Human Intelligence Needs Artificial Intelligence

Daniel S. Weld

Mausam

Peng Dai

Dept of Computer Science and Engineering
University of Washington
Seattle, WA-98195
{weld, mausam, daipeng}@cs.washington.edu

Abstract

Crowdsourcing platforms, such as Amazon Mechanical Turk,
have enabled the construction of scalable applications for
tasks ranging from product categorization and photo tagging
to audio transcription and translation. These vertical appli-
cations are typically realized with complex, self-managing
workflows that guarantee quality results. But constructing
such workflows is challenging, with a huge number of alter-
native decisions for the designer to consider.

We argue the thesis that “Artificial intelligence methods can
greatly simplify the process of creating and managing com-
plex crowdsourced workflows.” We present the design of
CLOWDER, which uses machine learning to continually re-
fine models of worker performance and task difficulty. Us-
ing these models, CLOWDER uses decision-theoretic opti-
mization to 1) choose between alternative workflows, 2) opti-
mize parameters for a workflow, 3) create personalized inter-
faces for individual workers, and 4) dynamically control the
workflow. Preliminary experience suggests that these opti-
mized workflows are significantly more economical (and re-
turn higher quality output) than those generated by humans.

Introduction

Crowd-sourcing marketplaces, such as Amazon Mechani-
cal Turk, have the potential to allow rapid construction of
complex applications which mix human computation with
Al and other automated techniques. Example applications
already span the range from product categorization [2],
photo tagging [24], business listing verifications [16] to au-
dio/video transcription [17; 23], proofreading [19] and trans-
lation [20].

In order to guarantee quality results from potentially
error-prone workers, most applications use complex, self-
managing workflows with independent production and re-
view stages. For example, iterative improvement [14] and
find-fix-verify workflows [1] are popular patterns. But de-
vising these patterns and adapting them to a new task is both
complex and time consuming. Existing development envi-
ronments, e.g. Turkit [14] simplify important issues, such
as control flow and debugging, but many challenges remain.
For example, in order to craft an effective application, the
designer must:

e Choose between alternative workflows for accomplish-
ing the task. For example, given the task of transcribing

an MP3 file, one could ask a worker to do the transcrip-
tion, or first use speech recognition and then ask work-
ers to find and fix errors. Depending on the accuracy
and costs associated with these primitive steps, one or the
other workflow may be preferable.

e Optimize the parameters for a selected workflow. Sup-
pose one has selected the workflow which uses a single
worker to directly transcribe the file; before one can start
execution, one must determine the value of continuous pa-
rameters, such as the price, the length of the audio file,
etc.. If the audio track is cut into snippets which are too
long, then transcription speed may fall, since workers of-
ten prefer short jobs. But if the audio track is cut into
many short files, then accuracy may fall because of lost
context for the human workers. A computer can method-
ically try different parameter values to find the best.

e Create tuned interfaces for the expected workers. The
precise wording, layout and even color of an interface can
dramatically affect the performance of users. One can use
Fitt’s Law or alternative cost models to automatically de-
sign effective interfaces [7]. Comprehensive “A-B” test-
ing of alternative designs, automated by computer, is also
essential [12].

e Control execution of the final workflow. Some deci-
sions, for example the number of cycles in an iterative
improvement workflow and the number of voters used
for verification, can not be optimally determined a priori.
Instead, decision-theoretic methods, which incorporate a
model of worker accuracy, can dramatically improve on
naive strategies such as majority vote [3].

Our long-term goal is to prove the value of Al methods
on these problems and to build intelligent tools that fa-
cilitate the rapid construction of effective crowd-sourced
workflows. Our first system, TURKONTROL [3; 4], used a
partially-observable Markov decision process (POMDP) to
perform decision-theoretic optimization of iterative, crowd-
sourced workflows. This paper presents the design of our
second system, CLOWDER', which we are just starting to
implement. We start by summarizing the high-level archi-
tecture of CLOWDER. Subsequent sections detail the Al rea-

It is said that nothing is as difficult as herding cats, but maybe
decision theory is up to the task? A clowder is a group of cats.

