
Anchors: High-Precision Model-Agnostic Explanations

Marco Tulio Ribeiro
University of Washington

marcotcr@cs.washington.edu

Sameer Singh
University of California, Irvine

sameer@uci.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

Abstract

We introduce a novel model-agnostic system that explains the
behavior of complex models with high-precision rules called
anchors, representing local, “sufficient” conditions for predic-
tions. We propose an algorithm to efficiently compute these
explanations for any black-box model with high-probability
guarantees. We demonstrate the flexibility of anchors by ex-
plaining a myriad of different models for different domains
and tasks. In a user study, we show that anchors enable users
to predict how a model would behave on unseen instances
with less effort and higher precision, as compared to existing
linear explanations or no explanations.

Introduction
Sophisticated machine learning models such as deep neural
networks have been shown to be highly accurate for many
applications, even though their complexity virtually makes
them black-boxes. As a consequence of the need for users
to understand the behavior of these models, interpretable
machine learning has seen a resurgence in recent years,
ranging from the design of novel globally-interpretable ma-
chine learning models (Lakkaraju, Bach, and Leskovec 2016;
Ustun and Rudin 2015; Wang and Rudin 2015) to local ex-
planations (for individual predictions) that can be computed
for any classifier (Baehrens et al. 2010; Ribeiro, Singh, and
Guestrin 2016b; Strumbelj and Kononenko 2010).

A question at the core of interpretability is whether humans
understand a model enough to make accurate predictions
about its behavior on unseen instances. For instances where
humans can confidently predict the behavior of a model, let
(human) precision be the fraction in which they are correct
(note that this is human precision, not model precision). High
human precision is paramount for real interpretability - one
can hardly say they understand a model if they consistently
think they know what it will do, but are often mistaken.

Most local approaches provide explanations that describe
the local behavior of the model using a linearly weighted com-
bination of the input features (Baehrens et al. 2010; Ribeiro,
Singh, and Guestrin 2016b; Strumbelj and Kononenko 2010).
Linear functions can capture relative importance of features
in an easy-to-understand manner. However, since these linear

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Instances

(b) LIME explanations

(c) Anchor explanations

Figure 1: Sentiment predictions, LSTM

explanations are in some way local, it is not clear whether
they apply to an unseen instance. In other words, their cov-
erage (region where explanation applies) is unclear. Unclear
coverage can lead to low human precision, as users may think
an insight from an explanation applies to unseen instances
even when it does not. When combined with the arithmetic in-
volved in computing the contribution of the features in linear
explanations, the human effort required can be quite high.

Take for example LIME (Ribeiro, Singh, and Guestrin
2016b) explanations for two sentiment predictions made by
an LSTM in Figure 1. Although both explanations are com-
puted to be locally accurate, if one took the explanation on
the left and tried to apply it to the sentence on the right, one
might be tempted to think that the word “not” would have a
positive influence, which it does not. While such explanations
provide insight into the model, their coverage is not clear, e.g.
when does “not” have a positive influence on sentiment?

In this paper, we introduce novel model-agnostic expla-
nations based on if-then rules, which we call anchors. An
anchor explanation is a rule that sufficiently “anchors” the
prediction locally – such that changes to the rest of the feature
values of the instance do not matter. In other words, for in-
stances on which the anchor holds, the prediction is (almost)
always the same. For example, the anchors in Figure 1c state
that the presence of the words “not bad” virtually guarantee a
prediction of positive sentiment (and “not good” of negative

(a) D and D(.|A) (b) Two toy visualizations

Figure 2: Concrete example of D in (a) and intuition (b)

sentiment). Anchors are intuitive, easy to comprehend, and
have extremely clear coverage – they only apply when all the
conditions in the rule are met, and if they apply the precision
is high (by design).

We demonstrate the usefulness of anchors by applying
them to a variety of machine learning tasks (classification,
structured prediction, text generation) on a diverse set of
domains (tabular, text, and images). We also run a user study,
where we observe that anchors enable users to predict how
a model would behave on unseen instances with much less
effort and higher precision as compared to existing techniques
for model-agnostic explanation, or no explanations.

Anchors as High-Precision Explanations
Given a black box model f : X → Y and an instance x ∈ X ,
the goal of local model-agnostic interpretability (Ribeiro,
Singh, and Guestrin 2016a; 2016b; Strumbelj and Kononenko
2010) is to explain the behavior of f(x) to a user, where f(x)
is the individual prediction for instance x. The assumption is
that while the model is globally too complex to be explained
succinctly, “zooming in” on individual predictions makes
the explanation task feasible. Most model-agnostic methods
work by perturbing the instance x according to some “pertur-
bation distribution” Dx (for simplicity, D from now on). In
Ribeiro, Singh, and Guestrin (2016b), we emphasize that the
perturbations D (and explanations) must use an interpretable
representation (i.e. one that makes sense to humans), even if
the model uses an alternative representation of the input.

