
POMDP-Based Worker Pool Selection for Crowdsourcing

Shreya Rajpal SHREYA.RAJPAL@GMAIL.COM

Indian Institute of Technology - Delhi

Karan Goel KGOEL93@GMAIL.COM

Indian Institute of Technology - Delhi

Mausam MAUSAM@CS.WASHINGTON.EDU

Indian Institute of Technology - Delhi

Abstract
In recent years, crowdsourcing has gained cred-
ibility as an effective and inexpensive method to
solve large scale tasks by outsourcing to a large
pool of human workers. However, because of
variability in the quality of workers who perform
these tasks, it is of paramount importance to op-
timize the quality of answers, while keeping the
expenditure on these tasks to a minimum. Of-
ten, in crowdsourced settings, there are multiple
worker pools, each having different mean worker
skill level and a different asking price.

In this paper, we demonstrate the effectiveness of
using decision theoretic approaches for optimiz-
ing the task of worker pool selection with respect
to the quality of the responses received, as well as
the total expenditure used for payments. In par-
ticular, we build a POMDP-based model that au-
tomatically decides which worker pool to query
for a task based on its estimated difficulty, and
the current confidence in the answer. Our exper-
iments show that the net utility achieved by our
worker pool selection model consistently outper-
forms baselines that use a single worker pool.
We also achieve a better cost v/s quality trade-
off than the baselines, allowing us to get higher
quality for a fixed budget.

1. Introduction
With the unprecedented rise of crowdsourcing, vari-
ous market places for generic micro-crowdsourcing have
emerged such as Amazon Mechanical Turk (AMT), oDesk,

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

eLance, LeadGenius, and Microsoft’s and Google’s inter-
nal crowds. The worker pools in different market places
have different strengths. For example, AMT workers have
much more variable skill and usually output lower qual-
ity at a lower price compared to oDesk workers that often
charge higher but also produce higher quality work (Ipeiro-
tis, 2012). Then there are domain specific workerpools –
ArcBazar is crowdsourcing specialized for architectural de-
sign, 99 Designs has expert artists, and TopCoder maintains
a crowd of programmers and data scientists. In general
specialized crowds charge significantly higher than generic
crowds like AMT.

Even within a single marketplace the need for
performance-based differentiation has resulted in as-
signing of badges or qualifications to subsets of workers.
For instance, Amazon itself rewards a “Master” quali-
fication to more experienced workers based on worker
accuracies on gold data (Chen, 2012). AMT workers can
also take qualification tests that make them eligible for
certain tasks that need those skills. Requesters commonly
use custom qualifications to compute their own metrics
for identifying good workers. Similarly, CrowdFlower, a
crowdsourcing consulting company, maintains “Crowd-
Flower Elite” – a group of workers for which CrowdFlower
charges a higher price in return for a higher quality output.

The availability of several worker pools for a task can po-
tentially create confusion for a new requester. Which plat-
form should they select? Which qualification should they
select within a platform? To our knowledge, no principled
solution exists to this important problem; often requesters
just go by their hunch, or at best test the various worker
pools using gold questions and select the best one pool for
the task. In this paper we argue that dynamically switch-
ing between the worker pools can be more effective than
pre-selecting a single best worker pool.

As an example, suppose workers are required to critique

POMDP-Based Worker Pool Selection for Crowdsourcing

Hollywood cinema, and we have two worker pools – one
general worker pool and one with a specifically strong
knowledge of cinema. If a question is about some less pop-
ular cult movie then the pool with good movie knowledge
is of paramount importance, whereas if it is about a com-
mon movie then even the general pool workers might give
acceptable answers at potentially low costs. The asking
prices of different pools and their quality profiles can be
traded off to select the appropriate worker pool per question
– this could provide significant cost savings or alternatively
produce much higher quality for the same price.

