
Reactive Learning: Actively Trading Off Larger Noisier Training Sets Against
Smaller Cleaner Ones

Christopher H. Lin CHRISLIN@CS.WASHINGTON.EDU

University of Washington, Seattle, WA

Mausam MAUSAM@CSE.IITD.AC.IN

Indian Institute of Technology, Delhi, India

Daniel S. Weld WELD@CS.WASHINGTON.EDU

University of Washington, Seattle, WA

Abstract
One of the most popular uses of crowdsourcing is
to provide training data for supervised machine
learning algorithms. Because of imperfect work-
ers, requesters commonly ask multiple workers
to redundantly label each example. When the
goal is to train the best classifier at the lowest
cost, active learning can intelligently pick new
examples to label. However, active learning fails
to address a fundamental tradeoff. Instead of al-
ways gathering new labels for new examples, we
can also relabel, by gathering more labels for old,
labeled examples. In this paper, we introduce the
new problem of reactive learning, a generaliza-
tion of active learning in which we seek to under-
stand the difference in marginal value between
decreasing the noise of a training set, via rela-
beling, and increasing the size and diversity of a
noisier training set, via labeling new examples.
We show how traditional active learning does not
suffice for reactive learning, present new algo-
rithms designed for this new problem, and empir-
ically show that these algorithms can effectively
make this tradeoff.

1. Introduction
Training data annotation is a common crowdsourcing ap-
plication on many labor markets, such as Mechanical Turk,
as well as on internal crowdsourcing platforms at compa-
nies like Microsoft and Google. Since human workers are
imperfect, requesters commonly ask multiple workers to

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

redundantly label each example, because multiple workers
can simulate an expert worker (Snow et al., 2008). Multi-
ple labels can be aggregated using simple majority vote or
more complex approaches (e.g., (Dawid & Skene, 1979;
Whitehill et al., 2009; Lin et al., 2012b; Bragg et al., 2013;
Zhou et al., 2014)), and these de-noised aggregate labels
can be used to train a learning algorithm. However, given
a limited budget, “relabeling” data may not always be the
best policy, if the goal is to train the best classifier possible.

(Lin et al., 2014) show in this setting that classifiers trained
via “unilabeling,” when m examples are each labeled only
once, can often achieve higher accuracies compared to
fixed relabeling strategies, when m/k examples are each
labeled k times. In other words, they show that interest-
ingly, having a larger, noisier training set can be more use-
ful than a smaller, cleaner one.

However, they also show in many cases the opposite—
that smaller, cleaner data sets train better classifiers than
larger, noisier ones, thereby exposing a fundamental trade-
off. While they identify several characteristics of learning
problems that can affect this tradeoff, they do not address
control, leaving open what we call the reactive learning
problem: given the current state of a learning algorithm,
a fixed budget, and a pool of unlabeled and labeled ex-
amples, which example should one label or relabel next
in order to maximize the classifier’s accuracy? Although
the vast literature on active learning under label noise ad-
dresses how to dynamically pick new examples to label,
none of it considers the possibility of relabeling old exam-
ples. Reactive learning is a generalization of active learning
that allows for the relabeling of examples.

We make the following contributions: 1) We show that
standard active learning does not suffice for reactive learn-
ing, because it does not make full use of the available
knowledge about the labels, and can easily become trapped



Reactive Learning

by the assumption that a new example is always picked. 2)
We introduce two classes of algorithms for reactive learn-
ing. One is a new measure of uncertainty for uncertainty
sampling, and another, which we call impact sampling,
tries to pick examples that will have the most impact on the
classifier. These new algorithms are intuitive and easy to
implement, and address the weaknesses of existing active
learning algorithms. 3) We show in a number of empirical
experiments that our new algorithms significantly outper-
form the state-of-the-art in active learning.

2. Related Work and Preliminaries
(Wauthier & Jordan, 2011) consider a model that inte-
grates active learning with data curation and model learn-
ing. Their algorithm can potentially trade off between rela-
beling and acquiring labels for new examples, but it is not
general and is tied to their own custom classifier.