DT planner -

task
models

renderer

rendered
job

learner

worker
marketplace

Figure 1: Architecture of the CLOWDER system.

soning used in its major components. We end with a discus-
sion of related work and conclusions.

Overview of CLOWDER

Figure 1 depicts the proposed architecture of CLOWDER.
At its core, CLOWDER has the capability to generate, se-
lect from, optimize, and control a variety of workflows and
also automatically render the best interfaces for a task. It
achieves this by accessing a library of pre-defined workflow
patterns expressed in a hierarchical task network (HTN)-
like representation [18]. Along with each HTN it maintains
the relevant planning and learning routines. The learning
routine learns task and user models. These parameters aid
in controlling the workflow dynamically using a decision-
theoretic planner. Finally, it optimizes the task interfaces
based on user performance. Overall, it aims to achieve a
higher quality-cost-completion time trade-off by optimizing
each step of the process. CLOWDER proposes the following
novel features:

e A declarative language to specify workflows.
CLOWDER’s language is inspired by the HTN rep-
resentation. An HTN is a hierarchy of tasks, in which
each parent task is broken into multiple children tasks.
At the lowest level are the primitive actions that can be
directly executed (in our case, jobs that are solved either
by machines or are crowd-sourced). Thus, HTN provides
a systematic way to explore the possible ways to solve
the larger problem. A workflow can be quite naturally
represented in an HTN-like representation.

e Shared models for common task types. Most crowd-
sourcing jobs can be captured with a relatively small num-
ber of job classes, such as jobs with discrete alternatives,
creating/improving content, efc. By having a library of job
types CLOWDER will be able to share parameters across
similar job types. Given a new task, CLOWDER can trans-
fer the knowledge from similar prior tasks, speeding up
the learning process. E.g., it could use audio transcription
parameters to seed those for the handwriting recognition
task, as they are quite similar.

e Integrated modeling of workers. CLOWDER models
and continually updates its worker’s quality parameters.
This is especially necessary, since workers often perform
poor quality work, so tracking their work and rewarding
the good workers is imperative to a healthy functioning
platform. While a worker’s quality could change based

on the task (people not good at writing English descrip-
tions could still be potent audio transcribers), we can seed
their task-specific quality parameters based on their aver-
age parameters from similar prior tasks.

e Comprehensive Decision-Theoretic Control. A work-
flow has several choices to make including pricing, bonus,
number of iterations or voters, and interface layout. Our
previous work, TURKONTROL, optimized a subset of
these factors for a specific type of workflow. CLOWDER
will extend TURKONTROL by allowing a large number of
workflows and optimizing for all of these choices.

We now discuss each of these components in detail.

Modeling Worker Performance

Poor quality workers present a major challenge for crowd-
sourced applications. Although early studies concluded
that the majority of workers on Mechanical Turk are dili-
gent [22], more recent investigations suggest a plethora of
spam workers. Moreover, the error rates are quite high for
open-ended tasks like improving an artifact or fixing gram-
matical errors [1].

Ipeirotis [9] has suggested several important improve-
ments to the Mechanical Turk marketplace platform, one of
which is a better reputation system for evaluating workers.
He argues that payment should be separated from evalua-
tion, employers should be allowed to rate workers, and the
platform should provide more visibility into a worker’s his-
tory. Worker quality should be reported as a function of job
type in addition to aggregate measures. By surfacing lim-
ited information, such as percentage acceptance and num-
ber of completed hits, Mechanical Turk makes it easy for
spam workers to pose as responsible by rank boosting [8;
6]. Yet even if Mechanical Turk is slow to improve its
platform, alternative marketplaces, such as eLance, guru,
oDesk, and vWorker, are doing so.

But even if Ipeirotis’ improved reputation system is
widely adopted, the best requesters will still overlay
their own models and perform proprietary reasoning about
worker quality. In a crowd-sourced environment, the spe-
cific workflow employed (along with algorithms to control
it) is likely to represent a large part of a requester’s com-
petitive advantage. The more an employer knows about the
detailed strengths and weaknesses of a worker, the better the
employer can apply the worker to appropriate jobs within
that workflow. Thus, knowledge about a worker provides
a proprietary advantage to an employer and is unlikely to
be fully shared. Just as today’s physically-based organiza-
tions spend considerable resources on monitoring employee
performance, we expect crowd-sourced worker modeling to
be an area of ongoing innovation. TURKONTROL devised a
novel approach to worker modeling, which CLOWDER ex-
tends.