Let A be a rule (set of predicates) acting on such an in-
terpretable representation, such that A(x) returns 1 if all its
feature predicates are true for instance x. For example, in Fig-
ure 2a (top), x = “This movie is not bad.”, f(x) = Positive,
A(x) = 1 whereA = {“not”, “bad”}. LetD(·|A) denote the
conditional distribution when the rule A applies (e.g. similar
texts where “not” and “bad” are present, Figure 2a bottom).
A is an anchor if A(x) = 1 and A is a sufficient condition
for f(x) with high probability — in our running example, if
a sample z from D(z|A) is likely predicted as Positive (i.e.
f(x) = f(z)). Formally A is an anchor if,

ED(z|A)[1f(x)=f(z)] ≥ τ,A(x) = 1. (1)

Figure 2b shows two “zoomed in” regions of a complex
model, with particular instances (+ and -) being explained.
LIME (Ribeiro, Singh, and Guestrin 2016b) explanations
work by learning the lines that best approximate the model
under D, with some local weighting. The resulting expla-

Instance If Predict

I want to play(V) ball. previous word is
PARTICLE play is VERB.

I went to a play(N)
yesterday.

previous word is
DETERMINER play is NOUN.

I play(V) ball on
Mondays.

previous word is
PRONOUN play is VERB.

Table 1: Anchors for Part-of-Speech tag for the word “play”

nations give no indication of how faithful they are (the ex-
planation on the right is a much better local approximation
of the black box model than the one on the left), or what
their “local region” is. In contrast, even though they use the
same D, anchors are by construction faithful, adapting their
coverage to the model’s behavior (the anchor on the right of
Figure 2b is broader) and making their boundaries clear.

Leaving the discussion of how to compute anchors for
later, we now demonstrate their usefulness and flexibility via
concrete examples in a variety of domains and models.
Text Classification: We have already alluded to Figure 1,
where we trained an LSTM model with paraphrastic sentence
embeddings (Wieting et al. 2015) to predict the sentiment of
reviews. In this case, the features used by the model are un-
interpretable. The interpretable representation we use is the
presence of individual tokens (words) in the instance. The per-
turbation distribution D replaces “absent” tokens by random
words with the same POS tag with probability proportional to
their similarity in an embedding space (Pennington, Socher,
and Manning 2014) (i.e. the generated sentences are coherent,
and of the same length). We show samples from D for a sen-
tence in Figure 2a. The anchor A = {“not”, “bad”} is easy
to apply: if the words “not” and “bad” are in the sentence,
the model will predict “positive” with probability at least τ
(set to 0.95 from here onwards). If either word (or both) are
not present, we know we do not have sufficient information
to know what the model will do. Examples from D(z|A) are
shown in Figure 2a (bottom).
Structured prediction: When the output of the algorithm is
a structure, the anchor approach can be used to explain any
function of the output. Anchors are particularly suited for
structured prediction models: while the global behavior is too
complex to be captured by simple interpretable models, the
local behavior can usually be represented using short rules.

In Table 1, we explain the predictions of a state of the art
part-of-speech tagger for the word “play” in different con-
texts, where we include the tags for neighboring words as
part of the interpretable representation. The anchors demon-
strate that the model is picking up on reasonable patterns of
the English language, e.g. if play is preceded by a determiner,
it is likely used as a noun.

In Table 2, we compute anchors for a multi-layer RNN
encoder/attention-based decoder translation system (Vinyals
et al. 2015) trained on English-Portuguese parallel corpora. In
this case, anchors explain the presence of a word (or certain
words) in the translation. The anchors (in bold) are computed

English Portuguese

This is the question we must
address

Esta é a questão que temos que
enfrentar

This is the problem we must
address

Este é o problema que temos
que enfrentar

This is what we must address É isso que temos de enfrentar

Table 2: Anchors (in bold) of a machine translation system
for the Portuguese word for “This” (in pink).

with respect to the presence of the words in pink in the Por-
tuguese text. The first row in Table 2 means that when the
words “This”, “is”, and “question” appear in English, the
translation will include the word “Esta”. In Portuguese, the
translation for the word “this” depends on the gender of the
word it refers to (“esta” for feminine, “este” for masculine),
or should be “isso” if its referent is not in the sentence. The
anchors show that the model is capturing this behavior as it
always includes “this is”, and the word that “this” refers to
(“question” is feminine, “problem” is masculine).

Tabular Classification: Classification of data in tabular form
(categorical and/or continuous features) is a popular appli-
cation of machine learning. We use a validation dataset to
define D, and sample from D(z|A) by fixing the predicates
in A and sampling the rest of the row as a whole. We show
anchors for a few predictions of 400 gradient boosted trees
trained on balanced versions of three datasets in Table 3. The
anchors provide valuable insight into these models. Mari-
tal status appears in many different anchors for predicting
whether a person makes > $50K annually (adult dataset).
The anchors for predicting recidivism for individuals released
from prison (Schmidt and Witte 1988) (rcdv dataset), show
that this model is unfair if used for bail decisions, as race and
gender feature prominently. For predicting whether a loan on
the Lending Club website will turn out bad, i.e. late payment
or default (lending dataset), the FICO score is sufficient in
the extremes, but loan amount is taken into consideration
otherwise. We note that these are not exhaustive – the models
are complex, and these anchors explain their behavior on
part of the input space but not all of it. Anchors for “hard”
predictions (in particular boundary cases) may be longer.

