
OGA-UCT: On-the-Go Abstractions in UCT

Ankit Anand∗ and Ritesh Noothigattu ∗ and Mausam and Parag Singla
Indian Institute of Technology, Delhi

New Delhi, India
{ankit.anand, riteshn.cs112, mausam, parags}@cse.iitd.ac.in

Minor errors in ICAPS 2016 version corrected

Abstract

Recent work has begun exploring the value of domain ab-
stractions in Monte-Carlo Tree Search (MCTS) algorithms
for probabilistic planning. These algorithms automatically
aggregate symmetric search nodes (states or state-action
pairs) saving valuable planning time. Existing algorithms al-
ternate between two phases: (1) abstraction computation for
computing node aggregations, and (2) modified MCTS that
use aggregate nodes. We believe that these algorithms do not
achieve the full potential of abstractions because of disjoint
phases – e.g., it can take a while to recover from erroneous
abstractions, or compute better abstractions based on newly
found knowledge.
In response, we propose On-the-Go Abstractions (OGA), a
novel approach in which abstraction computation is tightly
integrated into the MCTS algorithm. We implement these on
top of UCT and name the resulting algorithm OGA-UCT.
It has several desirable properties, including (1) rapid use
of new information in modifying existing abstractions, (2)
elimination of the expensive batch abstraction computation
phase, and (3) focusing abstraction computation on important
part of the sampled search space. We experimentally com-
pare OGA-UCT against ASAP-UCT, a recent state-of-the-art
MDP algorithm as well as vanilla UCT algorithm. We find
that OGA-UCT is robust across a suite of planning competi-
tion and other MDP domains, and obtains up to 28 % quality
improvements.

Introduction
Monte Carlo Tree Search (MCTS) algorithms such as UCT
(Kocsis and Szepesvári 2006) have become the de-facto
standard for solving large probabilistic planning problems
modeled as a Markov Decision Process (MDP). They over-
come an MDP’s curse of dimensionality by intelligently sub-
sampling the tree and make effective use of available plan-
ning time. UCT-based algorithms (Keller and Eyerich 2012)
have won the last two probabilistic planning competitions.

Recent work has shown that the performance of MCTS
algorithms can be further improved by incorporating do-
main abstractions. Original MCTS algorithms explore the
flat state space, which can be wasteful since many states

∗First two authors had equal contributions.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

are actually symmetric and need not be considered sepa-
rately. MCTS algorithms with abstractions such as AS-UCT
(Jiang, Singh, and Lewis 2014) and ASAP-UCT (Anand et
al. 2015) automatically compute (approximate) symmetric
nodes (states, state-action pairs) in the search tree. They ag-
gregate such nodes into an abstract node, thus reducing the
subsequent UCT planning time considerably.

Both these algorithms alternate between two phases. One
phase consists of an abstraction computation routine that
uses the existing UCT tree to induce groups of symmetric
nodes. These nodes are aggregated to construct an abstract
search tree. The second phase is the (modified) UCT algo-
rithm, which is run as per original UCT in the beginning, but
is modified to incorporate the abstractions after the abstrac-
tion routine has been run at least once.

We believe that these algorithms do not achieve the full
potential of abstractions because of the two disjoint phases.
Since abstractions are computed on a sampled tree, they are
approximate. Erroneous abstractions computed as part of
one batch of abstraction computation may get corrected only
after a full phase of modified UCT – this wait could severely
impact the solution quality. Moreover, while UCT prefers
some states over others (due to UCB exploration rule), these
algorithms treat all nodes at par while computing abstrac-
tions. This wastes valuable time on less important nodes,
which likely have limited impact on further planning.

We first analyze the space of algorithmic design choices
for MCTS algorithms with domain abstractions. An algo-
rithm can be phased or incremental, abstraction computa-
tion may be done uniformly on all states or adaptively, and
so on. We find that existing algorithms have complimentary
strengths and weaknesses. In response, we propose On-the-
Go Abstractions (OGA), which incorporates the best-of-all-
worlds design choices.

OGA is a novel (non-phased) approach in which abstrac-
tion computation is tightly integrated into MCTS. In line
with previous work, we implement these on top of UCT
and name the resulting algorithm OGA-UCT. OGA-UCT
has several desirable properties. First, it completely elimi-
nates the expensive batch abstraction computation routine.
OGA-UCT is incremental in computing abstractions, i.e., as
the tree gets built it is seamlessly reduced by abstraction spot
checks. Second, this allows new knowledge, either for cor-
recting old abstractions or finding new ones, to be useful

without a significant wait. This keeps the reduced tree as ac-
curate as possible leading to better quality solutions. Finally,
where to compute abstractions is also adaptive – it is guided
by the UCB exploration function, thus focusing computation
on the more important part of the search space.

We experimentally compare OGA-UCT1 against ASAP-
UCT (the state-of-the-art abstraction-based UCT solver) as
well as the vanilla UCT algorithm. We find that across a suite
of planning competition and other MDP domains, OGA-
UCT performs better or at par with the best technique on
each domain obtaining up to 28% solution quality improve-
ments.

Background and Related Work
A cost-minimization finite-horizon MDP (Mausam
and Kolobov 2012) can be described using a 5-tuple
(S,A, T , C,H), where S denotes the set of states, A is the
set of actions, T : S × A × S → [0, 1] is the transition
function specifying the probability of reaching a state
s′ ∈ S after applying an action a ∈ A in state s ∈ S,
C : S × A → R specifies the cost or reward of taking an
action a in a state s and H is the total number of steps to
execute.