Learning a Model of Simple Tasks: Let us focus on the
simplest tasks first — predicting the worker behavior when
answering a binary question. The learning problem is to
estimate the probability of a worker x answering a binary
ballot question correctly. While prior work has assumed all

n

O
@ﬂ@m

m

Figure 2: A plate model of ballot jobs; b represents the ballot
outcome; 7y, a worker’s individual error parameter; d, the difficulty
of the job and w, truth value of the job. I is the prior on workers’
errors. Shaded nodes represent observed variables.

workers to be independent, we realize that worker inputs are
actually correlated — their errors often depend on the intrin-
sic difficulty of the question (d). We assume conditional
independence of workers given the difficulty. We model a
random worker’s accuracy by a parametrized distribution:
ax(d) = 1[1 — (1 —d)7x]. Lower 7 represents a better per-
forming worker. We seek to continually estimate 7y values
for a worker working on our jobs.

Figure 2 presents our generative model of such jobs in
plate notation; shaded variables are observed. Here b rep-
resents the ballot by one worker, and v represents the true
value of the question.

We seek to learn 7. Moreover, we use the mean 7 as an
estimate for future, unseen workers. To generate training
data for our task we select m questions and post # copies of
ballot jobs. We use b; , to denote xt" worker’s ballot on the
i'" question. Let w; = true(false) be the ground truth for

i'" question and let d; denote the difficulty of answering this
question. We take human expert labels for true answer and
difficulty of a question. Assuming uniform prior over 7y, we
can estimate 7y, parameters using maximum likelihood.

Alternatively, we could also use a pure unsupervised ap-
proach (akin to [27]) using the EM algorithm to jointly es-
timate the true labels, difficulties and <y parameters of a
worker. Supervised learning leads to better learning, so that
will be the algorithm of choice, in case getting some labeled
data isn’t too costly.

For a new worker, we initially use the mean ¥, and as
we obtain more information about them continually update
their parameter using a simple update rule. At the question

answering time, we can use the existing ballots b, uniform
prior on I', and our conditional independence assumption to
estimate the true values .

—

P(F|b,@,d) o« P(b|7,@,d)
= T IT_ P(bix

Yxr di/ wi)'

Learning Complex Worker Models: In addition to sim-
ple binary questions, TURKONTROL also studies a specific
case of learning more complex worker models that arise in
the iterative improvement workflow — learning a worker’s
improvement model. Here, we wish to estimate the proba-
bility distribution of the quality of a new artifact (q’) when a
worker x tries to improve an artifact of quality 4. Learning
such two dimensional distributions is a challenging prob-
lem. TURKONTROL assumes specific distribution shapes
and applies parameter fitting techniques to make the prob-
lem tractable [4].

Similar ideas apply to learning other more complex mod-
els. In CLOWDER we propose to enable learning capability
for a wide variety of worker models. We list a few below
based on the job type. We anticipate that existing models
from other tasks will aid in seeding the worker models for a
new task, which can be continually updated as we gain more
information about a worker on the task at hand.

e Discrete alternatives. Workers may be asked to choose
between more than 2 discrete alternatives. A simple ex-
tension of our ballot model suffices for this.

e Find jobs. The Soylent word processor popularized
a crowd-sourcing design pattern called Find-Fix-Verify
which “splits complex crowd intelligence tasks into a
series of generation and review stages that utilize in-
dependent agreement and voting to produce reliable re-
sults.” [1]. Find jobs typically present a worker with a se-
quence of data, e.g., a textual passage, and ask the worker
to identify flaw locations in that sequence, e.g. the loca-
tion of grammatical errors. Since only a few locations
can be returned, we can learn models of these jobs with
an extension of the discrete alternatives framework.

e [mprovement jobs. This class of job (also known as a
“Fix” job) requires the worker to revise some piece of
content, perhaps by fixing a grammatical error or by ex-
tending a written description of a picture. We can employ
and extend curve fitting ideas in [4] to learn such models.

e Content creation jobs. This class of job would be used
when initializing an iterative improvement workflow or in
the first step of a transcription task. It can be modeled as
a degenerate case of an improvement job.

