
Learning on the Job: Optimal Instruction for Crowdsourcing

Jonathan Bragg JBRAGG@CS.WASHINGTON.EDU

University of Washington, Seattle, WA

Mausam MAUSAM@CSE.IITD.AC.IN

Indian Institute of Technology, Delhi, India

Daniel S. Weld WELD@CS.WASHINGTON.EDU

University of Washington, Seattle, WA

Abstract
A large body of crowdsourcing research focuses
on using techniques from artificial intelligence
to improve estimates of latent answers to ques-
tions, assuming fixed (latent) worker quality. Re-
cently, researchers have begun to investigate how
best to actively improve worker quality through
instruction (Basu & Christensen, 2013; Singla
et al., 2014). However, none of the existing work
considers the fundamental tradeoff between pro-
viding instruction and getting actual work done.
In this work, we present a reinforcement learn-
ing agent capable of optimizing the instruction
it provides, by learning the effectiveness of its
teaching actions, the quality of the worker pop-
ulation, and the amount of work output it can
expect from individual workers. Evaluations on
synthetic data show that our agent learns adaptive
instruction policies that significantly outperform
common baseline strategies such as providing a
tutorial of fixed length.

1. Introduction
Quality control is a central challenge faced by crowdsourc-
ing systems. Researchers have proposed many sophisti-
cated approaches that enable systems to produce higher-
quality answers by estimating worker abilities. While these
approaches can dramatically improve crowdsourcing re-
sults, they miss a key opportunity to improve worker abil-
ities, thereby leading to further improvements in quality
at lower cost. Better worker training has the potential to
improve task performance, adherence to requester instruc-

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

tions, job satisfaction, and to enable crowdsourcing of more
complex tasks.

Current approaches to worker training are largely ad-hoc.
When establishing a crowdsourced workflow, most re-
questers first show workers an initial set of instructions,
then administer a test to ensure that the worker paid at-
tention to the instructions, and finally give the worker a
set of tasks to perform. They may also scatter additional
gold questions amidst the actual work tasks, to detect poor
workers. Usually, they use A-B testing to tune the amount
of instruction and number of tests (Kohavi et al., 2007),
but even with A-B testing, this sequence is suboptimal for
three reasons: (1) it is designed for the average worker, but
most workers aren’t average (different training and test-
ing regimes are better for different people); (2) all the
work done during A-B testing is typically wasted; and (3)
the policy resulting from A-B testing is fixed and never
changes if worker demographics (or behaviors) change,
e.g., as a result of forum discussions or out-of-band con-
versations on how to game the system.

Our approach overcomes these challenges by using rein-
forcement learning and decision theory to optimally per-
sonalize and schedule instruction, test, and work activ-
ities. This method naturally (and optimally) inserts re-
minder lessons in a way that maintains worker effective-
ness.

2. Problem
2.1. The Model

We assume that the requester has an unlimited number of
gold questions, Qgold, with known answers, as well as
questions with unknown answers,Q. Intuitively, our objec-
tive is to answer the questions inQwith maximal accuracy,
given a limited labor budget.

Learning on the Job

The task is defined by a set R of guidelines (rules) speci-
fied by the requester. Each question q requires that a worker
know a subset of rules, Rq , to answer it correctly. In gen-
eral, we don’t know a priori which questions require which
rules, but we do know the subset of rules required for each
gold question q ∈ Qgold.

We assume we know the prior probability, P (r), of a rule r
being required for an unknown question inQ. This quantity
can be estimated by computing the fraction of questions in
Qgold which require the rule (assuming Qgold represents
the overall distribution), or by sampling a small set of ques-
tions from Q.

Following the knowledge tracing literature (Corbett & An-
derson, 1994), we assume that worker w will answer a
question correctly with probability (1− Pslip) if s/he pos-
sesses the required skills and with probability Pguess oth-
erwise. We represent worker w using a latent boolean vec-
tor of skills γw, where γw,r = 1 iff the worker knows how
to apply rule r to questions. Assuming that each rule r ∈ R
occurs with independent probability P (r), the probability
worker w answers an unknown question correctly is

P (correct | w) = Pguess · (1− z) + (1− Pslip) · z, (1)

where z =
∏

r∈R 1 − P (r) · (1 − γw,r) is the probability
that the worker possesses all the required skills. The prob-
ability a worker answers a gold question correctly follows
the same equation, only we know P (r) = 1,∀r ∈ Rq , and
0 otherwise. Over time, we learn a prior distribution over
γw for unseen workers. At any time step, a worker may
leave the system with probability Pleave.

