
c©Copyright 2013

Andrey Kolobov

Scalable Methods and Expressive Models for Planning Under Uncertainty

Andrey Kolobov

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

University of Washington

2013

Reading Committee:

Mausam, Chair

Daniel S. Weld, Chair

Luke Zettlemoyer

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Scalable Methods and Expressive Models for Planning Under Uncertainty

Andrey Kolobov

Co-Chairs of the Supervisory Committee:
Research Assistant Professor Mausam

Computer Science & Engineering

Professor Daniel S. Weld
Computer Science & Engineering

The ability to plan in the presence of uncertainty about the effects of one’s own actions and the

events of the environment is a core skill of a truly intelligent agent. This type of sequential decision-

making has been modeled by Markov Decision Processes (MDPs), a framework known since at least

the 1950’s [45, 3]. The importance of MDPs is not merely philosophic — they have been applied to

several impactful real-world scenarios, from inventory management to military operations planning

[80, 1]. Nonetheless, the adoption of MDPs in practice is greatly hampered by two aspects. First,

modern algorithms for solving them are still not scalable enough to handle many realistically-sized

problems. Second, the MDP classes we know how to solve tend to be restrictive, often failing to

model significant aspects of the planning task at hand. As a result, many probabilistic scenarios fall

outside of MDPs’ scope.

The research presented in this dissertation addresses both of these challenges. Its first contri-

bution is several highly scalable approximation algorithms for existing MDP classes that combine

two major planning paradigms, dimensionality reduction and deterministic relaxation. These ap-

proaches automatically extract human-understandable causal structure from an MDP and use this

structure to efficiently compute a good MDP policy. Besides enabling us to handle larger planning

scenarios, they bring us closer to the ideal of AI — building agents that autonomously recognize fea-

tures important for solving a problem. While these techniques are applicable only to goal-oriented

scenarios, this dissertation also introduces approximation algorithms for reward-oriented settings.

The second contribution of this work is new MDP classes that take into account previously ignored

aspects of planning scenarios, e.g., the possibility of catastrophic failures. The thesis explores their

mathematical properties and proposes algorithms for solving these problems.

TABLE OF CONTENTS

Page

List of Figures . v

List of Tables . viii

Chapter 1: Introduction . 1

1.1 Scalable Algorithms for Probabilistic Planning 3

1.2 Taking Disaster into Account . 8

1.3 New Methods for New Models . 11

1.4 Dissertation Outline . 12

1.5 List of Publications . 12

Chapter 2: Background . 14

2.1 Markov Decision Processes . 14

2.1.1 Definition . 14

2.1.2 Solutions of an MDP . 15

2.1.3 Solution Existence under Expected Linear Additive Utility 20

2.1.4 Finite-Horizon MDPs . 22

2.1.5 Infinite-Horizon Discounted-Reward MDPs 24

2.1.6 Stochastic Shortest-Path MDPs . 26

2.1.7 MDPs with an Initial State . 30

2.1.8 Relationships Among the Basic MDP Classes 31

2.1.9 Factored MDPs . 33

2.1.10 Complexity of Solving MDPs . 39

2.2 Optimally Solving General MDPs: Fundamental Algorithms 41

2.2.1 Policy Evaluation . 41

2.2.2 Policy Iteration . 43

2.2.3 Value Iteration . 46

2.2.4 Asynchronous Value Iteration . 49

2.3 Optimally Solving MDPs with an Initial State: Heuristic Search 50

i

2.3.1 FIND-AND-REVISE— a Schema for Heuristic Search 51
2.3.2 RTDP . 56
2.3.3 LRTDP . 58

Chapter 3: Extracting Latent Structure of Factored MDPs 61
3.1 Overview . 63

3.1.1 Discovering Nogoods and Basis Functions 63
3.1.2 Exploiting Nogoods and Basis Functions 64

3.2 Preliminaries . 65
3.2.1 Example . 66
3.2.2 Additional Background . 68

3.3 Generating State Abstractions . 71
3.4 GOTH Heuristic . 74

3.4.1 GOTH Description . 75
3.4.2 Experimental Results . 80
3.4.3 Summary . 87

3.5 RETRASE . 87
3.5.1 RETRASE Description . 89
3.5.2 Experimental Results . 95
3.5.3 Summary . 99

3.6 SIXTHSENSE . 100
3.6.1 SIXTHSENSE Description . 101
3.6.2 Experimental Results . 109
3.6.3 Summary . 115

3.7 Related Work . 115
3.8 Future Research Directions . 117
3.9 Summary . 123

Chapter 4: Planning Efficiently Without a Goal . 124
4.1 Overview . 124
4.2 Preliminaries . 127

4.2.1 Notation . 127
4.2.2 Additional Background . 128

4.3 LR2TDP . 130
4.3.1 LR2TDP Description . 130
4.3.2 Max-Reward Heuristic . 134

ii

4.4 GLUTTON . 134

4.4.1 GLUTTON Description . 135

4.5 GOURMAND . 139

4.5.1 GOURMAND Description . 141

4.6 Experimental Results . 144

4.6.1 Experimental Setup . 144

4.6.2 Reverse Iterative Deepening . 146

4.6.3 Effects of GLUTTON’s Optimizations . 147

4.6.4 UCT vs. LRTDP . 150

4.7 Related Work . 155

4.8 Future Research Directions . 156

4.9 Summary . 158

Chapter 5: Beyond Stochastic Shortest-Path MDPs 160

5.1 Overview . 161

5.2 Preliminaries . 163

5.2.1 Notation . 163

5.3 Generalized SSP MDPs: Enabling Zero-Reward Cycles 164

5.3.1 Definition . 165

5.3.2 Mathematical Properties . 168

5.3.3 FRET — a Schema for Heuristic Search for GSSPs0 MDPs 171

5.3.4 GSSPs0 and Other MDP Classes . 184

5.3.5 Heuristics for GSSPs0 . 188

5.3.6 Experimental Results . 189

5.3.7 Summary . 191

5.4 SSP MDPs with Dead Ends . 191

5.4.1 Overview . 191

5.4.2 SSPADEs0 : SSP MDPs with Avoidable Dead Ends 193

5.4.3 fSSPUDEs0 : The Case of a Finite Dead-End Penalty 196

5.4.4 iSSPUDEs0 : The Case of an Infinite Dead-End Penalty 199

5.4.5 Equivalence of Optimization Criteria . 206

5.4.6 Stochastic Simple Longest Path MDPs: the Ultimate Goal-Oriented Problems207

5.4.7 Experimental Results . 211

5.4.8 Summary . 214

5.5 Related Work . 214

iii

5.6 Future Research Directions . 215
5.7 Summary . 216

Chapter 6: Conclusion . 218

Bibliography . 220

Appendix A: Theorem Proofs . 228

iv

LIST OF FIGURES

Figure Number Page

1.1 In online planning, an agent starts in some initial state s0, evaluates the consequences of
available actions for some number of steps ahead, called the lookahead, executes the best
action according to this evaluation strategy, transitions to the next state s1, and repeats
the process. In state si, planning for lookahead Li causes the agent to explore a region
of the MDP’s transition graph schematically depicted as a cone pivoted at si: the larger
the lookahead, the larger the explored region. A key question in online planning is: what
should the lookaheads L0, L1, L2, . . . be for the agent to select good actions for the specified
problem under the given constraints on planning time? 6

1.2 A Venn diagram showing the MDP classes introduced in this dissertation. The boundaries of
the new MDP classes are marked with red dashed lines, and those of the previously known
ones — with black solid lines. “IHDR” stands for “infinite-horizon discounted-reward
MDPs”, “FH” — for “finite-horizon MDPs”, “NEG” — for “negative MDPs”, “POSB”
— for “positive-bounded MDPs”, and “SSPw” — for “stochastic shortest-path MDPs under
the weak definition”. The definitions of all these as well as of all the new MDP classes are
given in the dissertation. All MDP classes in the diagram are assumed to have a known
initial state (the corresponding subscript s0 has been dropped from their names to minimize
clutter). 9

2.1 MDP showing a possible impact of a heuristic on the efficiency of policy computation via
FIND-AND-REVISE. FIND-AND-REVISE guided by a good heuristic may never visit
the arbitrarily large part of the state space represented by the cloud, yielding enormous time
and memory savings compared to VI. 53

3.1 A PPDDL-style description of the running example MDP, GremlinWorld, split into domain
and problem parts. 67

3.2 The all-outcomes determinization of the GremlinWorld domain 68

3.3 GOTH outperforms hFF on Machine Shop, Triangle Tireworld, and Blocksworld in speed
by a large margin. 82

3.4 GOTH’s advantage over hFF on Machine Shop, Triangle Tireworld, and Blocksworld in
memory is large as well. 82

3.5 The big picture: GOTH provides a significant advantage on large problems. Points below
the dashed diagonals correspond to problem instances on which LRTDP+GOTH did better
than LRTDP+hFF , i.e. used less time/memory. Note that the axes are on a Log scale. . . 82

3.6 GOTH is much faster with generalization than without. 85

v

3.7 An example MDP on which RETRASE fails to converge that has four state variables,
A,B,C, and D, five actions shown in part a) of the figure, and the transition graph induced
by them shown in part b) of the figure. 93