Image Classification: When explaining the label prediction
for an image we follow Ribeiro, Singh, and Guestrin (2016b),
segmenting the image into superpixels (Vedaldi and Soatto
2008) and using the presence or absence of these superpix-
els as the interpretable representation. In contrast to Ribeiro,
Singh, and Guestrin (2016b), instead of hiding superpixels,
we define D(z|A) by fixing the superpixels in A to the orig-
inal image and superimposing another image over the rest
of the superpixels. We explain a prediction of the Inception-
V3 neural network (Szegedy et al. 2015) in Figure 3b. Even
though D is quite unrealistic here, the anchor demonstrates
that the model focuses on various parts of the dog to de-
termine its breed. An inspection of the (admittedly bizarre)
images from D(z|A) in Figure 3c for which the model pre-
dicts “beagle” with high confidence illustrates that attributes

If Predict

ad
ul

t No capital gain or loss, never married ≤ 50K

Country is US, married, work hours > 45 > 50K

rc
dv

No priors, no prison violations and crime
not against property Not rearrested

Male, black, 1 to 5 priors, not married,
and crime not against property Re-arrested

le
nd

in
g FICO score ≤ 649 Bad Loan

649 ≤ FICO score ≤ 699 and $5, 400 ≤
loan amount ≤ $10, 000

Good Loan

Table 3: Generated anchors for Tabular datasets

that humans would consider essential for a beagle prediction
(legs, not being underwater, not being in the sky, not having a
human body) are not quite as essential to the neural network.
Visual Question Answering (VQA): As a final example,
we present anchors for the VQA task: answering a question
asked of a reference image. Here, we are interested in identi-
fying which part of the question led to the predicted answer,
and thus use the same representation and distribution as in
Figure 2b. We explain predictions from the Visual7W open-
ended VQA system (Zhu et al. 2016) using Figure 3a as the
reference image. In Figure 3d we show a question/prediction
pair and its anchor (in bold), as well as samples from D(z|A)
and their predictions. The short anchor (“What”) reveals that,
for this image, the model’s answer to many questions will be
“dog”, contrary to our expectations. In Figure 3e, we show
other question/answer pairs and their anchors, providing ex-
amples where the behavior of the classifier is aligned with
our intuitions (first three) and where it is not (last question).

Related Work
Even in the few cases where having some understanding of a
machine learning model’s behavior is not a requirement, it is
certainly an advantage. Relying only on validation accuracy
has many well studied problems, as practitioners consistently
overestimate their model’s accuracy (Patel et al. 2008), prop-
agate feedback loops (Sculley et al. 2015), or fail to notice
data leaks (Kaufman, Rosset, and Perlich 2011).

Compared to other interpretable options, rules fare well;
users prefer, trust and understand rules better than alterna-
tives (Lim, Dey, and Avrahami 2009; Stumpf et al. 2007),
in particular rules similar to anchors. Short, disjoint rules
are easier to interpret than hierarchies like decision lists
or trees (Lakkaraju, Bach, and Leskovec 2016). A num-
ber of approaches construct globally interpretable models,
many based on rules (Lakkaraju, Bach, and Leskovec 2016;
Letham et al. 2015; Wang and Rudin 2015; Wang et al.
2015). With such models, the user should be able to guess
the model’s behavior on any example (i.e. perfect coverage).
However, these models are not appropriate for many domains,
e.g. almost no interpretable rule-based system is suitable for
text or image applications, due to the sheer size of the feature
space, or are just not accurate enough. Interpretability, in

(a) Original image (b) Anchor for “beagle” (c) Images where Inception predicts P (beagle) > 90%

What animal is featured in this picture ? dog

What floor is featured in this picture? dog
What toenail is paired in this flowchart ? dog
What animal is shown on this depiction ? dog

(d) VQA: Anchor (bold) and samples from D(z|A)

Where is the dog? on the floor
What color is the wall? white
When was this picture taken? during the day
Why is he lifting his paw? to play

(e) VQA: More example anchors (in bold)

Figure 3: Anchor Explanations for Image Classification and Visual Question Answering (VQA)

these cases, comes at the cost of flexibility, accuracy, or effi-
ciency (Ribeiro, Singh, and Guestrin 2016a). An alternative
is learning a simple (interpretable) model to imitate the black
box model globally (e.g. a decision tree (Craven and Shavlik
1996) or a set of rules (Sanchez et al. 2015)), but this may
yield low human precision. Simple models are not able to
fully capture the behavior of the complex ones, and thus lead
users to wrong conclusions, especially since it is not clear
when the simple model is faithful.

To avoid this, local model-agnostic explanations explain
individual predictions (instead of the whole model at once).
These methods provide a trade-off: each explanation is easy
to understand even for complex models and tasks, but only
captures the behavior of the model on a local region of the in-
put space. The anchor approach falls within this category (and
thus can explain complex models like translation and VQA),
together with many forms of linear explanations (Baehrens
et al. 2010; Ribeiro, Singh, and Guestrin 2016b; Strumbelj
and Kononenko 2010). As illustrated pictorially by Figure
2b and concretely in Figure 1b, even the local behavior of a
model may be extremely non-linear, leading to poor linear
approximations and users being potentially misled as to how
the model will behave (e.g. thinking that “not” will usually
be positive after seeing Figure 1b (left)). Linear explana-
tions are also harder to parse and apply than simple rules, as
they involve mental calculations. Finally, even if the black-
box model is approximately linear locally, humans may not
be able to compute distance functions “correctly”, and may
think that a local explanation applies when it does not – the
“unclear coverage” problem.

Anchors, on the other hand, make their coverage very clear
— the user knows exactly when the explanation for an instance
“generalizes” to other instances. By construction, anchors are
not only faithful to the original model, but communicate its
behavior to the user in such a way that virtually guarantees

correct understanding, and thus high precision. Anchors are
also able to capture non-linear behavior, even locally. In
sum, the anchor approach combines the benefits of local
model-agnostic explanations with the interpretability of rules,
constructed in a way to best support human understanding.

