
Errudite: Scalable, Reproducible, and Testable Error Analysis

Tongshuang Wu1, Marco Tulio Ribeiro2, Jeffrey Heer1, and Daniel S. Weld1

1Paul G. Allen School of Computer Science & Engineering, University of Washington
2Microsoft Research

{wtshuang,jheer,weld}@cs.washington.edu
marcotcr@microsoft.com

Abstract
Though error analysis is crucial to understand-
ing and improving NLP models, the common
practice of manual, subjective categorization
of a small sample of errors can yield biased
and incomplete conclusions. This paper cod-
ifies model and task agnostic principles for
informative error analysis, and presents Er-
rudite, an interactive tool for better support-
ing this process. First, error groups should
be precisely defined for reproducibility; Erru-
dite supports this with an expressive domain-
specific language. Second, to avoid spurious
conclusions, a large set of instances should
be analyzed, including both positive and neg-
ative examples; Errudite enables systematic
grouping of relevant instances with filtering
queries. Third, hypotheses about the cause of
errors should be explicitly tested; Errudite sup-
ports this via automated counterfactual rewrit-
ing. We validate our approach with a user
study, finding that Errudite (1) enables users
to perform high quality and reproducible error
analyses with less effort, (2) reveals substan-
tial ambiguities in prior published error analy-
ses practices, and (3) enhances the error anal-
ysis experience by allowing users to test and
revise prior beliefs.

1 Introduction

The attempt to analyze when, how, and why mod-
els fail (error analysis) is a crucial part of the
development cycle. Understanding model short-
comings helps NLP developers revise their mod-
els, uncover bugs, make deployment decisions,
and communicate model performance. Two com-
mon forms of error analysis are (1) data grouping,
where aggregate metrics are computed for partic-
ular slices of interest (e.g., accuracy over question
types in machine comprehension, per-label perfor-
mance in semantic role labeling) (Liu et al., 2017;
He et al., 2017), and (2) counterfactual error anal-
ysis, where one modifies the input data to assess

if expectations are met, such as adding irrelevant
data to see if new errors are introduced (Jia and
Liang, 2017; Ribeiro et al., 2018).

In practice, however, groupings and counter-
factual tests are very coarse or limited. The in-
put to most NLP tasks is unstructured text, which
makes systematic in-depth error analysis challeng-
ing. Even answering simple questions such as
“how accurate is my model when person names
are involved?” requires extensive coding, and the
use of additional tools such as NER or POS tag-
gers. Due to such difficulties, a common alter-
native is to group a subset of error samples with
manual labels on potential error causes.

While useful, the high cost of manual labeling
limits analyses to small samples. We surveyed 10
papers with error analyses that examine a sam-
ple of incorrect predictions, e.g., (Wadhwa et al.,
2018; Min et al., 2017)1, and found the sample
sizes ranged from 50 to 200 model errors (µ =
85.5, a range corroborated by our user study sur-
vey) — frequently covering less than 5% of the to-
tal errors. Such small samples are likely unrepre-
sentative of the true error distribution, resulting in
high sampling error in the analysis. Furthermore,
due to subjectivity, the labels themselves are not
precisely defined (Chang et al., 2017). Indeed, our
user study (§5) reveals that inter-researcher agree-
ment is very low even for simple labels, an incon-
sistency that greatly harms reproducibility.

Focusing exclusively on errors — while over-
looking successful predictions for instances with
similar attributes — may also lead researchers to
make biased conclusions, and mistakenly priori-
tize groups that are in fact well-handled on aver-
age (Rondeau and Hazen, 2018). Finally, there
may be multiple plausible explanations for an er-
ror, with the true cause not immediately apparent.

1The full list of papers is provided in Appendix C.

A

B

C

D

E

F

Figure 1: The Errudite interface, with (A) model overview; (B) attribute histograms (§4, enlarged version in
Figure 5); (C) filtering panel for users to specify DSL queries (§3.1), (D) instance list displaying filtered examples;
(E) list of saved groups (§3.2 and Figure 3) and (F) rewrite rules (§3.3). See §4 for more details. 2

Q: Who created the 2005 theme for Doctor Who?
...John Debney created a new arrangement of Ron
Grainer’s original theme for Doctor Who in 1996. For the
return of the series in 2005, Murray Gold provided a new
arrangement... featured sampled from the 1963 original.

Figure 2: An example MC error with the ground truth
and the prediction both being “PERSON” entities.

Figure 2 illustrates an incorrect prediction from a
machine comprehension (MC) model that could
be caused by the presence of a distractor entity
with the same type as the ground truth (PERSON),
the need to perform multi-sentence reasoning, a
combination of both, or something else altogether.
In a manual analysis, researchers may gravitate to
the first or most salient explanation, without veri-
fying them via counterfactual analysis (e.g., by re-
moving the distractor).

We present an error analysis methodology
grounded in three principles: hypothesized error
causes should be (1) formalized in a precise and
reproducible manner, (2) applied to all instances
rather than a small sample of errors, and (3) tested
explicitly via counterfactual analysis. We instanti-
ate these principles in the design of an interactive
system called Errudite. At the core of Errudite
is an expressive domain-specific language (DSL)
for precisely querying instances based on linguis-
tic features. The DSL concretizes unambiguous
error hypotheses, allows grouping to scale to all
instances, and enables rewriting for counterfactual
testing. For example, it makes it easy to create a
precise group containing all instances where the
ground truth and the prediction share entity type
(which would include the example in Figure 2),

verify how often the model gets distracted, and
check if the model turns to the correct entity when
the distractor is removed. This sequence is pre-
cisely what we use to illustrate the design of Er-
rudite (§3). At each step in the sequence, Errudite
helps users inspect and refine their hypotheses in
real time with interactive visualizations (Figure 1)
and query suggestions based on programming-by-
demonstration (§4). We validate our methodology
and Errudite via a user study (§5), where MC ex-
perts applied it to gain valuable and reproducible
insights into model behavior. The same users,
when given identical descriptions of an error type
from a prior published analysis and asked to re-
produce it, produced groups that vary in size from
13.8% to 45.2% of all errors — which illustrates
the ambiguity in subjective manual labeling.

In summary, we contribute: (1) an enumeration
of key challenges for NLP error analysis: man-
ual, subjective inspection of a small sample of er-
rors can be ambiguous, biased, and miss the root
cause of errors; (2) principles for informative er-
ror analysis: precise and reproducible, scalable,
and testable; (3) the design of Errudite, an inter-
active graphical tool that instantiates these princi-
ples by systematically grouping and rewriting in-
stances using a domain-specific language; and (4)
a user study and case studies comparing Errudite
with status quo error analysis practices. Errudite is
available as an open source resource at https://
github.com/uwdata/errudite, together with
all analyses in this paper for easy replication.

2Video demo: https://youtu.be/Dil5i0AYyu8.

https://github.com/uwdata/errudite
https://github.com/uwdata/errudite
https://youtu.be/Dil5i0AYyu8

2 Task, Dataset, and Model

While our proposed error analysis principles and
tool are model and task agnostic, we describe and
evaluate them in the context of Machine Compre-
hension (MC). MC systems aim to answer ques-
tions about facts in some reference text (context),
potentially requiring complex reasoning (Joshi
et al., 2017). Error analysis for MC is challeng-
ing by virtue of the fact that both inputs (ques-
tion and context) and output (answer) are unstruc-
tured text, which makes it ideal for our purpose.
Furthermore, various prior analyses with particu-
lar semantic groups are available for comparison
and replication (e.g., cases that involve paraphras-
ing or coreference (Chen et al., 2016; Weissenborn
et al., 2017; Wadhwa et al., 2018)).

