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Introduction: Crowdsourcing marketplaces (e.g., Amazon
Mechanical Turk) continue to rise in popularity. Unfortu-
nately, workers come with hugely varied skill sets and moti-
vation levels. Ensuring high quality results is a serious chal-
lenge for all requesters.

A key drawback of prior decision-theoretic approaches
(Dai, Mausam, and Weld 2010; 2011) to quality control is
the restriction to multiple choice questions, i.e., jobs where
every alternative answer is known in advance. While many
tasks can be formulated in a multiple-choice fashion (e.g. n-
ary classification), there are a large number of tasks with an
unbounded number of possible answers. A common exam-
ple is completing a database with workers’ help, e.g., asking
questions such as “Find the mobile phone number of Acme
Corporation’s CEO.”

Unfortunately, adapting multiple-choice models for these
scenarios is not straightforward, because of the difficulty
with reasoning about unknown answers. Requesters, there-
fore, must resort to using a majority-vote, a significant hin-
drance to achieving quality results (Dai, Mausam, and Weld
2010; 2011; Whitehill et al. 2009). Our paper tackles this
challenging problem. We first create a probabilistic, genera-
tive model for tasks where workers are free to give any an-
swer. We then present a decision-theoretic controller, LAZY-
SUSAN, that uses our model to dynamically infer answers to
these tasks, and finally show that it obtains a better cost-
quality tradeoff compared to an agent that uses majority-
voting.

Background: First, we review the Chinese Restaurant Pro-
cess (Aldous 1985), a discrete-time stochastic process that
generates an infinite number of labels (“tables”). Intuitively,
the process may be thought of modeling sociable customers
who, upon entering the restaurant, decide between joining
other diners at a table or starting a new table. The greater
the number of customers sitting at a table, the more likely
new customers will join that table.

Formally, a Chinese Restaurant R = (T, f, θ) is a set
of occupied tables T = {t1, . . . , tn|ti ∈ N}, a function
f : T → N that denotes the number of customers at each ta-
ble ti, and a parameter θ ∈ R+. A new customer can either
choose to sit at one of the occupied tables, or at a new empty
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table. The probability that he chooses to sit at table t ∈ T
is CR(t) = f(t)

N+θ where N =
∑
t∈T f(t) is the total num-

ber of customers in the restaurant. The probability that he
chooses to sit at any new unoccupied table, or, equivalently,
the probability that he chooses not to sit at an occupied table
is NTR = θ

N+θ .

Probabilistic Model: We seek to develop a probabilis-
tic model of workers on tasks that have a countably infi-
nite solution space. Our model extends Dai et al.’s model
(2010). Let d ∈ [0, 1] be the difficulty of a given task
and γi = [0,∞) be worker i’s error parameter. We de-
fine the accuracy of that worker for that given task to be:
a(d, γi) = (1− d)γi .

Let bi be the answer that is provided by the ith worker.
It is determined by the correct answer v, d, and γi. A
good model must consider correlated errors (Grier 2011).
For instance, if a task encourages workers to use Google,
the responses would likely by correlated with the search re-
sults. Thus, bi is also determined by all previous responses
b1, . . . , bi−1. Only the responses are observable variables.

Let θ ∈ R+ denote the task’s bandwagon coefficient. The
parameter θ encodes the concept of the “tendency towards a
common wrong answer.” If θ is high, then workers who an-
swer incorrectly will tend to provide new, unseen, incorrect
answers, suggesting that the task does not have “common”
wrong answers. Contrastingly, if θ is low, workers who an-
swer incorrectly will tend toward the same incorrect answer,
suggesting that the task lends itself to the same mistakes.

For ease of expression, let Bi be the multiset of answers
that workers 1, . . . , i provide. Let Ai be the set of unique
answers in Bi. The probability that the i + 1th worker’s
ballot is correct is P (bi+1 = v|d, v,Bi) = a(d, γi+1).