Unfortunately, we do not know a priori whether a ques-
tion is easy or difficult for a worker pool. However, we
can continually estimate worker errors and task difficul-
ties based on answer agreement and use this information
to perform worker pool routing. We adapt existing litera-
ture on decision-theoretic crowdsourcing (Dai et al., 2013)
to devise a Partially Observable Markov Decision Process
(POMDP) formulation of the worker pool switching prob-
lem. Our solution is closest to that of workflow switching
for crowdsourcing (Lin et al., 2012) – they switched be-
tween different workflows for the same task, but all work
was given to the same pool and at the same price; our work
is orthogonal in that it routes the same work to different
pools possibly at different prices.

We perform simulation experiments to test our algorithm
against the baseline of selecting a single best worker pool.
The variations in quality and cost profiles of the pools guide
the value of dynamic worker pool selection. If the two
pools have low cost differential then the POMDP will al-
most always choose the better pool; whereas, if the cost
differential is too high then then the better worker pool may
be too costly to be useful. In intermediate situations our al-
gorithm obtains significantly higher utility.

Additionally, we also perform a Mechanical Turk study for
the task of named entity disambiguation using the dataset of
Lin et al (2012). We used our two worker pools as normal
AMT workers with high approval rating and AMT Master
workers. We were surprised to find that Master workers are
not much superior in quality than regular workers. More
experiments are needed to determine whether this is gener-
ally the case or happened accidentally for our task.

Our paper makes the following contributions:

1. We identify the worker pool selection problem for
crowdsourcing. Our proposed solution is a combi-
nation of unsupervised worker and question tracking
with POMDPs for decision making.

2. We evaluate the value of our model with extensive
simulation experiments. We find that our model al-
ways outperforms the baselines of selecting a single

best worker pool. Its benefits are highest when the
cost differentials between worker pools are intermedi-
ate.

3. We also perform live experiments on Mechanical Turk
for switching between regular workers and Master
workers. To our surprise we find that Master work-
ers are not necessarily much better in quality for our
task.

2. Related Work on Task Routing
There is substantial work on task routing in the literature,
though we know of no work that models differential pric-
ing, task difficulties and worker skills in the same model.

Ambati, Vogel and Carbonell (2011) developed a task rout-
ing framework that ranks tasks based on user preferences
(which are, in their case, implicit as well as explicit) us-
ing a max-entropy NLP classifier. Donmez, Carbonell and
Shneider (2010) developed a model for task routing which
selects top quality labelers (workers) at each time step, and
then aggregate their answers to estimate the true value of
the answer. However, they assume all questions are equally
difficult, and do not utilize responses from low-quality
workers, which potentially alienates a large part of the pull-
style crowdsourcing market. Another work by Donmez et
al (2009) also selects the top quality workers for equal diffi-
culty questions, along with assuming an equal wage system
for all workers.

Karger, Oh and Shah (2014) also do not model question dif-
ficulty, and assume that workers are not persistent, so that
each worker can only be used once. Other works (Karger
et al., 2011a;b; 2013) continue to assume equal difficulty,
and are non-adaptive in nature. Another work that assumes
an equi-difficult distribution of questions (Yan et al., 2011)
which improves the quality of the model by selecting the
optimal task to be performed by the optimum worker. Other
works (Bragg et al., 2014; Shahaf & Horvitz, 2010) assume
a volunteer platform, i.e. workers do not get paid for their
work, which makes the task routing cost agnostic.

Ho, Jabbari and Vaughn (2013) deal with the problem
of adaptive task routing for heterogeneous task difficulty,
where the worker’s accuracy on some task is a function of
worker skill and question difficulty. They however assume
a homogeneous cost across workers of different skill lev-
els, and the skill level of the worker is learned against a set
of gold-labels, as opposed to our algorithm’s unsupervised
approach (which leverages a modified version of the ex-
pectation maximization algorithm (Whitehill et al., 2009).
They also classify tasks based on different types, so that
each worker’s skill level varies with a particular task type.
Lastly, their model assumes that each worker will announce
the number of tasks they are willing to perform on arrival;

POMDP-Based Worker Pool Selection for Crowdsourcing

whereas in any real world online platform, worker retention
is a complex problem to model, and assuming prior knowl-
edge of it is inherently problematic. In Ho and Vaughn
(2012), similar assumptions on worker wages are assumed,
along with having prior information about question diffi-
culty levels (in one scenario) and worker training for spe-
cific task types (in the other scenario).