Optimizing & Controlling Workflows

Every given workflow has one or more parameters whose
value needs to be set before execution. The most obvious
examples are the price offered to worker for completion of
the job and HTML interface provided to workers, but other
workflows have additional parameters. For example, the
length of individual audio files in transcription or the num-
ber of distinct examples in a labeling task.

There are two basic methods for optimizing the param-
eters: blind and model-based search. If nothing is known
about the effect of the parameter, then blind search — enu-
merating different possible values and measuring the effect
on worker performance — will be necessary. The designer
will likely wish to specify the range of values for the system
to consider. If the system has been given or has learned a
model of the parameter’s effect, it can use direct optimiza-
tion or branch and bound to find good parameter values be-
fore issuing any jobs to actual workers.

Execution Control: Probably the biggest benefit of
decision-theoretic modeling of a workflow is the ability to
automatically control the different pieces of the task and dy-
namically allocate the resources to the sub-tasks that are ex-
pected to yield largest benefits. The benefits are evaluated in
terms of the utility that is given as the input by the requester.

CLOWDER will extend the decision-theoretic control
methodology used in TURKONTROL [3]. Consider an

submit a

3

initial
artifact (a) I Generate
—— mprovement improvement prior for
needed? job

Estimate

ap’ By
. Update
Voting Generate pospteriors |
needed? ballot job f)
ora, o

o < betterofa and a’

L

initial
artifact (@) | Generate Updat.e Find more picka |f.| Generate Fix more Generate Upda'te verification
| Fingnir | | POSterior flaw to fix Fix HIT verify HIT | | Posteriors ?
of flaw f flaws? N flaws? ¥ forall a’s needed;

€ submit the best combination of all o’s

Figure 4: Decision-theoretic Computations needed to control the Soylent word processor.

iterative-improvement workflow in which an artifact (e.g.,
an English description of an image) created by the first
worker goes through several improvement iterations; each it-
eration comprising an improvement and a ballot phase [14].
An improvement job solicits a’, an improvement of the cur-
rent artifact . In the ballot phase, zero or more workers
complete a ballot job, voting whether the most recent ‘im-
provement’ really is better than the predecessor. The best
artifact is promoted to the next iteration.

TURKONTROL controls this workflow based on its belief
about the quality of the two artifacts as informed by priors
and the noisy ballots. Figure 3 shows the relevant decision
points for iterative improvement: Which artifact is the best
so far? Is it good enough to return or should a worker be
tasked to improve it? Should another worker be tasked to
compare two artifacts? These decisions are answered using
a Partially Observable Markov Decision Process (POMDP)
formulation, where the (latent) world state includes the qual-
ity of the two artifacts. Initial experiments show that this
form of decision-theoretic control can save as much as 28%
of the cost to achieve a given quality of artifact compared to
previously-proposed policies [4].

Indeed, iterative improvement is not the only workflow
that can benefit from decision-theoretic control. In Figure
4 we propose the initial design of a controller for Soylent
[1], a word processor that uses a Find-Fix-Verify workflow
to shorten and rewrite text written by the user. There are sev-
eral decision points, such as whether to request more flaws,
fixes or votes; and also which flaws to ask the fixes for, and
how to combine the various artifacts to submit the final ver-
sion. CLOWDER will implement general purpose routines to
control several workflows that can be expressed in its gen-
eral representation language (see next section).

Because of it’s high-dimensional and continuous state
space, solving a POMDP is a notoriously hard problem.

For the case of iterative-improvement workflows a sim-
ple k-step lookahead greedy search performed remarkably
well; however, more sophisticated methods may be neces-
sary as we increase the number of decision points made
by the agent. We will investigate a variety of strategies,
including discretization and the Monte Carlo methods pi-
oneered in UCT [11]). Our prior experience with approxi-
mate and optimal, MDP and POMDP algorithms (e.g., [3;
13]) will come in handy in scaling to the larger problems.

