and what to label. We paid turkers a base
amount for completing the tutorial and first mission ($0.82)
and a bonus amount for each mission completed thereafter
($4.17/mile). These rates were based on US federal minimum
wage ($7.25/hr), assuming an expected labeling rate of 1.74
miles/hr, which was drawn empirically from our data. In
practice, our turkers earned $8.21/hr on average (SD=$5.99),

Anonymous Registered Turkers Researchers
All Filtered All Filtered All Filtered All Filtered

Num. users 384 293 243 188 170 122 28 21
% Filtered – 23.7% – 22.6% – 28.2% – 25.0%

Tot. miles 155.5 79.9 535.6 391.6 2,248.9 1,016.4 238.5 211.7
Avg (SD) 0.4 (1.2) 0.3 (1.0) 2.2 (8.2) 2.1 (9.1) 13.2 (37) 8.3 (32) 8.5 (19) 10.1 (22)

Tot. missns 576 316 1,406 1,044 6,017 2,953 690 604
Avg (SD) 1.5 (3) 1.1 (2.5) 5.8 (20) 5.6 (22) 35.4 (95) 24.2 (87) 24.6 (53) 28.8 (62)

Tot. labels 12,950 10,760 41,588 35,923 150,847 103,820 31,954 30,488
Avg 33.7 36.7 171.1 191.1 887.3 851.0 1,141.2 1,451.8

Lbls/100m 8.0 10.5 5.8 6.8 7.1 8.9 6.0 7.1

Avg speed 1.22 0.74 1.93 1.58 1.68 1.14 2.76 2.57

Avg time 18.29 17.59 55.83 57.88 266.20 225.22 195.81 233.84

Avg desc 1.6 1.9 10.0 12.1 47.2 58.1 28.1 37.0

Table 2: The total amount of data collected during our de-
ployment. Averages are per user. Avg. speed is inmi/hr, time
is in mins, lbls/100m is median labels per 100m, and ‘avg
desc’ is the average number of open-ended descriptions.

which increased to $12.76 (SD=$6.60) for those 69 turkers
who audited at least one mile. Turkers could see their earn-
ings in real-time via the mission panel. We posted a total of
298 assignments over a 6-month period.

Results
Overall, Project Sidewalk had 11,891 visitors to the landing
page, of which 797 (627 volunteers; 170 turkers) completed
the tutorial and audited at least one street segment in the
first mission. In total, these users contributed 205,385 labels
and audited 2,941 miles of DC streets (Table 1). Below, we
analyze user behavior, contribution patterns, and responses
from a pop-up survey given to turkers. We examine worker
and data quality in a separate section.

User behavior. On average, registered users completed
more missions (5.8 vs. 1.5), contributed more labels (171.1
vs. 33.7), audited faster (1.93 mi/hr vs. 1.22), and spent more
time on Project Sidewalk (55.8 mins vs. 18.3) than anonymous
users (Table 2). Registered users also took longer on onboard-
ing (6.9 mins vs. 3.8) and left more open-ended descriptions
(10.0 vs. 1.6). Paid workers, however, did significantly more
work on average than either volunteer group: 35.4 missions,
887.3 labels, and spent 4.4 hrs using the tool. If we exam-
ine only those users who passed our “good” user heuristic,
we filter 28.2% paid, 23.7% anonymous, and 22.6% registered
workers; however, relative user behaviors stay the same. Sim-
ilar to [30], user contribution patterns resemble a power law
distribution: the top 10% anonymous, registered, and paid
workers contributed 56.7%, 86.6%, and 80.2% of the labels
in their group, respectively. By the top 25%, contribution
percentages rise to 77.4%, 93.6%, and 94.8%.

User dropoff. To examine user dropoff, we analyzed in-
teraction logs for the last eight months of our deployment
(after we added comprehensive logging to the tutorial). User
dropoff was steep. While 1,110 users started the tutorial, only
568 finished it (51%), 479 (43.2%) took one step in their first
mission, and 328 (29.5%) completed at least one mission. Of

http://projectsidewalk.io/api
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those 328, a majority, went on to finish their second mission
(59.8%; 196 users) and then dropoff dampened substantially.
For example, 74.0% of the users who completed Mission 2
also completed Mission 3. When splitting the 1,110 users by
group—846 volunteers and 264 turkers—we found different
patterns of behavior. While only 43.9% of volunteers finished
the tutorial and only 19.1% finished the first mission, turk-
ers were far more persistent: 74.6% finished the tutorial and
62.9% completed the first mission.