Efficiently Computing Anchors
We revisit the problem definition from Eq. (1): given a black-
box classifier f , instance x, distribution D, and the desired
level of precision τ , an anchor A is a set of feature predicates
on x that achieves prec(A) ≥ τ , where

prec(A) = ED(z|A)

[
1f(x)=f(z)

]
. (2)

For an arbitrary D and black-box model f , it is intractable
to compute this precision directly. Instead, we introduce a
probabilistic definition: anchors satisfy the precision con-
straint with high probability.

P (prec(A) ≥ τ) ≥ 1− δ (3)

If multiple anchors meet this criterion, those that describe
the behavior of a larger part of the input space are preferred,
i.e. ones with the largest coverage . Formally, we define the
coverage of an anchor as the probability that it applies to
samples from D, i.e. cov(A) = ED(z)[A(z)].

We thus define this search for an anchor as the following
combinatorial optimization problem:

max
A s.t. P (prec(A)≥τ)≥1−δ

cov(A). (4)

The number of all possible anchors is exponential, and it is
intractable to solve this problem exactly. While the search for
anchors is similar in spirit to Probabilistic Inductive Logic
Programming (ILP) (De Raedt and Kersting 2008) and other
rule-finding methods, one crucial difference is that we do

not assume a dataset apriori - instead we have perturbation
distributions and a black box model, which we can call to
estimate precision and coverage bounds under D. While we
could in theory generate a very large dataset and then use
methods like ILP to find anchors, the number of perturbed
samples and predictions from the black box model would be
prohibitive, especially in high-dimensional sparse domains
such as text. In order to efficiently explore the model’s behav-
ior in the perturbation space, we turn to a multi-armed bandit
formulation.

Bottom-up Construction of Anchors
We first introduce a bottom-up construction of anchors, which
we later extend to search over a space of potential anchors.
Here, we incrementally construct the anchor A, which is
initialized with an empty rule, i.e. one that applies to every
instance. In each iteration, we generate a number of candidate
rules that extend A by one additional feature predicate, {ai},
in its definition, i.e. the set of candidate rules in each itera-
tion is A = {A ∧ ai, A ∧ ai+1, A ∧ ai+2, . . .}. We identify
the candidate rule with the highest estimated precision (as
described next), replace A with the selected candidate, and
repeat. If the current candidate rule meets the anchor defi-
nition in Eq. (3), we have identified our desired anchor and
terminate. Although this approach does not directly compute
the coverage, and instead tries to find the shortest anchor, we
note that short anchors are likely to have a higher coverage,
and require less effort from the users to understand.

In order to select the best candidate rule in each iteration,
we want to estimate the precision of these candidates effi-
ciently. Since we cannot compute the true precision, we rely
on samples from D(·|A) to estimate the precision of A; how-
ever, a fixed number of samples may be too many or too few
for an accurate estimation. Instead, we are interested in a
minimal set of calls to f (fewest samples from D) in order to
estimate which candidate rule has the highest true precision.

This problem can be formulated as an instance of pure-
exploration multi-armed bandit problem (Kaufmann and
Kalyanakrishnan 2013), i.e. each candidate A is an arm, the
true precision of A on D(·|A) is the latent reward, and each
pull of the arm A is an evaluation of 1f(x)=f(z) on a sample
from D(z|A). For such a setting, the KL-LUCB (Kaufmann
and Kalyanakrishnan 2013) algorithm can be used to iden-
tify the rule with the highest precision. The algorithm works
by constructing confidence regions based on KL divergence
(Cover and Thomas 1991). In each step, the algorithm selects
two distinct rules: the best mean (A) and the highest upper
bound (A′), and updates their bounds by getting a sample
each from D(z|A) and D(z′|A′), and computing 1f(x)=f(z)
and 1f(x)=f(z′). This sampling process continues until the
lower bound on A is higher than A′’s upper bound with toler-
ance ε ∈ [0, 1]. If A∗ is the arm with highest true precision,
the following (proved by Kaufmann and Kalyanakrishnan)
holds for the true precision of the chosen rule A:

P (prec(A) ≥ prec(A∗)− ε) ≥ 1− δ (5)

Alg 1 presents an outline of this approach. When evaluating
if the rule chosen by KL-LUCB is an anchor, we need to
be confident it meets our precision criteria. Thus, if for an

Algorithm 1 Identifying the Best Candidate for Greedy
function GenerateCands(A, c)
Ar = ∅
for all A ∈ A; ai ∈ x, ai /∈ A do

if cov(A ∧ ai) > c then {Only high-coverage}
Ar ← Ar ∪ (A ∧ ai) {Add as potential anchor}

return Ar {Candidate anchors for next round}

function BestCand(A,D, ε, δ)
initialize prec, precub, preclb estimates ∀A ∈ A
A← argmaxA prec(A)
A′ ← argmaxA′ 6=A precub(A

′, δ) {δ implicit below}
while precub(A

′)− preclb(A) > ε do
sample z ∼ D(z|A), z′ ∼ D(z′|A′) {Sample more}
update prec, precub, preclb for A and A′

A← argmaxA prec(A)
A′ ← argmaxA′ 6=A precub(A

′)
return A

Algorithm 2 Outline of the Beam Search
function BeamSearch(f, x,D, τ)

hyperparameters B, ε, δ
A∗ ← null,A0 ← ∅ {Set of candidate rules}
loop
At ← GenerateCands(At−1, cov(A∗))
At ← B-BestCand(At,D, B, δ, ε) {LUCB}
if At = ∅ then break loop
for all A ∈ At s.t. preclb(A, δ) > τ do

if cov(A) > cov(A∗) then A∗ ← A
return A∗

identified rule A, preclb(A) < τ but precub(A) > τ , we
sample from D(·|A) until either we are confident A is an
anchor (preclb(A) > τ) or not (precub(A) < τ).