Several researchers have considered how to pick examples
or workers for (re)labeling when active learning or selec-
tive sampling (Donmez et al., 2009; Donmez & Carbonell,
2008; Donmez et al., 2010; Yan et al., 2011; Dekel et al.,
2010; Sheng et al., 2008; Zhao et al., 2011). However, un-
like our work, these do not answer the fundamental ques-
tion of when to relabel, or whether relabeling is even neces-
sary. Researchers have also considered automated methods
to decide when to relabel (Dai et al., 2013; Lin et al., 2012a;
Bragg et al., 2014; Kamar & Horvitz, 2015) but the goal is
data accuracy instead of classifier accuracy.

Agnostic Active Learning (Kearns et al., 1994; Balcan
et al., 2006; Golovin et al., 2010) is a general learning set-
ting in which noise can be adversarial, or be introduced by
labelers, or refer to labels that are inconsistent with the best
hypothesis that is available to the learner. However, like the
rest of the active learning literature, they do not consider
the possibility of relabeling examples. Many works (e.g.,
(Natarajan et al., 2013; Khardon & Wachman, 2007)) de-
sign noise-tolerant classifiers. However, these works are
orthogonal to ours in purpose. We focus on the tradeoff
between unilabeling and relabeling for any black-box clas-
sifier. Our results can inform the relabeling strategy for
noise-tolerant classifiers.

We now set up the framework for reactive learning. Let
X denote the space of examples, Y = {0, 1} a set of la-
bels, and D, a distribution over X . Let the true concept be
h∗ : X → Y . Let H be a class of hypotheses, from which
our learning algorithm, C, tries to learn the h ∈ H that
minimizes the error ε(h) = Px∼D(h(x) 6= h∗(x)). Ac-
quiring a label from a worker for an example incurs a fixed
unit cost. We assume that each worker exhibits the same
accuracy a ∈ (0.5, 1], an assumption known as the classifi-
cation noise model (Angluin & Laird, 1988) and that each

label we acquire is flipped from the true label, h∗(x), with
probability 1−a. We assume worker errors are independent
and that the error rates are known.

Let XL ⊆ X denote the set of examples for which we cur-
rently have labels, XU ⊆ X denote the set of unlabeled
examples, and for each xi ∈ X let l(xi) = {l1i , . . . , l

τi
i }

be the multiset of labels for that example, where τi is the
number of labels we have for xi. Let f(l(xi)) output an
aggregated label (e.g., majority vote) for an example given
the noisy labels for that example. We train C using XL and
the corresponding aggregated labels output by f .

3. Algorithms For Reactive Learning
3.1. Uncertainty Sampling

Uncertainty sampling (Lewis & Catlett, 1994) is one of the
most popular algorithms for active learning (Settles, 2012).
To pick the next example to label, it simply computes a
measure of the classifier’s uncertainty (e.g., margin-based,
entropy) for each example in the unlabeled set, XU , and
then returns the most uncertain one. We denote as US un-
certainty sampling that returns the x ∈ XU with highest
entropy.

We can directly apply uncertainty sampling to reactive
learning by allowing it to sample from both XU and
XL. Let this algorithm be denoted Re-US. Unfortunately,
Re-US can result in extremely poor performance. The
problem is that in many cases, the most uncertain exam-
ple (according to the classifier) will be a labeled example
that we actually are certain about (according to the labels
we have). For instance, suppose Re-US returns a point xi
close to the decision boundary of our classifier. But sup-
pose further that this point has already been labeled a large
number of times (τi is large). Relabeling this point is an
extremely poor idea, since requesting another label will be
highly unlikely to change the aggregated label f(l(xi)), re-
sulting in no change to the classifier, resulting in the same
point being queried at the next time-step, forming an infi-
nite loop during which no learning takes place.