2.2. The Decision Problem

At each time step, the system needs to decide whether to
teach or test the worker (and if so which rule, r, to use), or
whether to ask the worker to answer an unknown question
q ∈ Q.

We model the problem of making this choice as a partially
observable Markov decision process (POMDP) (Kaelbling
et al., 1998; Poupart, 2011). Formally, a POMDP is spec-
ified by a set of states, set of actions, transition function,
observation function, and reward function, which we de-
fine as follows.

• The state space S can be factored as < Γw, Sa >,
where Γw is a vector of boolean variables correspond-
ing to the latent skill vector γw and Sa is a variable of
size |R|+ 1 specifying the last rule tested (or none). 1

Additionally, S contains a special “submit” state.

1An additional variable specifying the last action is needed
since our observation function does not include the previous state.

• The set of actions, A, consists of four actions: ask the
worker an unknown question, select a rule to test (by
asking a gold question that requires that rule), teach
the worker a rule (we assume one or more pieces of
instructional text associated with each rule), 2 and re-
ject a worker (if the system deems him/her not worth
employing). The current system may only teach im-
mediately following a test action. The sequence of a
test action followed a teach action corresponds to the
elicit teaching action used in intelligent tutoring sys-
tems (Chi et al., 2008). 3 Finally, we assume that an
external process selects questions from Q or Qgold.

• The transition function P (s′ | s, a) specifies a proba-
bility distribution over outcome states supposing that
the system executes a ∈ A while in s ∈ S.

– Reject worker: Enter the submit state with prob-
ability 1.

– Select a rule to test: Worker quits with probabil-
ity Pleave. Otherwise, the worker answers and
loses knowledge of each rule independently with
probability Plose. The state variable Sa is set to
the rule tested.

– Teach the rule that was just tested: The worker
gains knowledge of the rule taught with proba-
bility Pgain. The state variable Sa is reset.

– Ask an unknown question: Worker quits with
probability Pleave. Otherwise, the worker an-
swers and loses knowledge of each rule indepen-
dently with probability Plose.

• Observation function: The system can only directly
observe the worker’s answers to ask and test ques-
tions. The accuracy of the worker’s answer is a func-
tion of which rules s/he knows and which are likely
to be required by the question, as given in Equation 1.
Additionally, we observe when workers leave.

• Reward function: The agent incurs a cost of c for each
ask or test action (indistinguishable to the worker) and
ct for each teaching action. 4 The reward for asking
question q ∈ Q is λf(q), where

f(q) = E

[
max
z∈Zq

P (Zq = z | Aq,w)

]
−max

z∈Zq

P (Zq = z)

is the expected accuracy gain produced by incorporat-
ing the new information provided by the worker into

2A simple instructional action consisting of restating the rule
along with the gold answer can be generated automatically.

3An alternative teaching action is to tell the worker the an-
swer immediately, but this provides less information about worker
knowledge.

4These labor costs can be computed as part of reinforcement
learning, by estimating the average observed time to complete
each action and multiplying by a fair wage.

Learning on the Job

the posterior predictions and λ is a parameter speci-
fying the utility of information. In the above equa-
tion, Zq is the random variable for the latent answer to
question q, andAq,w is the random variable for worker
w’s response to q. The expectation is taken over pos-
sible worker responses, where P (Aq,w = z | Zq = z)
is determined by Equation 1.

We chose not to include latent answers to questions in the
state space in the current work so that the state space does
not grow with the number of questions. Moreover, includ-
ing answers in the state space is unnecessary since we focus
on maximizing the benefit provided by each worker sepa-
rately. In expectation, the model we define is equivalent to
a model with a state space that includes the latent answers,
and which has a 2|Q| possible submit actions correspond-
ing to submitting an answer for each question. Prior work
on decision theoretic crowdsourcing (Lin et al., 2012a;b)
has used such a model when |Q| = 1; our setting is more
challenging since we must consider the answers to many
tasks simultaneously.