Beam-Search for Anchor Construction

Although the greedy approach we have described so far can
find short anchors with the guarantee that, for each step, the
choice was near optimal with high probability, it has two
major shortcomings. First, due to the greedy nature of the
approach, it is only able to maintain a single rule at a time
(that it incrementally augments), and thus any suboptimal
choice is irreversible. Second, the greedy algorithm is not
directly concerned with the coverage of the anchors, and
instead returns the shortest anchor that it finds. In order to
address both these concerns, we extend the greedy approach
to perform a beam-search by maintaining a set of candidate
rules, while guiding the search to identify amongst many
possible anchors the one that has the highest coverage.

The algorithm is outlined in Algorithm 2. It is similar in
structure to the greedy approach, with a set of B current
candidates instead of a single one. After generating all the
possible candidates rules, we select the B-best candidates to
keep based on the KL-LUCB approach with multiple arms
(the Explore-m setting). For the tolerance ε ∈ [0, 1], this
version of KL-LUCB algorithm returns a setA of size B that

is an ε-approximation of A∗, with high probability.

P (min
A∈A

prec(A) ≥ min
A′∈A∗

prec(A′)− ε) ≥ 1− δ (6)

We omit the description of KL-LUCB for this setting, but the
intuition is similar to the one in the greedy approach. Fur-
ther, amongst multiple anchors that we encounter, we output
the one with the highest coverage, thus directly optimizing
Eq. (4). This condition is also used for efficient pruning of
the search space – we do not store any rule that has a lower
coverage than that of the best anchor found so far, since the
coverage of a rule can only reduce as more predicates are
added. The beam-search algorithm is therefore more likely to
return an anchor with a higher coverage than the one found
by the greedy approach, and thus we use this algorithm for
all examples and experiments.

Hyperparameters and Potential Issues
A rule that exactly matches x is always a valid anchor, al-
beit with very low coverage, and thus, is of little use. Our
algorithm can always recover this anchor, and thus is guar-
anteed to terminate in a bounded number of iterations. In
pathological cases, it is possible for KL-LUCB to require a
very large number of samples from D in order to separate
two candidate rules with a high confidence; however, this can
be alleviated by increasing the tolerance ε, the width δ, or by
setting a maximum number of samples. In practice, all expla-
nations present in this paper were generated in a few seconds
to few minutes. We set these parameters to reasonable values,
B = 10, ε = 0.1, δ = 0.05, and leave an analysis of the
sensitivity of our approach to these for future work.

So far, we focused on computing anchors for individual
predictions. In order to gain a more complete understanding
of how the model works, the user needs to examine multiple
explanations. Instead of randomly selecting which anchors to
show to the user, we would like to identify an optimal set of
anchors that represent this global behavior, thereby reducing
the user effort. By observing that such an objective is sub-
modular, we propose an approach for submodular-pick (SP)
in Ribeiro, Singh, and Guestrin (2016b) that we adapt to this
setting. In particular, the approach selects K anchors that
cover as many instances in the validation set as possible. We
use an iterative, greedy method that provides guarantees on
the quality of our solution, due to the submodular nature of
the optimization (Krause and Golovin 2014).

Experiments
We evaluate anchor explanations for complex models on
a number of tasks, primarily focusing on how they facili-
tate accurate predictions by users (simulated and human) on
the behavior of the models on unseen instances. Code and
the data for all the experiments is available at https://
github.com/marcotcr/anchor-experiments.

Simulated Users
For simulated users, we use the tabular datasets previously
mentioned (adult, rcdv and lending). Each dataset is split
such that models are trained with the training set, explana-
tions are produced for instances in the validation set, and

Precision Coverage

anchor lime-n anchor lime-t

adult
logistic 95.6 81.0 10.7 21.6

gbt 96.2 81.0 9.7 20.2
nn 95.6 79.6 7.6 17.3

rcdv
logistic 95.8 76.6 6.8 17.3

gbt 94.8 71.7 4.8 2.6
nn 93.4 65.7 1.1 1.5

lending
logistic 99.7 80.2 28.6 12.2

gbt 99.3 79.9 28.4 9.1
nn 96.7 77.0 16.6 5.4

Table 4: Average precision and coverage with simulated
users on 3 tabular datasets and 3 classifiers. lime-n indicates
direct application of LIME to unseen instances, while lime-t
indicates a threshold was tuned using an oracle to achieve the
same precision as the anchor approach. The anchor approach
is able to maintain very high precision, while a naive use of
linear explanations leads to varying degrees of precision.

evaluated on instances in the test set. For each dataset, we
train three different models: logistic regression (lr), 400 gra-
dient boosted trees (gb) and a multilayer perceptron with
two layers of 50 units each (nn). We generate both linear
LIME (Ribeiro, Singh, and Guestrin 2016b) and anchor ex-
planations for them.