No single work to our knowledge has attempted to tackle
the task routing problem for open crowdsourcing market-
places such as Amazon Mechanical Turk where worker
pools have different strengths, different costs and tasks
have different diffulties. In this work, we attempt to move
towards this goal by modeling question difficulty, worker
skill, and differential worker pricing in a single model.

3. Methodology
Since our model is an extension of the control model pro-
posed by Dai, Lin, Mausam and Weld (2013), we first give
a short description of their work, which will be helpful in
describing our model.

3.1. Background

In their paper, Dai et al. (2013) demonstrate the value of
using decision-theoretic techniques for the problem of op-
timizing workflows in crowdsourcing. Specifically, their
model uses Partially-Observable Markov Decision Pro-
cesses (POMDPs), and they demonstrate excellent cost-
quality tradeoffs when performing dynamic switching of
workflows using this model.

POMDPs provide a flexible framework with which to
model decision-making when making noisy, or uncertain
observations by relaxing the assumption that an agent has
complete knowledge of his surroundings. The agent makes
noisy observations about its current state, and the frame-
work is used to model many single-agent, real-world prob-
lems, since the agent rarely has perfect information of its
surroundings.

A POMDP is a six-tuple < S,A,O, T ,P,R >, where

• S is a finite set of discrete states.

• A is a finite set of all actions.

• O is a finite set of observations.

• T : S ×A× S → [0, 1] is the transition function de-
scribing the probability that taking an action in a given
state will result in another state.

• P : S ×O → [0, 1] is the observation function de-
scribing the probability that taking an action in a given
state will result in an observation.

• R : S ×A →R is the reward for taking an action in a
state.

POMDPs extend MDPs by adding an observation set O
along with an observation model P . Since the agent has no
direct knowledge of the world’s current state, it maintains
a probability distribution over states, called a belief state b,
reflecting its estimate of their corresponding likelihood(s):

b(s) ∈ [0, 1],
∑
s∈S

b(s) = 1 (1)

where b(s) is the probability that the current state is s, in-
ferred from the previous belief state, the most recent action,
and the resulting observation.

Given this theoretical framework, Dai et al. (2013) apply
this model to the problem of taking responses (or ballots)
from workers in a crowdsourced setting in a dynamic fash-
ion. Specifically, they consider the task of solving binary
classification problems (where responses can be either of
0/1). They model the worker’s response using a generative
model that is defined as:

a(d, γ) =
1

2
(1 + (1− d)γ) (2)

where d ∈ [0, 1] is the intrinsic difficulty of the task, and
γ ∈ [0,∞] is the worker error parameter. A plate model
representation of this generative model is given in Figure
1. Thus, a task with a difficulty approaching 1, leads to
an accuracy near 1/2 which is like a random guess from
the worker. Similarly, as a worker’s error parameter ap-
proaches ∞, the accuracy of the worker’s responses ap-
proach random guesses. The accuracy function defined
above thus gives the probability that a worker will give the
correct response, given the difficulty of the question and
the worker’s error parameter.

Dai et al. then define their POMDP as follows,

• S = {(d, v)|d ∈ [0, 1], v ∈ {0, 1}} where d is the
difficulty of the task and v is the true answer.

• A = {query, submit true, submit false}

• R : S ×A →R contains the penalty for submitting
an incorrect answer, and the cost of asking for a ballot.

• T : S ×A× S → [0, 1] = ((d, υ), a, (d, υ)) 7→ 1.
All other probabilities are 0.

• O = {true, false} is a Boolean response from a
worker.

• P : S ×O → [0, 1] is defined by their generative
model.

POMDP-Based Worker Pool Selection for Crowdsourcing

Figure 1. Plate Model Respresentation of the Generative Model.
Reproduced from Dai, et al (2013).

The POMDP uses an average γ value that it uses to model
new workers i.e., every new worker is assumed to be an av-
erage worker with value equaling γ̄. The POMDP manages
belief states over the cross-product of the Boolean answer,
and the task difficulty. Dai et al (2013) discretize this dif-
ficulty into 11 possible values (to avoid a continuous state
space), leading to a state space of 2× 11 = 22 states.

