Chapter 3: Concentration lIne.
Obs:
$\stackrel{L}{L}$ Suppose we have x_{1}, \ldots, x_{n} are ind. RVs.
\rightarrow ln many cases, it will be useful to find bounds on some franc. of x_{1}, \ldots, x_{n}.
That is, we want to bound
(1) $P\left\{f\left(x_{1}, \ldots, x_{n}\right) \geqslant t\right\}$
for some $t>0$.
L For the first part of this unit, well fours on fume. f of the form

$$
\begin{aligned}
& f:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \longmapsto \frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& f:\left(x_{1}, \ldots, x_{n}\right) \longmapsto \left\lvert\, \frac{1}{n} \sum_{i=1}^{n} x_{i}-\mathbb{E}\left[\left.\frac{1}{n}\left[x_{i}\right] \right\rvert\,\right.\right.
\end{aligned}
$$

\rightarrow We could consider (1) under asymp.
ing: if x_{1}, \ldots, x_{n} ind and $\mu=\mathbb{E}[x]$ and $\theta=\sqrt{\operatorname{Var}(x)}$, then the CLT says that

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} P\left\{\bar{X}_{n} \geqslant \mu+\frac{\theta t}{\sqrt{n}}\right\} \xrightarrow{n \rightarrow \infty} 1-\Phi(t)
$$

where Φ is the CDF of a standard normal random variable.

But: We usually finite sample n, so asymp. guarantees won't provide an exact bound on (2) above.
Question: What can we say in finite samples? For example, what can we say about

$$
P\left\{\bar{x}_{n} \geqslant \mu+t\right\}
$$

for (possibly large) $t>0$?
During this unit, we'll obtain bounds on (1) using the following 3 approaches.
(1) Bounds on moments: Markov Chebyoher
(2) Bounds on moment generating:

Chemotf function (MGF)

Hoeffling sub-Gaussian sub-Exponantial
Bemstion line
(3) Martingale arguments $\left\{\begin{array}{l}\text { Azuna-tioeff ding } \\ \text { Bounded difference }\end{array}\right.$ Bounded difference

Bounds on Moments
Tho (Markov)
If $x \geqslant 0, \mathbb{E}[x]<\infty$, and $t>0$, then

$$
P\{x \geqslant t\} \leqslant \frac{\mathbb{E}[x]}{t}
$$

Pf: For any $t>0$, we have the following

$$
\begin{aligned}
P\{x \geqslant t\} & =\int_{t}^{\infty} d P(x) \\
& \leqslant \int_{t}^{\infty} \frac{x}{t} d P(x) \\
& \leqslant \int_{0}^{\infty} \frac{x}{t} d P(x) \\
& =\frac{\mathbb{E}[x]}{t}
\end{aligned}
$$

$$
11 \leqslant \frac{x}{E}
$$

$$
\text { when } x \geq t
$$

Note: All of concentration inequalities use Markor's inequality as a building block!

Tho Suppose $\mathbb{E}(X \mid<\infty, \quad h=[0, \infty) \leftrightarrow[0, \infty)$ is a non-decreasing fine. for which $h(t)>0$ for all $t>0$, and $\mathbb{E}[h(|x-\mathbb{E}[x]|)]<\infty$, For all $t>0$,

$$
P\{|x-\mathbb{E}[x]| \geqslant t\} \leqslant \frac{\mathbb{E}[h(|x-\mathbb{E} x|)]}{h(t)}
$$

Proof: Because h is non-deereasing
τ say constant fare.

$$
\{|x-\mathbb{E} x| \geqslant t\} \leqslant\{h(|x-\mathbb{E} x|) \geqslant h(t)\}
$$

Hence,

$$
\left.\begin{array}{rl}
P\{|x-\mathbb{E}| & \geqslant t\}
\end{array} \leqslant P\{h(|x-\mathbb{E} x|) \geqslant h(t)\}\right\}
$$

Example: when $h(t)=t^{2}$ - the previous result

$$
P\{|x-\mathbb{E} x| \geqslant t\} \leqslant \frac{\mathbb{E}\left[|x-\mathbb{E}(x)|^{2}\right]}{t^{2}}=\frac{\operatorname{Var}(x)}{t^{2}}
$$

Remark: Suppose $l<k$ and both $\tan 25$ $\mathbb{E}\left[|x-\mathbb{E} x|^{l}\right]$ and $\mathbb{E}\left[|x-\mathbb{E} x|^{k}\right]$ are finite
For large t, the bound based on K
will be much tighter than the bound based on l.

This is somewhat intuitive: we should expect the bound based on k will improve upon the one based on l in some sense given the requiring $\mathbb{E}\left[|x-\mathbb{E} x|^{k}\right]<\infty$ is stronger than requiring $\mathbb{E}\left[|x-\mathbb{E} x|^{l}\right]<\infty$.
Why?
$\frac{1}{t^{k}}$ decays to zero much more quickly than $\frac{1}{t^{2}}$ when $t \rightarrow \infty$.
Question: Can we get even shaper tall inequalities than the one above if we assume even nose abow the diss of x ?
Ans: Yes! Provided X has a moment generating function."