Pop-up survey. To begin exploring why users contribute
to Project Sidewalk, we developed a 5-question survey shown
to users after their second mission. The first three questions
asked about task enjoyment, difficulty, and self-perceptions
of performance via 5-point Likert scales while the last two
questions were open-ended asking about user motivation
and soliciting feedback. A single researcher analyzed the two
write-in questions via inductive coding. Though the survey is
now given to all user groups, it was only available to turkers
during our deployment study—which we analyze here.
In all, 123 turkers completed the survey. Of those, 110

(89.4%) stated that they enjoyed using Project Sidewalk (M=4.4;
SD=0.7). For task difficulty, the responses were slightly more
mixed: 83 turkers (67.5%) selected easy or very easy and 5
selected difficult (M=3.9; SD=0.9). When asked to self-rate
their performance, 81 turkers (65.9%) felt that they did at
least a very good job and none reported poor (M=4.0; SD=0.9).
For the first open-ended question (required) about user mo-
tivation, 74 (60.2%) mentioned that the task was interesting
or fun—“It was an interesting and unique change to my day”
(U111); 48 (39.0%) felt that the task was important/helpful—
“I think it is important for those who are using wheelchairs
to be able to safely navigate streets.” (U223); and 20 (16.3%)
mentioned money—“It was interesting work and good pay”
(U61). The last question was optional and asked for feedback:
68 turkers chose to answer, mostly to thank us for the task
(55 of 68): “Good & interesting task. Thank you” (U96). Six
suggested features, five asked questions about labeling, and
two reported bugs.

6 DATA VALIDATION STUDY
To investigate data quality and compare performance across
user groups, we performed a data validation study using
a subset of DC streets. This study occurred approximately
halfway into our public deployment. Because pedestrian
infrastructure can differ based on neighborhood type (e.g.,
commercial vs. residential), age, and density, we first divided
DC into four quadrants based on official geographic segmen-
tation data [12]. We then sub-divided each quadrant into
land-use zones using DC’s open zoning regulation dataset
[14]. Finally, we randomly selected the first two or three mis-
sion routes completed by individual volunteer users. This
resulted in a test dataset of 44 miles (625 street segments)

from 50 registered and 16 anonymous users across 62 of the
179 DC neighborhoods. We then verified that the selected
routes had similar geographic and land-use distributions
compared to all streets in DC.
To compare volunteer vs. paid worker performance, we

posted the selected missions in our test dataset to Amazon
Mechanical Turk. Other than payment, we attempted to care-
fully mimic the volunteer work experience: individual turk-
ers completed onboarding and then were implicitly assigned
either an anonymous user’s mission set (two) or a registered
user’s mission set (three). To control for experience and
learning effects, we did not allow deployment turkers to
participate. We paid workers based on US federal minimum
wage drawn from median volunteer completion times: $2.00
for the tutorial + two missions (~2,000ft) and $3.58 for the
tutorial + three missions (~4,000ft). Unlike the deployment
study, turkers could not choose to complete additional mis-
sions for bonus payment. To examine the effect of multiple
labelers on performance, we hired five turkers per mission
set for a total of 330 turkers.

To create ground truth, we first developed a labeling code-
book based on ADA guidelines [51, 52, 55], which was then
vetted and refined by a person who has used a wheelchair for
20 years. Following iterative coding [27], three researchers
began labeling the same subset of data: one randomly se-
lected mission set for an anonymous user and one for a reg-
istered user. For each round, the researchers met, resolved
disagreements, and updated the codebook accordingly. After
seven rounds, the average Krippendorff alpha score was 0.6
(range=0.5-0.8) and raw agreement: 85.4% (SD=4.1%). The
three researchers then split the remaining 52 mission sets
equally and a final review was performed. In total, ground
truth consists of: 4,617 clusters, including 3,212 curb ramps,
1,023 surface problems, 295 obstacles, and 87 missing curb
ramps. Though laborious, we note that this ground truth
approach allows us to more deeply examine labeling perfor-
mance compared with verifying placed labels—as the latter
does not allow us to calculate false negatives.

Analysis. We examine accuracy at the street-segment
level. We first cluster all labels from anonymous, registered,
and paid workers using single-user clustering. We then use
haversine distance to associate label clusters to their closest
street segment. To compute our accuracy measures, we sum
the number and type of label clusters for each segment and
compare the result to ground truth. This produces counts
of true/false positives and true/false negatives at each seg-
ment, which we binarize for final analysis. In total, 89.6%
(560/625) of the street segments contained accessibility la-
bels in ground truth. Unlike the four other label types, the no
sidewalk label is not used for single-point targets but rather
targets that extend multiple panoramas. Thus, we exclude
this label from our analysis.
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Figure 5: Average recall and precision for all user groups.