They defined the POMDP’s objective function as the mini-
mization of expected cost, where cost is the sum of money
paid to the workers and a requester-defined penalty for the
wrong answer. This naturally trades off cost and accuracy,
with higher penalties leading to possibly higher payments
and higher quality output. To solve POMDPs, they run the
ZMDP package for 300s using the default Focused Real-
Time Dynamic Programming search strategy. We continue
to use these details in our model.

3.2. Our Model

We extend Dai et al. (2013)’s model to the problem of task
routing as outlined below. We restrict ourselves to binary
classification tasks (of solving problems that have 0/1 an-
swers), and route tasks in a setting that has only k worker
pools, wp1, wp2, . . . , wpk.

We model worker response accuracy using the same gen-
erative model as Dai et al (2013). We also extend their
POMDP to allow for asking multiple worker pools as fol-
lows:

• S = {(d, v)|d ∈ [0, 1], v ∈ {0, 1}} where d is the
difficulty of the task and v is the true answer.

• A = {query wp1, query wp2, ..., query wpk, submit
true, submit false }

• R : S ×A →R contains the cost of asking for a bal-

lot for each worker pool, and the penalty for submit-
ting an incorrect answer.

• T : S ×A× S → [0, 1] = ((d, υ), a, (d, υ)) 7→ 1.
All other probabilities are 0.

• O = {true, false} is a Boolean response from a
worker.

• P : S ×O → [0, 1] is defined by our generative
model.

There are three key differences between Dai et al’s POMDP
model and ours. First, we have many more actions, one
for each worker pool, since the POMDP is now deciding
which worker pool to query. Thus, the number of states in
our POMDP formulation remain 11× 2 = 22 and only the
number of actions (and their associated costs) is increased.
As a result, the overhead on computation is not significant
and is due to extra actions, and not extra states.

Second, we also maintain several average skill parameters
γi, one for each pool. This allows a different P , observa-
tion function, to be invoked based on the worker pool cho-
sen. In real crowdsourcing situations, an average worker
belonging to different worker pools will have a different
expected skill level. Take the 2 worker pool setting as an
example. In our model, the skill level (or the γ parame-
ter) of a master worker will be better than (less than) the
skill level (γ parameter) of a normal worker, which will be
reflected in the observation function P .

Finally, our POMDP provides a different cost for each
worker pool. This is reasonable since typically AMT
Master worker pools are recommended payments of about
much higher than the pay to a normal worker. In general an
expert’s response is costlier than amateur’s.

For learning the posteriors on each answer, true values of
the worker γ parameters and question difficulty d, follow-
ing previous research we utilize the Expectation Maximiza-
tion approach (Whitehill et al., 2009). It jointly optimizes
all parameters using alternating maximization.

Overall, our model is probably closest to the workflow
switching model of Lin et al (2012). The main differ-
ence is that they switched between different workflows for
the task but each workflow was priced the same and was
given to the same worker pool. They had to model differ-
ent difficulties in state space, but had the same costs. In
our case, we have the same workflow but different worker
pools, hence only one task difficulty d, but different γs and
costs. In essence our models are complimentary and can be
combined to have simultaneous workflow and worker pool
switching.

Discussion: A key assumption in this formulation is that
each worker pool is infinite, i.e., we can query a worker

POMDP-Based Worker Pool Selection for Crowdsourcing

pool for a question as many number of times. This is rea-
sonable since Master AMT workers, or oDesk workers,
etc., are large sets and usually we ask one question to only
a handful of workers in a pool. For situations where worker
pools are really small, we can incrementally remove the ap-
propriate actions (when a worker pool exhausts) and query
the next best worker pool. Overall, our problem and so-
lution formulations are inherently different to works that
allocate a question to a specific worker (e.g., (Bragg et al.,
2014)).