Remark*: The bound based on $\mathbb{E}\left[(x-\mathbb{E} x)^{7}\right]$
implies

$$
P\{|x-\mathbb{E} x| \geqslant t\} \leqslant \operatorname{lnf}_{k \in \mathbb{N}} \frac{\mathbb{E}\left[|x-\mathbb{E} x|^{k}\right]}{t^{k}}
$$

lt turns ont that this inequality is sharper than the one we've about to derive based on the $\mu G F$.
But: the bound above is hard to work with is practice.

Tho. (Chernoff) : Suppose that X has a $\mu G F$ in a neighborhood of zero, meaning that those exists $b>0$ st. $\mathbb{E}[\exp \{\lambda \times\}]<\infty$ for all $|\lambda| \leqslant b$.
Then, for $t>0$ and $\lambda \in(0, b]$,

$$
\begin{aligned}
P\{X-\mathbb{E} x \geqslant t\} & =P\left\{e^{\lambda(x-\mathbb{E} x)} \geqslant e^{\lambda t}\right\} \\
& \leqslant \frac{\mathbb{E}\left[e^{\lambda(x-\mathbb{E} x)}\right]}{e^{\lambda t}} \\
& =\frac{M_{x-\mu}(\lambda)}{e^{\lambda t}},
\end{aligned}
$$

where $\mu=\mathbb{E}[x]$.
Hence,

$$
P\{x-\mathbb{E} x \geqslant t\} \leqslant \inf _{\lambda>0} \frac{M_{x-\mu}(\lambda)}{e^{\lambda t}}
$$

Equivalently,

$$
\log P\{x-\mathbb{E} x \geqslant t\} \leqslant-\sup _{\lambda}\left\{\lambda t-\log ^{M_{x-\mu}(\lambda)}\right\}
$$

"Cumulant generation g
function

Example: Gaussian X.
Suppose $x \sim \mathcal{N}\left(\mu, \theta^{2}\right)$, \ln this case,

$$
\begin{aligned}
M_{x-\mu}(\lambda) & =\mathbb{E}[\exp \{(x-\mu) \lambda\}] \\
& =\frac{1}{\sqrt{2 \pi} \theta} \int \exp \left\{\lambda(x-\mu)-\frac{(x-\mu)^{2}}{2 \theta^{2}}\right\} d x
\end{aligned}
$$

$$
\begin{aligned}
(z=x-\mu) & =\frac{1}{\sqrt{2 \pi} \theta} \int \exp \left\{\lambda z-\frac{z^{2}}{2 \sigma^{2}}\right\} d z \\
& =\frac{1}{\sqrt{2 \pi} \theta} \exp \left\{\frac{\lambda^{2} \theta^{2}}{2}\right\} \int \exp \left\{-\frac{(z / \sigma-\lambda \theta)^{2}}{2}\right\} d z \\
(y=z / \theta) & =\exp \left\{\frac{\lambda^{2} \sigma^{2}}{2}\right\} \int \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{(y-\lambda \theta)^{2}}{2}\right\} d y \\
N(\lambda \theta, 1) & =\exp \left\{\frac{\lambda^{2} \theta^{2}}{2}\right\}
\end{aligned}
$$

Plugging the form of $M_{x-\mu}(\lambda)$ into Chernoff's bound. We find that

$$
\begin{aligned}
& \log P\{X-\mathbb{E} X \geqslant t\} \\
s & -\sup _{\lambda>0}\left\{\lambda t-\log M_{x-\mu}(t)\right\} \\
= & -\sup _{\lambda>0}\left\{\lambda t-\frac{\lambda^{2} \theta^{2}}{2}\right\}
\end{aligned}
$$

Solving for the λ^{*} that maximizes the above, we find that

$$
\lambda^{*}=t / \theta^{2}
$$

Hence,

$$
\begin{aligned}
& \log P\{x-\mathbb{E} X \geqslant t\} \leq-\frac{t^{2}}{2 \sigma^{2}} \\
\Rightarrow & P\{x-\mathbb{E} X \geqslant t\} \leq \exp \left\{-\frac{t^{2}}{2 \sigma^{2}}\right\}
\end{aligned}
$$

U_{B}

Sub-Gauksion random variables
Def A R.V. X is called a sub-Ganssian $(s u b-G)$ with paras σ^{2} if

$$
\log M_{x-\mu}(\lambda) \leqslant \frac{\lambda^{2} \sigma^{2}}{2} \quad \text { for all } \lambda \in \mathbb{R}
$$

Note:
A normal $N\left(\mu, \theta^{2}\right)$ R.V. is sub- Q wi) param θ^{2}
By Chernoff, a sub- G RiV. x w./ σ^{2} satiefies

$$
P\{X-\mathbb{T} x \geqslant t\} \leqslant \exp \left\{-\frac{t^{2}}{2 \theta^{2}}\right\}
$$