3.8 Memory usage on logarithmic scale: RETRASE is much more efficient than both LRTDP+OPT
and LRTDP+hFF . 96

3.9 RETRASE achieves perfect success rate on Triangle Tireworld-08. 98

3.10 RETRASE is at par with the competitors on Drive. 98

3.11 RETRASE dominates on Exploding Blocksworld-06. 98

3.12 RETRASE outmatches all competitors on Exploding Blocksworld-08, although by a narrow
margin. 98

3.13 Time and memory savings due to nogoods for LRTDP+hFF (representing the “Fast but
Insensitive” type of planners) on 3 domains, as a percentage of resources needed to solve
these problems without SIXTHSENSE (higher curves indicate bigger savings; points below
zero require more resources with SIXTHSENSE). The reduction on large problems can reach
over 90% and even enable more problems to be solved (their data points are marked with a
×). 110

3.14 Resource savings from SIXTHSENSE for LRTDP+GOTH/NO 6S (representing the “Sensi-
tive but Slow” type of planners). 110

3.15 SIXTHSENSE speeds up RETRASE by as much as 60% on problems with dead ends. The
plot shows this trend on the example of problem 12 of EBW-06. 114

3.16 Action with conditional effects . 119

4.1 Average normalized scores of GLUTTON with and without iterative deepening (denoted as
GLUTTON and GLUTTON-NO-ID in the plot, respectively) on all of the IPPC-2011 domains. 148

4.2 Average normalized scores of GLUTTON with and without separation of natural dynamics
(denoted as GLUTTON and GLUTTON-NO-SEP-ND in the plot, respectively) on all of the
IPPC-2011 domains. 148

4.3 Time it took GLUTTON with and without caching to solve problem 2 of six IPPC-2011
domains. 148

4.4 Normalized scores of the best primitive cyclic policies and of GLUTTON’s “smart” policies
on Game of Life. 148

4.5 Normalized scores of the best primitive cyclic policies and of the “smart” policies produced
by GLUTTON on Traffic. 148

4.6 All planners are tied on the Elevators domain. Planners’ normalized scores are computed as
in Equation 4.4. 151

4.7 GOURMAND (avg. score 0.9052) and GLUTTON vastly outperform PROST (0.6099) on the
Crossing Traffic domain. 151

4.8 PROST (avg. score 0.9934) outperforms GOURMAND (0.8438) on the Game of Life domain. 151

vi

4.9 GOURMAND (avg. score 1.0) and GLUTTON vastly outperform PROST (0.4371) on the
Navigation domain. 151

4.10 GOURMAND and PROST are tied on the Recon domain. Planners’ normalized scores are
computed as in Equation 4.4 . 152

4.11 GOURMAND and PROST are tied on the Skill Teaching domain. 152
4.12 PROST (avg. score 0.9978) outperforms GOURMAND (0.8561) on the Sysadmin domain. . 152
4.13 PROST (avg. score 0.9791) outperforms GOURMAND (0.8216) on the Traffic domain. . . . 152

5.1 An example GSSPs0 MDP presenting multiple challenges for computing the optimal value
function and policy efficiently. State sg is the goal. 167

5.2 Under the guidance of an admissible heuristic, FRET uses much less memory than VI. . . 190
5.3 VI lags far behind FRET in speed. 190
5.4 An example Stochastic Simple Longest-Path MDP. 208

vii

LIST OF TABLES

Table Number Page

3.1 Average ratio of the number of states memoized by LRTDP under the guidance of hFF to
the number under GOTH across each test domain. The bigger these numbers, the more
memory GOTH saves the MDP solver compared to hFF 84

3.2 Success rates on some IPPC-2004 problems. 99

viii

ACKNOWLEDGMENTS

As my Ph.D. adventure is nearing its end at the speed of ten double-spaced pages per day, it is

striking to recall how many people it took to make it what it was — a deeply enriching meditatively

relaxing occasionally frustrating immensely exhilarating one-of-a-kind experience.

As with almost any other student, many aspects of my life during graduate school years have

been, directly or indirectly, influenced by my academic advisers, professors Dan Weld and Mausam.

I would like to say a heartily felt “thank you” to these great researchers and, more importantly, great

people. Before starting the Ph.D., I had expected an adviser to be a (possibly nonlinear) combination

of a grumpy omniscient demigod and a busy micro-manager who would throw impossible problems

at me and listen to my silly ideas about them once a month. None of that turned out to be true of

Dan and Mausam. From the very first meeting, we simply talked, discussed scientific problems and

ways of solving them. The value of the boost this gave to my confidence cannot be overstated: it

made me believe that maybe, just maybe, someday my ideas would become as good as theirs. I

was not an easy case, either — as time went by, I started getting opinions on different subjects that

diametrically opposed theirs. Yet even then they were as patient and supportive with me as ever, and

for this I would like thank to them especially.

There have been many people besides my main academic advisers with whom I have worked

academically. Without any single one of them, my Ph.D. experience would have been less complete

or would not have happened at all. I would like to thank all these individuals. Chronologically, the

first of them are professor Stuart Russell of UC Berkeley and Brian Milch, his graduate student at

the time. Ultimately, it was them who first showed me to all aspects of research, from formulating

an idea to implementing it, to evaluating it, to publishing it. At the University of Washington, while

Dan and Mausam were introducing me to the world of probabilistic planning, professor Dieter Fox

was introducing me to the world of robotics. Although I ultimately chose research in planning,

the robotics knowledge Dieter gave me serves me to this day. For my first theoretical paper about

ix

MDPs, I was lucky to collaborate with professor Hector Geffner of Universitat Pompeu Fabra, a

researcher whose depth of theoretical expertise in planning can only be matched by his inimitable

ability to explain the most complicated planning concepts in a fun and accessible way. I would

also like to thank Florent Teichteil-Königsbuch of ONERA and Blai Bonet of Universidad Simón

Bolı́var for our work on the last paper of my Ph.D. and all the lively discussions over email at three

a.m. in the morning.

I wish to thank the research institutions who have hosted me at various times during my gradu-

ate career: the University of Washington, Microsoft Research center in Cambridge, UK, Microsoft

Research center in Redmond, US, and the DTAI group at the Computer Science Department of

Katholieke Universiteit Leuven, Belgium. At MSR Cambridge, I would like to thank Martin Szum-

mer, under whose supervision I got a chance to study problems in information retrieval. At MSR

Redmond, my gratitude goes to Ashish Kapoor, Rich Caruana, and Eric Horvitz. Eric has utterly as-

tounded me with the breadth of his knowledge both in computer science and beyond, a renaissance

man in an era of specialization. Finally, professors Luc De Raedt and Jesse Davis of KU Leuven

have given me fantastic opportunities to do research with them and their extremely sharp Ph.D.

student Jan in machine learning, and waded through the Belgian bureaucratic quagmires together

with me to make these opportunities become reality. Besides Jesse, Jan, and Luc, I would like to

thank the graduate students at the CS department of KU Leuven, especially Anton D., Wannes M.,

and Guy V. for all the fun moments I shared with them. My stays in Belgium would have been

less productive were it not for the Belgian National Railways (NMBS), so they deserve a word of

gratitude too. Their utter inability to make trains run on time, and sometimes at all, provided me

with plenty of undisturbed thinking time as I was stuck at different stations and fields throughout

Flanders. My last Belgium-related acknowledgment, but this time not a word of gratitude, goes to

the Belgian bureaucrats, whose almost uniformly xenophobic, unjust, and insulting treatment that

makes Kafka’s novels feel trivial has invariably accompanied the services of the Belgian railways

during my sojourns in that country.

Of course, graduate school is not just work. A huge thank you to my fellow UW graduate stu-

dents, MSR interns, and simply friends who have been around during the Ph.D. journey is definitely

x

in order, particularly to Andrei A., Marat A., Sergey B., Petra B., Scott B., Jessica C., Kamal C.,

Alexei C., Peng D., Max G., Michal J., Dagmara K., Karl K., Chris L., Cynthia M., Kira R., Michael

R., Alexander S., Eugene S., and Veronika S. Thanks for all the ping-pong, College Inn nights, sail-

ing, Thursty Thursdays, Settlers, long phone chats, Nepalese food, discussions of European politics,

hiking, and all manner of craziness! A special thank you goes to all the wonderful people I have met

and had a splendid time with at the ICAPS conferences, such as Erez K., Emil K., Nir L., Miquel

R., Silvia R., and Daniel T. I hope we manage to continue to see each other often in the future!