The solution to an MDP is a policy π∗ : S × D → A
(D is set of decision points ∈ [0, H)) specifying the ac-
tion to be taken in each state at a time point d ∈ D. The
objective is to minimize the long term expected cost. The
minimum expected cost (value) starting in state s at time d
(V ∗(s, d)) can be calculated recursively using the Bellman
equation (Bellman 1957): V ∗(s, d) = mina∈A[C(s, a) +∑

s′∈S V
∗(s′, d + 1) · T (s, a, s′)]. Similarly, the Q-value

for a state-action pair can be calculated as Q∗((s, d), a) =
C(s, a) +

∑
s′∈S V

∗(s′, d + 1) · T (s, a, s′). The classical
approach to solve an MDP is to use dynamic programming
based methods such as value iteration (Bellman 1957) and
policy iteration (Howard 1960).

One issue with the classical approaches to solve an MDP
is that they need to enumerate the entire state space and
hence, don’t scale well when states and action spaces be-
come exponential. We combine two ways to reduce this
blowup – tree sampling, and domain abstractions.

Monte Carlo Tree Search (MCTS)
MCTS algorithms sample parts of the MDP search tree in-
stead of building a complete one. At any given point, the
MCTS tree can be viewed as alternating layers of state
and state-action pair nodes. The most popular MCTS algo-
rithm is UCT (Upper Confidence bounds on Trees) (Kocsis
and Szepesvári 2006). It cleverly balances the exploration-
exploitation trade-off while building the search tree. Starting
from the root of the tree, a trajectory is iteratively sampled
by selecting an action in the current state (s, d) based on the

UCB rule: argmina∈A[Q(s, a, d)−K ·
√

log(n(s,d))
n(s,a,d)]. Here,

n(s, d) is the number of trajectories that pass through the
state s at depth d. Similarly, n(s, a, d) is the number of tra-
jectories taking action a in state s at depth d.K > 0 is a con-

1https://github.com/dair-iitd/oga-uct

stant balancing exploration and exploitation. The sampling
process continues until we encounter a state not already in
the tree. This newly discovered node is added to the tree as
a leaf and a random rollout is performed giving an estimate
of Q-value at the leaf node. This Q-value is then backed up
all the way to the root. As we sample more and more tra-
jectories, we obtain better Q-estimates at the root. Once a
pre-decided number of trajectories has been sampled, UCT
takes the best action at the root based on the current esti-
mate. The tree construction process is then repeated starting
at the next state as the root.

Abstractions and MCTS
Domain abstractions have been investigated as a method to
deal with large state and action spaces (Givan, Dean, and
Greig 2003; Ravindran 2004; Li, Walsh, and Littman 2006).
These approaches try to deduce sets of symmetric states and
aggregate them into super-states thereby reducing computa-
tion. Their early application was over traditional MDP al-
gorithms like value iteration. Due to the success of MCTS
based methods for planning, there have been some recent
attempts to incorporate abstractions in MCTS (Hostetler,
Fern, and Dietterich 2014; Jiang, Singh, and Lewis 2014;
Anand et al. 2015). The key idea in these approaches is to
use the abstractions over the sampled search tree rather than
constructing them over the entire search space which can be
exponentially large.

Hostetler et al. (2014) provide a theoretical framework
for defining abstractions over the trajectories in an MCTS
framework. But they do not give an algorithm to compute the
abstractions. Jiang et al. (2014) provide the first approach
for computing abstractions in an MCTS search tree and use
them to provide a better estimate with the same number of
samples. Their AS-UCT algorithm maintains a set of ab-
stract states at each depth. The tree is traversed over the orig-
inal nodes as in UCT. After a rollout has been performed, it
is used to estimate the Q-value of all the states which fall
under the same abstraction as the leaf. Similarly, during the
backup phase, the update is performed over all the states
which are part of the same abstract state.

Jiang’s work is advanced in ASAP-UCT (Anand et al.
2015), which introduces abstractions of State-Action Pairs
(SAPs) in addition to the traditionally used Abstraction of
States (AS). ASAP-UCT proposes a definition of abstraction
of state and state-action pairs in an MCTS tree in a recursive
manner. Let X denote the set of abstract states at depth d.
Let µd

E : S → X be the state abstraction function at depth
d, which takes a state s ∈ S to its abstract state µd

E(s) ∈ X .
Similarly, let U denote the set of abstract state-action pairs.
µd
H : S × A → U be the SAP abstraction function at depth

d, which takes a state-action pair (s, a) ∈ S × A to the
abstract state-action pair µd

H(s) ∈ U . Then, we have the
following relationship.

State Abstractions: Given the SAP abstraction function
µd
H, two states s, s′ ∈ S have the same abstraction i.e
µd
E(s) = µd

E(s
′) iff for each action a ∈ A applicable in

s, there exists an action a′ ∈ A applicable in s′ such that

Design choice AS-UCT ASAP-UCT PARSS OGA-UCT
batch vs. incremental batch batch incremental incremental
uniform vs. adaptive uniform uniform adaptive adaptive
progressive vs. split-merge split-merge split-merge progessive split-merge
unit of abstraction: states or state-action pairs (SAP) state SAP state SAP
convergence to flat or aggregate nodes aggregate aggregate flat aggregate

Table 1: Properties and design choices for MCTS algorithms computing abstractions

µd
H(s, a) = µd

H(s
′, a′) and vice versa.

SAP Abstractions: Similarly, given the state abstraction
function µd+1

E , two state-action pairs (s, a) and (s′, a′)
have the same abstraction i.e µd

H(s, a) = µd
H(s
′, a′) iff 1)

C(s, a) = C(s′, a′) 2) ∀x ∈ X :
∑

s′′∈S 1[µ
d+1
E (s′′) =

x] · T (s, a, s′′) =
∑

s′′∈S 1[µ
d+1
E (s′′) = x] · T (s′, a′, s′′)

i.e the sum of transition probabilities to same abstract class
at next level is equal. Here, 1 denotes the indicator function.

Anand et al (2015) illustrate the effectiveness of using
SAP abstractions in addition to the state abstractions over
a variety of domains. Both AS-UCT and ASAP-UCT are
batch algorithms where abstractions are computed after ev-
ery few rollouts in the UCT tree. These abstractions are
subsequently used during all backups until the computation
of next round of abstractions. Both these approaches suf-
fer from relatively high abstraction computation time, which
leads to their poor performance in some domains compared
to UCT even in presence of symmetries.