3. Experiments
We conducted experiments using synthetic data under
a range of hand-estimated parameter configurations to
demonstrate the potential benefits of our approach, which
are twofold. First, learning a policy using our POMDP ap-
proach saves costly A-B testing to find the best fixed policy.
Second, in some settings, the learned adaptive policy out-
performs reasonable baseline policies, meaning that even
extensive A-B testing will not yield a policy that is as good.

We assume in these experiments that worker skills are in-
dependent and thus the initial belief state probabilities are
P (Γw, Sa) =

∏
r∈R P (Γw,r) for states where Sa indicates

that no rule has just been tested, and 0 otherwise. Simula-
tions sample workers from this prior. Additionally, we as-
sume binary multiple choice questions and unskewed data
(P (Zq) = 0.5,∀q ∈ Q), and set c = ct = 0.1 and λ = 1.
We used the ZMDP POMDP solver 5 with default config-
uration settings, maximum solve time of 1 minute 6, and
discount factor of 0.99.

Our preliminary experiments compare to baseline policies
that teach each rule k times during an initial tutorial phase.
Our experiments assume that P (r) and P (γw,r) are the
same ∀r ∈ R, since these configurations are most favor-
able to the baseline policies.

5https://github.com/trey0/zmdp
6Experiments were run on 6-core 2.4 GhZ processors.

3.1. Planning

Our first set of experiments assumes that the model param-
eters are known.

We experimentally obtain basic policies under a range of
parameter settings. For instance, if workers already know
the rules with high probability (P (γw) is high) or the
rules are infrequently needed to answer unknown questions
(P (r) is low), our system learns to begin asking unknown
questions immediately (no teaching). The system also lim-
its teaching if workers tend to leave quickly (Pleave is
high). On the other hand, if workers need instruction but
fail to respond to teaching (P (γw) and Plearn are low), our
system rejects workers immediately.

In addition to finding these policies, our system automati-
cally tunes the amount of instruction. The POMDP policy
earns at least as much reward as the best baseline policies
in all the configurations tested. Additionally, the adaptive
policies typically require significantly fewer teaching ac-
tions than baselines since they can better estimate when a
worker knows a rule. Using fewer gold questions reduces
the burden of creating gold questions for each rule as well
as the risk that shared answers to gold questions will enable
cheating.

3.2. Reinforcement Learning

When our system is first deployed in a new crowdsourcing
environment, it must also learn the POMDP model. This
necessitates an exploration-exploitation tradeoff. Prelim-
inary experiments show that our system is able to learn
the model using a simple epsilon-greedy strategy. 7 For
episode e (the eth worker hired), we select actions ran-
domly with probability 1/e. We reestimate model parame-
ters and replan prior to each episode. To estimate parame-
ters, we treat the POMDP as an input output hidden Markov
model (Bengio & Frasconi, 1995) and use the Baum-Welch
(EM) algorithm initialized with parameters from the previ-
ous episode. We use a default prior of Beta(1.1, 1.1) 8 on
parameters, but introduce a weak bias toward 0 (Beta(2, 5))
to match our intuition that Pslip, Plose, and P (γw) tend to
be smaller than 0.5.

Figure 1 shows the learning performance given two rules
and a set of plausible parameters (Pleave = 0.01, Plearn =
0.4, Plose = 0.05, Pslip = 0.1, Pguess = 0.5, P (γw) =

0.2, P (r) = 0.5). POMDP (known), the model given true
parameters, obtains 4.6 times as much reward as the best
baseline policy in our space of baselines (teach each rule
twice). Figure 2 shows a sample execution trace of this

7We also tried a Thompson sampling-based strategy, which
performed worse due to high variance in the models and policies.

8This prior gives initial parameter estimates of 0.5.