I would like to finish this trip down the memory lane with the biggest thanks of all, to my family:

my parents Nina and Vadim, my sister Darina, my nephew Vitya, my grandmother Maria, my wife

Martine, and my daughter Mira. Without you, all of this would have been neither possible nor worth

it. Mama and papa, everything that I have achieved so far I owe to your love, support and belief in

me. Thank you for your courage in sending me across the ocean thirteen years ago. Only now that

I am a parent myself I am starting to fully realize how hard of a step it must have been for you, and

can only hope that I will be able to give to my children as much as you have given to me. Martine,

thank you for the miracle that we have. Having come from two different continents and met on a

third, we could not have made it but for your love, patience, and faith in me. Mira, you are my

future. I will make up to you all the evenings spent writing this dissertation, promise.

xi

DEDICATION

to Martine and Mira,

my present and my future

xii

1

Chapter 1

INTRODUCTION

Since the early days of artificial intelligence (AI) as a field, the ability to devise a plan for

achieving a goal has been considered an essential characteristic of an intelligent agent. This ability

was a major factor in the success of one of the first full-fledged AI systems, implemented in Shakey

the robot in the early 1970s [76]. Shakey planned with A∗ [75], a deterministic algorithm that has

since become classic. It assumed to be operating in a fully known static world modifiable only

with Shakey’s own actions, whose effects could be predicted with certainty. For Shakey and other

research demonstration systems meant to work in mostly controlled environments under human

supervision, these assumptions often suffice. However, their distant descendants, such as Mars

rovers Spirit and Opportunity, carry out missions under the conditions where their engines may fail,

their sensors may err, seemingly firm ground may turn out to be a sand pit, and failing to take into

account these possibilities may mean a loss of the robot. Tackling these challenges requires a more

sophisticated paradigm — planning under uncertainty.

A popular family of models for analyzing probabilistic planning problems is Markov Decision

Processes (MDPs). Although MDPs have been known at least since the 1950s, i.e., before the

Shakey project started, their adoption as a computational planning tool by the AI community hap-

pened only several decades later. A major reason for this delay was most contemporary computers’

lack of power to solve but the tiniest MDP instances. Moreover, the first MDP models concentrated

on scenarios where agents aimed to maximize reward, not to get to a particular goal state, contrasting

with the dominant view of planning in AI at that time. By the early 1990s, the increasing availabil-

ity of computational resources coupled with the formulation of a goal-oriented MDP class [4] and a

general interest in combining decision theory and planning had finally sparked firm interest in MDPs

among AI researchers. Since then, the advances in MDPs’ expressiveness and solution techniques

have allowed practitioners to successfully apply MDPs to a number of important problems such as

military operations planning [1].

2

Nonetheless, the fundamental challenges in planning under uncertainty that have existed since

its inception remain largely unaddressed. Most modern algorithms for solving MDPs do so by

computing the behavior of an agent for each state of the world separately. Incidentally, this strategy

was also used by the seminal MDP solution techniques, value iteration (VI) [3] and policy iteration

(PI) [45], although its modern exponents, such as LRTDP [13] and LAO∗ [41], apply it much more

efficiently. In spite of today’s hardware making these approaches practical for problems with on the

order of millions of states, at the current rate of computational power growth many larger realistic

scenarios will forever remain beyond the reach of these algorithms. Thus, qualitative progress in

scalability appears to call for techniques based on different principles. In addition, despite being

able to model the behavior of goal-driven agents to some extent, the known MDP classes still impose

many restrictions on the settings in which these agents act. For instance, well-studied goal-oriented

MDP types postulate that the goal state must be reachable from any other state with probability 1.

This effectively “outlaws” any catastrophic events, including those that could destroy the agent (e.g.,

a robot falling off an elevation) — a clearly unrealistic requirement. Removing the likes of these

severe and often counterintuitive limitations would make MDPs into a much more flexible modeling

tool.

This dissertation responds to the challenges facing the field of probabilistic planning with two

broad contributions. The first of them consists in proposing several highly scalable approxima-

tion algorithms for existing MDP classes. For goal-oriented MDPs, they are based on the novel

idea of integrating three major planning paradigms, heuristic search, dimensionality reduction and

deterministic relaxation. For reward-oriented MDPs with dense transition matrices, a particularly

difficult kind of planning problems, this dissertation introduces a set of altogether different tech-

niques. They avoid considering all possible states of the world by planning online only for the state

regions the agent visits, and use the strategy of reverse iterative deepening for accelerated conver-

gence. The second contribution of this thesis are MDP classes that relax the assumptions made by

the sole known goal-oriented MDP type, the stochastic shortest path (SSP) problems. In particular,

unlike SSP MDPs, these new models allow describing scenarios with dead-end states, i.e., world

configurations from which reaching the goal is impossible no matter how hard the agent tries. This

dissertation develops a mathematical theory of such MDPs and derives algorithms for solving them.

We now survey each of the contributions in more detail, as well as examine how they interplay

3

with each other.

1.1 Scalable Algorithms for Probabilistic Planning

In contrast to the traditional general-purpose MDP algorithms, humans routinely cope with many

large scenarios that require probabilistic reasoning to achieve a goal. An example of such a task

is planning a transcontinental trip, e.g., from Moscow to Seattle — a setting where plan success

depends on uncertainties ranging from airport personnel strikes in Europe and lines at the border

control in the US to volcano eruptions in Iceland and traffic jams on the way to the airport in

Moscow. While human-generated courses of action can be significantly suboptimal in terms of

utility, such as travel time or cost in the above example, they often reliably lead the agent to the

goal. The “hacks” that help humans in handling large planning scenarios like this include the use of

heuristics, abstractions, and problem relaxations to produce a satisficing solution. While automatic

counterparts of these tricks — heuristic search, dimensionality reduction, and MDP determinization

— are well-understood, to date they have not been integrated into a single planning framework, as

they are in humans.

To realize the potential of unifying these paradigms for goal-directed probabilistic planning, this

dissertation introduces algorithms that automatically extract human-understandable causal structure

from an MDP via problem determinization and use this structure to compute informative planning

heuristics or directly solve the given MDP. Specifically, our techniques generate two kinds of ab-

straction, basis functions and nogoods, each of which describes sets of states that share a relation-

ship to the planning goal. A critical distinguishing feature of the proposed methods is their ability

to construct these abstractions in a fast, fully autonomous and problem-independent way for prob-

lems whose state space lacks a natural notion of a metric. Both basis functions and nogoods are

represented as logical conjunctions of an MDP’s state variable values, but they encode diametrically

opposite information. When a basis function holds in a state, this guarantees that a certain trajectory

of action outcomes has a positive probability of reaching the goal from that state. For instance, in

a scenario involving a Mars rover that needs to conduct experiments on Martian rocks, one basis

function might correspond to the conjunction (Status(RockBore) = Normal) ∧ (Weather = Clear) ∧

(AtExperimentLocation = True) — from any state where these facts hold, the rover has a nonzero

4

chance of fulfilling its objective. At the same time, even in a favorable situation like this the rover

is not guaranteed to achieve the goal; future mechanical failures or adverse weather changes may

prevent it from doing so. To account for this intuition, our algorithms associate weights with each

basis function, encoding the relative “quality” of the situations the basis functions characterize. Our

second type of abstraction, nogoods, gives a guarantee complementary to basis functions’. When

a nogood, such as (Status(Chassis)=Failed) ∧ (AtExperimentLocation = False) in the Mars rover

example, holds in a state, it signifies that the state is a dead end; no trajectory can reach the goal

from it.

Our notion of basis function is related to rules in explanation-based learning [47], and the no-

tion of nogood — to a similarly named concept in constraint satisfaction [27], but our work applies

them in a probabilistic context (e.g., learns weights for basis functions) and provides new mech-

anisms for their discovery. Unlike previous MDP algorithms that have used basis functions for

knowledge transfer across different problems [37, 87] and have had them hand-generated by do-

main experts [36, 38, 39], the techniques introduced here construct basis functions automatically

and immediately employ them to solve the problem at hand. Crucially, the construction procedure

is very fast, as it relies on solving a deterministic relaxation of the given MDP with highly efficient

classical planners. Thanks to reasoning about MDPs’ high-level regularities, not individual states,

our algorithms require little memory and thereby circumvent the main weakness of the traditional

probabilistic planning solvers. Besides enabling us to handle larger planning scenarios, these ap-

proaches also bring us closer to the ideal of AI — building agents that autonomously recognize

features important for solving a problem.

We present three algorithms that leverage the basis function and nogood abstractions to speed

up goal-oriented MDP solution and reduce the amount of memory required for it:

• GOTH [56, 58] uses a full classical planner on a problem determinization to generate a

heuristic function for an MDP solver, to be used as an initial estimate of state values. While

classical planners have been known to provide an informative approximation of state value in

probabilistic problems, they are too expensive to call from every newly visited state. GOTH

amortizes this cost across multiple states by associating weights with basis functions and

thus generalizing the heuristic computation. Empirical evaluation shows GOTH to be an

5

informative heuristic that saves heuristic search methods, e.g., LRTDP, considerable time and

memory.

• RETRASE [55, 58] is a self-contained MDP solver based on the same information-sharing

insight as GOTH. However, unlike GOTH, which sets the weight of each basis function only

once to compute an initial guess of states’ values, RETRASE learns basis functions’ weights

by evaluating each function’s “usefulness” in a decision-theoretic way. By aggregating the

weights, RETRASE constructs a state value function approximation and, as we show empiri-

cally, produces better policies than the participants of the International Probabilistic Planning

Competition (IPPC) on many domains while using little memory.