To define the probability space of wrong answers we
use the Chinese Restaurant Process. Let f(a) = |{b ∈
Bi|b = a}|, and let Ri,v = (Ai \ {v}, f, θ) be a Chinese
Restaurant Process. Then, the probability that the worker
returns a previously seen incorrect answer, y ∈ Ai \ {v} is
P (bi+1 = y|d, v,Bi) = (1 − a(d, γi+1))CRi,v

(y). Finally,
the probability that the worker returns an unseen answer is
P (bi+1 = u|d, v,Bi) = (1 − a(d, γi+1))NTRi,v

. Here, u
represents whatever the worker returns as long as u /∈ Ai.
The model cares only about whether it has seen a worker’s
answer before, not what it actually turns out to be.



A Decision-Theoretic Agent: We now detail LAZYSUSAN,
which uses our model to infer correct answers by dynam-
ically requesting more observations as necessary. At each
time-step, it can either stop and submit the most likely an-
swer, or it can create another job and receive another re-
sponse to the task from another crowdsourced worker.

To determine the agent’s policy, we define its agent state
S, which at time i, is the set of tuples, S = {(v, d)|v ∈
Ai ∪ {⊥}∧ d ∈ [0, 1]}. ⊥ represents the case when the true
answer has not been seen by the agent so far.

Let k = |Ai|. For LAZYSUSAN to update its posterior
belief about its agent state P (v, d|Bi; i, k) after it receives
its ith ballot bi, it requires P (v|d; i, k) and P (d; i, k).

Notice that for all a ∈ Ai, we do not know P (v =
a|d; i, k). However, they must be all the same, because
knowing the difficulty of the task gives us no information
about the correct answer. Otherwise, we define: P (v =⊥
|d; i, k) := di. This definition is reasonable since intuitively,
as the difficulty of the task increases the more likely work-
ers have not yet provided a correct answer and vice versa.
Next, we choose to model P (d; i, k) ∼ Beta(α, β) and de-
fine α ≥ 1 and β ≥ 1 based on i, k, and θ.

To determine what actions to take, LAZYSUSAN needs to
calculate the utility of its beliefs, which it does using what
it currently believes the correct answer to be. LAZYSU-
SAN selects its actions at each time step by computing an
l-step lookahead by estimating the utility of each possible
sequence of l actions. If the lth action is to request another
response, then it will assume that it submits an answer on
the l + 1th action. In our experiments, we use a lookahead
depth of 3.

After submitting an answer, LAZYSUSAN updates its
records about all the workers who participated in the task.

Experiments: We compare LAZYSUSAN to an agent that
uses majority-voting, MV, using real responses generated
by Mechanical Turk workers. We test these agents with 134
SAT Math questions.

We find that the workers on Mechanical Turk are surpris-
ingly capable at solving math problems. At an average cost
of 5.46 ballots per task, MV achieves a 95.52% accuracy.
LAZYSUSAN almost completely eliminates the error made
by MV, achieving a 99.25% accuracy at an average cost of
5.17 ballots per task.

Qualitative Discussion We examine an example sequence
of actions LAZYSUSAN made for one task. In total, it re-
quested 14 ballots, and received the following responses:
215, 43, 43, 43, 5, 215, 43, 3, 55, 43, 215, 215, 215, 215.
Since MV takes the majority of 7 votes, it infers the answer
incorrectly to be 43. LAZYSUSAN on the other hand, uses
its knowledge of correlated answers as well as its knowl-
edge from previous tasks that the first three workers who re-
sponded with 43 were all relatively poor workers compared
to the first two workers who claimed the answer is 215. So
even though a clear majority of workers preferred 43, LAZY-
SUSAN was not confident about the answer. While it cost
twice as much as MV, the cost was a worthy sacrifice.

Related Work: Modeling repeated labeling in the face

of noisy workers when the label is assumed to be drawn
from a known finite set has received significant attention
(Romney, Weller, and Batchelder 1986; Sheng, Provost, and
Ipeirotis 2008; Raykar et al. 2010; Whitehill et al. 2009;
Dai, Mausam, and Weld 2010; 2011; Lin, Mausam, and
Weld 2012; Welinder et al. 2010; Kamar, Hacker, and
Horvitz 2012; Parameswaran et al. 2010; Karger et al. 2011;
Snow et al. 2008).
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