We report on raw accuracy (number of segments that
match ground truth), recall, and precision. Here, recall mea-
sures the fraction of accessibility targets that were found
(labeled) compared to those in ground truth while precision
measures the correctness of those labels. Ideally, each mea-
sure would be 1.0; however, similar to other crowdsourcing
systems (e.g., [26]), we prefer high recall over precision be-
cause correcting false positives is easier than false negatives—
the former requires verification while the latter requires
users actually re-explore an area. Except for the multiple
labelers per segment analysis, we use only the first hired
turker for each mission (rather than all five). For statistical
analysis, we use binomial mixed effects models with user
nested in mission route id and a logistic link function with ac-
curacy, recall, and precision modeled as binomials. We assess
significance with likelihood-ratio (LR) tests and use post-hoc
Tukey’s HSD tests to determine statistical orderings. Our
analysis was performed using the R statistical language.

Results
We examine overall performance across user groups, the
effect of label type, label severity, and multiple labelers on
accuracy, and common labeling mistakes.

User performance. The overall average raw accuracy
was 71.7% (SD=13.0%) with all three user groups performing
similarly (~70%). Because of the high true negative rates in
our data—that is, most panoramas do not have accessibil-
ity issues and were correctly labeled that way—recall and
precision are more insightful measures (Figure 5). Turkers
found significantly more issues than registered and anony-
mous users (recall=67.8% vs. 61.4% vs. 48.8%, respectively)
at similar precision levels (68.8% vs. 72.2% vs. 74.5%). With
an LR test, user group had a statistically significant associa-
tion with recall (lr=21.6, df=2, n=132, p<0.001) and precision
(lr=7.1, df=2, n=131, p=0.028) but not raw accuracy. Pairwise
comparisons for recall were all significant but none were for
precision.

To explore the effect of multiple labelers on performance,
we hired five turkers per mission set. We examine majority
vote for each group size (3, 5) as well as treating each con-
tribution individually (e.g., Turk3maj vs. Turk3all). We expect
that Turkmaj will result in higher precision but lower recall
as it requires more than one user to label the same target and

Gnd Truth Clusters Raw Acc. Recall Precision

Curb Ramp 3,212 83.7 (23.1) 86.0 (25.7) 95.4 (7.5)
No Curb Ramp 87 72.9 (21.9) 69.3 (43.5) 20.5 (31.7)
Obstacle 295 71.2 (18.8) 39.9 (36.9) 47.5 (37.4)
Surface Problem 1,023 59.0 (24.8) 27.1 (30.5) 72.6 (35.4)

Table 3: Accuracy by label type. All pairwise comparisons
are significant.

just the opposite from Turkall (i.e., higher recall, lower preci-
sion). Indeed, this is what we found: from Turk1 (baseline)
to Turk5all, recall rose from 67.8% to 91.7% but at a cost of
precision (from 68.8% to 55.0%). In contrast, for majority vote,
recall fell from 67.8% to 59.5% for Turk1 to Turk5maj but pre-
cision rose from 68.8% to 87.4%. We found turker group had
a statistically significant association with recall (lr=498.96,
df=4, n=330, p<0.001) and precision (lr= 374.88, df=4, n=330,
p<0.001). All pairwise comparisons for recall and precision
were significant except for Turk5maj < Turk3maj—for recall
only.

Label type. To examine accuracy as a function of label
type, we analyzed labeling data across users (Table 3). Curb
ramps were the most reliably found and correctly labeled
with recall=86.0% and precision=95.4%. In contrast, while no
curb ramps had reasonably high recall at 69.3%, precision
was only 20.5% suggesting an incorrect understanding of
what justifies a no curb ramp label. The other two label types,
obstacle and surface problem, had lower recall (39.9% and
27.1%) but comparatively higher precision (47.5% and 72.6%),
which mirrors our experience with ground truth—these ac-
cessibility problems are hard to find and require diligent ex-
ploration. In addition, these two label types can legitimately
be switched in some cases (e.g., a patch of overgrown grass
could be marked as either an obstacle or surface problem). We
explore labeling mistakes in more detail below.