• SIXTHSENSE [57, 58] is a method for quickly and reliably identifying dead ends, i.e., states

with no possible trajectory to the goal, in MDPs. In general, for factored MDPs this problem

is intractable — one can prove that determining whether a given state has a trajectory to

the goal is PSPACE-complete [35]; therefore, it is unsurprising that modern MDP solvers

often waste considerable resources exploring these doomed states. SIXTHSENSE can act as a

submodule of an MDP solver, helping it detect and avoid dead ends as the solver is exploring

the problem’s state space. SIXTHSENSE employs machine learning, using basis functions

as training data, and is guaranteed never to generate false positives. The resource savings

provided by SIXTHSENSE to an MDP solver are determined by the fraction of dead ends in

an MDP’s state space and reach 90% on some IPPC benchmark problems.

Although, as we demonstrate, these algorithms are effective at solving goal-oriented probabilis-

tic planning problems, they do not easily extend to MDPs with no clearly-defined goal states. In the

meantime, these MDPs form an important problem type. One of the first extensively studied settings

in the MDP literature, inventory management [80], where the objective is to maximize reward over

a finite number of steps, is naturally modeled as a problem of this kind. Moreover, in the presence

of complicating factors such as a large number of possible exogenous events, finite-horizon MDPs,

as these problems came to be called, can be even more difficult to solve than goal-oriented ones.

Not only are determinization-based approaches inapplicable to them due to the lack of a goal, but

the standard VI and PI grind to a halt on them too, because the main operator VI and PI are based

6

Figure 1.1: In online planning, an agent starts in some initial state s0, evaluates the consequences of available
actions for some number of steps ahead, called the lookahead, executes the best action according to this
evaluation strategy, transitions to the next state s1, and repeats the process. In state si, planning for lookahead
Li causes the agent to explore a region of the MDP’s transition graph schematically depicted as a cone pivoted
at si: the larger the lookahead, the larger the explored region. A key question in online planning is: what
should the lookaheads L0, L1, L2, . . . be for the agent to select good actions for the specified problem under
the given constraints on planning time?

on, Bellman backup, attempts to iterate over all successors of every state under every action, which

can be astronomically plentiful when exogenous events are to be reckoned with.

A promising strategy for solving complicated reward-based MDPs is to do some fraction of

planning online (Figure 1.1), i.e., to determine an action for a state only if/when the agent ends up in

that state. This approach’s advantage lies in spending little resources on states that are never visited

during policy execution. At the same time, computing part of the policy offline may be beneficial as

well; the exact balance between online and offline planning depends on the situation.

During the online planning stage, choosing actions typically involves analyzing actions’ conse-

quences starting at the agent’s current state for a certain number of steps ahead, called the lookahead

(see Figure 1.1). Determining a good lookahead value for a given decision epoch or for a given prob-

lem in general is key to the success of an online planning method. On one hand, if the agent can get

a reward only after executing at least N actions beginning at the current state (e.g., if the agent is

playing a game that can end after at least N moves) but the agent only looks L < N steps ahead, its

action choice will be as good as random. On the other hand, picking a very large lookahead value

may prevent the agent from evaluating its options properly within the specified time constraint and

7

thus may also lead to nearly random action selection. Suitable lookahead values lie inbetween these

two extremes, differing greatly from problem to problem, and even powerful planners based on

Monte-Carlo Tree Search, e.g., PROST [49], suffer from the inability to determine this parameter

automatically.

The contribution of this dissertation to the state of the art in solving reward-oriented MDPs with

finite horizons and complex transition functions is a series of three algorithms that culminates in a

top-performing, easily tunable solver for these problems:

• The algorithm that lays a theoretical foundation for the other two is LR2TDP [54]. LR2TDP

is based on the strategy of reverse iterative deepening, using which it sequentially builds

optimal policies for a given state for lookaheads 1, 2, . . . ,H . Its key improvement upon the

already successful iterative deepening approach, as implemented, e.g., in IDA∗ [62], is that

the former obtains an optimal policy for lookaheadL staring from a given state by augmenting

the solution for lookahead L − 1 obtained earlier, as opposed to discarding the solution for

lookahead L − 1 and building a policy for lookahead L from scratch. This gives LR2TDP

better speed and better anytime performance than that of its forerunner, LRTDP.

• By itself, reverse iterative deepening does not enable LR2TDP to handle large branching

factors caused by the presence of exogenous events. For this purpose, we introduce GLUT-

TON [54], a planner derived from LR2TDP and our entry in IPPC-2011. GLUTTON endows

LR2TDP with optimizations that help achieve competitive performance on difficult prob-

lems with large branching factors: subsampling the transition function, separating out natural

dynamics (a generalization of the notion of exogenous events), caching transition function

samples, and using primitive cyclic policies as a fall-back solution. Thanks to these improve-

ments, GLUTTON was IPPC-2011’s second-best performer.

• Both LR2TDP and GLUTTON do a lot of their planning offline. The last algorithm for finite-

horizon MDPs that we propose, GOURMAND [59], is an online version of LR2TDP. It incor-

porates many of the same optimizations as GLUTTON but plans as the agent travels through

the state space, thereby saving valuable computational resources. GOURMAND’s main in-

novation is its ability to determine good lookahead values automatically for the problem at

8

hand, which addresses a major weakness that has plagued earlier online planning algorithms

and allows GOURMAND to outperform the strongest of them, the IPPC-2011 winner PROST,

on a large set of benchmarks.

1.2 Taking Disaster into Account

Many scenarios whose state and action space sizes are well within the reach of modern planning

algorithms cannot be solved only because they do not fit the assumptions of any known MDP class.

For example, currently there is just one extensively studied MDP type that can model goal-oriented

settings, the so-called stochastic shortest path (SSP) MDPs. They come with two limitations:

• SSP MDPs must have a proper policy, one that can reach the goal from any state with proba-

bility 1.

• Every policy that does not lead to the goal with probability 1 from some state must incur an

infinite cost from any such state.

Each of these restrictions “outlaws” realistic scenarios with very natural characteristics. The

first one essentially confines SSP MDPs to problems with no catastrophic events that could prevent

the agent from reaching the goal. Such catastrophic events are a possibility in many settings, e.g.,

robotics, and ignoring them is sometimes completely unacceptable. To make matters worse, veri-

fying that a given problem has no dead ends can be nontrivial, further complicating the use of the

SSP formalism. The requirement of policies accumulating an infinite cost if they do not reach the

goal forbids the situations in which an agent is interested in the probability of reaching the goal, as

opposed to the cost of doing so. These settings could be modeled by assigning the cost of 0 to each

action and the reward of 1 for reaching the goal. However, under this reward function, policies that

never lead to the goal have a cost of 0, which is unacceptable according to the SSP MDP definition.

Researchers have attempted to correct SSP MDPs’ shortcomings by developing planning formula-

tions where reasoning about dead ends is possible (e.g., the aforementioned criterion of maximizing

the probability of reaching the goal), but these models fail to cover many interesting cases and their

mathematical properties are still relatively poorly understood.

9

Figure 1.2: A Venn diagram showing the MDP classes introduced in this dissertation. The boundaries of the
new MDP classes are marked with red dashed lines, and those of the previously known ones — with black
solid lines. “IHDR” stands for “infinite-horizon discounted-reward MDPs”, “FH” — for “finite-horizon
MDPs”, “NEG” — for “negative MDPs”, “POSB” — for “positive-bounded MDPs”, and “SSPw” — for
“stochastic shortest-path MDPs under the weak definition”. The definitions of all these as well as of all the
new MDP classes are given in the dissertation. All MDP classes in the diagram are assumed to have a known
initial state (the corresponding subscript s0 has been dropped from their names to minimize clutter).

The final contribution of this dissertation is a set of SSP MDP extensions, shown in Figure 1.2,

that gradually remove this model’s restrictions, and a set algorithms for solving them optimally:

• Our exploration of SSP MDP extensions begins with generalized SSP MDPs (GSSPs0) [61],

a class that allows a more general action reward model than SSP. We define the semantics of

optimal solutions for GSSPs0 problems and propose a heuristic search framework for them,

called FRET (Find, Revise, Eliminate Traps). It turns out that the scenarios discussed above

where an agent wants to maximize the probability of reaching the goal form a subclass of

GSSPs0 , which we call MAXPROB in this dissertation. Since MAXPROB is contained in

GSSPs0 , FRET can solve it as well and is, to our knowledge, the first efficient heuristic search

10

framework to do so. To complete the investigation of MAXPROB’s mathematical properties,

we derive a VI-like algorithm that can solve MAXPROB MDPs independently of initialization

— previously, VI was known to yield optimal solutions to MAXPROB only if intialized

strictly inadmissibly [80].

• Although MAXPROB forms the basis for our theory of goal-oriented MDPs with dead ends,

by itself it evaluates policies in a rather crude manner, completely disregarding their cost.

Our first SSP extension that takes costs into account as well is SSP MDPs with avoidable

dead ends (SSPADEs0) [60]. SSPADEs0 MDPs always include a known initial state and have

well-defined easily computable optimal solutions if dead ends are present but avoidable from

that state. Besides defining SSPADEs0 , we describe the modifications required for the existing

heuristic search algorithms to work correctly on these problems.