4. Simulations
In this section, we perform several simulation experiments
to test the efficacy of our model in a variety of experimen-
tal settings. For all of our experiments we restrict to sim-
ulating two worker pools, for example, Master (WMaster)
and Normal (WNormal) workers at AMT. We wish to un-
derstand when our model yields better performance com-
pared against the baselines of pre-selecting either of the
worker pools and sticking with them for all the tasks. To
answer this, we vary the two distributions for worker pa-
rameters, the cost differentials and difficulty distributions
of the tasks. For simulations we learn the POMDP with the
true sampling distribution means as average γ values for
the 2 worker pools while learning it (which are used by the
POMDP as error parameters for future workers).

4.1. Simulation 1: Uniform Difficulty Distributions

We first test the setting in which questions have
uniform difficulties between 0 and 1, i.e., there is
no preference for a specific difficulty value. We
draw 100 questions from 10 uniform difficulty distri-
butions {U(0, 0.1), U(0.1, 0.2), ..., U(0.9, 1.0)} with the
constraint that we draw ten questions from each distribu-
tion.

Figure 2. Variation in average net utility obtained on varying rel-
ative cost of the master pool for Wmaster ∼ N (0.25, 0.05).

We wish to model that the master worker pool is signifi-

cantly better than the normal pool. We sample 100 work-
ers each from Wnormal ∼ N (1.0, 0.2) and Wmaster ∼
N (0.25, 0.05). These gamma values are truncated above
zero and are not allowed to be negative. A rough cal-
culation reveals that on a question of medium difficulty
(d = 0.5), the expected accuracy of a master worker will
be around 92%, compared to 75% for a normal worker, in
this scenario. In addition to this, this setting also models
that master workers exhibit less variability in performance,
and are thus reliably good.

We simulate worker answers using our generative model,
and also shuffle the order in which the worker responses
are received by the POMDP. We average our results over
100 runs. In all these experiments the POMDP and Bayes
net models do not know the true difficulties of a question
or the true parameters of the worker. However, they do
have access to a prior difficulty distribution and γ averages.
In future work, we can use reinforcement learning to learn
these as well.

Figure 3. Variation in average net utility obtained on varying rel-
ative cost of the master pool for Wmaster ∼ N (0.50, 0.10).
Figure 2 shows the performance of our model compared
to the baselines on varying the relative cost of the master
workers. We do utility calculations by summing up the
costs of solving each question, and then adding a penalty
for each wrong answer that is returned by the POMDP. We
pick the penalty to be 100 for this case. For all experiments
we keep payment of normal worker to be 1 and payment of
master worker is varied from 1 to 8.

We find that our model equals or (Figure 2) outperforms
both baselines for all choices of the relative cost for the
master worker pool. In particular, we note that our model
approaches the utility of using only the master worker pool
for a low relative cost, and approaches the utility of using
only the normal worker pool for a high relative cost. This
is intuitively satisfying, since if the expert pool is almost as
inexpensive as the normal pool, then there is no reason to
switch to the normal pool (since experts give better quality
answers). Similarly, if the experts are too expensive, then

POMDP-Based Worker Pool Selection for Crowdsourcing

Figure 4. Variation in average net utility on varying relative cost
of the master pool for Wmaster ∼ N (0.75, 0.05).

we would rarely (or never) want to use them, since it is
unlikely we would get any clarity (subject to cost) from
their answers.

We also examine the relative improvement in utility for dif-
ferent difficulty levels for the case when the relative master
pool cost is 5. We observe that our model outperforms the
master pool baseline for questions that have lower levels of
difficulty (all except the highest difficulty level), and vastly
outperforms the normal worker pool for questions that are
more difficult, which demonstrates the efficacy of supple-
menting normal worker responses with those of experts.

We now vary the distribution of the master worker pool
to Wmaster ∼ N (0.5, 0.1), so that the master workers
are closer to the normal workers in performance, and have
higher variability (Figure 3). All other parameters are kept
fixed at the same values. We find once again that our model
outperforms or equals the baselines, and approaches the
normal worker pool line at a lower relative cost than the
previous case (Figure 3). This is natural since the expected
quality differential between the pools is much lower than
in the previous case, thus we would start overpaying the
master pool much sooner in this case.

Lastly, we try Wmaster ∼ N (0.75, 0.05). Our results fol-
low the same pattern as the previous experiments (Figure
4). Thus, regardless of the difference in worker pool qual-
ity, our model is robust to changes in the relative pricing of
the two baseline pools.