There is also recent work on improving exploration in
UCT when rewards are sparse using local manifold learning
(Srinivasan, Talvitie, and Bowling 2015). They improve ex-
ploration by generalizing the rollout values across all near-
est neighbor states based on a distance metric determined
by manifold learning of state space. Another recent work
(Jiang, Kulesza, and Singh 2015) investigates selecting an
appropriate level of abstraction among candidate abstrac-
tions in a model-based reinforcement learning framework.

Finally, Progressive Abstraction Refinement for Sparse
Sampling (PARSS) (Hostetler, Fern, and Dietterich 2015)
applies abstractions to sparse sampling framework (Kearns,
Mansour, and Ng 2002). PARSS begins from a fully abstract
tree, and grows it by refining the abstract nodes. The re-
finement procedure is somewhat ad hoc in that it splits an
abstract node into two nodes arbitrarily and does not use
any domain information whatsoever. It is also not clear how
PARSS scales with increase in depth. Its strength is its abil-
ity to find better solutions when planning time is extremely
small due to heavy initial abstraction. Moreover, it is an
incremental algorithm and computes abstractions in a non-
batch manner. Our ‘On-the-Go’ abstractions are inspired by
good properties of both PARSS and ASAP-UCT, which we
describe in the next section.

Design Choices for Abstraction Algorithms
Abstraction computation and tree construction mutually de-
pend on each other. If the tree is complete, the abstractions
computed will be accurate; if more abstractions are known,
a more reduced tree can be built saving further computation.

This interplay between MCTS and abstraction computation
is relatively novel and admits several important algorithmic
design choices. We briefly describe these choices and place
existing algorithms in this context. We find that ASAP-UCT
and PARSS have complimentary strengths and weaknesses;
our proposal OGA-UCT combines the best of both worlds.
Table 1 summarizes this analysis.
Batch vs. Incremental Computation: A key design de-
cision is “when to initiate the abstraction computation rou-
tine”? AS-UCT and ASAP-UCT are batch-style algorithms
that clearly demarcate the tree construction phase from the
abstraction computation phase. Abstraction computation is
treated as an independent procedure that is called periodi-
cally at specific time points. Moreover, they throw away pre-
vious abstractions, and recompute them from scratch.

An alternative is an incremental algorithm that tightly
couples abstraction computation with tree construction. For
example, PARSS adds nodes to its tree via abstraction re-
finement. It only changes abstractions of a few nodes locally
and does not compute everything from scratch.

We point out that batch-style algorithms are expensive and
also suffer from stale abstractions – it can take a while to
recover from erroneous abstractions (or good abstractions
missed). This can potentially lead to worse solutions because
one state’s Q-value may be erroneously and repeated trans-
ferred to another state. Incremental algorithms have the dan-
ger of spending too much time computing abstractions and
little time using them in planning.
Uniform vs. Adaptive Abstractions: The success of
MCTS is, in part, due to adaptive sampling, which zooms
in on important parts of search tree (e.g., using UCB for-
mula). The same principle is applicable to choosing the sub-
set of nodes on which to attempt abstraction computation.
AS-UCT and ASAP-UCT treat all search nodes in the tree
equally, wasting time on nodes that might be rarely visited.
PARSS performs an explicit node selection and can incorpo-
rate a measure of importance in choosing nodes for refine-
ment.
Progressive Refinement vs. Split-Merge: Abstraction
computation may be monotonic. For example, it may start
with the flattest nodes and progressively merge nodes to cre-
ate aggregate super-nodes. Or it may start with the coarsest
supernodes and progressively split those to create finer re-
finements. The former approach will create increasingly re-
duced trees whereas the latter will create increasingly finer
trees. A very different solution is to allow the algorithm to
split or merge as necessary based on new information. We
call these Split-Merge abstractions. A newly added node or
edge in the tree may identify that two previously abstracted

nodes were, in fact, not symmetric and should be split, or
that two nodes now appear symmetric, and can be merged.
This allows the maximum use of available information in
creating as accurate abstractions as possible at a given time.

PARSS uses progressive refinement. AS-UCT and ASAP-
UCT, due to their complete recomputation of abstractions,
allow both splits and merges. We know of no work that uses
progressive abstractions, in part because there aren’t many
different abstraction procedures available.
Convergence Conditions & Units of Abstraction: A re-
lated question is “what does the final tree converge to?”
Does it converge to a completely flat search space? Or does
it converge to a reduced space? PARSS splits abstract states
somewhat arbitrarily and, in the limit, converges to a per-
fectly flat search tree. On the other hand, AS- and ASAP-
UCT use the definitions of node symmetries to converge to
a reduced search space, which is guaranteed to be an accu-
rate reduction of the MDP in the limit. Of these two, AS-
UCT abstracts only the states, whereas ASAP-UCT can ab-
stract state-action pairs as well, leading to more compression
and runtime savings as shown before (Anand et al. 2015).
PARSS operates only on states and not on state-action pairs.

Overall, we find that both PARSS and ASAP-UCT have
some desirable and some undesirable properties. PARSS is
an incremental and adaptive algorithm, but its abstractions
are ad hoc and don’t discover accurate domain symmetries.
It also reduces to a flat space in the limit, and only aggregates
states. ASAP-UCT, on the other hand, abstracts SAPs but is
a batch-style algorithm and uniformly computes abstractions
on the whole tree. Our proposal, OGA-UCT, combines the
strengths of both algorithms: it computes SAP abstractions
in an incremental and adaptive manner.