Effect of severity. We hypothesized that high-severity
problems would be easier to find. To explore this, we parti-
tioned ground truth labels into two groups: low severity (<= 2
rating) and high severity (>= 3 rating). The low severity group
contained 1,053 labels and the high 352 labels. As expected,
we found that high-severity labels had significantly higher
recall (M=83.3%; avg=69.8%; SD=35.5%) than low-severity
labels (Mdn=56.3%; M=57.0%; SD=32.3%). To determine sig-
nificance, we created a binomial mixed effect model with
severity (high or low) as the fixed effect and user nested in
mission route id as random effects. Result of LR test (lr=10.6,
df=1, n=246, p=0.001).

Common Labeling Errors
To better understand labeling errors and to contextualize our
quantitative findings, we conducted a qualitative analysis of
labeling errors. We randomly selected 54 false positives and
54 false negatives for each label type, which resulted in 432
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Figure 6: An overview of false positive and negative labeling mistakes ordered by frequency (taken from 432 error samples in
the data validation study).

total error samples from 16 anonymous, 43 registered, and
80 paid workers. A single researcher inductively analyzed
the data with an iteratively created codebook. We show the
top three errors with examples in Figure 6.
In analyzing false positives, we observed that most mis-

takes were understandable and either easy to correct with
better training or innocuous. For example, 66.6% of incorrect
curb ramp labels were applied to driveways, nearly half of
obstacles and surface problems were potentially legitimate
issues but not on the primary pedestrian route (e.g., middle
of street vs. crosswalk), and almost 30% of incorrect missing
curb ramps were on extended residential walkways. More-
over, 32.7% of surface problems and 9.3% of obstacles were
correctly labeled as problems but with a different label type
from ground truth—e.g., a surface problem marked as an
obstacle.

For false negatives (i.e., a user did not label a problemwhen
one exists), it is harder to discern clear patterns—at least for
some label types. For obstacles and surface problems—both
of which had the lowest recall and thus can be considered
hardest to find—salience appears to be a contributing fac-
tor: 50% of missed obstacles were only partially blocking the
pedestrian path and nearly 30% of surface problems were
grass related. For missing curb ramps, 46.3% of missed labels
were at a corner where at least one other curb ramp exists
though the second most common error was more egregious:
a pedestrian path to a street had no curb ramp and no alterna-
tive accessible route (37.0%). We discuss potential solutions
to address labeling errors in the Discussion.

7 SEMI-STRUCTURED INTERVIEW STUDY
To complement our deployment and data validation stud-
ies and to solicit reactions to Project Sidewalk from key
stakeholders, we conducted an interview study with three
DC-area groups (N=14): six government officials (G), five peo-
ple with mobility impairments (MI), and three caregivers (C).
G included state and city transportation employees with
oversight of pedestrian infrastructure, MI participants used

a mobility aid such as a wheelchair or cane, and caregivers
took care of a person with a MI either as a professional, fam-
ily member, or friend. Participants were recruited via mailing
lists, word-of-mouth, and social media.
The three-part study began with a semi-structured inter-

view about participants’ current perceptions of and problems
with urban accessibility. We then asked participants to use
Project Sidewalk while “thinking aloud.” Finally, we con-
cluded with a debrief interview about the tool, including its
perceived utility, concerns, and design ideas. Sessions lasted
between 60-65 minutes, and participants were compensated
$25. One government session was a group interview with
three participants (coded G3); all other interviews were in-
dividual. Sessions were audio- and screen-recorded, which
were transcribed and coded to find emergent themes us-
ing peer debriefing [10, 49]. Using deductive coding, one
researcher created an initial codebook for the interviews,
which was refined with the help of a peer. A randomly se-
lected transcript was then coded, which was reviewed by a
second researcher using peer debriefing. To resolve conflicts
and update the codebook, the two researchers met after each
review process. The final codebook was produced after three
iterations (with one transcript coded per stakeholder group)
and 46 conflict resolutions over 305 excerpts and 1,466 ap-
plied codes. The remaining data was then coded by the initial
researcher.

Results
We describe findings related to the perceived value and us-
ability of Project Sidewalk as well as design suggestions and
concerns. For quotes, we use (participant group + id).