Pricing Jobs: There are several ways to compute the best
price for a job. Once a concrete interface has been selected,
it is easy to measure the time required to complete a job;
multiplying by an expected hourly rate produces a price.
But money is not a worker’s only motivation; the intellec-
tual challenge of a job and even attractiveness of a Ul can
reduce the necessary wage [25].

Mason and Watts [15] showed that increasing the payment
for a task on Mechanical Turk increased the quantity of tasks
performed by a worker but not the quality. So, if the task
comes with a deadline then the variation of the price with the
rate of completion of tasks could determine the pay. More-
over, there are methods for improving worker performance
and these may be explored by CLOWDER.

Awarding Bonuses: Paying an optional bonus for higher
quality (or more rapidly-completed) work is a tried and
tested way to motivate better submissions from the work-
ers. For an automated agent the decision question will be
(1) When to pay a bonus? (2) Under what quality conditions
should a bonus be paid? and (3) What magnitude bonus
should be paid? Intuitively, if we had an expectation on the
total cost of a job, and we ended up saving some of that
money, a fraction of the agent’s savings could be used to
reward the workers who did well in this task.

Other Parameters: CLOWDER will provide support to

learn a variety of workflow parameters. First, we will study
common workflows to abstract away the typical classes of
parameters. For example, a common parameter type is the
size of the decomposition. Whether we wish to recognize a
long handwriting task, or transcribe a large audio file, or ask
people to identify grammatical errors in a long essay, there
is an optimum length in which to subdivide the problem.
A short length may result in poor quality output because the
relevant context will be missing, whereas a long length could
also result in poor quality, since the workers may lose focus
in the middle. Moreover, workers do not like really long
jobs, so the completion rates may fall too. An easy blind
way to learn the optimum length is by using binary search.
However, if other tasks have solved similar problems in the
past then we can adapt their parameters and explore regions
close to the existing parameters for a more efficient learning.
We propose to add support for typical parameter types,
which can greatly boost a workflow’s performance. This
will also be a subroutine in selecting one workflow over an-
other, since each workflow needs to be evaluated in their best
configuration to compare against another workflow.

Optimizing Interfaces: The layout of an interface and
choice of widgets for entering data can make an enormous
difference in the productivity of the interface’s users. Lead-
ing Internet companies perform detailed quantitative anal-
ysis of the user-behavior and completion rates of Web-
based product-search and checkout workflows [12] — small
changes can have dramatic effects on productivity. It stands
to reason, therefore, that the UI layout of crowd-sourced jobs
is a critical factor in how quickly they can be completed and
hence the payment necessary to motivate this completion.
Interestingly, the job interfaces for many jobs on Mechan-
ical Turk appears poor — ignoring various guidelines and
tips. Furthermore, many workers post suggestions on how
to improve workflows to help requesters improve the flow.

CLOWDER will extend our previous work on automatic
generation of personalized user interfaces, which uses a
functional representation for interfaces and the SUPPLE al-
gorithm for decision-theoretic interface personalization [7].
We developed learning algorithms for inducing the user-
preference models necessary to drive the optimization pro-
cess, but one could also use Fitt’s law for the common case
of able-bodied workers. Finally, we demonstrated that our
automatic personalized interfaces significantly decreased the
time required to perform a wide class of tasks [7]. These
methods are perfectly suited to the task of optimizing Web-
based workflows. After using SUPPLE to shortlist a few in-
terfaces with good expected performance, CLOWDER will
generate trial runs of the tasks using each interface thus
automating traditional “A-B” testing to pick the interface
which performs best in practice [12].

Generating Complex Workflows

Different tasks require very different kinds of workflows to
achieve quality output. Often, these are carefully engineered
after significant human effort and extensive testing. We pro-
pose to automate part of the process with CLOWDER per-
forming the testing and workflow selection.

For instance, in the audio transcription task, one could just
use the output from the speech recognition system. Or one
could improve the machine output in a Find-Fix-Verify like
workflow. Or, one may decide to completely do away with
machine recognition and use workers to directly transcribe
the audio. In this situation, one worker could transcribe the
whole audio or one may divide the audio into smaller audio
files. There could be additional quality control workers that
score previous transcription quality. Indeed, CastingWords
employs a proprietary workflow for audio transcription.