4.2. Simulation 2: Beta Difficulty Distributions

For the next set of experiments, we create a scenario that is
likely closer in behavior to real crowdsourcing platforms.
We draw question difficulties (for 100 questions) from a
Beta distribution centered at 0.5 (∼ β(2.0, 2.0)), and sim-
ulate workers for each pool from the following gamma
distributions: Wmaster ∼ Γ(3.5, 0.2) and Wnormal ∼
Γ(4.0, 0.4).

Figure 5. Improvement in net average utility (grouped into diffi-
culty intervals of size 0.1) when Wmaster ∼ N (0.25, 0.05) and
relative master pool cost is 5. Averaged over 100 runs.

The probability distribution functions for the distributions
are shown in Figure 6. Our choice of worker error distri-
butions is justified as follows: the normal worker pool is
likely to contain a wide variability of workers, with a few
‘rising’ experts who have not been identified as such yet.
On the other hand, on platforms such as Amazon Mechan-
ical Turk, anecdotal evidence seems to suggest that mas-
ter workers are not necessarily always perfect experts, and
sometimes non-experts may in fact have expert qualifica-
tions. Our Wmaster distribution models this uncertain be-
havior. Lastly, our difficulty distribution suggests that most
questions are neither too easy, and neither too hard, and
should sufficiently model the average case scenario.

Figure 6. Gamma probability distribution functions of both
worker pools.
We also vary the penalty incurred on returning an incorrect
answer in these experiments. Increasing the incorrect an-
swer penalty causes our POMDP to take more ballots (the
high penalty is now offset by the extra cost of taking more
ballots), and thus tend towards higher accuracy (although
this may not always be the case).

Figures 7, 8 and 9 show the cost v.s. accuracy graphs for
these simulations (with varying relative master pool costs).
We find that our model lies both above (indicating higher
accuracy at the same cost), and to the left (indicating lower

POMDP-Based Worker Pool Selection for Crowdsourcing

Figure 7. Overall accuracy v/s average cost/question for a β(2, 2)
difficulty distribution when relative master pool cost is 2. Aver-
aged over 20 runs.

Figure 8. Overall accuracy v/s average cost/question for a β(2, 2)
difficulty distribution when relative master pool cost is 4. Aver-
aged over 20 runs.

cost for the same accuracy) of the baselines in most cases.

As the relative cost of the master pool increases, our model
outperforms the master pool baseline by an increasing mar-
gin. This is clearer at higher average costs (consequently
higher budgets), since our model is able to make use of
a large number of normal worker ballots (in the ratio of
the relative master pool cost) in conjunction with answers
given by the master workers, to achieve high levels of accu-
racy. On the other hand, our model performs similar to the
normal pool baseline at low costs (when the relative master
pool cost is 6), since to keep overall cost low, task rout-
ing to master workers becomes difficult when the requester
budget is small (modeled using a low penalty for a wrong
answer). Our model is thus robust to changes in relative
pricing of both worker pools.

Also note the inability of the normal pool to cross the 91%
overall accuracy mark. The performance of the normal pool
is inhibited by the quality of workers in that pool, and thus
taking a larger number of ballots from exclusively normal
pool workers should not lead to an overall improvement in

Figure 9. Overall accuracy v/s average cost/question for a β(2, 2)
difficulty distribution when relative master pool cost is 6. Aver-
aged over 20 runs.

Figure 10. Overall accuracy v/s average cost/question for a
β(0.5, 0.5) difficulty distribution when relative master pool cost
is 4. Averaged over 20 runs.

accuracy.

To achieve 95% accuracy in the case where the relative
master pool cost is 6, we observe that it costs our model
$19.6, while the master pool baseline takes $25.0 (the nor-
mal pool baseline doesn’t achieve this accuracy at any
price). Thus, our model gives savings of more than 20%
in this setting (which translates to 500 for 100 questions).

Lastly, we look at the effect of changing the difficulty dis-
tribution to a Bi-Modal Beta Distribution (∼ β(0.5, 0.5)),
where questions either have very high or very low diffi-
culty. We find that for a relative master pool cost of 4 (Fig-
ure 10), our model continues to outperform both baselines
by considerable margins.