Perceived value. Overall, all three stakeholder groups
felt that Project Sidewalk enabled rapid data collection, al-
lowed for gathering diverse perspectives about accessibility,
and helped engage citizens in thinking about urban design.
Government officials emphasized cost savings and commu-
nity involvement envisioning Project Sidewalk as a triaging
tool before sending out employees to physically examine
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areas: “It’s really good for a starting point. This is a first obser-
vation, and when you send somebody out in the field, they can
see those observations and pick up more information. It’s just
neat” (G4). The MI and caregiver groups focused more on
personal utility, envisioning accessibility-aware navigation
tools that could incorporate Project Sidewalk data: “I might
take advantage of more opportunities knowing that, okay, if I
could rely on the data and knew I could anticipate how diffi-
cult it was going to be for me to get around” (MI1). Six of the
seven MI and caregiver participants mentioned that Project
Sidewalk data could enhance their independence, give them
confidence to explore new and unfamiliar areas, and/or help
them achieve the same pedestrian rights as everyone else.

Usability. Participants across groups felt that the tool
was easy-to-learn and fun to use. G3, for example, stated: “I
think it’s awesome. [. . . ] It’s a lot of fun” and reported “feel-
ing good” contributing data to a social purpose while also
being motivated by the game design elements: “we’re looking
at the 71 percent complete, and we’re pretty excited!” Three
participants appreciated relying on a familiar technology
like GSV, “You’re not introducing like yet another platform
that somebody has to relearn—that was helpful” (G3). Almost
everyone (13/14) found the labeling system comprehensive
as captured by MI3: “the labeling is pretty all-inclusive.”

Concerns. Key concerns included outdated GSV imagery
or labels (N=6), data reliability (3), and conflicting data (4).
Towards outdated imagery and labels, C1 asked “if a street
light was marked as an obstacle and if it was replaced or moved,
would the labels reflect that?” While this is one limitation of
our virtual auditing approach, four participants mentioned
that they would rather be aware of a potential issue even if it
no longer existed. For example, C2 stated: “if there was a label,
I’d rather be aware of it.” For data reliability, G4 suggested
that each road be audited by multiple people: “I would have
more confidence if different people did it, did the same street.”
Four participants (2 Cs, 2 MIs) were concerned about how
labelers may differ in interpreting problems compared with
their needs and experiences. For example, MI1 said: “my
concern as a user . . . someone said this was accessible and I got
there and it wasn’t accessible, because everyone has different
opinions on accessibility.”
Suggestions. Participants suggested developing mecha-

nisms to keep information up-to-date (4)—for example, by
adding a complementary smartphone-based data collection
app, adding verification interfaces (3), and surfacing data
age (2). All government officials were interested in ways to
export and visualize the data; one suggested integrating di-
rectly into their service request backend. At a more detailed
tool level, seven participants suggested adding new label
types, including for crosswalks, the presence of sidewalks,
access points (such as driveways), and construction.

8 DISCUSSION AND CONCLUSION
Through a multi-methods approach, our results demonstrate
the viability of virtually auditing urban accessibility at scale,
highlight behavioral and labeling quality differences between
user groups, and summarize how key stakeholders feel about
Project Sidewalk and the crowdsourced data. Below, we dis-
cuss worker and data quality, future deployment costs and
worker sources, and limitations.

Label quality. Our data validation study found that, on
average, users could find 63% of accessibility issues at 71%
precision. This is comparable to early streetscape labeling
work by Hara et al. [25], where turkers labeled at 67.0% and
55.6% for recall and precision, respectively; however, our
tasks are more complex, contain more label types, and are
evaluated at a larger scale. Like [25], we also show how as-
signing multiple labelers can improve results and describe
tradeoffs in aggregation algorithms—e.g., by combining la-
bels from five turkers per street, recall rose to 92%; however,
precision fell from 69% to 55%. We believe our findings rep-
resent a lower bound on performance and provide a nice
baseline for future work.

To improve quality, we envision four areas of future work:
first, a more sophisticated workflow pipeline that dynami-
cally verifies labels [6, 46], allocates the number of assigned
labelers per street based on inferred performance, and in-
tegrates other datasets (e.g., top-down imagery). Second,
though not explored in this paper, our mission-based ar-
chitecture supports a large variety of diverse mission tasks—
e.g., verification missions and ground truth seeding missions,
both which will enable us to more reliably identify poor-
quality workers. Third, Project Sidewalk currently relies
solely on manual labeling; we are experimenting with deep
learning methods trained on our 240,000+ image-based la-
bel dataset to detect problems automatically (building on
[26, 50]), triage likely problem areas, and/or aid in verifica-
tions. Finally, our results suggest that many false positives
could be corrected via improved training (e.g., a driveway is
not a curb ramp) and by using simple automated validation
(e.g., check for labels in unlikely areas).