Specifically, we analyze Bi-Directional Atten-
tion Flow (BiDAF) (Seo et al., 2016) on SQuAD
v1.1 (Rajpurkar et al., 2016) in the rest of the
paper. SQuAD contains 100,000+ crowdsourced
question-answer pairs about Wikipedia articles.
Each question refers to one paragraph of an article,
and the corresponding answer is guaranteed to be
a span in that paragraph context. BiDAF3 is a hi-
erarchical multi-stage end-to-end neural network.
It has been widely referenced as a strong base-
line model (Wang et al., 2018; Clark and Gard-
ner, 2017). Because both SQuAD and BiDAF are
common in MC, experts can test and verify prior
beliefs about model strengths and weaknesses.

3 Error Analysis Principles & Errudite

We identify three principles (abbreviated to the
three subsection titles) for effective and unbiased
error analysis, and describe tactics in Errudite that
instantiate them.4

3.1 Precise and Reproducible Hypotheses

Manual labeling of errors involves forming qual-
itative descriptions that implicitly refer to char-
acteristics of the input and/or model output, of-
ten in an ambiguous form. For example, “the
model is bad on long questions” refers to ques-
tions that have more than N tokens, with N left
open to interpretation. In order to make error anal-
ysis scalable (not dependent on manual labels) and
reproducible (unambiguous), our first principle is

3We used the implementation from Allennlp (Gardner
et al., 2017): https://allennlp.org/models.

4Additional use cases on Machine Comprehension (MC)
and Visual Question Answering (VQA) are in Appendix A.

therefore P1: error hypotheses should be de-
fined precisely with concrete descriptions, e.g.,
describing questions as “longer than 20 tokens”
rather than “long.” Errudite enables this through
a domain-specific language (DSL) with targets,
attribute extractors and operators, in increasing
order of abstraction.

Targets are primitives which allow users to ac-
cess inputs and outputs at different levels of gran-
ularity, such as the question (q), passage context
(c), ground truth (g), the prediction of a model m
(denoted by p(m)), sentence and token. Targets
can be composed, e.g., sentence(g) extracts the
sentence that contains the ground truth span.

Attribute extractors act on targets to extract
fundamental instance metadata (e.g., length(q)
returns the length of a question). These include (1)
basic extractors like length, (2) general purpose
linguistic features like token LEMMA, POS tags, and
entity (ENT) annotations, (3) standard prediction
performance metrics such as f1 or accuracy,
(4) between-target relations such as overlap(t1,
t2), and (5) domain-specific attributes (e.g.,
for MC or VQA) such as question type and
answer type (Wadhwa et al., 2018; Shen et al.,
2017). Table 1 provides an abridged listing of ex-
tractors, with example values from Figure 2.5

Finally, extractors are composable through
standard logical and numerical operators, serv-
ing as building blocks for more complex at-
tributes. For example, to create a boolean at-
tribute that checks if the ground truth span con-
tains an entity, the != operator is used, yielding
ENT(g)!="". A more complex example is count-
ing the number of times the ground truth entity ap-
pears in the passage context: count(token(c,
pattern=ENT(g))). Being reusable and com-
posable makes extractors much more expressive
than predefined attributes, and helps formulate
much richer hypotheses.

Errudite’s data grouping and rewriting (intro-
duced below) are both supported by these abstrac-
tions in the DSL. Precise hypotheses and queries
enable reproducible analyses that can be shared
between research groups, and automatically ap-
plied to new datasets and models.

3.2 Analyze All Relevant Instances

Random spot checking of errors can lead to con-
firmation bias and spurious conclusions (Rondeau

5A complete list is available in Appendix D.

https://allennlp.org/models

Function Name Definition DSL Code and resulting Output Values
sentence, token Extractors for desired spans from targets —

sentences or sub-phrases.
sentence(g)→For the return of...
token(c,pattern="PERSON")→[John,...]

exact match, f1,
is correct sent

Performance functions that measure differ-
ent levels of correctness.

f1(m) == 0, exact match(m) == 0
is correct sent(m) == False

length Length of the target. length(q) == 9, length(g) == 2
POS, ENT, LEMMA Tokens in the target that have certain patterns

of POS tags, named entity, etc.
ENT(g,get root=True) == "PERSON"

has pattern,
starts with,
ends with

To check whether the target contains cer-
tain pattern. pattern automatically detects
queries on POS tags and entity types.

starts with(q,pattern="who VBZ") == True
has pattern(g,pattern="PERSON") == True

overlap(t1,t2) The ratio of t1 tokens that also occur in t2. overlap(q, sentence(g)) == 0.25

Table 1: Definitions for a subset of attribute extractors, including sample values from the example in Figure 2.

and Hazen, 2018). To avoid these, we propose
P2: error prevalence should be assessed over
the entire dataset. Grouping queries created with
the DSL can scale the analysis to cover not only
errors that are otherwise missed by small sam-
ples, but also correct cases that are typically over-
looked. We now provide an example that illus-
trates the pitfalls of not following this principle,
and how including all of the relevant successes and
failures can lead to different insights than looking
at a small sample of mistakes.

Distractor Example. The distractor hypothesis
states that BiDAF is good at matching questions
to entity types (e.g., knowing when a PERSON is
expected as an answer), but is often distracted by
other spans with the same entity type (e.g., other
PERSONs), leading to wrong predictions as the in
Figure 2. This is a hypothesis independently raised
by four out of ten user study participants (§5).6

Consider the group is distracted, defined by
the following query:

ENT(g) != ""

and count(token(c, pattern=ENT(g))) >

count(token(g, pattern=ENT(g)))

and ENT(g) == ENT(p(m))

and f1(m) == 0

1
2
3
4
5

The query can be broken down into the fol-
lowing conditions: the ground truth is an entity
(line 1); there are potential distractors – i.e., there
are more tokens matching the ground truth en-
tity type (ENT(g)) in the whole context than in
the ground truth (lines 2-3); the prediction entity
type matches the ground truth one (line 4); and
the prediction is incorrect (line 5). Starting from
all instances, we can subset groups by applying
these conditions successively in order. Errudite
conveys useful statistics about the groups via vi-
sualizations, as in Figure 3.

6Participants tested the hypothesis for a specific entity
type (numbers). We present a more general case here.

Line 1

(a) (b) (c)

Lines 1-3

Lines 1-4

Lines 1-5

N/A

Figure 3: Saved groups with their (a) manually created
and semantically meaningful names, (b) query defini-
tions, and (3) sizes and error rates (orange indicates er-
rors, blue indicates correct predictions.)

If we only consider is distracted, without
also considering correct predictions, we might
conclude that the distractor hypothesis is correct:
the 192 instances in the group are all cases where
BiDAF predicts a wrong span that has the same
entity type as the ground truth, and the group ac-
counts for 5.7% of all BiDAF errors. However,
looking at the groups in succession reveals a dif-
ferent, and more complete story: BiDAF predicts
the exact correct span (exact match) 68% of the
time overall, which rises to 80% when the ground
truth is an entity. When other entities with the
same type are present in the passage, BiDAF is
still 79% accurate (i.e., it is not particularly worse
when there are potential distractors), and condi-
tioned on having matched the question to the right
entity type, it is quite accurate (88% exact match).
The user study participants who previously be-
lieved the distractor hypothesis either rejected or
revised it after creating similar groups.