5. Live Experiments
To carry out live experiments, we collected data from Ama-
zon Mechanical Turk on 150 Named Entity Disambigua-
tion questions (Lin et al., 2012) (which have 0/1 answers)
from the following 2 mutually exclusive worker pools:

POMDP-Based Worker Pool Selection for Crowdsourcing

• Master Pool: Categorization Master Workers with
more than 5000 HITs and a 98%+ approval rate

• Normal Pool: Non-Master Workers with more than
100 HITs performed and a 95%+ approval rate

We paid 2.4 cents per question to each worker from the
master pool, and 1.6 cents per question to each worker
from the normal pool and collected 30 ballots per ques-
tion. Using this data, we carried out live testing offline.
We first estimated the γ, average worker parameters, for
each worker pool by running a modified version of White-
hill et al (2009)’s EM algorithm to estimate the individual
error parameters of each worker, and then averaging over
each pool. Surprisingly, the averages turned out to be ex-
tremely close to each other (0.94 v.s. 0.95), indicating that
there was not much difference between the quality of the
2 pools. In fact, the worse average error belonged to the
master pool!

To separate the two worker pools artifically we enforce that
Masters are better than normal workers by pick the γ of
the master pool to be 0.90, and that of the normal pool to
be 1.00, thus making the master pool less error-prone. We
learned the POMDP using these values for the average er-
ror parameters of the workers, and solved the 150 Entity
Disambiguation questions multiple times using our learned
POMDP. The relative cost of the master worker pool is
fixed at 1.5 units (since we paid 8 cents over the normal
pool) in all our experiments.

We find that the cost differential is much higher than the
quality differential in this case, and our model only routes
tasks to the normal worker pool, and gives an identical cost-
quality tradeoff to that pool (as shown in Figure 11). How-
ever, we find, quite surprisingly that our master pool base-
line performs much worse than the normal pool, indicating
that Amazon Masters probably gave worse output in our
experiments.

Overall, this is surprising and violates conventional wis-
dom. While Lin et al (2012)’s task set is not particularly
difficult, it is definitely not extremely easy either, as ob-
served in their prior work. This could be a first evidence
suggesting that Master worker accuracy or sincerity is go-
ing down. Of course, more experiments are needed to ver-
ify if ours is an accidental observation or points to a general
phenomenon. However, we at least did prove through live
experiments that our model chooses not to switch much in
case a worker pool is dominated by the other (higher price,
not much higher or even worse quality).

While our live experiments could not thoroughly test our
hypothesis, since the Master worker pool ended up being
worse than Normal, extensive simulation experiments do
give us strong belief that in cases where one worker pool
is much better but also costlier our model will judiciously

switch between the two to obtain significantly better cost-
quality tradeoffs.

Figure 11. Overall accuracy v/s average cost/question when rela-
tive master pool cost is 1.5 in the live experiment. Averaged over
20 runs.

6. Conclusions and Future Work
In this paper, we have demonstrated the effectiveness of us-
ing a decision theoretic framework that leverages POMDPs
for the problem of worker pool selection for binary clas-
sification tasks in a crowdsourced setting. Our contribu-
tions are firstly, that we identify the worker pool selection
problem for crowdsourcing, and highlight its importance in
achieving better cost-quality tradeoffs. Our proposed solu-
tion is a combination of unsupervised worker and question
tracking with POMDPs for decision making. We find that
our model always outperforms the baselines of selecting
a single best worker pool and that its benefits are highest
when the cost differentials between worker pools are inter-
mediate. We also perform live experiments on Mechani-
cal Turk for switching between regular workers and Master
workers. To our surprise we find that Master workers are
demonstrably worse than regular workers.

However, we have limited ourselves to providing informa-
tion about average mean error parameter values for each
worker pool, while learning individual worker gammas
in an unsupervised fashion. An immediate area of fo-
cus would be to use Reinforcement Learning (RL) to al-
low online relearning of the POMDP that is being used for
decision-making, based on changing information about the
mean skill levels of different worker pools. This has the
benefit of not requiring any information about the worker
pools (except for costs). An RL approach would be able
to determine (using an appropriate exploration-exploitation
tradeoff) the individual performances of each worker pool
and make decisions based on the expertise of each pool and
their associated costs.