This is the same bound we derived for $\mathcal{X} N\left(\mu, \sigma^{2}\right)$!
Tail decays faster than Gaussian.
Alternative Characterization of sub-G R.V. (HDS. Chop 2)
$A R, V, X$ is sub- G iff there exists $c>0$, and $s>0$ sit. $\forall t \rightarrow 0, P\{|x-\mathbb{E} x| \geqslant t\} \leqslant C P\{|s z| \geqslant t\}$, where $Z \sim N(0,1)$ $\left(\begin{array}{l}\downarrow \text { is not necessary } \theta^{2} \\ \text { explicit expression sexiness }\end{array}\right.$

Counter example : An $\sum_{p p}(1)$ R.V. is not sub- G, Why?

$$
P\{x \geqslant t\}=\exp (-t)
$$

Thai (Hoetfding) : If x isaR.V. w./ support $[a, b]$, $(|a|,|b|<\infty)$, then x is sub- $w \cdot / \theta^{2}=\frac{(b-a)^{2}}{4}$.
Pf: WLOG, suppose $\mathbb{E} X=0$.
Let $f: \lambda \longmapsto \log M_{\lambda-\mu}(\lambda)$
Noting that $f^{\prime}(0)=\frac{\mathbb{E}[x]}{\mathbb{E}[\exp \{t \cdot 0\}]}=\mathbb{E}[X]=0$
We have that
(1)

$$
\begin{aligned}
f(\lambda) & =\int_{0}^{\lambda} \frac{f^{\prime}(r) d r}{}=f^{\prime}(n)-f^{\prime}(0) \\
& =\int_{0}^{\lambda} \int_{0}^{r} f^{\prime \prime}(s) d s d r
\end{aligned}
$$

Hence, to bound f, it's enough to get a pointwise upper bound on $f^{\prime \prime}$.

Noel that

$$
f^{\prime}(\lambda)=\frac{\mathbb{E}\left[x e^{\lambda x}\right]}{\mathbb{E}\left[e^{\lambda x}\right]}
$$

$$
f^{\prime \prime}(\lambda)=\frac{\mathbb{E}\left[x^{2} e^{\lambda x}\right]}{\mathbb{E}\left[e^{\lambda x}\right]}-\left(\frac{\mathbb{E}\left[x e^{\lambda x}\right]}{\mathbb{E}\left[e^{\lambda x}\right]}\right)^{2}
$$

Note that $f^{\prime \prime}$ is the variance of a RIV. Z_{λ} with density

$$
x \mapsto \frac{e^{\lambda x}}{\mathbb{E}\left[e^{\lambda x}\right]} p(x)
$$

Hence, $f^{\prime \prime}(\lambda)=\operatorname{var}\left(Z_{\lambda}\right)$

Plugging in (1),

$$
\log M_{x \mu}(\lambda)=f(\lambda) \leqslant \frac{(b-a)^{2}}{4} \int_{0}^{\lambda} \int_{0}^{r} d s d r=\frac{(b-a)^{2}}{4} \frac{\lambda^{2}}{2}
$$

Hence, X is sub G with parang, $\sigma^{2}=\frac{(b-a)^{2}}{4}$

implication of tho, above
By Chernof, for any χ taking values in $[a-b]$,

$$
P\{X-\mathbb{E} X \geqslant t\} \leqslant \exp \left\{-\frac{2 t^{2}}{(b-a)^{2}}\right\}
$$

This inequality is known as Hoofing lnqualing, More general form,

Suppose that $X_{1}, X_{2} \ldots X_{n}$ are indy and each has support $[a, b]$

$$
P\left\{\bar{X}_{n}-\mathbb{E} \bar{X}_{n} \geq t\right\} \leqslant \exp \left\{-\frac{2 n t^{2}}{(b-a)^{2}}\right\}
$$

See aproof when $n=2$.
To do this, well show if x_{1} and x_{2} are indp. with $\sin b-G \quad \theta_{1}^{2}, \theta_{2}^{2}$, then $X_{1}+X_{2}$ is $\operatorname{sub}-G$ with param. $\theta_{1}^{2}+\theta_{2}^{2}$.
To see this,

$$
\begin{aligned}
M_{x_{1}+x_{2}}(\lambda) & =\mathbb{E}\left[\exp \left\{\lambda\left(x_{1}+x_{2}\right)\right\}\right] \text { def ia } \\
& =\mathbb{E}\left[\exp \left\{\lambda x_{1}\right\}\right] \mathbb{E}\left[\exp \left\{\lambda x_{2}\right\}\right] \\
& =M_{x_{1}}(\lambda) M_{x_{2}}(\lambda)
\end{aligned}
$$

Similarly, $\mu_{x_{1}+x_{2}-\mu_{1}-\mu_{2}}(\lambda)=M_{x_{1}-\mu_{1}}(\lambda) M_{x_{2}-\mu_{2}}(\lambda)$

By sub- G of X_{1}, x_{2},

$$
\begin{aligned}
\log M_{x_{1}+x_{2}-\mu_{1}-\mu_{2}}(\lambda) & =\sum_{i=1}^{2} \log M_{x_{i}-\mu_{i}}(\lambda) \\
& \leqslant \sum_{i=1}^{2} \frac{\lambda^{2} \sigma_{i}^{2}}{2} \\
& =\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) \lambda^{2} / 2
\end{aligned}
$$