To realize the vision of an intelligent crowd-sourcing
agent capable of dealing with a variety of tasks, CLOWDER
will facilitate the process of searching through these dif-
ferent workflows and thus assisting the human designer
in the selection process. However, to initiate this search,
CLOWDER needs a language to represent the potential work-
flows that solve the task. We anticipate that the language will
resemble the declarative hierarchical task network represen-
tation [18] from the automated planning literature. This
could be augmented with workflow-specific primitives for
data input (such as observation actions) using a variant of
the SUPPLE representation [7] .

A hierarchical task network, which is commonly used in
domain-specific planning literature, is a natural representa-
tion for our purposes. An HTN subdivides each task hier-
archically into a set of subtasks, and also maintains the pre-
conditions and effects of applying each subtask. Thus, given
a workflow represented as an HTN, CLOWDER can easily
enumerate all the workflows that solve the given task.

The next challenge is to select the best workflow. A
better workflow maximizes the utility obtaining the best
quality-cost-completion time tradeoff. However, enumerat-
ing each potential workflow and evaluating it individually
can be time-consuming as well as financially wasteful. We
will develop routines that, given an HTN, will evaluate each
workflow-component in their hierarchical order. CLOWDER
will compute the expected utility of each subtask, which can
then be used to select the best workflow for the whole task.

Automatically selecting workflows is a rather challenging
direction for CLOWDER, but one that will go a long way in
realizing the potential of crowd-sourcing by making it con-
venient for requesters to create complex workflows without
needing to understand the mathematical calculations neces-
sary to execute them efficiently.

Related Work

Shahaf and Horvitz [21] also use an HTN-style decompo-
sition algorithm to find a coalition of workers, each with
different skill sets, to solve a task. Our workflow selection
ideas are inspired by their work.

Other researchers have studied modeling worker compe-
tencies. Whitehill e al. [27] also model problem difficulty,
though they use the unsupervised EM algorithm. Wellinder
et al. [26] add annotation bias and multi-dimensional param-
eters. Kern ef al. [10] also make predictions on whether to
elicit new answers. Donmez et al. study worker accuracies
as a function of time [5].

Recently Zhang et al. [28] argue that all aspects of the
workflow right from designing to controlling can be crowd-

sourced. In many ways, our thesis is in direct contrast with
theirs. We believe that all tasks are not well-suited for un-
skilled crowd-sourced workers — often they do not have a
global picture, humans are not best at numeric optimiza-
tions, in which computers excel. Thus, mixed-initiative sys-
tems that collaborate machine intelligence with humans are
essential to success of complex, crowd-sourcing tasks.

Conclusions

Amazon Mechanical Turk has the tagline ‘Artificial Artifi-
cial Intelligence’ emphasizing the ability of the crowd in per-
forming several tasks commonly attributed for Al systems.
In this paper we argue that Al techniques are rather essen-
tial in managing, controlling, executing, and evaluating the
tasks performed on crowd-sourcing platforms.

We outline the design of our system, CLOWDER, that (1)
uses machine learning to continually refine the models of
worker performance and task difficulty, (2) is able to opti-
mize the parameters and interfaces in a workflow to achieve
the best quality-cost-completion time trade-off, (3) can dy-
namically control a workflow to react to and anticipate the
effect of better or worse workers finishing a task, and (4) has
the ability to select one among the multiple possible work-
flows for a task based on automatic evaluation of the differ-
ent optimized workflows.

CLOWDER combines core ideas from different subfields
of artificial intelligence, such as decision-theoretic analysis,
model-based planning and execution, machine learning and
constraint optimization to solve the multitude of subprob-
lems that arise in the design. The implementation of the
system is in progress.

We believe that a mixed-initiative system that combines
the power of artificial intelligence with that of artificial arti-
ficial intelligence has the potential to revolutionize the ways
of business processes. We already see several innovative
crowd-sourcing applications; we can easily anticipate many
more, as CLOWDER reduces the requester skills and compu-
tational overhead required to field an application.