When simulating users, we compute coverage (what frac-
tion of the instances they predict after seeing explanations)
and precision (what fraction of the predictions were correct)
on the complete test set. For each dataset, model, and expla-
nation type, we compute these metrics for the explanation
of each instance in the validation data. Simulating when an
anchor applies is clear. It is not obvious, however, how real
users would use LIME explanations. Ideally, they should
only apply explanations to examples that are close, but it is
not clear what the distance function and the threshold for
“close” should be, or if users compute distances on demand.
Therefore, in this section, we simulate different behaviors,
and perform a study with real users in the following section.

In Table 4 (left), we show the average precision for an-
chor and LIME, assuming users always apply the LIME
explanation without any regard to distance (we call such a
user lime-n, for naive). It is clear that the anchor approach
is able to deliver on the promise of high average precision,
for all datasets and models. If users apply LIME naively, on
the other hand, they get widely differing levels of precision.
Since high precision is a prerequisite for interpretability, we
simulate a user that only makes a prediction with LIME if
the application of the linear explanation yields a probability
above a certain threshold (setting a threshold on the distance
produced strictly worse results), and call this user lime-t. We
tune the threshold values for each dataset/model pair in order
to obtain the same average precision as the anchor approach
on the test set, so that coverage is comparable. A real user
would not be able to perform this tuning, as (1) we are “cheat-
ing” by looking at the test set, and (2) the threshold values
found range from 67% to 91%, and often with huge variation

Method Precision Coverage (perceived) Time/pred (seconds)

adult rcdv vqa1 vqa2 adult rcdv vqa1 vqa2 adult rcdv vqa1 vqa2

No expls 54.8 83.1 61.5 68.4 79.6 63.5 39.8 30.8 29.8 ±14 35.7±26 18.7±20 13.9±20

LIME(1) 68.3 98.1 57.5 76.3 89.2 55.4 71.5 54.2 28.5±10 24.6±6 8.6±3 11.1±8
Anchor(1) 100.0 97.8 93.0 98.9 43.1 24.6 31.9 27.3 13.0±4 14.4±5 5.4±2 3.7±1

LIME(2) 89.9 72.9 - - 78.5 63.1 - - 37.8±20 24.4±7 - -
Anchor(2) 87.4 95.8 - - 62.3 45.4 - - 10.5±3 19.2±10 - -

Table 5: Results of the User Study. Underline: significant w.r.t. anchors in the same dataset and same number of explanations.
Results show that users consistently achieve high precision with anchors, as opposed to baselines, with less effort (time).

(a) adult dataset (b) rcdv dataset

Figure 4: Coverage on the test set as the simulated user sees
more explanations, at the same precision level. While there is
no clear winner for random explanations, anchors are better
when explanations are picked using submodular-pick.

in the same dataset for different models. We show the average
test coverage of the validation set explanations for anchor and
lime-t in Table 4 (right). There is no clear winner in terms of
coverage, thus demonstrating that even with the impossibly
tuned thresholds, LIME is not able to outperform anchors.

Although the user is often interested in specific expla-
nations, most users would prefer a set of explanations that
explain most of the model with as little effort on their part
as possible - explanations picked using the submodular pro-
cedure described before. In Figure 4, we show the coverage
(for the same precision level) for gb in two of the datasets
(we omit the other models/dataset due to space, but the re-
sults are similar) as the user sees more explanations, chosen
either via submodular pick (SP-LIME and SP-Anchor) or at
random (RP-LIME and RP-Anchor). The results indicate that
while the average coverage of random explanations is low
(e.g. 4.8% for rcdv), selecting the right set of explanations
with submodular pick can give users an understanding of the
model’s global behavior (e.g. ∼50% after only 10 explana-
tions). The anchor approach also yields better coverage for
the same precision - even though it is unclear if real users can
achieve such high precision with LIME.

User study
We ran a user study with 26 users – students who had or
were taking a machine learning course – so we could rely on
familiarity with concepts such as “model”, “prediction”, and
“cross validation”. For this study, we used the adult and rcdv
datasets, followed by a multiple-choice VQA system (Ren,

Kiros, and Zemel 2015) on two images. While the VQA
model predicts one of 1000 labels, we restrict it to the 5 most
common answers predicted on questions in D, in order to
reduce visual overload.

For each dataset and explanation type, we want to evalu-
ate if users are able to predict the behavior of the model on
unseen instances. Our set up for the adult and rcdv datasets
consists of the users first browsing through 10 predictions
without any explanations, then with one, and two LIME or
anchor explanations. They are asked to predict the behavior
of the classifier on 10 random test instances before and 10 in-
stances after seeing each round of explanations. The user then
goes through the same procedure on the other dataset, with
the explanation type that was not the one used for the first
one. We ask subjects to only make predictions if they are very
confident, and to select “I don’t know” otherwise. We mea-
sure coverage as the fraction of instances where users made
a prediction other than “I don’t know” (i.e. their perceived
coverage), and only measure precision in these instances.
This process is repeated for the two VQA images - half the
users see LIME for the first and then anchor for the second,
and vice versa for the other half, and predict the model’s
answers on 20 questions before and after explanations. The
explanations are comparable in size: LIME explanations had
at most 5 terms in all datasets, while anchors varied from 1
to 5, depending on each individual prediction.