3.3 Explicitly Test Error Hypotheses

In the example from the previous section, the pres-
ence of distractors in the context of a wrong pre-
diction does not necessarily indicate that distrac-
tors were the root cause of the mistake. To isolate
the essential cause of errors, we state P3: error
hypotheses should be explicitly tested. This re-

quires answers to counterfactual questions, such
as “If the predicted distractor was not there, would
the model predict correctly?”

Errudite allows manual editing of individual
examples (i.e., changing the input arbitrarily), a
common practice to verify if the suspected error
causes are really causes. While useful for quick
spot tests on single instances, manual editing does
not scale. For scalable counterfactual analysis, Er-
rudite uses rules to rewrite all relevant instances
within a group – similar to search and replace but
with the flexibility and power of the Errudite DSL.

A rewrite rule is specified using the syntax
rewrite(target,from→to), where target in-
dicates the part of the instance that should be
rewritten by replacing from with to. Both from
and to can include linguistic annotations, in ALL
CAPS. A rule to replace “Who” followed by a verb
with “What person” followed by the same verb
is written as rewrite(q,"who VERB"→"what
person VERB"). For convenience, Errudite also
includes default rules suggested in formative in-
terviews with MC experts, such as “remove all
sentences except the one that contains the ground
truth”, and “replace pronouns (he) with raw ref-
erences (John Smith) from a coreference model.”

Returning to our distractor example, we can
verify whether distractors are causing mistakes
by using a rewrite rule on the is distracted
group, replacing the predicted distractor with a
non-entity, placeholder token "#": rewrite(c,
STRING(p(m))→"#").

Prediction span remains fixed, 45 instances (23%)

How many of Jacksonville’s city residents are younger than 18?
... with 23.9% under the age of 18, 10.5% # from 18 to 24...

How many kilometers is Warsaw from the Carpathian Mountains?
Warsaw lies in east-central Poland about 300 km (190 #mi) from...

Prediction changes to correct, 91 instances (48%)

Prediction changes but remains incorrect, 56 instances (29%)

A
Q:
C:

Q:
C:

Q:
C:

Who created the 2005 theme for Doctor Who?
...John Debney # created a new arrangement of Ron Grainer’s ...
Murray Gold provided a new arrangement...

#

B

C

Figure 4: Updated prediction in response to the rewrite
rule rewrite(c,STRING(p(m))→"#").

The results from the rewrite rule are presented
in Figure 4. The model predicts the same span
(now containing the meaningless token "#") 23%
of the time (A), changes to the correct span 48%
(B) of the time and predicts a different wrong span
29% of the time (C). While case B indicates that
the distractor was indeed causing a misprediction,

C
ou

nt

D
ATE

PER
SO

N

O
R

G

C
AR

D
IN

AL

G
PE

N
O

R
P

M
O

N
EY

PER
C

EN
T

Q
U

AN
TITY

LO
C

other

0
20
40

0

500

C
ou

nt

Group:is_entity

Group:is_distracted

(a)

Ground truth entity types

(b)

Figure 5: The distribution of ENT(g) in group (a)
is entity and (b) is distracted. The histogram
shows the absolute frequency and incorrect/correct ra-
tio for each attribute value.

in case A it seems other factors are at play. In
case C, further analysis indicates that the predicted
span is almost always a different distractor (i.e.,
has the same entity type). Thus, while BiDAF is
fairly accurate when the distractors are present and
the entity type is matched (88%), when it is incor-
rect, it seems distractors are indeed confusing the
model. This kind of analysis is rarely seen (if at
all) in the literature; yet it helps users develop in-
sights not available through data grouping.

4 Interactive User Interface

We now walk through the interactive interface of
Errudite in more detail. The interface not only in-
tegrates the entire analysis process, but also pro-
vides additional exploration support such as vi-
sualizing data distributions, suggesting potential
queries, and presenting the grouping and rewriting
results. While not strictly necessary for the error
analysis principles previously outlined, it makes
their application much more straightforward by
helping users formulate and inspect their hypothe-
ses in real time, and at scale (P2).

Attribute distribution. To guide the explo-
ration, group creation and refinement, Errudite
supports defining complex attributes and inspect-
ing their distributions. An example in Figure 5
shows the histogram of ground truth entity types.
It displays the relative frequency of different en-
tity answers, as well as the proportion of incor-
rect predictions. The histograms are updated to
show conditional distributions when a user selects
a group. Figure 5(a) shows histograms for the
ground truth entity type in the group is entity:
when the answer is an entity, it is most often
a DATE, PERSON, ORG, or CARDINAL. Fig-
ure 5(b) displays the same histogram for the group

is distracted. We note that the frequency of
“distraction” mistakes for PERSON and CARDI-
NAL are higher, while lower for ORG, relative to
the base frequencies in Figure 5(a), an insight that
may warrant further investigation.

Programming-by-Demonstration. To make it
easier for users to formulate group queries and
rewrite rules, interactive selections can trigger
suggestions for related DSL statements. If a user
selects any text span in an instance in the cen-
tral browser, she is shown suggestions for related
queries. For example, selecting “John” in Figure 1
(or Figure 2) triggers the following suggestions:
starts with(p(m), pattern="NNP")

starts with(p(m), pattern="PERSON")

answer type(g) == answer type(p(m))

exact match(m) == 0

is correct sent(m) == False

overlap(q, sentence(p(m))) >

overlap(q, sentence(g))

1
2
3
4
5
6
7

These suggestions cover pattern searches (lines
1-2) ranked by their occurrence frequency and er-
ror rate, and target comparisons (lines 4-7), which
are particularly relevant when the prediction or
ground truth is selected. Selecting a different
text span yields different suggestions, heuristi-
cally ranked and filtered with the goal of surfacing
queries likely to be of interest.

Who What person created the 2005 theme for Doctor Who?

Figure 6: Rewrite rules inferred from an edit to an in-
dividual instance.

For rewrite rules, we use a technique inspired
by Ribeiro et al. (2018) to generalize manual ed-
its into suggested rewrite rules: including context,
POS tags and named entities, attempting to maxi-
mize coverage and relevance without redundancy.
Figure 6 shows an example in which various sug-
gestions are displayed after a user rewrites an in-
stance by changing “Who” to “What person.” Ap-
pendix B provides a more detailed description of
our searching and ranking criteria.

Layout. The UI (Figure 1) contains three main
components. The central component contains a fil-

ter panel (C) and an instance browser (D), which
help examine the results of data groupings or
rewrite rules for iterative refinement. The collapsi-
ble sidebar on the left contains a list of differ-
ent models being analyzed with summary statis-
tics (A) and customizable attribute histograms (B).
The one on the right contains a list of saved data
groups (E) and rewrite rules (F); these can be
loaded into the central component via mouse click.
All groups and rewrite rules can be saved and
loaded through the interface, so the analysis can
be easily shared and reproduced.

5 User Study

We conducted user studies to evaluate Errudite.
Though less common in NLP, this type of eval-
uation is widely used in fields like Human-
Computer Interaction for understanding how cer-
tain methods or systems impact the intended user
group (Nielsen, 1994; Olsen Jr, 2007) — precisely
our objective here. We recruited ten participants
with prior Machine Comprehension experience
(developed 1-6 models each, µ = 3.1, σ = 2.02)
for a 90-minute study: four NLP graduate students
and six researchers or QA engineers from industry.
Participants analyzed BiDAF on SQuAD v1.1.