• The next two classes of MDPs with dead-end states that we introduce admit the existence of

dead ends that cannot be avoided from the initial state with certainty no matter how hard the

agent tries. Mathematically, there are two ways of dealing with such situations. The first is

to assume that entering a dead end, while highly undesirable, has a finite “price”. This is the

approach we take in SSP MDPs with unavoidable dead ends and a finite penalty (fSSPUDEs0)

[60]. As with SSPADEs0 , we show that existing heuristic search algorithms need only slight

adjustments to work with fSSPUDEs0 .

• The other way of treating dead ends is to view them as not only unavoidable but also as

extorting an infinitely high cost if an agent hits one. We model such scenarios with SSP MDPs

with unavoidable dead ends and an infinite penalty (iSSPUDEs0) [60, 96]. Mathematically,

iSSPUDEs0 MDPs represent the most difficult settings: since every policy in them reaches an

infinite-cost state from the initial state, the expected cost of any policy at the initial state is

also infinite. This makes SSP’s cost-minimization criterion uninformative: all policies look

equally bad according to it. A previous attempt to take both policies’ goal probability and

cost into account assumed these criteria to be independent, and therefore constructed a Pareto

set of non-dominated policies as a solution to this optimization problem [18]. Computing

such a set is in the worst case intractable. Instead, we claim that a natural primary objective

11

for scenarios with unavoidable infinitely costly dead ends is to maximize the probability of

getting to the goal (i.e., to minimize the chance of getting into a lethal accident, a dead-end

state). However, of all policies maximizing this chance we would prefer those that reach the

goal in the least costly way (in expectation). This is exactly the multiobjective criterion we

propose for iSSPUDEs0 . Although solving iSSPUDEs0 is conceptually much more involved

than handling the SSP extensions above, we devise an optimal tractable algorithm for it.

• Our work on SSP extensions culminates in the stochastic simple longest path MDPs (SSLPs0).

The SSLPs0 definition imposes no restrictions whatsoever on action costs or the existence

of proper policies. As such, SSLPs0 includes all of the aforementioned SSP extensions as

special cases. Goal-oriented MDPs with unrestricted reward functions formalized by SSLPs0

generally have no optimal policy, but a lowest-cost Markovian policy for an SSLPs0 problem

always exists. The algorithms for SSLPs0 MDPs proposed in this dissertation aim to find a

policy of this kind. The task of discovering the best Markovian policy for an SSLPs0 MDP

is a probabilistic counterpart of computing a simple longest path between two nodes in a

graph, known to be NP-hard [89] (in fact, the latter is also a special case of the former).

Thus, the most efficient algorithms for SSLPs0 MDPs are exponential in SSLPs0 problems’

flat representation unless P = NP .

1.3 New Methods for New Models

Solving the newly introduced MDPs with dead-end states could be made much more efficient if we

knew which states are dead ends. This information is usually not available in advance, so an MDP

solver may have to spend considerable resources identifying them. Moreover, this computational

effort is largely wasted, since, by definition, reaching the goal from a dead end is impossible, making

careful action selection for such states pointless. Thus, introducing classes of problems with dead

ends brings with it a new computational challenge — algorithms for these MDPs need an efficient

mechanism for pinpointing states for which looking for a sophisticated policy is not worth it.

Fortunately, such a mechanism, SIXTHSENSE, exists, being enabled by the state abstractions

introduced in the first part of this dissertation. In this sense, our work provides a complete set of

tools for problems with dead ends: it introduces the MDP classes for modeling these problems,

12

proposes fundamental optimal algorithms for solving them, and pioneers state-abstraction-based

techniques for making these algorithms more efficient.

1.4 Dissertation Outline

The remainder of the manuscript is organized as follows. Chapter 2 surveys the background knowl-

edge necessary for understanding the material in subsequent chapters. Chapters 3 and 4 are devoted

to the new scalable techniques for solving MDPs. More concretely, Chapter 3 describes the approx-

imation algorithms for goal-oriented MDPs, and Chapter 4 — for reward-oriented ones. Chapter 5

introduces the dissertation’s second main contribution, the classes of goal-oriented MDPs with dead

ends and the algorithms for solving them. Each of the Chapters 3–5 also contains Preliminaries

and Related Work sections discussing area-specific state of the art not covered in the Background

chapter. Finally, Chapter 6 summarizes the thesis.

1.5 List of Publications

This dissertation is based on the material from following published works:

Conference Papers:

• Andrey Kolobov, Mausam, and Daniel S. Weld. ReTrASE: Integrating Paradigms for Approx-

imate Probabilistic Planning. In Proceedings of IJCAI 2009.

• Andrey Kolobov, Mausam, and Daniel S. Weld. Classical Planning in MDP Heuristics: with

a Little Help from Generalization. In Proceedings of ICAPS 2010.

• Andrey Kolobov, Mausam, and Daniel S. Weld. SixthSense: Fast and Reliable Recognition

of Dead Ends in MDPs. In Proceedings of AAAI 2010.

• Andrey Kolobov, Mausam, Daniel S. Weld, and Hector Geffner Heuristic Search for Gener-

alized Stochastic Shortest Path MDPs. In Proceedings of ICAPS 2011.

• Andrey Kolobov, Mausam, and Daniel S. Weld. Towards Scalable MDP Algorithms. Ex-

tended abstract in Proceedings of IJCAI 2011.

13

• Andrey Kolobov, Peng Dai, Mausam, and Daniel S. Weld. Reverse Iterative Deepening for

Finite-Horizon MDPs with Large Branching Factors. In Proceedings of ICAPS 2012.

• Andrey Kolobov, Mausam, and Daniel S. Weld. LRTDP vs. UCT for Online Probabilistic

Planning. In Proceedings of AAAI 2012.

• Andrey Kolobov, Mausam, and Daniel S. Weld. A Theory of Goal-Oriented MDPs with Dead

Ends. In Proceedings of UAI 2012.

Journal Papers:

• Andrey Kolobov, Mausam, and Daniel S. Weld. Discovering Hidden Structure in Factored

MDPs. In Artificial Intelligence Journal, May 2012.

Books:

• Mausam and Andrey Kolobov. Planning with Markov Decision Processes: An AI Perspective.

Morgan & Claypool Publishers, 2012.

14

Chapter 2

BACKGROUND

This chapter reviews the mathematical foundations of MDPs and algorithms for solving them. It is

intended primarily as reference material for the rest of the thesis, with other parts of the disserta-

tion containing pointers to specific definitions, theorems, and algorithms in it. For a significantly

extended coverage of this chapter’ topics please refer to [71]. Here, we present only those parts of

it that are directly relevant to understanding the dissertation’s contributions.

2.1 Markov Decision Processes

We begin the survey of the fundamentals with the notion of a Markov Decision Process (MDP).

We describe the most common MDP classes studied in AI, define what it means to solve them, and

discuss their computational complexity.

2.1.1 Definition

In its broadest sense, the MDP concept encompasses an extremely large variety of scenarios. How-

ever, such generality comes at a cost, since it provides too little structure for deriving efficient MDP

solution techniques. Instead, practitioners in AI and other areas have come up with more special-

ized MDP classes by adding restrictions to the basic MDP notion. This dissertation, too, considers

a specific subset of MDP models, whose traits are captured in the following definition:

Definition 2.1. Finite Discrete-Time Fully Observable Markov Decision Process. A finite discrete-

time fully observable MDP is a tuple 〈S,A,D, T ,R〉, where:

• S is the finite nonempty set of all possible states of the system, also called the state space;

• A is the finite nonempty set of all actions an agent can take;

15

• D is a nonempty finite or infinite sequence of the natural numbers of the form (1, 2, 3, . . . ,H)

or (1, 2, 3, . . .) respectively, denoting the decision epochs, also called time steps, at which

actions need to be taken;

• T : S × A × S × D → [0, 1] is a transition function, a mapping specifying the probability

T (s1, a, s2, t) of going to state s2 if action a is executed when the agent is in state s1 at time

step t; for any s ∈ S, a ∈ A, t ∈ D, a transition function must obey
∑

s′∈S T (s, a, s′, t) = 1;

• R : S × A × S × D → R is a reward function that gives a finite numeric reward value

R(s1, a, s2, t) obtained when the system goes from state s1 to state s2 as a result of executing

action a at time step t. If for most inputs this mapping is negative, it is more appropriately

viewed as a cost function. ♣

Since we will almost exclusively discuss finite discrete-time fully observable MDPs as opposed

to any others, we will refer to them simply as “MDPs” in the rest of the dissertation.

Notice that mappings T and R may depend on the number of time steps that have passed since

the beginning of the process. However, neither T nor R depends on the sequence of states the

system has gone through so far, instead depending only on the state the system is in currently. This

is called the first-order Markov assumption and is reflected in the MDPs’ name.

While not explicitly stated in the MDP definition, throughout the dissertation we also make

another critical assumption. We assume that all parts of the MDP model describing the scenario at

hand are known and available to the MDP solver. This view of MDPs is characteristic of planning

under uncertainty as a research area. It is different from the stance taken in reinforcement learning

[93], where the solver may not have access to certain MDP components (usually, the transition and

the reward function).