Clearly, any reactive learning algorithm needs to consider
both the classifier’s uncertainty, which we now denoteMC ,
and the label’s uncertainty, which we denoteML. Thus, we
propose a new uncertainty measure, which is a weighted
average of these two uncertainties: (1 − α)MC + αML,
where α ∈ [0, 1]. We define ML(xi) as follows. For ev-
ery example xi, we compute label posteriors P (h∗(xi) |
l(xi)) by applying Bayes’ rule to the observed labels.
Then, we use the entropy of these posteriors as the la-
bel’s uncertainty: ML(xi) = −

∑
y∈Y P (h∗(xi) = y |

l(xi)) logP (h∗(xi) = y | l(xi)). We denote this new
algorithm Re-US(α). Unfortunately, learning the hyper-
parameter, α, may not be easy. Thus, we propose another



Reactive Learning

class of reactive learning algorithms, which do not require
any hyperparameter learning.

3.2. Impact Sampling

Whereas our previous uncertainty sampling algorithm ex-
plicitly considers the knowledge contained in both the clas-
sifier and the labels, the class of impact sampling algo-
rithms takes an indirect approach. Impact sampling algo-
rithms simply pick the next example to (re)label that will
impact the classifier the most, the intuition being that an
example that heavily impacts the learned classifier must be
a good example. Algorithm 1 describes the framework for
computation of the impact of an example x. First, we train
our classifier using all our labeled data, giving us a baseline
hypothesis, h. Then, we train one classifier supposing that
we received the label 0 for example x, giving us hypothesis
h0, and another classifier supposing that we received the
label 1 for example x, giving us hypothesis h1. We com-
pare the predictions of h1 and h0 against the predictions
of h on the labeled and unlabeled examples, and compute
the number of predictions that changed for each, to give us
impact0, and impact1. Finally, we return some function of
impact0 and impact1. Different instantiations of impact
sampling implement retrain and weightedImpact
in various ways, which we now describe.

Algorithm 1 Impact Sampling
Input: Classifier C, Example x ∈ X , Unlabeled Exam-
ples XU , Labeled Examples XL and their corresponding
aggregated labels as given by f and l.
Initialize impact0 = 0, impact1 = 0.
h = retrain(C,XL, f, l, , )
h1 = retrain(C,XL, f, l, x, 1).
h0 = retrain(C,XL, f, l, x, 0).
for xi ∈ XU ∪ XL do

if h0(xi) 6= h(xi) then
impact0 = impact0 + 1

end if
if h1(xi) 6= h(xi) then
impact1 = impact1 + 1

end if
end for
Return weightedImpact(impact0, impact1)

3.2.1. OPTIMISM

The most straightforward way to implement
weightedImpact is to use the label posteriors
(computed using the classifier’s beliefs as a prior) to
compute an expectation of impact0 and impact1:∑
y∈Y a · P (h∗(xi) = y | l(xi)) · impacty . We denote

these impact sampling algorithms with EXP. However,
when training a classifier with noisy labels, the learned

classifier may output beliefs that cannot be trusted. In
these cases, injecting impact sampling with some optimism
can be helpful. We can implement weightedImpact
so that instead of returning an expected impact, it returns
the maximum impact: max(impact0, impact1). Taking a
maximum makes impact sampling optimistic in that now it
assumes the largest possible impact for any given example.
We denote impact sampling with optimism with OPT.

3.2.2. PSEUDO-LOOKAHEAD

The most straightforward way to implement retrain is
to simply add the new fake labels that we pretend to have
received for xi into the multiset l(xi). Thus, the algo-
rithm is myopic in that for certain multisets, adding this
additional label may have no effect on the aggregated label
f(l(xi)) at all, and consequently no effect on the learned
classifier. For example, if we are using majority vote as
f and we currently have 3 votes in favor of the label 1
and 1 vote in favor of the label 0, one additional vote for
0 will result in an impact0 of 0. Myopicity is problem-
atic because training the classifier optimally may require
gathering multiple labels for the same example. To allevi-
ate this problem, we can introduce the ability to perform a
“pseudo-lookahead.”