Learning on the Job

Figure 1. Cumulative rewards for a simple (two rule) problem, av-
eraged over 1000 simulations and shown with 95% confidence
bands. POMDP (known) uses the true parameters, POMDP
(learned) reestimates parameters each episode, and the best fixed
policy is the baseline policy that teaches each rule twice. Each
episode corresponds to hiring a new worker.

model. After having seen 100 workers, the reinforcement
learning agent accumulates 2.8 times as much reward as
the best baseline policy. While one could make the space
of baseline policies arbitrarily more complex (e.g., by in-
troducing an additional parameter controlling intervals be-
tween teaching sessions), the POMDP approach is simple
to specify, does not require extensive A-B testing, and can
perform significantly better even than the best candidate
baseline.

4. Related Work
Researchers have begun to investigate how best to im-
prove crowdsourcing worker quality by actively selecting
examples for instruction (Basu & Christensen, 2013; Singla
et al., 2014). Unlike our approach, this work focuses solely
on teaching and does not consider the tradeoff between pro-
viding more instruction and assigning work that helps the
system answer unknown questions.

Optimizing instruction for crowdsourcing shares many of
the same challenges faced by intelligent tutoring systems.
We make use of knowledge tracing (Corbett & Anderson,
1994), one of the earliest probabilistic models of student
learning, but a number of more sophisticated models have
also been proposed (Koedinger et al., 2013). Researchers
have developed techniques for optimizing instruction in in-
telligent tutoring systems, including using POMDPs to pro-
duce better teaching policies (e.g., (Rafferty et al., 2011)).
However, our system must consider the long-term implica-
tions of learning gains (on future tasks), rather than simply
minimizing the time to achieve those learning gains.

Figure 2. Sample execution trace for the POMDP (known) model
in Figure 1. The number of actions (Y axis) is summed over 1000
workers and drops over time as workers abandon the task. Note
that the system executes different (adaptive) teaching sequences
depending on test results. Work corresponds to asking an un-
known question and Test 1 and Test 2 correspond to testing rules
1 and 2, respectively.

Our approach is also inspired by recent work on optimizing
the order in which algebraic lessons are taught in educa-
tional mathematics games (Liu et al., 2013; Mandel et al.,
2014; O’Rourke et al., 2015). Like intelligent tutoring sys-
tems, these games seek to maximize student knowledge (or
as a proxy, the time spent interacting with the game). In our
case, worker knowledge is irrelevant in itself, since work-
ers can leave at any time. Instead, we seek to optimize our
accuracy over a set of questions that need answering.

5. Conclusions and Future Work
In the future, we plan to conduct live experiments using an
NLP data annotation task called relation extraction. Al-
though the relations are familiar ones, such as lived in,
the annotation guidelines specified by benchmarks like the
NIST Text Analysis Conference KBP challenge (Surdeanu
& Ji, 2014) include numerous rules, some of which are
counter-intuitive and must be learned by workers.

There are many possible directions to extend this work.
We plan to include the latent answers as part of our state,
to enable reasoning about answers across workers. Ad-
ditionally, we plan to scale the model so that it is capa-
ble of handling more complex tasks with many more rules.
While researchers have successfully solved POMDPs with
large state spaces by exploiting factored representations
(e.g., (Hoey et al., 2007)), scaling the number of state vari-
ables and actions is challenging, as is learning parameters
for such a model. Furthermore, reinforcement learning is
made more challenging by the fact that rewards for asking
unknown questions are not directly observable and depend

Learning on the Job

on our estimates of the skills possessed by workers. Still,
our experiments suggest that learning is possible in this set-
ting.

Another possible direction for future work is to adopt more
sophisticated models of worker learning and engagement.
In order to facilitate learning parameters from a small
amount of data, we assume that a worker learns or forgets
any rule with the same probability. However, in some set-
tings, rules may require different amounts of instruction.
Additionally, modeling individual learning rates (Lee &
Brunskill, 2012), individual probabilities of leaving (Mao
et al., 2013), or classes of workers (like spammers) may
further improve performance. Behavioral traces may also
be useful for predicting disengaged workers (Rzeszotarski
& Kittur, 2011), signaling the need for interventions with
tests or warnings.