2.1.2 Solutions of an MDP

Intuitively, solving an MDP means finding a way of choosing actions to control it. The character-

istic of MDPs that distinguishes them from deterministic (classical) planning problems is that the

former’s actions typically have several possible outcomes. An agent cannot pick a state to which it

16

will transition when it uses a particular action, since actions’ outcomes are nondeterministic. There-

fore, after executing any fixed number of actions, the agent may end up in one of many states. For

instance, upon making a few moves with its manipulator, the robot may either end up holding an

object it intended to pick up or, due to noise in its manipulator’s motors, in a state where the object

was inadvertently hit and destroyed. Thus, to be robust, our method of picking actions should en-

able an agent to decide on an action no matter which state the agent is in. What we need is a global

policy, a rule for action selection that works in any state.

What information might such a rule use? The knowledge of the current state can clearly be very

useful. In general, however, an agent’s decisions may depend on the entire sequence of states it has

been through so far, as well as the sequence of actions it has chosen up to the present time step, i.e.,

the entire execution history.

Definition 2.2. Execution History. An execution history of an MDP up to time step t ∈ D is a

sequence ht = ((s1, a1), . . . , (st−1, at−1), st) of pairs of states the agent has visited and actions the

agent has chosen in those states for all time steps t′ s.t. 1 ≤ t′ ≤ t− 1, plus the state visited at time

step t. ♣

We denote the set of all possible execution histories up to decision epoch t as Ht, and let H =

∪t∈DHt.

Note also that a rule for selecting actions need not be deterministic. For instance, when faced

with a choice of several equally good actions, it can be beneficial to pick one of them at random in

order to avoid a bias. Thus, in the most general form, a solution policy for an MDP may be not only

history-dependent but also randomized.

Definition 2.3. History-Dependent Policy. A randomized history-dependent policy for an MDP is

a probability distribution π : H × A → [0, 1] that assigns to action a ∈ A a probability π(ht, a)

of choosing it for execution at the current time step t if the execution history up to t is ht ∈ H. A

deterministic history-dependent policy is a mapping π : H → A that assigns to each ht ∈ H an

action a ∈ A to be executed at the current time step t if ht is the execution history up to t. ♣

17

It is easy to see that a deterministic history-dependent policy is a randomized policy that, for

every history, assigns the entire probability mass to a single action. Accordingly, the deterministic

policy notation π(ht) = a is just a shorthand for the randomized policy notation π(ht, a) = 1.

While very general, this definition suggests that many MDP solutions may be very hard to

compute and represent. Indeed, a history-dependent policy must provide a distribution over actions

for every possible history. If the number of time steps |D| in an MDP is infinite, its number of

possible histories is infinite as well. Thus, barring special cases, solving an MDP seemingly amounts

to computing a function over an infinite number of inputs. Even whenD is a finite set, the number of

histories, and hence the maximum size of an MDP solution, although finite, may grow exponentially

in |D|.

Due to the difficulties of dealing with arbitrary history-dependent policies, all algorithms pre-

sented in this dissertation aim to find more compact MDP solutions in the form of Markovian poli-

cies. Nonetheless, it is important to keep in mind that in general disregarding history-dependent

policies may mean losing solution optimality, and wherever possible we explicitly prove that the

MDP classes we are introducing have at least one optimal solution that is Markovian.

Definition 2.4. Markovian Policy. A randomized (deterministic) history-dependent policy π : H×

A → [0, 1] (π : H → A) is Markovian if for any two histories hs,t and h′s,t, both of which end in

the same state s at the same time step t, and for any action a, π(hs,t, a) = π(h′s,t, a). ♣

In other words, the choice of an action under a Markovian policy depends only on the current

state and time step. To stress this fact, we will denote probabilistic Markovian policies as functions

π : S × D ×A → [0, 1] and deterministic ones as π : S × D → A.

Fortunately, disregarding non-Markovian policies is rarely a serious limitation. Typically, we

are not just interested in finding a policy for an MDP. Rather, we would like to find a “good”

policy, one that optimizes (or nearly optimizes) some objective function. As we will see shortly, for

several important types of MDPs and objective functions, at least one optimal solution is necessarily

Markovian. Thus, by restricting attention only to Markovian policies we are not foregoing the

opportunity to solve these MDPs optimally.

18

Dropping non-Markovian history-dependent policies from consideration makes the task of solv-

ing an MDP much easier, as it entails deciding on a way to behave “merely” for every state and time

step. In particular, if D is finite, the size of a policy specification is at most linear in |D|. Other-

wise, however, the policy description size may still be infinite. To address this, for MDPs with an

infinite number of steps we narrow down the class of solutions even further by concentrating only

on stationary Markovian policies.

Definition 2.5. Stationary Markovian Policy. A randomized (deterministic) Markovian policy π :

S × D ×A → [0, 1] (π : S × D → A) is stationary if for any state s, action a, and two time steps

t1 and t2, π(s, t1, a) = π(s, t2, a) (π(s, t1) = a if and only if π(s, t2) = a), i.e., π does not depend

on time. ♣

Since the time step plays no role in dictating actions in stationary Markovian policies, we will

denote probabilistic stationary Markovian policies as functions π : S×A → [0, 1] and deterministic

ones as π : S → A. Stationary solutions look feasible to find — they require constructing an

action distribution for every state and hence have finite size for any MDP with a finite state space.

However, they again raise the concern of whether we are missing any important MDP solutions by

tying ourselves only to the stationary ones. As with general Markovian policies, for most practically

interesting MDPs with an infinite number of time steps this is not an issue, because they have at least

one best solution that is stationary.

In the discussion so far, we have loosely referred to policies as being “best” and “optimal”, and

now turn to defining the notion of policy quality precisely. When executing a policy, i.e., applying

actions recommended by it in various states, we can expect to get associated rewards. Therefore, it

makes intuitive sense to prefer a policy that controls the MDP in a way that maximizes some utility

function of collected rewards. For now, we intentionally leave this utility function unspecified and

first formalize the concept of a policy’s value.

Definition 2.6. Value Function. A history-dependent value function is a mapping V : H →

[−∞,∞]. A Markovian value function is a mapping V : S × D → [−∞,∞]. A stationary

19

Markovian value function is a mapping V : S → [−∞,∞]. ♣

The Markovian value function notation V : S × D → [−∞,∞] is just syntactic sugar for

a history-dependent value function V : H → [−∞,∞], that, for all pairs of histories hs,t and

h′s,t that terminate at the same state at the same time, has V (hs,t) = V (h′s,t). In other words, for

such a history-dependent value function, V (s, t) = V (hs,t) for all policies hs,t. Analogously, if a

Markovian policy has V (s, t) = V (s, t′) for states s and for all pairs of time steps t, t′, then V (s)

is the value denoting V (s, t) for any time step t. We will use V (s, t) and V (s) as the shorthand

notation for a value function wherever appropriate.

Definition 2.7. The Value Function of a Policy. Let hs,t be a history that terminates at state s

and time t. Let R
πhs,t
t′ be random variables for the amount of reward obtained in an MDP as

a result of executing policy π starting in state s for all time steps t′ s.t. t ≤ t′ ≤ |D| if the

MDP ended up in state s at time t via history hs,t. The value function V π : H → [−∞,∞] of

a history-dependent policy π is a utility function u of the reward sequence R
πhs,t
t , R

πhs,t
t+1 , . . . that

one can accumulate by executing π at time steps t, t + 1, . . . after history hs,t. Mathematically,

V π(hs,t) = u(R
πhs,t
t , R

πhs,t
t+1 , . . .). ♣

This definition simply says that the value of a policy π is the amount of utility we can expect

from executing π starting in a given situation, whatever we choose our utility to be. The notation

for the policy value function is simplified for Markovian and stationary Markovian policies π. In

the former case, V π(s, t) = u(R
πs,t
t , R

πs,t
t+1, . . .), and in the latter case V π(s) = u(Rπst , R

πs
t+1, . . .).

As already mentioned, for most MDP classes studied in this dissertation, the optimal solution is

a stationary Markovian policy, so our algorithms concentrate on this type of policy when solving

MDPs, and we will be usually use the V π(s) notation.

The above definition of a policy’s value finally allows us to describe an optimal MDP solution.

Definition 2.8. Optimal MDP Solution. An optimal solution to an MDP is a policy π∗ s.t. the value

function of π∗, denoted as V ∗ and called the optimal value function, dominates the value functions

20

of all other policies for all histories ht for all time steps t. Mathematically, for all ht ∈ H, for all

t ∈ D and any π, V ∗ must satisfy V ∗(ht) ≥ V π(ht). ♣

In other words, given an optimality criterion (i.e., a measure of how good a policy is, as deter-

mined by the utility function u in Definition 2.7), an optimal MDP solution is a policy π∗ that is at

least as good as any other policy in every situation, according to that criterion. An optimal policy is

one that maximizes a utility of rewards.