Acknowledgments

This work was supported by the WRF / TJ Cable Profes-
sorship, Office of Naval Research grant N00014-06-1-0147,
and National Science Foundation grants IIS 1016713 and IIS
1016465.

References

[11 M. Bernstein, G. Little, R. Miller, B. Hartmann, M. Acker-
man, D. Karger, D. Crowell, and K. Panovich. Soylent: A
word processor with a crowd inside. In UIST, 2010.

[2] hup://crowdflower.com/solutions/prod_cat/index.html.

[3] Peng Dai, Mausam, and Daniel S. Weld. Decision-theoretic
control of crowd-sourced workflows. In AAAI10, 2010.

[4] Peng Dai, Mausam, and Daniel S. Weld. Artificial intelli-
gence for artificial, artificial intelligence. In AAAI, 2011.

[5] Pinar Donmez, Jaime G. Carbonell, and Jeff Schneider. A
probabilistic framework to learn from multiple annotators
with time-varying accuracy. In SDM, pages 826-837, 2010.

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]
[20]
[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

C. Eickhoff and A. de Vries. How crowdsourcable is your
task? In Proceedings of the WSDM Workshop on Crowd-
sourcing for Search and Datamining, 2011.

Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld.
Automatically generating personalized user interfaces with
SUPPLE. Artificial Intelligence, 174:910-950, August 2010.

P. Ipeirotis. Be a top Mechanical Turk worker: You
need $5 and 5 minutes. http://behind-the-enemy-
lines.blogspot.com/2010/10/be-top-mechanical-turk-worker-
you-need.html.

P. Ipeirotis. Plea to Amazon: Fix Mechanical Turk!
http://behind-the-enemy-lines.blogspot.com/2010/10/plea-
to-amazon-fix-mechanical-turk.html.

Robert Kern, Hannes Thies, and Gerhard Satzger. Statistical
quality control for human-based electronic services. In In
Proc. of ICSOC, pages 243-257, 2010.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-
carlo planning. In ECML, pages 282-293, 2006.

Ron Kohavi, Randal M. Henne, and Dan Sommerfield. Prac-
tical guide to controlled experiments on the web: listen to
your customers not to the hippo. In KDD, 2007.

A. Kolobov, Mausam, and D. Weld. ReTraSE: Integrating
paradigms for approximate probabilistic planning. In Procs.
of IJCAI 2009, 2009.

Greg Little, Lydia B. Chilton, Max Goldman, and Robert C.

Miller. Turkit: tools for iterative tasks on mechanical turk. In
HCOMP, 2009.

W. Mason and D. Watts. Financial incentives and the “per-
formance of crowds”. In Human Computation Workshop
(HComp2009), 2009.

http://crowdflower.com/solutions/blv/index.html.
http://castingwords.com.

Dana Nau, Okhtay Ilghami, Ugur Kuter, J. William Murdock,
Dan Wu, and Fusun Yaman. SHOP2: An HTN planning sys-
tem. JAIR, 20:379-404, 2003.

http://www.serv.io/edit.
http://www.serv.io/translation.

Dafna Shahaf and Eric Horvitz. Generlized markets for hu-
man and machine computation. In AAAZ, 2010.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and A. Ng.
Cheap and fast — but is it good? evaluating non-expert an-
notations for natural language tasks. In EMNLP’08, 2008.

http://speakertext.com.
http://www.tagasauris.com.

Michael Toomim, Travis Kriplean, Claus Portner, and
James A. Landay. Utility of human-computer interactions:
Toward a science of preference measurement. In CHI, 2011.

Peter Welinder, Steve Branson, Serge Belongie, and Pietro
Perona. The multidimensional wisdom of crowds. In In Proc.
of NIPS, pages 2424-2432, 2010.

Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma,
and Javier Movellan. Whose vote should count more: Opti-
mal integration of labels from laberlers of unknown expertise.
In In Proc. of NIPS, pages 2035-2043, 20009.

Haoqi Zhang, Eric Horvitz, Rob C. Miller, and David C.
Parkes. Corwdsourcing general computation. In CHI Work-
shop on Crowdsourcing and Human Computation, 2011.