This work is a first step toward our vision of a compre-
hensive system capable of providing a variety of scaffold-
ing actions that maximize individual worker contributions
and overall answer quality. We believe that work on opti-
mizing worker training will lead to important advances in
crowdsourcing capabilities, as well as planning and rein-
forcement learning algorithms.

References
Basu, Sumit and Christensen, Janara. Teaching classifica-

tion boundaries to humans. In AAAI, 2013.

Bengio, Yoshua and Frasconi, Paolo. An input output
HMM architecture. In NIPS, 1995.

Chi, Min, Jordan, Pamela, VanLehn, Kurt, and Hall,
Moses. Reinforcement learning-based feature selection
for developing pedagogically effective tutorial dialogue
tactics. In Educational Data Mining, 2008.

Corbett, Albert T and Anderson, John R. Knowledge trac-
ing: Modeling the acquisition of procedural knowledge.
User Modeling and User-Adapted Interaction, 4(4):253–
278, 1994.

Hoey, Jesse, Von Bertoldi, Axel, Poupart, Pascal, and Mi-
hailidis, Alex. Assisting persons with dementia during
handwashing using a partially observable markov deci-
sion process. In International Conference on Vision Sys-
tems (ICVS), 2007.

Kaelbling, Leslie Pack, Littman, Michael L., and Cassan-
dra, Anthony R. Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence, 101(1):
99–134, 1998.

Koedinger, Kenneth R, Brunskill, Emma, Baker, Ryan SJd,
McLaughlin, Elizabeth A, and Stamper, John. New po-

tentials for data-driven intelligent tutoring system devel-
opment and optimization. AI Magazine, 34(3):27–41,
2013.

Kohavi, Ron, Henne, Randal M, and Sommerfield, Dan.
Practical guide to controlled experiments on the web: lis-
ten to your customers not to the hippo. In KDD, 2007.

Lee, Jung In and Brunskill, Emma. The impact on individ-
ualizing student models on necessary practice opportu-
nities. In EDM, 2012.

Lin, Christopher H, Mausam, and Weld, Daniel S. Dy-
namically switching between synergistic workflows for
crowdsourcing. In AAAI, 2012a.

Lin, Christopher H, Mausam, and Weld, Daniel S. Crowd-
sourcing Control: Moving Beyond Multiple Choice. In
UAI, 2012b.

Liu, Yun-En, Mandel, Travis, Butler, Eric, Andersen, Erik,
O’Rourke, Eleanor, Brunskill, Emma, and Popovic, Zo-
ran. Predicting player moves in an educational game: A
hybrid approach. In Educational Data Mining, 2013.

Mandel, Travis, Liu, Yun-En, Levine, Sergey, Brunskill,
Emma, and Popovic, Zoran. Offline policy evaluation
across representations with applications to educational
games. In AAMAS, 2014.

Mao, Andrew, Kamar, E, and Horvitz, Eric. Why stop now?
predicting worker engagement in online crowdsourcing.
In HCOMP, 2013.

O’Rourke, Eleanor, Andersen, Erik, Gulwani, Sumit, and
Popovic, Zoran. A framework for automatically gener-
ating interactive instructional scaffolding. In CHI, 2015.

Poupart, Pascal. Decision Theory Models for Applications
in Artificial Intelligence: Concepts and Solutions, chap-
ter 3, pp. 33–62. IGI Global, 2011.

Rafferty, Anna N, Brunskill, Emma, Griffiths, Thomas L,
and Shafto, Patrick. Faster teaching by POMDP plan-
ning. In International Conference on Artificial Intelli-
gence in Education (AIED), 2011.

Rzeszotarski, Jeffrey M and Kittur, Aniket. Instrumenting
the crowd: using implicit behavioral measures to predict
task performance. In UIST, 2011.

Singla, Adish, Bogunovic, Ilija, Bartók, Gábor, Karbasi,
Amin, and Krause, Andreas. Near-optimally teaching
the crowd to classify. In ICML, 2014.

Surdeanu, Mihai and Ji, Heng. Overview of the english slot
filling track at the TAC2014 knowledge base population
evaluation. In Text Analysis Conference (TAC), 2014.