OGA-UCT
In this section, we describe our algorithm OGA-UCT. Our
algorithm is best understood in terms of the construction of
the original UCT tree. The UCT computation can be broadly
divided in two key phases 1) Sampling of a trajectory 2)
Random rollout from a newly discovered leaf node. In OGA-
UCT, during the first phase, along with sampling of the tra-
jectory, an abstraction for each node is also maintained on-
the-go. Abstraction for any node is computed using the re-
cursive updates similar to the ones used by ASAP-UCT (see
the Background section). But the key difference is that in-
stead of doing the batch computation uniformly for each
node, we do it incrementally and in an adaptive manner.
Each node has an associated recency count, which stores the
number of times the node was visited after its abstraction
was last updated. If the recency count reaches a pre-decided
threshold K, we re-compute the abstraction for this node
and set the recency count back to 0. In the second phase
when a rollout is performed, we initialize the abstraction of
the newly created leaf and set its recency count to 0. Any Q-
value updates in the UCT tree are now done over the abstract
nodes rather than the original nodes. This effectively means
that we can utilize the information from a single rollout for
all the nodes falling under the same abstraction. Since ab-
stractions at a certain depth depend on the abstractions in
the tree below, it may happen that when a node’s abstraction

changes, there is a change in the abstraction of its ancestor
nodes. Therefore, any change in the abstraction of a node at
depth d is propagated all the way up to the root of the tree,
recomputing abstractions as necessary.

Our entire algorithm can be divided in four parts. 1) OGA-
UCT procedure (Algorithm 1) which maintains the outer
loop for sampling trajectories and is similar to the original
UCT. 2) SampleTrajectory procedure (Algorithm 2) for sam-
pling a single trajectory which is the key for OGA-UCT. 3)
Procedures (Algorithm 3) for updating state and SAP ab-
stractions and percolating the changes recursively to the an-
cestors once the recency count is reached for a node. 4) Pro-
cedures (Algorithm 4) for computing the current abstraction
of a state and an SAP node. We next describe each one of
them in detail.

Algorithm 1 OGA-UCT
1: procedure OGA-UCT(S0, N,K,Horizon)
2: T ← EMPTYTREE()
3: global K,Horizon, T
4: Add state node (S0, 0) to tree T
5: INITIALIZESTATEABSTRACTION(S0, 0)
6: i← 0
7: while i < N do
8: SAMPLETRAJECTORY(S0, 0)
9: i← i+ 1

10: end while
11: return SELECTBESTACTION(S0, 0)
12: end procedure

OGA-UCT (Algorithm 1): The procedure OGA-UCT
is very similar to the traditional UCT algorithm. We start
from a root node (S0, 0) and then sample the required num-
ber of trajectories (N). Note that we need to initialize the
abstraction of the root node (line 5). Horizon determines
the depth until which the tree is expanded. K controls the
frequency for computing abstraction; abstractions are re-
computed when the recency count of a node becomes equal
to K.

Sampling Trajectory (Algorithm 2): This is the main
procedure of our algorithm. Lines 2-6 check the base condi-
tion for stopping a trajectory. Lines 7-11 add a newly dis-
covered leaf node to the tree, create an abstract node for
it(initialize its abstraction) and perform a rollout. If the pro-
cedure comes to line 12, we have not discovered a new leaf
node yet. Line 12 selects an action based on the UCB rule.
Here, Q-Values and Counts in UCB formula are obtained
from Q-Values and Counts of corresponding abstract node.
In lines 13-17, we add a newly discovered SAP node to the
tree, create a new abstract node for it (initialize its abstrac-
tion) and set the recency count as 0. Lines 18-19 sample a
new state node based on the chosen action and recursively
call SAMPLETRAJECTORY. Lines 20-23 take care of main-
taining the recency count and calling update abstractions if
the count has reached the threshold K. Finally, lines 24-25
update counts and Q-Values for abstract node correspond-
ing to (s, a, d). It is insightful to note that if we remove
the lines for computing abstractions and maintaining the re-

cency count (lines 9,15-16,20-23), the procedure becomes
identical to what standard UCT would do with lines 24, 25
updating Q-Value and Count of ground node.

Algorithm 2 Sample Trajectory in UCT
1: procedure VAL = SAMPLETRAJECTORY(s, d)
2: if terminal(s) then
3: return −reward(s)
4: else if d == Horizon then
5: return 0
6: end if
7: if (s, d) is not in tree T then
8: Add state node (s, d) to tree T
9: INITIALIZESTATEABSTRACTION(s, d)

10: return GETROLLOUT(s, d)
11: end if
12: a← SELECT-UCB-ACTION(s, d)
13: if (s, a, d) is not in tree T then
14: Add SAP node (s, a, d) to tree T
15: INITIALIZE-SAP-ABSTRACTION(s, a, d)
16: RecencyCount[s, a, d]← 0
17: end if
18: s′ ← SAMPLE(s, a)
19: newV al← SAMPLETRAJECTORY(s′, d+ 1)
20: RecencyCount[s, a, d] + +
21: if RecencyCount[s, a, d] == K then
22: UPDATE-SAP-ABSTRACTION(s, a, d)
23: end if
24: INCREMENTCOUNT(µd

H(s, a))
25: UPDATEQ(µd

H(s, a), newV al)
26: return newV al
27: end procedure

Updating Abstractions (Algorithm 3): We update the
abstractions for nodes whose recency count has reached K.
There are two different procedures, one for updating SAP
abstractions and other for updating state abstractions. The
symbol µd

E (µd
H) denotes the mapping from a state (SAP)

node to its abstraction, as defined in the Background sec-
tion. In the procedure for updating SAP abstractions, we
first reset the recency count. Line 3 retrieves the current ab-
straction (v) of this node and line 4 computes the new ab-
straction (u). In lines 5 to 9, if the new abstraction is dif-
ferent from the old abstraction (i.e. u 6= v), the data of the
old abstract node (v, d) and new abstract node (u, d) needs
to be updated (since a ground node is leaving one and en-
tering the other).The details about updating data(Q-Values
and Counts) in line 7 is discussed in detail in sub-section on
Maintaining Q-Values and Counts later. In line 8, update ab-
straction is then called on the parent node (s, d) to propagate
up the influence of change in abstraction of node (s, a, d).