Data age. Our interview participants raised two concerns
about data age: GSV image age and label age. Towards the
former, prior work has found high agreement between vir-
tual audit data of pedestrian infrastructure compared with
traditional audits [5, 9, 23, 26, 47, 57]. Google does not pub-
lish how often their GSV cars collect data; however, in a
2013 analysis of 1,086 panorama sampled across four North
American cities, the average age was 2.2yrs (SD=1.3) [26].
In our dataset, workers labeled 74,231 panoramas, which at
the time of first label, were also M=2.2yrs old (SD=1.5). As a
comparison, the official opendata.dc.gov curb ramp dataset
[13] was captured in 1999 and last updated in 2010 (nine
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years ago) but this only covers curb ramps (no other label
types are included). Our general approach should work with
any streetscape imagery dataset, including Mapillary [30],
CycloMedia, or Bing StreetSide—many of which are explor-
ing high-refresh methods via automated vehicles and crowd
contributions. In terms of maintaining labels over time, one
benefit of our scalable approach is that streets can be periodi-
cally re-audited and old labels can be used to study historical
change (e.g., as initially explored in [39]).
Cost. While future deployments could rely solely on paid

workers, ideally Project Sidewalk would also engage on-
line and local communities who are concerned with urban
accessibility. Based on our deployment study, we estimate
that auditing DC with 100 paid workers alone would cost
$34,000 and take 8 days (assuming five labelers/street, 8hrs of
work per day, and that 72 of 100 met our “good” user quality
threshold). If one-third of DC was audited by volunteers,
costs fall below $25,000. However, DC is a large city and
has a reasonably well-resourced transportation department
with full-time ADA compliance staff; small-to-medium sized
cities often lack ADA budgets and could particularly benefit
from Project Sidewalk. Indeed, we have been contacted by
more than a dozen cities in the US and Canada about future
deployments.

Increasing user engagement. While ~63% of turkers
who started the tutorial went on to complete one mission,
this value was 3x lower—19.1%—for volunteers. To increase
user engagement, we plan to explore: (1) supporting smart-
phones, which will increase the reach of the tool and allow
any-time access (e.g., users can complete missions while on
the bus or subway). This will hopefully result in more re-
peated visits and higher mission completion rates (our web
logs show nearly 25% of traffic is mobile); (2) providing users
with visual feedback about the impact of their contributions
(e.g., via accessibility visualizations like [32]); (3) incorporat-
ing more gamification principles such as additional mission
types (e.g., rapid data validation mini-games, scavenger hunt
missions), badges, and leaderboards—all of which have been
shown to improve retention in VGI systems [16]; and (4) and
better engaging the local community through outreach ef-
forts to pedestrian and accessibility advocacy organizations.

Limitations. There are threemain limitationswith crowd-
sourcing virtual audits: panorama age, label quality, and the
ability for crowdworkers to see and assess sidewalks from
GSV. We addressed the former two points above. Towards
the latter, users could mark areas as occluded in our tool (e.g.,
a truck blocking a sidewalk); however, occlusion constituted
only 0.4% of all applied labels in our deployment suggesting
that most sidewalks are visible. For study limitations, we
employed a multi-methods approach to mitigate the effects
of any one study technique. Still, longitudinal deployment
studies are messy and ours is no exception: we lost over

two months of deployment time due to changes in the GSV
API, maintenance upgrades to our servers, and personnel
changes. For the data validation study, we were unable to
consistently reach high α agreement for obstacles and surface
problems during our seven iterative rounds of coding; these
label types are challenging and can be legitimately conflated
(e.g., marking overgrown grass as a surface problem vs. an
obstacle). Our performance results for these label types may
have been impacted.
Finally, while our studies take place in the US, accessible

infrastructure is a global problem. Project Sidewalk should,
ostensibly, work wherever GSV and OSM are available. That
said, Project Sidewalk’s label types were drawn fromUSADA
standards [51, 52, 55], prior work [35, 37], and our previous
experience working with US-based stakeholders. While we
believe that these label types constitute primary accessibil-
ity barriers for people with mobility impairments and are
likely relevant to most North American and European cities,
more work is necessary to explore mobility barriers in other
regions. As we plan future deployments, we will work with
local stakeholders to better understand regional contexts,
socio-cultural concerns, and unique, localized infrastructural
accessibility issues. Project Sidewalk can be updated per re-
gion to, for example, add specific label types or instructions
for a city.
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