POMDP-Based Worker Pool Selection for Crowdsourcing

References
Ambati, Vamshi, Vogel, Stephan, and Carbonell, Jaime G.

Towards task recommendation in micro-task markets. In
Human computation, pp. 1–4. Citeseer, 2011.

Bragg, Jonathan, Kolobov, Andrey, and Weld, Daniel S.
Parallel task routing for crowdsourcing. In Second AAAI
Conference on Human Computation and Crowdsourc-
ing, 2014.

Chen, Edwin. Making the Most of Mechanical Turk: Tips
and Best Practices, 2012. URL blogs.echen.me.

Dai, Peng, Lin, Christopher H, Weld, Daniel S, et al.
Pomdp-based control of workflows for crowdsourcing.
Artificial Intelligence, 202:52–85, 2013.

Donmez, Pinar, Carbonell, Jaime G, and Schneider, Jeff.
Efficiently learning the accuracy of labeling sources for
selective sampling. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pp. 259–268. ACM, 2009.

Donmez, Pinar, Carbonell, Jaime G, and Schneider, Jeff G.
A probabilistic framework to learn from multiple anno-
tators with time-varying accuracy. In SDM, volume 2,
pp. 1. SIAM, 2010.

Ho, Chien-Ju and Vaughan, Jennifer Wortman. Online task
assignment in crowdsourcing markets. In AAAI, vol-
ume 12, pp. 45–51, 2012.

Ho, Chien-Ju, Jabbari, Shahin, and Vaughan, Jennifer W.
Adaptive task assignment for crowdsourced classifica-
tion. In Proceedings of the 30th International Con-
ference on Machine Learning (ICML-13), pp. 534–542,
2013.

Ipeirotis, Panos. A computer scientist in a business school.
Mechanical Turk vs oDesk: My experiences, 2012. URL
http://www.behind-the-enemy-lines.
com/.

Karger, David R, Oh, Sewoong, and Shah, Devavrat.
Budget-optimal crowdsourcing using low-rank matrix
approximations. In Communication, Control, and Com-
puting (Allerton), 2011 49th Annual Allerton Conference
on, pp. 284–291. IEEE, 2011a.

Karger, David R, Oh, Sewoong, and Shah, Devavrat. It-
erative learning for reliable crowdsourcing systems. In
Advances in neural information processing systems, pp.
1953–1961, 2011b.

Karger, David R, Oh, Sewoong, and Shah, Devavrat.
Efficient crowdsourcing for multi-class labeling. In
ACM SIGMETRICS Performance Evaluation Review,
volume 41, pp. 81–92. ACM, 2013.

Karger, David R, Oh, Sewoong, and Shah, Devavrat.
Budget-optimal task allocation for reliable crowdsourc-
ing systems. Operations Research, 62(1):1–24, 2014.

Lin, Christopher H, Daniel, Mausam, and Weld, S. Dy-
namically switching between synergistic workflows for
crowdsourcing. In In Proceedings of the 26th AAAI
Conference on Artificial Intelligence, AAAI12. Citeseer,
2012.

Shahaf, Dafna and Horvitz, Eric. Generalized task markets
for human and machine computation. In AAAI, 2010.

Whitehill, Jacob, Wu, Ting-fan, Bergsma, Jacob, Movel-
lan, Javier R, and Ruvolo, Paul L. Whose vote should
count more: Optimal integration of labels from labelers
of unknown expertise. In Advances in neural informa-
tion processing systems, pp. 2035–2043, 2009.

Yan, Yan, Fung, Glenn M, Rosales, Rómer, and Dy, Jen-
nifer G. Active learning from crowds. In Proceedings of
the 28th international conference on machine learning
(ICML-11), pp. 1161–1168, 2011.

blogs.echen.me
http://www.behind-the-enemy-lines.com/
http://www.behind-the-enemy-lines.com/