The results in Table 5, where LIME(1) refers to results
after one LIME explanation and so on, show that users with
anchors achieve high-precision - around 95% for all of the
combinations, except for Anchor(2) in adult. The coverage of
users with anchors grows with a second explanation on both
datasets. Precision with LIME, on the other hand, varies dra-
matically, and for VQA1, is worse than no explanations. The
subjects made mostly correct predictions when using anchors
(high precision), and knew to select “I don’t know” when an
instance was not covered by the explanation. In contrast, with
LIME or no explanations, users thought they could make
confident predictions more often, even though their precision
was considerably lower. Further, it took dramatically less
time to understand and use anchors as compared to linear
explanations, across all datasets and tasks. On a poll, 21/26
of users preferred anchors, and 24/26 said they would be
more precise with anchors; interestingly, the 2 users who said
they would be more precise with LIME were actually more
precise with anchors. Many commented that it was easier to

apply anchors than combining the weights of LIME explana-
tions, especially with multiple explanations. They also felt
more confident in their predictions with anchors.

The user study confirms our hypotheses: it is much easier
for users to understand the coverage of anchor explanations as
opposed to linear explanations, and to achieve high-precision
understanding of the model’s behavior (as measured by pre-
dicting it on new instances). Anchors are also easier to com-
prehend, and take less effort in applying, as reflected in their
times and qualitative feedback.

Limitations and Future Work
Having demonstrated the flexibility and usefulness of the
anchor approach for a wide variety of domains, and hav-
ing compared it to the state-of-the-art, we now turn to its
limitations and opportunities for future work.
Overly specific anchors: Predictions that are near a bound-
ary of the black box model’s decision function, or predictions
of very rare classes may require very specific “sufficient con-
ditions”, and thus their anchors may be complex and provide
low coverage. We give an example in Figure 5 (adult dataset),
where a particular prediction is very near the boundary of the
decision function – almost any change to the instance results
in a change in prediction. While the very specific anchor
in Figure 5c communicates to the user that the conditions
necessary for the prediction are very specific, it does not
generalize well to other instances, due to its narrowness. It
also does not give much insight into the model’s behavior
besides the fact that the instance is near a decision boundary.
In cases like these, a linear LIME explanation (Figure 5b)
may be preferred due to the potential insights it gives, with
the caveat that users may still generalize incorrectly due to
unclear coverage.
Potentially conflicting anchors: When using the anchor ap-
proach “in the wild”, two or more anchors with different
predictions may apply to the same test instance. While pos-
sible, this situation is unlikely for two reasons: (1) the high
probability precision guarantee that anchors have by construc-
tion, and (2) the submodular objective in the pick procedure
encourages a set of anchors with low overlap. If this were to
happen in a real situation, we would want to alert the user,
suggest further investigation, and maybe suggest increasing
the precision threshold.
Complex output spaces: For certain problems where the
output is structured and complex, there is a variety of expla-
nations that may be useful. In this work, we restrict ourselves
to explaining certain functions of the output, such as in Ta-
bles 1 and 2, leaving the task of explaining the full output
space to future work. We emphasize that this is a problem
that is not specific to the anchor approach, but still an open
problem in the explanation literature. Even for a “simpler”
output space such as the one present in the multi-label classi-
fication setting (Tsoumakas and Katakis 2006), it is not clear
if the best option would be to explain each label individually
or the set of predicted labels as a single label. The former
could overwhelm the user if the number of labels is too large,
while the latter may lead to non intuitive, or overly complex
explanations.

28< Age≤ 37
Workclass = Private

Education = High School grad
Marital Status = Married
Occupation = Blue-Collar
Relationship = Husband

Race = White
Sex = Male

Capital Gain = None
Capital Loss = Low

Hours per week≤ 40.00
Country = United-States

P (Salary > $50K) = 0.57

(a) Instance and prediction (b) LIME explanation

IF Country = United-States AND Capital Loss = Low
AND Race = White AND Relationship = Husband
AND Married AND 28 < Age ≤ 37
AND Sex = Male AND High School grad
AND Occupation = Blue-Collar
THEN PREDICT Salary > $50K

(c) An anchor explanation

Figure 5: Explaining a prediction near the decision boundary
in the UCI adult dataset.

Realistic perturbation distributions: All perturbation-
based explanation methods depend on a local perturbation
distribution that is expressive enough to reveal the model’s
behavior, while acting on components that are sufficiently
interpretable. Finding such distributions for some domains re-
mains a challenge - for example, the perturbations for images
provided explanations that led to some insight, but cannot be
used for comparison of explanations across images. Design-
ing such distributions is a line of research that would benefit
multiple explanation methods.

Conclusions
We have argued that high precision and clear coverage are cru-
cial for interpretable explanations of a model’s local behavior.
We introduced a novel family of rule-based, model-agnostic
explanations called anchors, designed to exhibit both these
properties. Anchors highlight the part of the input that is
sufficient for the classifier to make the prediction, making
them intuitive and easy to understand. We demonstrated the
flexibility of the anchor approach by explaining predictions
from a variety of classifiers on multiple domains. In a user
study, we showed that anchors not only lead to higher human
precision than linear explanations, but also require less effort
to understand and apply.

Acknowledgements
We are grateful to the anonymous reviewers for their feed-
back. This work was supported in part by ONR award
#N00014-13-1-0023, and in part by FICO and Adobe Re-
search. The views expressed are those of the authors and do
not reflect the policy or position of the funding agencies.