2.1.3 Solution Existence under Expected Linear Additive Utility

Definition 2.8 contains a caveat that concerns the possibility of comparing value functions for two

different policies. Each V π is, in effect, a vector in a Euclidean space — the dimensions correspond

to histories/states with values V π assigns to them. Viewed in this way, comparing quality of policies

is equivalent to comparing vectors in Rm componentwise. Note, however, that vectors in Rm with

m > 1, unlike points in R, are not necessarily componentwise comparable, and for an arbitrary u

the optimal value function need not exist, because no π’s value function may dominate the values of

all other policies everywhere.

Fortunately, there is a natural utility function that ensures the existence of an optimal policy:

Definition 2.9. Expected Linear Additive Utility. An expected linear additive utility function is a

function u(Rt, Rt+1, . . .) = E[
∑|D|

t′=t γ
t′−tRt′] = E[

∑|D|−t
t′=0 γt

′
Rt′+t] that computes the utility of

a reward sequence as the expected sum of (possibly discounted) rewards in this sequence, where

γ ≥ 0 is the discount factor. ♣

This definition implies that a policy is as good as the amount of discounted reward it is expected

to yield. Setting γ = 1 expresses indifference of the agent to the time when a particular reward

arrives. Setting it to a value 0 ≤ γ < 1 reflects various degrees of preference to rewards earned

sooner. This is very useful, for instance, for modeling an agent’s attitude to monetary rewards. The

agent may value the money it gets today more than the same amount of money it could get in a

month, because today’s money can be invested and yield extra income in a month’s time.

21

Expected linear additive utility is not always the most appropriate measure of a policy’s quality.

In particular, it assumes the agent to be risk-neutral, i.e., oblivious of the variance in the rewards

yielded by a policy. As a concrete example of risk-neutral behavior, suppose the agent has a choice

of either getting a million dollars or playing the following game. The agent should flip a fair coin,

and if the coin comes up heads, the agent gets two million dollars; otherwise, the agent gets nothing.

The two options can be interpreted as two policies, both yielding the expected reward of one million

dollars. The expected linear additive utility model gives the agent no reason to prefer one policy

over the other, since their expected payoff is the same. In reality, however, many if not most people

in such circumstances would tend to be risk-averse and select the option with lower variance — just

take one million dollars. Although expected linear additive utility does not capture these nuances, it

is still a convenient indicator of policy quality in many cases.

The importance of expected linear additive utility is due to the fact that letting V π(hs,t) =

E[
∑|D|−t

t′=0 γt
′
R
πhs,t
t′+t] guarantees a very important MDP property, informally stated as follows [80]:

The Optimality Principle. If every policy’s quality can be measured by this policy’s expected linear

additive utility, there exists a policy that is optimal at every time step.

In effect, it says that if the expected utility of every policy is well-defined, then there is a policy

that maximizes this utility in every situation.

The statement of the Optimality Principle has two subtle points. First, its claim is valid only

if “every policy’s quality can be measured by the policy’s expected linear additive utility.” When

does this premise fail to hold? Imagine, for example, an MDP with an infinite D, γ = 1, two

states, s and s′, and an action a s.t. T (s, a, s′, t) = 1.0, T (s′, a, s, t) = 1.0, R(s, a, s′, t) = 1, and

R(s′, a, s, t) = −1 for all t ∈ D. In other words, the agent can only travel in a loop between states

s and s′. In this MDP, for both states the expected sum of rewards keeps oscillating (between 1 and

0 for s and between −1 and 0 for s′), never converging to any finite value nor diverging to infinity.

Second, crucially, optimal policies are not necessarily unique.

At the same time, as stated, the Optimality Principle may seem more informative than it actually

is. Since we have not imposed any restrictions either on the γ parameter, on the sequence of the re-

ward random variablesRt′+t, or on the number of time steps |D|, the expectation E[
∑|D|−t

t′=0 γt
′
Rt′+t]

22

may be infinite. This may happen, for example, when the reward of any action in any state at any

time step is at least ε > 0, γ is at least 1, and the number of time steps is infinite. As a conse-

quence, all policies in an MDP could be optimal under the expected linear additive utility criterion,

since they all might have infinite values in all the states and hence would be indistinguishable from

each other in terms of quality. In the next subsections, we discuss the three most widely studied

MDP classes in AI — finite-horizon, infinite-horizon discounted-reward, and stochastic shortest-

path MDPs — whose definitions can be regarded as attempts to restrict Definition 2.1 in order to

enforce the finiteness of every candidate policy’s value function. Besides these, there is another

major type of fully observable probabilistic planning problems, the infinite-horizon average-reward

MDPs, whose properties have been extensively studied in operations research [80]. However, it has

not been used much in AI and is not essential to understanding the material in this dissertation, so

we do not discuss it here.

2.1.4 Finite-Horizon MDPs

Perhaps the easiest way to make sure that expected linear additive utility E[
∑|D|−t

t′=0 γt
′
Rt′+t] is finite

for any conceivable sequence of random reward variables in a given MDP is to limit the MDP to a

finite number of time steps. In this case, the summation terminates after a finite number of terms

|D| = H , called the horizon, and the MDP is called a finite-horizon MDP.

Definition 2.10. Finite-Horizon MDP. A finite-horizon (FH) MDP is an MDP as described in Def-

inition 2.1 with a finite number of time steps, i.e., with |D| = H <∞. ♣

In most cases where finite-horizon MDPs are used, γ is set to 1, so the value of a policy becomes

the expected total sum of rewards it yields.

One example [86] of a scenario appropriately modeled as a finite-horizon MDP is where the

agent is trying to teach a set of skills to a student over H lessons (time steps). The agent can

devote a lesson to teaching a new topic, giving a test to check the student’s proficiency, or providing

hints/additional explanations about a previously taught topic — this is the agent’s action set. The

agent gets rewarded if the student does well on the tests. The probability of a student doing well on

23

them depends on her current proficiency level, which, in turn, depends on the amount of explanations

and hints she has received from the agent. Thus, the agent’s objective is to plan out the available

lessons so as to teach the student well and have time to verify the student’s knowledge via exams.

The Optimality Principle for finite-horizon MDPs can be restated in a precise form as fol-

lows [80]:

Theorem 2.1. The Optimality Principle for Finite-Horizon MDPs. For a finite-horizon MDP with

|D| = H < ∞, define V π(hs,t) = E[
∑H−t

t′=0 R
πhs,t
t′+t] for all 1 ≤ t ≤ H , and V π(hs,H+1) = 0 .

Then the optimal value function V ∗ for this MDP exists, is Markovian, and satisfies, for all s ∈ S

and 1 ≤ t ≤ H ,

V ∗(s, t) = max
a∈A

[∑
s′∈S
T (s, a, s′, t)[R(s, a, s′, t) + V ∗(s′, t+ 1)]

]
. (2.1)

Moreover, at least one optimal policy π∗ corresponding to the optimal value function is deterministic

Markovian and satisfies, for all s ∈ S and 1 ≤ t ≤ H ,

π∗(s, t) = argmax
a∈A

[∑
s′∈S
T (s, a, s′, t)[R(s, a, s′, t) + V ∗(s′, t+ 1)]

]
. (2.2)

♦

This statement of the Optimality Principle is more concrete than the previous one, as it postulates

the existence of deterministic Markovian optimal policies for finite-horizon MDPs. Their optimal

value function dominates all other value functions but satisfies the simpler Equation 2.1. Thus,

finite-horizon MDPs can be solved by restricting our attention to Markovian deterministic policies

without sacrificing solution quality.

24

2.1.5 Infinite-Horizon Discounted-Reward MDPs

Although finite-horizon MDPs have simple mathematical properties, this model is quite limited. In

many scenarios, the reward is accumulated over an infinite (or virtually infinite) sequence of time

steps. To handle such problems, we need a way to ensure the convergence of an infinite weighted

expected reward series.

In fact, with our current definition of the reward and transition functions (Definition 2.1), infinite-

horizon MDPs are hard even to write down, because the domain of both of these functions includes

an infinite set of time stepsD. We circumvent this difficulty by working only with time-independent,

or stationary, transitions and rewards.

Definition 2.11. Stationary Transition Function. An MDP’s transition function T is stationary if

for any states s1, s2 ∈ S and action a ∈ A, the value T (s1, a, s2, t) does not depend on t, i.e.,

T (s1, a, s2, t) = T (s1, a, s2, t
′) for any t, t′ ∈ D. ♣

Definition 2.12. Stationary Reward Function. An MDP’s reward function R is stationary if for

any states s1, s2 ∈ S and action a ∈ A, the value R(s1, a, s2, t) does not depend on t, i.e.,

R(s1, a, s2, t) = R(s1, a, s2, t
′) for any t, t′ ∈ D. ♣

Since stationary T and R are constant with respect to D, we will refer to them more concisely as

T : S × A × S → [0, 1] and R : S × A × S → R. When the transition function is stationary, we

will call s′ an outcome of a in s whenever T (s, a, s′) > 0. We call MDPs with stationary transition

and reward functions stationary MDPs. All MDPs with infiniteD considered in this dissertation are

assumed to be stationary.