User studies can take various forms, ranging
from experiments that quantitatively compare hu-
man performance, to interviews or observational
studies that qualitatively inspect users’ behaviors
and perspectives. We take a more qualitative ap-
proach, as we are primarily interested in how Erru-
dite shapes participants’ error analysis experience.
The study started with a background survey about
users’ prior experience in MC and error analysis.
After a walk-through tour of Errudite (described
in Appendix A.3), participants were asked to per-
form two tasks: Replication (§5.1), in which they
attempted to reproduce the error analysis from Seo
et al. (2016); and Exploration (§5.2), in which
they freely explored the model and reported their
findings. We collected multiple subjective mea-
sures from participants in the form of five-point
Likert scale ratings (Likert, 1932), with 5 being
strongly positive and 1 strongly negative. Partici-
pants were compensated at a rate of $25/hr.

5.1 Task 1: Replication

The goal of this task was two-fold: (1) to verify
if Errudite is flexible enough to support the cre-
ation of groups traditionally labeled by hand, and

0% 10% 20% 30% 40% 50%
Error Coverage

Boundary

Multi-sentenceG
ro

up

Figure 7: Percentage of errors covered by user-defined
groups: Boundary (µ = 30.9%, σ = 10.5%) and Multi-
sentence (µ = 13.5%, σ = 8.29%). The dispersion of
grey ticks shows that users come up with different def-
initions for groups described by Seo et al. (2016), even
when they think they replicated the group faithfully.

(2) to assess the reproducibility of current ad-hoc
error analysis methods. Seo et al. (2016) manu-
ally labeled 50 instances predicted incorrectly by
BiDAF into different error groups. We asked par-
ticipants to generalize these groups to the whole
validation set after reading the relevant section in
Seo et al. (2016). For learning purposes, we first
asked users to inspect two data groups that we
created using Errudite, and evaluate if they cap-
tured the same semantics as the original group: in-
correct preprocessing (Preprocess) and paraphrase
problems (Paraphrase). Users then created their
own groups to replicate two others from Seo et al.
(2016): imprecise answer boundaries (Boundary)
and multi-sentence issues (Multi-sentence).

Results. Participants rated the accuracy of the
replication of each group after seeing a variety
of examples, i.e., “how close the approximation
matches the paper definition.” For the groups
we wrote queries for, participants were confident
that Preprocess was accurate (µ = 4.3, σ = 0.64),
but ambivalent towards Paraphrase (µ = 3.1, σ =
0.54). Participants’ comments indicated the am-
bivalence did not come from Errudite: 6 partic-
ipants disagreed with the example given by Seo
et al. (2016), and participants who gave low rat-
ings found Paraphrase itself too fuzzy and con-
fusing to formalize. Despite being used widely as
an error group (Kundu and Ng, 2018; Chen et al.,
2016), participants had conflicting understandings
of Paraphrase, either as “the question and the
ground truth sentence are semantically similar but
with great lexical variations”, or “the predicted an-
swer is a paraphrased version of the ground truth.”

When replicating groups themselves, partici-
pants were able to express the queries they wanted.
Participants were not very confident in the accu-
racy of their produced Multi-sentence group (µ =
2.8, σ = 1.32), for reasons similar to Paraphrase:
they thought the group was under-specified in the

D1 D2

D1 D2

...commercial, scientific, and cultural growth...

... the polynomial time hierarchy collapses.

...believed that the polynomial hierarchy does...

...from Karakorum in Mongolia to Khanbaliq...

(a)
(b)
(c) D2D1

Figure 8: Example instances that fall into different
user-defined Boundary groups.

original analysis. More interestingly, users were
the most confident in the fidelity of an apparently
“easy” group Boundary (µ = 4.8, σ = 0.60), yet the
groups they produced were wildly different (Fig-
ure 7). While users were able to express what they
thought was meant by “imprecise error bound-
aries”, they applied different definitions.

For example, one user defined the group as (D1)
“the predicted span can be off by at most two to-
kens both on the left and right” (yielding 22.1%
of all BiDAF errors), while another defined it as
(D2) “there is no exact match but high overlap —
F1 is higher than 0.7” (yielding 13.8% of all er-
rors). Figure 8 shows samples that fit the two def-
initions or just one of them. Errudite makes the
different interpretations explicit. The author of D2
observed examples like Figure 8(c) in his samples,
but decided ultimately that what mattered was just
the returned short text, not the span index. In con-
trast, D1’s author carefully refined his initial query
precisely to rule out cases like Figure 8(c).

In summary, users were able to express their in-
tended groups well with Errudite, but they were
unable to consistently replicate the analysis of Seo
et al. (2016) — even when they thought they did —
due to the ambiguity inherent in manual grouping.

5.2 Task 2: Exploration
To assess the usefulness of Errudite, we let par-
ticipants freely analyze BiDAF. We asked them
to “think aloud” in real time, vocalizing their hy-
potheses, intriguing observations, objectives, and
expectations. At the end of the session, subjects
rated each of their discovered insights in terms of
(1) importance (very trivial to very helpful), (2)
confidence in insight correctness, and (3) relative
ease of discovery compared to existing methods.

Results. All participants found at least one in-
sight by building semantically meaningful groups
or rewrite rules. On average, subjects reported µ =
2.1 findings (σ = 0.94). Some insights confirmed
prior hypotheses about BiDAF more formally, in-
creasing users’ confidence. For example, one user
created a group to verify that mistakes frequently

1 2 3 4 5
Rate

Attribute

Suggestion

Rewrite

QueryU
se

fu
ln

es
s

Figure 9: Usefulness of function modules in the tool.

occur when there is significant overlap between
the question and a sentence that does not contain
the ground truth. Indeed, that group accounts for
about 18% of BiDAF errors. Other insights ex-
tended previous knowledge, such as explorations
by two users who examined low performance on
“why” questions (Appendix A.4). They also re-
jected some prior hypotheses after using Errudite,
such as the distractor case in §3. Participants rated
their findings to be important (µ = 3.7, σ = 1.12),
were confident that their findings were valid (µ =
4.0, σ = 1.05), and consistently agreed that Er-
rudite made finding insights easier (µ = 4.9, σ =
0.35). Participants agreed that they learned more
about the model (µ = 3.9, σ= 0.94), and valued
Errudite’s support for assessing their hypotheses.

5.3 Usability and User Feedback

When rating the usefulness of different compo-
nents of the tool (Figure 9), users rated the DSL
(µ = 4.8, σ = 0.40) and the attribute distribution
(µ = 4.3, σ = 0.78) as very useful, and rated query
suggestions (µ= 3.6, σ = 0.91) and rewrite rules (µ
= 3.6, σ = 1.11) as potentially useful. We hypoth-
esize that rewrite rules pose a learning curve that
makes them difficult to evaluate in a single ses-
sion. This kind of counterfactual analysis is not
common and a few participants were concerned
about possible unintended side effects of edits.

We also asked participants to describe their im-
pressions with free-form comments, which were
very positive for all of them – all thought Erru-
dite enhanced their error analysis experience. In
particular, four users stated that they felt it sys-
tematically scaled up the analysis, making it more
precise and thus inspiring more confidence. Five
users noted how much faster exploration became
with Errudite, and how having a good set of build-
ing blocks and visualizations let them bypass the
large coding overhead needed to otherwise test a
single hypothesis about a model.

6 Related Work

6.1 Data Grouping
Non-manual data grouping typically follows one
of two extremes. Most of the literature relies on
data groups that are very coarse and easy to pro-
gram (e.g., based on question length and answer
types (Kafle and Kanan, 2017; Agrawal et al.,
2016; Shen et al., 2017)). While useful and ac-
cessible, they do not allow more semantically
meaningful observations (like distractors or para-
phrases). In contrast, some define groups that are
highly specific to a particular dataset or model,
such as hand-crafting factors to quantify MC in-
stance difficulties (Rondeau and Hazen, 2018).
While often insightful, these suffer from poten-
tial pitfalls similar to labeling individual instances:
they are laborious, often subjective, and hard to
reproduce. In other words, just as in manual error
labeling mentioned in §1, typical automatic group-
ing also struggles with the trade-off between be-
ing reproducible/scalable, and being in-depth and
meaningful. In contrast, Errudite addresses the
challenge with an expressive domain-specific lan-
guage, which helps users build filters that can slice
the entire dataset, and thereby build scalable and
semantically meaningful groups.