References
Baehrens, D.; Schroeter, T.; Harmeling, S.; Kawanabe, M.;
Hansen, K.; and Müller, K.-R. 2010. How to explain indi-
vidual classification decisions. Journal of Machine Learning
Research 11.
Cover, T. M., and Thomas, J. A. 1991. Elements of Informa-
tion Theory. New York, NY, USA: Wiley-Interscience.
Craven, M. W., and Shavlik, J. W. 1996. Extracting tree-
structured representations of trained networks. Advances in
neural information processing systems 24–30.
De Raedt, L., and Kersting, K. 2008. Probabilistic inductive
logic programming. Berlin, Heidelberg: Springer-Verlag.
chapter Probabilistic Inductive Logic Programming, 1–27.
Kaufman, S.; Rosset, S.; and Perlich, C. 2011. Leakage
in data mining: Formulation, detection, and avoidance. In
Knowledge Discovery and Data Mining (KDD).
Kaufmann, E., and Kalyanakrishnan, S. 2013. Information
complexity in bandit subset selection. In Proceedings of the
Twenty-sixth nnual Conference on Learning Theory (COLT
2013), volume 30 of JMLR Workshop and Conference Pro-
ceedings, 228–251. JMLR.
Krause, A., and Golovin, D. 2014. Submodular function
maximization. In Tractability: Practical Approaches to Hard
Problems. Cambridge University Press.
Lakkaraju, H.; Bach, S. H.; and Leskovec, J. 2016. Inter-
pretable decision sets: A joint framework for description and
prediction. In Proceedings of the 22Nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, KDD ’16, 1675–1684. New York, NY, USA: ACM.
Letham, B.; Rudin, C.; McCormick, T. H.; and Madigan,
D. 2015. Interpretable classifiers using rules and bayesian
analysis: Building a better stroke prediction model. Annals
of Applied Statistics.
Lim, B. Y.; Dey, A. K.; and Avrahami, D. 2009. Why and
why not explanations improve the intelligibility of context-
aware intelligent systems. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI
’09, 2119–2128. New York, NY, USA: ACM.
Patel, K.; Fogarty, J.; Landay, J. A.; and Harrison, B. 2008.
Investigating statistical machine learning as a tool for soft-
ware development. In Human Factors in Computing Systems
(CHI).
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Empirical Methods
in Natural Language Processing (EMNLP), 1532–1543.
Ren, M.; Kiros, R.; and Zemel, R. S. 2015. Exploring models
and data for image question answering. In Proceedings of
the 28th International Conference on Neural Information
Processing Systems, NIPS’15, 2953–2961. Cambridge, MA,
USA: MIT Press.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016a. Model-
agnostic interpretability of machine learning. In Human
Interpretability in Machine Learning workshop, ICML ’16.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016b. “why
should I trust you?”: Explaining the predictions of any classi-
fier. In Knowledge Discovery and Data Mining (KDD).

Sanchez, I.; Rocktaschel, T.; Riedel, S.; and Singh, S. 2015.
Towards extracting faithful and descriptive representations of
latent variable models. In AAAI Spring Syposium on Knowl-
edge Representation and Reasoning (KRR): Integrating Sym-
bolic and Neural Approaches.
Schmidt, P., and Witte, A. D. 1988. Predicting Recidivism in
North Carolina, 1978 and 1980. Inter-university Consortium
for Political and Social Research.
Sculley, D.; Holt, G.; Golovin, D.; Davydov, E.; Phillips,
T.; Ebner, D.; Chaudhary, V.; Young, M.; and Crespo, J.-F.
2015. Hidden technical debt in machine learning systems. In
Neural Information Processing Systems (NIPS).
Strumbelj, E., and Kononenko, I. 2010. An efficient explana-
tion of individual classifications using game theory. Journal
of Machine Learning Research 11.
Stumpf, S.; Rajaram, V.; Li, L.; Burnett, M.; Dietterich, T.;
Sullivan, E.; Drummond, R.; and Herlocker, J. 2007. Toward
harnessing user feedback for machine learning. In Proceed-
ings of the 12th International Conference on Intelligent User
Interfaces, IUI ’07, 82–91. New York, NY, USA: ACM.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In Computer
Vision and Pattern Recognition (CVPR).
Tsoumakas, G., and Katakis, I. 2006. Multi-label classifica-
tion: An overview. International Journal of Data Warehous-
ing and Mining 3(3).
Ustun, B., and Rudin, C. 2015. Supersparse linear integer
models for optimized medical scoring systems. Machine
Learning.
Vedaldi, A., and Soatto, S. 2008. Quick shift and kernel
methods for mode seeking. In European Conference on
Computer Vision, 705–718. Springer.
Vinyals, O.; Kaiser, L.; Koo, T.; Petrov, S.; Sutskever, I.; and
Hinton, G. E. 2015. Grammar as a foreign language. In
Advances in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada,
2773–2781.
Wang, F., and Rudin, C. 2015. Falling rule lists. In Artificial
Intelligence and Statistics (AISTATS).
Wang, T.; Rudin, C.; Doshi-Velez, F.; Liu, Y.; Klampfl, E.;
and MacNeille, P. 2015. Or’s of and’s for interpretable clas-
sification, with application to context-aware recommender
systems. arXiv:1504.07614.
Wieting, J.; Bansal, M.; Gimpel, K.; and Livescu, K. 2015.
Towards universal paraphrastic sentence embeddings. CoRR
abs/1511.08198.
Zhu, Y.; Groth, O.; Bernstein, M.; and Fei-Fei, L. 2016. Vi-
sual7W: Grounded Question Answering in Images. In IEEE
Conference on Computer Vision and Pattern Recognition.