The procedure for updating state abstraction (starting line
12) is similar. Since, a state node could have resulted from
multiple (s′, a′) nodes, abstractions have to be updated for
each one of them (lines 17 - 19). Note that we do not need
to maintain any data for state nodes. The V-value of a state
node is not explicitly required in UCT, and, the count of a
state node is obtained by summing up the count of it’s chil-

dren SAP nodes.

Algorithm 3 Update Abstractions
1: procedure UPDATE-SAP-ABSTRACTION(s, a, d)
2: RecencyCount[s, a, d]← 0
3: v ← µd

H(s, a)
4: u← COMPUTE-SAP-ABSTRACTION(s, a, d)
5: if u 6= v then . if abstraction changed
6: µd

H(s, a)← u
7: Update data of (v, d) and (u, d)
8: UPDATE-STATE-ABSTRACTION(s, d)
9: end if

10: end procedure
11:
12: procedure UPDATE-STATE-ABSTRACTION(s, d)
13: y ← µd

E(s)
14: x← COMPUTE-STATE-ABSTRACTION(s, d)
15: if x 6= y then . if abstraction changed
16: µd

E(s)← x
17: for (s′, a′) ∈ Parents[s, d] do
18: UPDATE-SAP-ABSTRACTION(s′, a′, d− 1)
19: end for
20: end if
21: end procedure

Computing Abstractions (Algorithm 4): There are two
different procedures for computing abstractions: one for
SAP nodes and one for state nodes. Let us look at the case of
SAP nodes (Compute SAP Abstractions) first. Recall that X
denotes the set of abstract state nodes at a given depth (d+1
in this case). Let TX denote the vector of transition proba-
bilities to abstract state nodes in depth d+1 from SAP node
(s, a, d). Initially, these transition probabilities are set to 0
(line 2). In lines 3-5, TX is populated by iterating over each
node (s′, d+1) in the next level, finding its abstraction µd+1

E
and adding the transition probability T (s, a, s′) to the cor-
responding element of vector TX . We also, maintain a hash
map Md

X which stores the mapping from the pairs of form
[TX , C(s, a)] to an abstract SAP node at depth d. If the key
[TX , C(s, a)] already exists in Md

X , the desired abstraction
of (s, a, d) is the corresponding value (w in the line 7). Else
we create a new SAP abstraction (u) containing (s, a, d) as
the only node and add it to map Md

X (lines 10,11).
Similarly for computing abstraction of state node (s) at
depth (d), we maintain a set JU consisting of abstract SAP
nodes of form (s, a, d) at depth d. Hash map Md

U stores the
mapping from set of form JU to the state abstractions at
depth d. If JU already exists in hash-map, then we return
the corresponding state abstraction else a new abstraction is
created and returned.

Maintaining Q-Values and Counts: The ideal design
principle would be to set the Q-value of an abstract SAP
node as the weighted average of Q-values of the constituent
nodes, and the associated count to be the sum of the con-
stituent counts. Unfortunately, operationalizing this (at the
time of abstraction change) requires significant bookkeep-
ing. Hence, we maintain data(Q-values and Counts) only for
abstract SAP nodes instead of individual nodes.

Let the abstraction of an SAP node (s, a, d) change from v
to u. Let the original counts for v and u be given by Cv and
Cu respectively and new counts be given byCnew

v andCnew
u

respectively. The new Cnew
v and Cnew

u can be computed in
the following manner:

Cnew
v = Cv −

Cv

|v|
, Cnew

u = Cu +
Cv

|v|
(1)

Here, |v| is number of ground nodes present in abstract node
v. Intuitively, since we maintain count only for abstract SAP
nodes, we take proportionate count from v and add it to u.
Next, let Qv and Qu denote the original Q-values for v and
u respectively. Then, the new Q-values,Qnew

v andQnew
u can

be computed by:

Qnew
v = Qv;Q

new
u =

Cu ·Qu + Cv

|v| ·Qv

Cu + Cv

|v|
(2)

Note that Qv remains unchanged and Qu is updated by tak-
ing a weighted average between Qv and Qu.

Algorithm 4 Compute-Abstraction
1: procedure COMPUTE-SAP-ABSTRACTION(s, a, d)
2: ∀x ∈ X : TX [x] = 0
3: for (s′, d+ 1) in Tree T do
4: TX [µd+1

E (s′)]+ = T (s, a, s′)
5: end for
6: if [TX , C(s, a)] exists in Md

X then
7: w =Md

X [TX , C(s, a)]
8: return w
9: end if

10: u← CREATE-NEW-SAP-ABSTRACTION(d)
11: Insert [TX , C(s, a)], u in Md

X
12: return u
13: end procedure
14:
15: procedure COMPUTE-STATE-ABSTRACTION(s, d)
16: JU ← {}
17: for a ∈ A do
18: JU ← JU ∪ {µd

H(s, a)}
19: end for
20: if JU exists in Md

U then
21: z =Md

U [JU]
22: return z
23: end if
24: x← CREATE-NEW-STATE-ABSTRACTION(d)
25: Insert JU , x in Md

U
26: return x
27: end procedure

Pruned OGA-UCT: Many applications need to deal with
domains with a very high stochastic branching factor. In
such cases, OGA-UCT will spend a significant amount of
time in computing SAP abstractions since large number of
transitions need to be considered. In order to ameliorate
this problem, while constructing transition tables, we don’t
consider nodes with very low transition probabilities. As-
sume that we need to compute abstraction of an SAP node

(s, a, d). Let T ∗s = maxs′T (s, a, s′) where the maximisa-
tion is taken over the states s′ such that (s′, d+ 1) is a node
present in the UCT tree. Then, during abstraction compu-
tation, we only consider those nodes (s′, d + 1) in the tree
whose transition probability T (s, a, s′) ≥ α ∗ T ∗s . Here α
is a constant s.t 0 ≤ α ≤ 1. In addition, we achieve this
without a complete linear scan over nodes at depth d + 1
by a small optimization. We call the resulting algorithm
Pruned OGA-UCT . Note that Pruned OGA-UCT defaults
to OGA-UCT when α = 0. As demonstrated by our experi-
ments, Pruned OGA-UCT (for a suitably chosen value of α)
is competitive with OGA-UCT while giving improved per-
formance on domains with high branching factor.
Implementation Details: Whenever the abstraction of a
state or SAP node changes, we might need to update the ab-
straction of its ancestors continuing all the way up to the root
of the tree. Since UCT tree is a Directed Acyclic Graph, a
single update of abstraction at a node may result in multiple
such updates on an ancestor through different paths. In our
implementation, we carefully avoid these multiple updates
by performing them in a breadth first manner.