Chung et al. (2018) made a similar attempt to
balance the trade-off in Slice Finder, a framework
that uses statistical techniques to identify large and
interpretable slices that models perform poorly on.
However, their purely automated data slicing does
not allow users to customize groups based on their
own hypotheses. Furthermore, Slice Finder only
uses predefined attributes. While this is reason-
able in the context of structured data classifier that
they tested (with features explicitly defined), it is
not flexible enough for unstructured text in NLP.
Other interactive error analysis tools tend to face
similar customization issues. QADiver (Lee et al.,
2018) enriches question attributes in SQuAD 2.0
by including factors like word frequencies and
question-context word match ratios, but users can-
not query or create groups based on these at-
tributes. QSAnglyzer (Chen and Kim, 2017)
aims at category-oriented analysis by pre-defining
seven groups for QA models, but there is limited
support for group customization. ActiVis (Kahng
et al., 2018) allows for flexible data attribute and
group definitions, but only supports group creation
prior to the interactive process. Rarely does a user
to know which group they want to inspect before-

hand, and thus it is to be expected that users would
revert to coarse and easy-to-program groups. Erru-
dite emphasizes customization: it allows users to
define extractors for rich instance attributes, and
helps them adjust their groups in real-time with
quick trial and error, visualizations, and sugges-
tions based on programming-by-demonstration.

6.2 Counterfactual Analysis

Counterfactual attacks to models have taken var-
ious forms, e.g., by adding distracting sentences
to the context in MC (Jia and Liang, 2017), or
feeding partial questions or wrong images into
models (Agrawal et al., 2016; Mudrakarta et al.,
2018; Feng et al., 2018). Slightly closer to our
work is SEARs (Ribeiro et al., 2018) (also in-
corporated into QADiver), which also takes the
form of rewrite rules: it generates semantic-
preserving rules that cause models to change pre-
dictions. However, these focus on robustness,
i.e., counterfactual perturbations are mainly for
the purpose of detecting over-stability or over-
sensitivity. In contrast, our counterfactual analy-
sis is for the purpose of understanding why mod-
els fail in certain groups. Furthermore, our DSL
allows for more complex counterfactual rules and
for applying rules only to certain groups, such as
“delete the predicted distractor for instances in the
is distracted group.” As far as we know, such
analysis is novel, and a promising direction for
more in-depth error analysis.

7 Conclusion and Future Work

In this paper, we characterize deficiencies with
current error analysis methods used in NLP: they
are laborious and subjective, which can lead to
high variance and low reproducibility. Moreover,
by focusing on error cases independent of situa-
tions where the model is correct, they can yield
biased results. Finally, since it is difficult to per-
form counterfactual analysis, the root cause of er-
rors can easily be overlooked.

In response, we identify three principles re-
quired for successful error analysis, and present
an interactive tool called Errudite to enable their
application: (1) building precise instances groups
with composable building blocks in a domain-
specific language; (2) scaling the analysis to cover
all the relevant successes and failures by automat-
ically building large groups with filtering queries,
and providing visual summaries for them; and (3)

testing error hypotheses using counterfactual anal-
ysis by rewriting the instances with rules. Data
groups and rewrite rules can be easily saved and
shared for replication or for analysis of different
models with the same groups and rules.

We conduct a detailed user study with NLP ex-
perts, confirming that Errudite makes hypothesis
definitions both concrete and apparent, reduces
sampling bias, and helps researchers verify the
true causes of errors. We find that Errudite signif-
icantly lowers the barrier for insightful error anal-
ysis, hopefully leading to a more in-depth under-
standing of current models, and to safeguard de-
ployments and improve the state of the art.

While our primary experiments are on Machine
Comprehension, the DSL primitives in Errudite
are general enough to make extensions to other
tasks and domains straightforward. For example,
we have extended Errudite to Visual Question An-
swering with only minor adjustments to the per-
formance metrics and the instance browser (to in-
clude images). We share case studies in Appen-
dices A.1 and A.2, together with further analysis
on SQuAD (Appendix A.4). Similar adjustments
could be done to extend Errudite to other tasks
such as Machine Translation, Natural Language
Inference, and text classification, along with cus-
tomization of domain-specific attributes.

In the future, we hope to design and evaluate
more sophisticated query and attribute suggestions
to guide exploration by less expert users, as well as
social features that facilitate collaboration within
an organization to promote sharing, review, reuse,
and extension of error analyses.

Acknowledgements

The project was supported by the Moore Founda-
tion Data-Driven Discovery Investigator program,
with additional support from ONR grant N00014-
18-1-2193, the WRF/Cable Professorship and the
Allen Institute for Artifical Intelligence. We grate-
fully thank Gagan Bansal, Quanze Chen, Matthew
Conlen, Jane Hoffswell, Eric Horvitz, Ece Ka-
mar, Younghoon Kim, Benjamin Lee, Halden Lin,
Yang Liu, Besmira Nushi, Zening Qu, and Akshat
Shrivastava for their helpful comments. We also
appreciate the valuable input from our user study
participants, and the constructive comments from
the anonymous reviewers.

References
Aishwarya Agrawal, Dhruv Batra, and Devi Parikh.

2016. Analyzing the behavior of visual question an-
swering models. arXiv preprint arXiv:1606.07356.

Betty van Aken, Julian Risch, Ralf Krestel, and
Alexander Löser. 2018. Challenges for toxic com-
ment classification: An in-depth error analysis.
arXiv preprint arXiv:1809.07572.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE international
conference on computer vision, pages 2425–2433.

Joseph Chee Chang, Saleema Amershi, and Ece Ka-
mar. 2017. Revolt: Collaborative crowdsourcing for
labeling machine learning datasets. In Proceedings
of the 2017 CHI Conference on Human Factors in
Computing Systems, pages 2334–2346. ACM.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. arXiv
preprint arXiv:1606.02858.

Nan-Chen Chen and Been Kim. 2017. Qsanglyzer: Vi-
sual analytics for prismatic analysis of question an-
swering system evaluations. In Proceedings of the
IEEE Conference on Visual Analytics Science and
Technology.

Yeounoh Chung, Tim Kraska, Neoklis Polyzotis,
Ki Hyun Tae, and Steven Euijong Whang. 2018.
Automated data slicing for model validation:a big
data - ai integration approach.

Christopher Clark and Matt Gardner. 2017. Simple
and effective multi-paragraph reading comprehen-
sion. arXiv preprint arXiv:1710.10723.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1608–
1618.

Shi Feng, Eric Wallace, Alvin Grissom II, Pedro
Rodriguez, Mohit Iyyer, and Jordan Boyd-Graber.
2018. Pathologies of neural models make interpreta-
tion difficult. In Empirical Methods in Natural Lan-
guage Processing.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Sumit Gulwani and Prateek Jain. 2017. Programming
by examples: Pl meets ml. In Asian Symposium on
Programming Languages and Systems, pages 3–20.
Springer.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 473–483.