Whenever we are considering an example xi ∈ XL from
the labeled set (we never have the myopicity problem when
we are considering a new unlabeled example), we imple-
ment the retrain function so that instead of just adding
the new label lnewi into the current multiset l(xi), we en-
sure that the classifier is trained with lnewi as the aggre-
gated label, instead of f(l(xi)). Then, we implement
weightedImpact so that we divide the computed im-
pact of that label, impactlnew

i
, by the minimum of 1 and

the smallest number of additional worker labels that would
have been needed to flip the aggregated label f(l(xi)). In-
tuitively, we are effectively computing a normalized impact
of another label lnewi , given we train C with lnewi . We de-
note algorithms that use pseudo-lookahead with PL.

4. Experiments
We now present empirical experiments to compare the
performances of various impact sampling algorithms,
Re-US(α), and US. We aim to answer three questions:
what setting of α is best, what kind of impact sampling is
best, and whether our methods are more effective at reac-
tive learning than US. We also look at the performance of
US-perfect, which runs US with perfect data, providing
a benchmark on achievable accuracy.

To reduce computational costs, we only allow impact sam-
pling to choose among two points instead of X : the
point recommended by US, and the point recommended



Reactive Learning

Figure 1. Generalization accuracy of logistic regression when
trained using Re-US(α) with α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

Figure 2. Generalization accuracy of logistic regression when
trained using various impact sampling strategies.

by US applied to only XL. We also try versions that
can choose among seven points: the two points as be-
fore, and the five points returned by Re-US(α) where
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

We train an l2-regularized logistic regression. We use a
synthetic domain that contains two random Gaussian clus-
ters, which correspond to two classes. We generate a
dataset by randomly picking two means, µ1, µ2 ∈ [0, 1]k,
and two corresponding covariance matrices Σ1,Σ2 ∈
[0, 1]k×k. For each Gaussian cluster (class), we generate
1,000 examples. All experiments are averaged over 1,000
random datasets. We vary the number of features among
{10, 30, 50, 70, 90}, but only show results for 90 features,
due to lack of space. We seed training with 50 examples,
use a total budget of 1,000, and test on 300 examples. We
set worker accuracy to be a = 0.75.

Figure 3. Generalization accuracy of logistic regression when
trained using various impact sampling and uncertainty sampling
strategies.

Figure 1 compares Re-US(α) against itself for α ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. We see that Re-US(0.3) does
well, and that as we increase α from 0.3, the performance
of the learned classifier drops. Different α work best when
we vary the number of features.

Figure 2 shows the effect of introducing optimism and
psuedo-lookahead into impact sampling. We see that these
techniques are able to substantially increase performance.
First, when we consider impact sampling without pseudo-
lookahead, we see that it works better with optimism
(impactOPT) than without (impactEXP). Next, we see
that adding pseudo-lookahead (impactPLOPT) is better
than not (impactOPT). And finally, we see that allowing
impact sampling to choose from a larger pool of candidate
examples (impactPLOPT(7)) is quite beneficial.

Figure 3 compares impact sampling to uncertainty sam-
pling. We see that even impactEXP, the weakest impact
sampling strategy, strictly dominates US, the most popular
active learning method, in the setting of reactive learning.
We also see that impactPLOPT(7) is quite close to the
accuracy of US-perfect, unlike the other methods.

We repeated these experiments using another synthetic
dataset with three Gaussian clusters instead of two, and
found extremely similar results.

5. Conclusion
We have presented reactive learning, a generalization of ac-
tive learning that allows for the relabeling of examples. We
have shown that standard active learning is not sufficient in
this new setting, presented a new uncertainty measure and a
new class of algorithms, impact sampling, and empirically
shown their effectiveness for reactive learning.



Reactive Learning

References
Angluin, Dana and Laird, Philip. Learning from noisy ex-

amples. Machine Learning, 2(4):343–370, 1988.

Balcan, Maria-Florina, Beygelzimer, Alina, and Langford,
John. Agnostic active learning. In ICML, 2006.

Bragg, Jonathan, Mausam, and Weld, Daniel S. Crowd-
sourcing multi-label classification for taxonomy cre-
ation. In HCOMP, 2013.