Characteristics of OGA-UCT
OGA-UCT has several desirable theoretical and algorithmic
properties. We first prove that it converges to the optimal
solution in the limit of infinite samples.

Theorem 1. Given an MDP M = (S,A, T , C,H), the
value function computed by OGA-UCT for the abstract node
containing a state s at depth d converges to the value func-
tion computed by UCT for state s, as number of trajectories
N →∞ i.e ∀s ∈ S ∀d ≤ H

lim
N→∞

V N
OGA(µ

d
X (s), d) = lim

N→∞
V N
UCT (s, d)

Here V N
OGA and V N

UCT denote the value functions com-
puted by OGA-UCT and UCT, respectively.
Proof Sketch: The proof will proceed in two parts.
Part 1 (Sound abstractions lead to correct values): We
say that abstractions computed by OGA-UCT are sound if
two state (SAP) nodes that fall in the same abstraction under
OGA-UCT, also fall in the same abstraction using the ASAP
definition of abstractions in the ground finite-horizon MDP.
Further, ASAP abstractions are guaranteed to have identi-
cal Q-values and V-values (Anand et al. 2015). Therefore,
applying UCT on such a sound abstract tree will result in
simulation of ground UCT which will converge to the opti-
mal values in the limit.
Part 2 (OGA-UCT leads to sound abstractions): Let
N(s,d) denote the number of trajectories passing through the
state node (s, d). We say that (s, d) is visited sufficiently if
Ns,d → ∞ when N → ∞. We define sufficient visits for
SAP nodes in a similar manner. We will inductively prove
that the abstractions in a sub-tree rooted at the state node
(s, d) are sound if (s, d) is visited sufficiently. Let the D be
the maximum depth in the tree. We will prove the claim by
using backward induction from D going all the way to 0.
Clearly, the claim is true for d = D (leaves of the tree). Let
us assume that it holds for state nodes at depth d+1. We will

now prove it for depth d. Consider a state node (s, d). Since
(s, d) is visited sufficiently, all its children SAP nodes must
be in the tree (due to the exploration in UCT). Let (s, a, d)
be one such child node. Let u ∈ U denote the abstract node
corresponding to (s, a, d). Then, again due to exploration
in UCT, ∃ at least one node (s′, a′, d) with abstraction u
which is visited sufficiently (all the nodes in an abstraction
can not be starved). Since an SAP node samples its child
nodes based on the transition probabilities, all its children
(s′′, d + 1) must be in the tree, must be visited sufficiently,
and hence, should have sound abstractions using the induc-
tive hypothesis. Combining the above two facts, we can say
that (s′, a′, d) will also have a sound abstraction with any
node in u. This implies that (s, a, d) (child of (s, a)) will
have a sound abstraction. But since (s, a, d) was arbitrary, all
the children of (s, d) must have sound abstractions. Combin-
ing this with the fact that all the children of (s, d) are already
in the tree, (s, d) must also have sounds abstraction. Finally,
since the root is visited sufficiently by the statement of the
theorem, all the abstractions in the UCT tree must be sound
in the limit. Hence, proved.

We now place OGA-UCT into the context of our previ-
ous analysis of algorithmic design choices. OGA-UCT is in-
cremental – it tightly integrates the abstraction computation
routine with tree construction and makes only local changes
in abstractions. Its focus on where to recompute abstractions
is adaptive – it recomputes abstractions for frequently vis-
ited nodes much more often than others, thereby effectively
utilizing the abstraction computation time on important parts
of the search space. OGA-UCT can both split and merge ex-
isting abstractions, allowing itself to maintain as accurate
a domain abstraction as possible given current knowledge.
Last but not the least, it abstracts both states and state-action
pairs, and in the limit converges to a reduced search space.

Experiments
We compare the performance of OGA-UCT with ASAP-
UCT, the state-of-the-art UCT-based algorithm that employs
domain abstractions. Previous work (Anand et al. 2015)
showed that it obtains better performance than AS-UCT and
variants. We also compare OGA-UCT with vanilla UCT to
assess the overall value of abstractions in UCT. In addition,
we also do a sensitivity analysis for different values of K
in OGA-UCT. We illustrate our experiments on six popu-
lar MDP planning domains from literature and International
Probabilistic Planning Competition (IPPC).

We implement OGA-UCT on the top of MDP Engine,2
the UCT implementation from Bonet & Geffner (2012) in
C++. ASAP-UCT3 is also implemented over the same code-
base. This makes the runtime comparisons between the three
algorithms meaningful.

In spite of having access to PARSS source-code
(Hostetler, Fern, and Dietterich 2015), we could not com-
plete a meaningful comparison. PARSS is implemented in

2Available at https://code.google.com/p/
mdp-engine/

3Downloaded from https://github.com/
dair-iitd/asap-uct

Java giving it a rather different execution profile. Its ba-
sis in sparse sampling and its unique style of abstractions
makes PARSS very different in nature compared to UCT
implementing AS, ASAP, or OGA. Because it starts with
a tree pre-built up to the planning horizon, we do not ex-
pect PARSS performance to match up to UCT-based algo-
rithms for large horizons – original PARSS experiments are
on horizons of up to five. Their results are also on signifi-
cantly modified versions of original benchmarks. We leave
empirical comparison with PARSS to future work.