Minghao Hu, Yuxing Peng, Zhen Huang, Nan Yang,
Ming Zhou, et al. 2018. Read+ verify: Machine
reading comprehension with unanswerable ques-
tions. arXiv preprint arXiv:1808.05759.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Kushal Kafle and Christopher Kanan. 2017. An anal-
ysis of visual question answering algorithms. In
Computer Vision (ICCV), 2017 IEEE International
Conference on, pages 1983–1991. IEEE.

Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and
Duen Horng Polo Chau. 2018. Activis: Visual
exploration of industry-scale deep neural network
models. IEEE transactions on visualization and
computer graphics, 24(1):88–97.

Sean Kandel, Andreas Paepcke, Joseph Hellerstein,
and Jeffrey Heer. 2011. Wrangler: Interactive vi-
sual specification of data transformation scripts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 3363–3372.
ACM.

Vahid Kazemi and Ali Elqursh. 2017. Show, ask, at-
tend, and answer: A strong baseline for visual ques-
tion answering. arXiv preprint arXiv:1704.03162.

Souvik Kundu and Hwee Tou Ng. 2018. A question-
focused multi-factor attention network for question
answering. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Tessa A. Lau, Steven A. Wolfman, Pedro M. Domin-
gos, and Daniel S. Weld. 2003. Programming by
demonstration using version space algebra. Ma-
chine Learning, 53:111–156.

Gyeongbok Lee, Sungdong Kim, and Seung-won
Hwang. 2018. Qadiver: Interactive frame-
work for diagnosing qa models. arXiv preprint
arXiv:1812.00161.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1–7. Association for Computational Linguis-
tics.

Rensis Likert. 1932. A technique for the measurement
of attitudes. Archives of psychology.

http://arxiv.org/abs/1807.06068
http://arxiv.org/abs/1807.06068
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640

Xiaodong Liu, Yelong Shen, Kevin Duh, and Jian-
feng Gao. 2017. Stochastic answer networks for
machine reading comprehension. arXiv preprint
arXiv:1712.03556.

Sewon Min, Minjoon Seo, and Hannaneh Hajishirzi.
2017. Question answering through transfer learn-
ing from large fine-grained supervision data. arXiv
preprint arXiv:1702.02171.

Sewon Min, Victor Zhong, Richard Socher, and Caim-
ing Xiong. 2018. Efficient and robust question
answering from minimal context over documents.
arXiv preprint arXiv:1805.08092.

Pramod Kaushik Mudrakarta, Ankur Taly, Mukund
Sundararajan, and Kedar Dhamdhere. 2018. Did
the model understand the question? arXiv preprint
arXiv:1805.05492.

Jakob Nielsen. 1994. Usability engineering. Elsevier.

Dan R Olsen Jr. 2007. Evaluating user interface sys-
tems research. In Proceedings of the 20th annual
ACM symposium on User interface software and
technology, pages 251–258. ACM.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging nlp models. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 856–865.

Marc-Antoine Rondeau and Timothy J Hazen. 2018.
Systematic error analysis of the stanford question
answering dataset. In Proceedings of the Workshop
on Machine Reading for Question Answering, pages
12–20.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Yelong Shen, Xiaodong Liu, Kevin Duh, and Jianfeng
Gao. 2017. An empirical analysis of multiple-turn
reasoning strategies in reading comprehension tasks.
arXiv preprint arXiv:1711.03230.

Soumya Wadhwa, Khyathi Raghavi Chandu, and Eric
Nyberg. 2018. Comparative analysis of neural qa
models on squad. In Proceedings of the Workshop
on Machine Reading for Question Answering.

Yizhong Wang, Kai Liu, Jing Liu, Wei He, Yajuan
Lyu, Hua Wu, Sujian Li, and Haifeng Wang. 2018.
Multi-passage machine reading comprehension with
cross-passage answer verification. arXiv preprint
arXiv:1805.02220.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Making neural qa as simple as possible but
not simpler. arXiv preprint arXiv:1703.04816.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett.
2018. Learning to count objects in natural im-
ages for visual question answering. arXiv preprint
arXiv:1802.05766.

A Additional Use Cases

We use case studies in Visual Question Answering
and Machine Comprehension to further demon-
strate the usefulness of Errudite. A video demo is
available at https://youtu.be/Dil5i0AYyu8.

A.1 VQA: Breaking down “How many”

(a)

(b)

A

Figure 10: Two “how many” examples: VQACount-
ing improves on SAAA for instance (a), but predicts
an even higher count in (b). Highlighting “how many
brownish”, we create groups based on the suggested
query A.

We demonstrate Errudite’s power on comparing
multiple models in the context of Visual Question
Answering (VQA). We analyze SAAA (Kazemi
and Elqursh, 2017) and VQACounting (Zhang
et al., 2018) concurrently on the validation set
of VQA v1 (Antol et al., 2015), which con-
tains 21,512 instances. VQACounting is built
on top of SAAA, with increased performance on
counting questions. Querying “how many” ques-
tions, we notice two interesting cases in Fig-
ure 10: VQACounting correctly predicts the “how
many people” question in (a), but is worse than
SAAA (also wrong) in (b). We suspect the to-
ken following “how many” can make a differ-
ence. Highlighting “how many brownish”, we fol-
low the first returned suggestion (Figure 10A) to
build a how many ADJ group (starts with(q,
pattern="how many ADJ")), and similarly, a
how many noun group.

Per-group comparison shows VQACounting
improves SAAA more on "how many NOUN"
than "how many ADJ" (Figure 11) questions: the
former has an increase of accuracy from 38% to
49%, whereas the latter only shows 3% improve-
ment. However, note the group size difference: the
NOUN group is 14 times larger than ADJ. In fact,

Figure 11: VQACounting improves much more on
how many NOUN, compared to how many ADJ, though
many fewer instances follow the latter pattern.

AD
J

AD
P

AD
V

N
O

U
N

N
U

M

PR
O

PN

PU
N

C
T

SPAC
E

VER
B

0
5,000

10,000

Figure 12: Extracting the POS tag for the token im-
mediately after “how many”, we notice most instances
follow a "how many NOUN" pattern.

extracting the POS tags following “how many”
into an attribute, we see "NOUN" drastically stands
out, suggesting a very imbalanced data distribu-
tion (Figure 12).

A.2 VQA: Ambiguous Questions

With groups and attributes independent of mod-
els or predictions, Errudite can help analyze the
consistencies and ambiguities of the datasets. In
this case, we use Errudite to group all the “am-
biguous VQA questions”, or questions where the
answers exhibit high human annotator disagree-
ment. If humans cannot agree on the answer, it is
to be expected that machine learning models will
not be accurate. In the annotations for the VQA
v1 dataset, each question collects up to 10 human
answers, while in evaluation an answer is consid-
ered fully accurate if it matches the answer of at
least three humans. We count the unique ground
truth annotations for each instance (count(g)),
which results in the distribution shown in Fig-
ure 13: instances with more ground truth labels
are more poorly predicted. Querying for instances
with count(g) > 5, we find many instances like
the ones in Figure 14, covering 29.9% of all the
errors. This means the dataset is far from “clean”
and that 30% of the model’s mistakes should prob-
ably not be considered mistakes.

A.3 MC: Incorrect Pre-processing

We used the following case as the tutorial demo
in our user study (§5). When sorting instances by
their F1 score, instances like those in Figure 15(a)
appear. Due to incorrect tokenization, BiDAF

https://youtu.be/Dil5i0AYyu8

1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

0

20,000

40,000

1 2 3 4 5 6 7 8 9 10
(a)

(b)

Figure 13: The VQACounting model becomes worse
as the count of distinct ground truth annotations (i.e.,
human disagreement) grows: (a) shows instance counts
in each ground truth count bin; (b) with the counts nor-
malized, emphasizing the incorrect proportions.