Bragg, Jonathan, Mausam, and Weld, Daniel S. Parallel
task routing for crowdsourcing. In HCOMP, 2014.

Dai, Peng, Lin, Christopher H., Mausam, and Weld,
Daniel S. Pomdp-based control of workflows for crowd-
sourcing. Artificial Intelligence, 202:52–85, 2013.

Dawid, A.P. and Skene, A. M. Maximum likelihood es-
timation of observer error-rates using the em algorithm.
Applied Statistics, 28(1):20–28, 1979.

Dekel, Ofer, Gentile, Claudio, and Sridharan, Karthik. Ro-
bust selective sampling from single and multiple teach-
ers. In COLT, 2010.

Donmez, Pinar and Carbonell, Jaime G. Proactive learning:
cost-sensitive active learning with multiple imperfect or-
acles. In CIKM, pp. 619–628, 2008.

Donmez, Pinar, Carbonell, Jaime G., and Schneider, Jeff.
Efficiently learning the accuracy of labeling sources for
selective sampling. In KDD, 2009.

Donmez, Pinar, Carbonell, Jaime G., and Schneider, Jeff.
A probabilistic framework to learn from multiple anno-
tators with time-varying accuracy. In SIAM International
Conference on Data Mining (SDM), pp. 826–837, 2010.

Golovin, Daniel, Krause, Andreas, and Ray, Debajyoti.
Near-optimal bayesian active learning with noisy obser-
vations. In NIPS, 2010.

Kamar, Ece and Horvitz, Eric. Planning for crowdsourcing
hierarchical tasks. In AAMAS, 2015.

Kearns, Michael J., Schapire, Robert E., and Sellie,
Linda M. Toward efficient agnostic learning. Machine
Learning, 17:115–141, 1994.

Khardon, Roni and Wachman, Gabriel. Noise tolerant vari-
ants of the perceptron algorithm. Journal of Machine
Learning Research, 8:227–248, 2007.

Lewis, David D. and Catlett, Jason. Heterogeneous uncer-
tainty sampling for supervised learning. In ICML, 1994.

Lin, Christopher H., Mausam, and Weld, Daniel S. Dy-
namically switching between synergistic workflows for
crowdsourcing. In AAAI, 2012a.

Lin, Christopher H., Mausam, and Weld, Daniel S. Crowd-
sourcing control: Moving beyond multiple choice. In
UAI, 2012b.

Lin, Christopher H., Mausam, and Weld, Daniel S. To
re(label), or not to re(label). In HCOMP, 2014.

Natarajan, Nagarajan, Dhillon, Inderjit S., and Ravikumar,
Pradeep. Learning with noisy labels. In NIPS, 2013.

Settles, Burr. Active Learning. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2012.

Sheng, Victor S., Provost, Foster, and Ipeirotis, Panagio-
tis G. Get another label? improving data quality and data
mining using multiple, noisy labelers. In Proceedings of
the Fourteenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2008.

Snow, Rion, O’Connor, Brendan, Jurafsky, Daniel, and
Ng, A. Cheap and fast — but is it good? evaluating
non-expert annotations for natural language tasks. In
EMNLP’08, 2008.

Wauthier, Fabian L. and Jordan, Michael I. Bayesian bias
mitigation for crowdsourcing. In NIPS, 2011.

Whitehill, Jacob, Ruvolo, Paul, Bergsma, Jacob, Wu,
Tingfan, and Movellan, Javier. Whose vote should count
more: Optimal integration of labels from labelers of un-
known expertise. In NIPS, 2009.

Yan, Yan, Rosales, Romer, Fung, Glenn, and Dy, Jen-
nifer G. Active learning from crowds. In ICML, 2011.

Zhao, Liyue, Sukthankar, Gita, and Sukthankar, Rahul.
Incremental relabeling for active learning with noisy
crowdsourced annotations. In IEEE Conference on So-
cial Computing, 2011.

Zhou, Dengyong, Liu, Qiang, Platt, John C., and Meek,
Christopher. Aggregating ordinal labels from crowds by
minimax conditional entropy. In ICML, 2014.