In our experiments, all algorithms were given equal time
per decision, computed as total planning time divided by the
execution horizon. UCT rollouts employed a random base
policy. We set the exploration constant for UCB rule to be
the absolute value of current Q-value of node, as per rec-
ommendations in (Bonet and Geffner 2012). The l value
in ASAP-UCT, which determines the number of abstraction
phases per decision, was set to 1 as per the recommendation
in ASAP-UCT paper. We tried various K values and found
OGA-UCT performance to vary slightly in a few domains,
with no clear winner. We chooseK to be 3 in all experiments
for its marginally better overall performance.

All our experiments are performed on Intel Quad core i-
7 system. For all the domains, we use a planning horizon
of 50 and execution horizon of 100, i.e, a total of 100 deci-
sions are taken per problem, and each decision is taken with
a maximum lookahead of 50.

Domain Descriptions
We briefly describe the MDP domains used in our expts.
Race Track: This traditional MDP (Barto, Bradtke, and
Singh 1995; Bonet and Geffner 2012) consists of a race track
with acceleration and deceleration in either direction as the
available actions. We test on six different race-tracks as im-
plemented in Bonet’s MDP Engine.
SysAdmin: We use IPPC 2011 (Sanner and Yoon 2011)
version of this traditional domain (Guestrin et al. 2003). The
agent is a network administrator, and can reboot machines.
Machines can probabilistically crash based on the number of
alive machines that are neighbors. We test on six problems –
ring, hub, and line topologies with 10 and 15 machines each.
Navigation: In this IPPC 2011 domain the goal is to navi-
gate a grid, but with a probability, the agent teleports back
to the starting cell. The probabilities in different cells vary,
making it possible for the agent to find longer paths, which
actually have a higher probability of reaching the goal. We
test on five IPPC 2011 instances of varying sizes.
Sailing Wind: In this popular grid world domain (Kocsis
and Szepesvári 2006; Bonet and Geffner 2012) each grid
element has additional information about wind direction.
An agent can move in seven directions (except opposite to
wind direction), but pays variable cost based on the wind
direction. We use 5 different instances having grid sizes
{10, 15, 20, 25, 30} in our tests.
Academic Advising: This domain from IPPC 2014 requires
an agent to pass various courses that have pre-requisite re-
lations (Guerin et al. 2012). Good grades in pre-requisites
makes it more likely to pass a course. We test on 4 different
IPPC instances for this domain.

Figure 1: OGA-UCT performs better or at par with ASAP-UCT and UCT for most of the domains

Game of Life: In this IPPC 2011 gridworld domain, cells
can die due to overpopulation or underpopulation depending
upon number of alive neighbors. An agent can make a cell
alive every time step. The domain has a very high branching
factor. We test on two instances for grid sizes 3×3, 4×4, and
5×5 with uniform noise probabilities in each cell.

Observations
We compare OGA-UCT with ASAP-UCT and unabstracted
UCT on these problems with different total planning times
and draw cost vs. time curves. Representative runs on each
domain are illustrated in Figure 1. Each curve is an average
of 1,000 reruns and also draws 95% confidence interval bars.

In addition to the representative curves we also show ag-
gregate performance of an algorithm on each domain across
different planning times (Table 2). We choose six equi-
spaced planning times for each problem and run the three
algorithms along with all variants (pruned versions and dif-
ferent K values). Of all of these points, we give the least cost
a score of 1, and the worst cost a score of zero. We normalize
each cost value to a number between 0 and 1. This normal-
ization is related to the metric used by IPPCs, with small
differences. For example, IPPCs normalize only across al-
gorithms and not across planning times.

We observe that OGA-UCT performs the best or on par
with the best on four out of the six domains. In AcadAd-
vising and Navigation, OGA’s performance is substantially
better than both algorithms. It matches performance with
UCT on RaceTrack and with ASAP-UCT on Sailing Wind.
In Game of Life (GOL) and Sysadmin, OGA-UCT performs
worse than ASAP-UCT. Both of these domains have ex-
ponential branching factors, which severely slow down ab-
straction computation routines. Since OGA recomputes ab-
stractions more often than ASAP, it suffers significantly.

The pruned version of OGA-UCT helps with exactly
this (we set probability threshold to 0.1). Pruned OGA-
UCT makes abstraction computations approximate and only
higher probability transitions are taken into account while
computing abstractions. This improves performance on both

domains, with pruned OGA-UCT becoming at par with
ASAP-UCT on GOL. The performance in other domains re-
mains mostly similar. For fair comparison, we also attempt
pruning with ASAP-UCT and find that it hurts substantially
in GOL and Sysadmin. Since ASAP-UCT computes abstrac-
tions only a handful of times per decision step, computing
them accurately is likely more important for it than the com-
putational savings due to approximation.

Overall, we find that performances of ASAP-UCT and
UCT can depend heavily on the domain, but OGA-UCT ad-
mits least variance and is robustly good across several do-
mains.4
Sensitivity Analysis across different K-Values: We ran all
our experiments for K = 1, 3, 5, 7. Table 3 shows the ag-
gregate score for different Ks. While there is no single K,
which is best across all domains, most of the performances
are significantly close to each other. We choose K = 3,
which gives an overall balanced performance across all do-
mains.

Conclusions
We present OGA-UCT, an algorithm to compute domain ab-
stractions on the go within the UCT framework. It makes
several desirable design choices such as it computes abstrac-
tions of state-action pairs, using an incremental and adaptive
computation of abstractions, with a tight coupling between
abstraction computation and tree construction. This allows
OGA-UCT to efficiently recover from inaccurate abstrac-
tions as more information gets available. In the limit of in-
finite samples, OGA-UCT obtains a sound reduction of the
original search tree and converges to the optimal solution.