Figure 14: An instance with 8 distinct ground truth an-
notations, and neglible inter-annotator agreement.

treats “1641-1679” as one token, and its mismatch
with the ground truth “1679” evaluation (which is
token-wise) will result in F1 = 0. We simulate the
above tokenization issue with a query that states
(a) even though at the character level the ground
truth answer is a substring of the prediction, (b)
the two don’t have token level overlap:

STRING(g) in STRING(p(m)) and f1(m) == 0 1

Among the 26 instances returned (0.8% of all
incorrect instances), we find multiple instances
like the ones in Figure 15(a), and also unexpected
cases like Figure 15(b).

It is unclear from these examples if tokeniza-
tion is the only issue. To further assess, we define
a rewrite rule that separates dashes from nearby
words: rewrite(sentence(g), "-"→ " - ").

The rewritten instances are then queryable
using a wrapper function: apply(func,

rewrite="rule name") runs the query function
func on the new instances generated by rule
"rule name". We use the queries in Figure 16 to
further divide the 13 instances rewritten (the rule
cannot edit additional cases like in Figure 15(b)):

John Mayow died in what year?
English chemist John Mayow (1641-1679) ...

Q:
C: A

In what year did Good Company Player open?
...also opened nearby in 1987,[citation needed]

Q:
C: B

Figure 15: Two instances suspected to be wrong due to
tokenization.

4 were predicted correctly after the rewrite, 5
remained the same (with spaces added), and
4 returned a different incorrect span after the
rewrite. This counterfactual analysis confirms that
these errors are not solely due to preprocessing
errors.

apply(exact_match(m),"add_space") == 1

When did the Jin dynasty begin?
...newly established Jin dynasty (1919-1980) (1115 - 1234)...

apply(length(p(m)),"add_space") > 1

apply(exact_match(m),"add_space") == 0
 and apply(length(p(m)),"add_space") == 1

A
Q:
C:

Q:
C:

Q:
C:

B

C

When was John Gallagher born?
...John Gallagher (1919-1980) (1919 - 1980)...

When did the Jin dynasty end?
...newly established Jin dynasty (1115-1234) (1115 - 1234)...

Figure 16: Three types of changed predictions on in-
stances generated with add space.

A.4 MC: “Why” Questions

question_type(q) == "why"

question_type(q) == "what"(b)

(a)

1 3 5 7 9 11 13 20 50
0

2,000

1 3 5 7 9 11 13 20 50
0

20

Figure 17: The prediction length length(p(m)) is
much longer for (a) only “why” questions than for (b)
only “what” questions.

We merge two cases from our user study in §5 to
demonstrate how participants P1 and P2 can start
with similar attributes and then diverge and dis-
cover complementary insights.

Both participants started by grouping “why”
questions, as they observed them to have much
lower performance than other primary question
types. P1 realized these questions had longer
predictions, and the ground truths were usually a

Q: Why is Priestley usually given credit for
being first to discover oxygen?

...Because he published his findings first, Prestley is
usually given priority in the discover.

Figure 18: A “why” question where the model ignored
the apparent hint “because.”

small substring of the prediction (with multiple
unnecessary tokens on both ends). Meanwhile,
“what” questions have relatively shorter predic-
tions. He hypothesized that reframing “why” to
“what” questions could result in reasonable pre-
diction lengths, and created a rule rewrite(q,
"Why VERB"→"What is the reason that")
to confirm it. Out of 151 rewritten instances,
46 had shorter predictions, and 6 had longer
ones; the remaining instances had unchanged
predictions. Out of the 19 instances where
F1 improved after the rewrite (apply(f1(m),
rewrite="why to what") > f1(m)), 13 had
the prediction shortened to approximately the
correct ground truth answer.

P2 found the example in Figure 18 and chose
a different angle. He was surprised to see the
incorrect prediction, when the ground truth con-
tained the word “because”, which should make the
prediction easier for BiDAF. Grouping all “why”
questions with a "because" in their context:

question type(q) == "why"

and has pattern(c, pattern="because")

1
2

he found most instances still had a predic-
tion following "because", and that removing
"because" from the context made predictions
worse. He confirmed that “because” was indeed
an essential signal. The prediction in Figure 18 re-
mained the same, and P2 therefore hypothesized
that aggressive pattern matching affected this in-
stance, as all the words surrounding the predic-
tion “priority” were in the question. He was
also surprised that there were only 40 instances in
the because group, and suggested more labeling
might easily help bump up the performance.

The two participants explored complementary
angles on “why” question, suggesting the value of
collaborative sharing among Errudite users.

B Programming-by-Demonstration

To help users express their intent, Errudite sup-
ports programming by demonstration (PBD) (Gul-
wani and Jain, 2017), a well-recognized technique

Q: Who created the 2005 theme for Doctor Who?
...John Debney created a new arrangement of Ron
Grainer’s original theme for Doctor Who in 1996. For the
return of the series in 2005, Murray Gold provided a new
arrangement... featured sampled from the 1963 original.

Figure 19: The illustrating example we used in the pa-
per; we repeat it here to explain our programming-by-
demonstration heuristics. The scenario here assumes
“John” is selected by a user.

for synthesizing targeted programs from specific
examples. It has been widely applied to tasks like
data wrangling (Kandel et al., 2011) and text edit-
ing (Lau et al., 2003). Here, we explain the heuris-
tics used for ranking query suggestions and ex-
tracting rewrite rules.

B.1 Query Ranking

Pattern Re Cd Su

"NNP" 27.1% 35.7% 1.90
"PERSON" 22.1% 10.3% 0.56
"john" 20.1% 0.4% 0.40

"how many ADJ" 62.9% 0.6% 1.27
"ADV ADJ ADJ" 62.5% 0.7% 1.26

Table 2: Patterns and their associated usefulness in Fig-
ure 19 (top 3 lines) and Figure 10 (bottom 2 lines)

.
As users interact with instances, Errudite de-

tects and returns potential queries that can as-
sist generalization from a single observation to
a larger set. As running examples, we explain
our query ranking methods assuming “John” is se-
lected in Figure 19, and “How many brownish” is
selected in Figure 10. There are three broad types
of suggestions with different granularity. To en-
sure diversity, our suggestions cover at least one
query from each type, and the inter-type sugges-
tion ranking will always be as the following:

Span-related suggestions closely relate to the
specific token(s) selected (“John” in Figure 19).
The most typical span-related suggestions are pat-
tern searches. We generate a list of possible lin-
guistic patterns from the cross-product of raw to-
ken text with POS tags (coarse for multiple tokens,
and fine-grained for single tokens), as well as the
entity type (if any). The resulting possible pat-
terns for “John” are "John", "NNP", "PERSON".
Similarly, in Figure 10, “how many brownish”
results in "how many brownish", "how many
ADJ", "ADV ADJ ADJ", etc. The functional pred-
icate used differs if the selected span lies at the be-
ginning, middle, or end of a target (start with,
has pattern, and end with).

Target-related suggestions are based on the

target under inspection. For instance, we
return question type when a user interacts
with the question (q) in Figure 10. A
prediction (p) as in Figure 19 will instead
trigger different levels of comparisons with
the ground truth, including accuracy checks
(exact match and is correct sent), answer
type comparisons (ENT(p) == ENT(q)), answer
offsets (answer offset delta) and sentence
level comparisons (overlap):
answer type(g) == answer type(p(m))

exact match(m) == 0

is correct sent(m) == False

overlap(q, sentence(p(m))) >

overlap(q, sentence(g))

1
2
3
4
5

Instance-level suggestions are conventional at-
tributes that domain experts often find useful. For
example, performance, question type, and answer
type are considered the most important “instance”
suggestions if they are not triggered by the target-
related suggestions. In addition, lengths of inputs
also belong to this suggestion type.