Our experiments demonstrate that OGA-UCT is robust
across domains. It compares favorably to the best of the al-
gorithms in many domains. However, it can suffer when the

4Our comparative results between ASAP-UCT and UCT are
different from those in Anand et al. (2015). This is because we
identified a bug in Bonet’s MDP Engine, and fixing that bug
changed performances of all algorithms slightly. This bug was ver-
ified by Bonet.

Domains UCT ASAP-UCT OGA (K=3) Pruned ASAP Pruned OGA (K=3)
Acadadvising 0.48 ± 0.07 0.23 ± 0.16 0.89 ± 0.03 0.23 ± 0.16 0.88 ± 0.03
Navigation 0.41 ± 0.16 0.45 ± 0.13 0.57 ± 0.13 0.45 ± 0.12 0.54 ± 0.08
RaceTrack 0.84 ± 0.13 0.38 ± 0.09 0.84 ± 0.13 0.46 ± 0.11 0.82 ± 0.14
Sailing Wind 0.61 ± 0.03 0.80 ± 0.05 0.82 ± 0.05 0.82 ± 0.04 0.82 ± 0.03
GameOfLife 0.14 ± 0.17 0.81 ± 0.06 0.64 ± 0.11 0.44 ± 0.21 0.82 ± 0.04
Sysadmin 0.02 ± 0.01 0.66 ± 0.03 0.54 ± 0.01 0.45 ± 0.05 0.57 ± 0.08

Table 2: Aggregate performance across different problems and planning times per domain normalized between 0 and 1. Pruned
OGA-UCT is best or on par with the best on almost all domains, including those with high branching factors.

Dom. OGA (K=1) OGA (K=3) OGA (K=5) OGA (K=7)
Acad. 0.86 ± 0.02 0.89 ± 0.03 0.91 ± 0.03 0.87 ± 0.08
Nav. 0.73 ± 0.07 0.57 ± 0.13 0.50 ± 0.11 0.45 ± 0.13
Race. 0.79 ± 0.17 0.84 ± 0.13 0.85 ± 0.12 0.85 ± 0.13
Sail. 0.76 ± 0.03 0.82 ± 0.05 0.84 ± 0.03 0.83 ± 0.03
GOL 0.62 ± 0.09 0.64 ± 0.11 0.63 ± 0.11 0.61 ± 0.11
Sys. 0.42 ± 0.02 0.54 ± 0.01 0.59 ± 0.02 0.61 ± 0.02

Table 3: Comparison of OGA-UCT different K-values for all
domains. Performances remain similar, and there is no clear
winner.

branching factor is very high because that directly impacts
the abstraction computation routine. An extension of OGA-
UCT that prunes various low-probability transitions allows
it to scale to such domains. Overall, Pruned OGA-UCT ob-
tains best performance in almost all domains obtaining up to
28% quality gains.

We also contribute our analysis of algorithmic design
choices applicable to MCTS with abstractions. We hope that
this analysis will be useful in understanding existing algo-
rithms and also for algorithm development in the future.

Acknowledgements
We thank Alan Fern for his valuable comments, which re-
sulted in our exploring this research direction. We thank
Blai Bonet for his help with the MDP engine. We also thank
the anonymous reviewers for their in-depth reviews, which
helped improve the paper significantly. Ankit Anand is sup-
ported by TCS Research Scholars Program. Mausam is sup-
ported by Google and Bloomberg research awards.

References
Anand, A.; Grover, A.; Mausam; and Singla, P. 2015.
ASAP-UCT: Abstraction of State-Action Pairs in UCT. In
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence (IJCAI), 1509–1515.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning
to act using real-time dynamic programming. Artif. Intell.
72(1-2):81–138.
Bellman, R. 1957. A Markovian Decision Process. Indiana
University Mathematics Journal.
Bonet, B., and Geffner, H. 2012. Action Selection for
MDPs: Anytime AO* Versus UCT. In AAAI.

Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence no-
tions and model minimization in Markov decision processes.
Artificial Intelligence 147(12):163 – 223.
Guerin, J. T.; Hanna, J. P.; Ferland, L.; Mattei, N.; and Gold-
smith, J. 2012. The academic advising planning domain.
WS-IPC 2012 1.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient solution algorithms for factored MDPs. J.
Artif. Intell. Res.(JAIR) 19:399–468.
Hostetler, J.; Fern, A.; and Dietterich, T. 2014. State Aggre-
gation in Monte Carlo Tree Search. In AAAI.
Hostetler, J.; Fern, A.; and Dietterich, T. 2015. Progressive
abstraction refinement for sparse sampling. In Conference
on Uncertainty in Artificial Intelligence (UAI).
Howard, R. A. 1960. Dynamic programming and markov
processes.
Jiang, N.; Kulesza, A.; and Singh, S. 2015. Abstraction
selection in model-based reinforcement learning. In Pro-
ceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, 179–
188.
Jiang, N.; Singh, S.; and Lewis, R. 2014. Improving UCT
Planning via Approximate Homomorphisms. In AAMAS.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A sparse sam-
pling algorithm for near-optimal planning in large markov
decision processes. Mach. Learn. 49(2-3):193–208.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In ICAPS.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Machine Learning: ECML. Springer.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
Unified Theory of State Abstraction for MDPs. In ISAIM.
Mausam, and Kolobov, A. 2012. Planning with Markov
Decision Processes: An AI Perspective. Morgan & Claypool
Publishers.
Ravindran, B. 2004. An Algebraic Approach to Abstraction
in Reinforcement Learning. Ph.D. Dissertation, University
of Massachusetts Amherst.
Sanner, S., and Yoon, S. 2011. International Probabilistic
Planning Competition (IPPC) 2011. In ICAPS.
Srinivasan, S.; Talvitie, E.; and Bowling, M. 2015. Improv-
ing Exploration in UCT Using Local Manifolds. In AAAI
Conference on Artificial Intelligence.