To perform intra-group ranking, we precompute
the resulting groups for each candidate suggestion,
and rank their in-group error rate Re and dataset
coverage Cd, maximizing a usefulness score:

Su =
Re

|Cd − 50%|
(1)

Intuitively, Re measures group difficulty. We
would like to prioritize patterns that will return
subsets that are not well-handled on average, re-
sulting in high in-group error rate. The |Cd−50%|
term, on the other hand, ensures reasonable cover-
age. We prioritize groups that lean towards 50%
coverage of the entire validation set, so to penalize
patterns that cover too few instances to be signif-
icant, or those covering too many instances that
essentially return the entire dataset. Taking the
ranking of span-related suggestions as an example,
candidate patterns for Figure 19 and Figure 10,
and their scores Su, are shown in Table 2.

B.2 Rewrite Rule Extraction
When a source x is edited to x′, we propose a set
of rules R = {r1, ..., rm} in the same manner as
Ribeiro et al. (2018): we test the exact matching,
and select the minimal contiguous sequence that
turns x to x′, with their immediate contexts and
linguistic features. While Ribeiro et al. (2018) use
only text and POS tags, we further extend to in-
clude entity types.

Who What person created the 2005 theme for Doctor Who?

Figure 20: Rewrite rules inferred from an edit on an
individual instance.

Then, we apply every rule in the candidate
set onto a random subset of instances S =
{s1, ..., sn}, n = 100. Similar to Ribeiro et al.
(2018), we prioritize rules that have (1) high
coverage and (2) low redundancy, while loos-
ening their constraint on semantic equivalence:
rules resulting in different semantics are still valid
in our error cause testing context. In addition,
we heuristically score the linguistic features used
based on their specificity: we consider raw text
the most specific, POS tag the least, and penal-
ize rules that are too general and abstract (as
they are likely to result in unexpected changes).
For example, in addition to the rules reported in
Figure 20, an additional rule found in the can-
didate set from “Who” to “What person” was
"NOUN"→"What person". By editing random
NOUNs, this rule will have high coverage, but
our specificity score weights it down enough that
"Who"→"What person" is ranked more highly.
We then report the five highest-ranked candidate
rules to the user.

C Survey: Error Analysis Sample Sizes

Table 3 lists the 10 papers we surveyed to inspect
the scale of the status quo error analysis practice.
Papers are randomly selected from top tier confer-
ences, and either develop novel MC models (our
primary test case), or focus on error analysis.

Paper Sample size
(Seo et al., 2016) 50

(Kundu and Ng, 2018) 50
(Hu et al., 2018) 50
(Min et al., 2018) 50

(Weissenborn et al., 2017) 55
(Chen et al., 2016) 100
(Min et al., 2017) 100

(Wadhwa et al., 2018) 100
(Fader et al., 2013) 100

(van Aken et al., 2018) 200
Average 85.5

Table 3: Surveyed papers and their error sample sizes.

D DSL Documentation

Here we list the functions defined in our domain-specific language for MC and VQA.

Converters and Targets
Get targets: These targets contain text spans post-processed with state-of-the-art POS taggers, lemma-
tizers and NER models, along with metadata such as example id, or (in the answer case) the model that
generated it. When additional metadata is not used, Target can be treated just as Span in a function, or
a piece of text with its linguistic features.

1. question|context|groundtruth→Target: Automatically query the target object (Question
and Answer in VQA and MC, as well as Context in MC).

2. prediction(model:str)→Target: Get the prediction object of a given model.

Converters that extract sub-spans, short phrases, or sentences from targets.
1. token(span:Span,idxes:int|int[],pattern:str)→Token|Token[]: Get a list of tokens

from the target based on idxes (sub-list) and pattern (in the form of, for example, "(what,
which) NOUN)". pattern automatically detects queries on POS tags and entity types.

2. sentence(target:Target,shift:int|int[])→Span: [MC only] Get the sentence that con-
tains a given answer. Shift indicates if neighboring sentences should be included. If shift==0,
then the actual sentence is returned; if shift==[-2,-1,1,2], then the four sentences surrounding
the answer sentence are returned.

General Computation
1. apply(func:Callable,rewrite:str)→any: Applies query functions to instances rewritten by

the named rule rewrite.
2. abs(num:float|int)→float|int: Returns the absolute value.
3. truncate(num:float|int, min value:float|int, max value::float|int)→float|int:

Clamps a given number to a given domain.
4. is digit(input:any)→bool: Determines if an input is a number, or – in the case of a string

input – if it can be parsed into a number.
5. digitize(input:any)→float|int: Parses an input into a number if is digit(input) ==
True; Otherwise returns None.

6. length(span:Span)→int: The length of a given span, in tokens.
7. [has any|has all](container:Span,contained:Span)→int: Determines whether one list
container contains any (or all) of the members present in another lists.

8. count(vars:list)→int: Count the number of members in the input list.
9. freq(target:Target,target type:str)→str: Returns the frequency of a token occurring in

the training data, given a target type ("question" or "answer" in MC; However, freq can be on
other targets given other tasks).

Linguistic Attributes
1. [LEMMA|POS|TAG|ENT](span:Span,get root:bool,pattern:str)→str|str[]: Return

the specified linguistic feature of a span with one more more tokens. If pattern is specified (the
same as in token), gets the sub-list of spans in the span list. If get root==True, gets the single
linguistic feature of the “primary” token, or the one within the ground truth span that is highest in
the dependency parsing tree.

2. STRING(span:Span)→str: Get the raw string from a given span.
3. [has pattern|starts with|ends with](span:Span,pattern:str)→bool: To determine

whether the targeted span contains a certain pattern.

Performance Metrics
1. [f1|exact match|precision|recall|accuracy|confidence](model:str)→float: Get

the specified performance metric for one instance, given the selected model. Confidence is for

both QA and VQA, which is usually the model prediction probability. Accuracy is for VQA, and
the others are for QA.

2. is correct sent(model:str)→bool: [MC only] Determine if the given model locates the sen-
tence with the ground truth, regardless of span-level correctness.

Between-target Relations
1. overlap(span1:Span,span2:Span,pattern:str)→float: A directional overlapping: re-

turns the ratio of tokens in span1 that also occur in target2. If pattern is provided, it is used
to filter to matching tokens in span1 and target2. For example, if pattern=="NOUN", then the
overlap will only be on tokens with a NOUN tag.

Domain-Specific Attributes
1. question type(question:Target)→str: Returns the question type: either the WH-word or

the first word in a sentence.
2. answer type(answer:Answer)→str: Returns the answer type, computed based on TREC (Li

and Roth, 2002) and the named entities of the answer. Returns one of the following: ABBR, DESC,
ENTY, HUM, LOC, NUM.

3. answer offset delta(prediction:Answer, direction:str)→int: [MC only] Compute
the offset between prediction and ground truth in the left or right direction. Returns the position
difference.

4. answer offset span(prediction:Answer, direction:str)→Span: [MC only] Compute
the offset between prediction and ground truth in the left or right direction. Returns the actual
span(s).

5. dep distance(answer:Answer,pattern:str)→float: [MC only] Dependency distance be-
tween a key question token and the answer token. The key is computed by finding tokens that do
not occur frequently in the context and is not far from the given answer. Pattern fixes the keyword
linguistic feature.