Returning to the issue of an infinite reward series expectation, an easy way to force it to converge

for a stationary MDP is to require that {γi}∞i=0 form a decreasing geometric sequence by setting γ

to a value 0 ≤ γ < 1, as reflected in the definition of infinite-horizon discounted-reward MDPs:

Definition 2.13. Infinite-Horizon Discounted-Reward MDP. An infinite-horizon discounted-reward

(IHDR) MDP is a stationary MDP as described in Definition 2.1, in whichD is infinite and the value

25

of a policy is defined as V π(hs,t) = E[
∑∞

t′=0 γ
t′R

πhs,t
t′+t], where the discount factor γ is a model pa-

rameter restricted to be 0 ≤ γ < 1. ♣

Besides having the pleasing mathematical property of a bounded value function, discounted-

reward MDPs also have a straightforward interpretation. They model problems in which the agent

gravitates toward policies yielding large rewards in the near future rather than policies yielding

similar rewards but in a more distant future. At the same time, any particular choice of γ is usually

hard to justify.

As in the case with finite-horizon MDPs, the Optimality Principle can be specialized to infinite-

horizon discounted-reward MDPs, but in an even stronger form due to the assumptions of stationar-

ity [80]:

Theorem 2.2. The Optimality Principle for Infinite-Horizon MDPs. For an infinite-horizon dis-

counted-reward MDP with discount factor γ s.t. 0 ≤ γ < 1, define V π(hs,t) = E[
∑∞

t′=0 γ
t′R

πhs,t
t′+t].

Then the optimal value function V ∗ for this MDP exists, is stationary Markovian, and satisfies, for

all s ∈ S,

V ∗(s) = max
a∈A

[∑
s′∈S
T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

]
. (2.3)

Moreover, at least one optimal policy π∗ corresponding to the optimal value function is deterministic

stationary Markovian and satisfies, for all s ∈ S,

π∗(s) = argmax
a∈A

[∑
s′∈S
T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

]
. (2.4)

♦

26

2.1.6 Stochastic Shortest-Path MDPs

FH and IHDR MDPs are suitable for describing agents whose primary objective is collecting reward.

This is the setting of many problems in industrial engineering, e.g., inventory management [80], but

in AI, researchers have also studied a different type of scenarios. In them, the agent is trying to

reach a goal state while minimizing the expected cost of doing so. Fairly innocuous at the first

glance, this criterion turns out to be tricky to formalize. The intuitive reason for this is that the

objectives of goal attainment and cost minimization (which is the equivalent to maximizing reward)

are conflicting: policies that do not lead to a goal can sometimes be more “profitable” for the agent

than those that do. Therefore, in the goal-oriented MDP class we define shortly, we will focus only

on those policies that are guaranteed to eventually lead an agent to a goal state no matter at which

state the agent starts:

Definition 2.14. Proper policy. For a given stationary MDP, let G ⊆ S be a set of goal states s.t.

for each sg ∈ G and all a ∈ A, T (sg, a, sg) = 1 and R(sg, a, sg) = 0. Let hs be an execution

history that terminates at state s. For a given set S′ ⊆ S, let P πt (hs, S
′) be the probability that after

execution history hs, the agent transitions to some state in S′ within t time steps if it follows policy

π. A policy π is called proper at state s if P πt (hs,G) = 1 for all histories hs ∈ H that terminate

at s. If for some hs, limt→∞ P
π
t (hs,G) < 1, π is called improper at state s. A policy π is called

proper if it is proper at all states s ∈ S. Otherwise, it is called improper. ♣

Without loss of generality, we can assume that there is only one goal state — if there are more,

we can add a special state with actions leading to it from all the goal states and thus make this new

special state the de-facto unique goal. Therefore, as a shorthand, in the rest of this dissertation we

will sometimes say that a policy reaches the goal, meaning that it reaches some state in G. We will

say that a policy reaches the goal with probability 1 about a policy that is guaranteed to eventually

reach some state in G, although possibly not the same state in every execution.

The following definition of a goal-oriented MDP class ensures that at least one proper policy not

only exists but is also at least as attractive as any other in terms of expected utility:

27

Definition 2.15. Stochastic Shortest-Path MDP. (Weak definition.) A stochastic shortest-path (SSP)

MDP is a tuple 〈S,A, T , C,G〉 where:

• S is the finite set of all possible states of the system,

• A is the finite set of all actions an agent can take,

• T : S × A × S → [0, 1] is a stationary transition function specifying the probability

T (s1, a, s2) of going to state s2 whenever action a is executed when the system is in state

s1,

• C : S ×A× S → [0,∞) is a stationary cost function that gives a finite strictly positive cost

C(s1, a, s2) > 0 incurred whenever the system goes from state s1 to state s2 as a result of

executing action a, with the exception of transitions from a goal state, and

• G ⊆ S is the set of all goal states s.t. for every sg ∈ G, for all a ∈ A, and for all s′ /∈ G, the

transition and cost functions obey T (sg, a, sg) = 1, T (sg, a, s
′) = 0, and C(sg, a, sg) = 0,

under the following condition:

• There exists at least one proper policy. ♣

Although superficially similar to the general MDP characterization (Definition 2.1), this defini-

tion has notable differences. Other than the standard stationarity requirements, note that instead of

a reward function SSP MDPs have a cost function C, since the notion of cost is more appropriate

for scenarios modeled by SSP MDPs. Consequently, as we discuss shortly, solving an SSP MDP

means finding an expected-cost minimizing, as opposed to a reward-maximizing, policy. Further,

the set of decision epochs D has been omitted, since for every SSP MDP it is implicitly the set of

all natural numbers. These differences are purely syntactic, as we can define R = −C and go back

to the reward-maximization-based formulation. A more fundamental distinction is the presence of

a special set of (terminal) goal states, staying in which forever incurs no cost, and the requirement

28

that SSP MDPs have at least one policy that reaches the goal with probability 1. Most importantly,

according to this definition, the agent effectively has to pay a price for executing every action. Under

such conditions, the longer an agent stays away from the goal state, the more the agent is likely to

pay. In particular, if the agent uses an improper policy, it will never be able to reach the goal from

some states, i.e., the total expected cost of that policy from some states will be infinite. Therefore,

improper policies are always inferior to proper ones.

The Optimality Principle for SSP MDPs [5] holds in a slightly modified form that nonethe-

less postulates the existence of simple optimal policies, as for the infinite-horizon discounted-cost

MDPs.

Theorem 2.3. The Optimality Principle for Stochastic Shortest-Path MDPs. For an SSP MDP,

define V π(hs,t) = E[
∑∞

t′=0R
πhs,t
t′+t]. Then the optimal value function V ∗ for this MDP exists, is

stationary Markovian, and satisfies, for all s ∈ S,

V ∗(s) = min
a∈A

[∑
s′∈S
T (s, a, s′)[C(s, a, s′) + V ∗(s′)]

]
(2.5)

and, for all sg ∈ G, V ∗(sg) = 0. Moreover, at least one optimal policy π∗ corresponding to the

optimal value function is deterministic stationary Markovian and satisfies, for all s ∈ S,

π∗(s) = argmin
a∈A

[∑
s′∈S
T (s, a, s′)[C(s, a, s′) + V ∗(s′)]

]
. (2.6)

♦

The largest differences from the previous versions of this principle are the replacement of max-

imizations with minimizations, the replacement of a reward function with a cost function, and the

omitted γ factor, since it is fixed at 1. The following theorem, a corollary of several results from

the SSP MDP theory [5], sheds more light on the semantics of this model.

29

Theorem 2.4. In an SSP MDP, V ∗(s) is the smallest expected cost of getting from state s to the goal.

Every optimal stationary deterministic Markovian policy in an SSP MDP is proper and minimizes

the expected cost of getting to the goal for every state. ♦

This theorem explains why the MDPs we are discussing are called stochastic shortest-path prob-

lems. It says that, under the SSP MDP definition conditions, all policies that optimize the expected

undiscounted linear additive utility also optimize the expected cost of reaching the goal. Put dif-

ferently, in expectation such policies are the “shortest” ways of reaching the goal from any given

state.

In the AI literature (e.g., [5]), one also encounters another, broader definition of SSP MDPs:

Definition 2.16. Stochastic Shortest-Path MDP. (Strong definition.) A stochastic shortest-path

(SSP) MDP is a tuple 〈S,A, T , C,G〉 where S, A, T : S × A × S → [0, 1], G ⊆ S are as in

Definition 2.15, and C : S × A × S → R is a stationary real-valued cost function, under two

conditions:

• There exists at least one proper policy,

• For every improper stationary deterministic Markovian policy π, for every s ∈ S where π is

improper, V π(s) =∞. ♣

Theorem 2.4 holds for this SSP definition as well as for the weak one (Definition 2.15), so

optimal solutions to SSP MDPs defined this way still include the stationary deterministic Markovian

policies that minimize the expected cost of getting to the goal at every state.

The strong definition can be shown to be more general than the weak one. The former does

not impose any local constraints on the cost function — its value can be any real number, positive

or negative. However, it adds an additional constraint insisting that every improper policy has an

infinite value in at least one state. The net effect of these requirements is the same; in both cases

some proper policy for the SSP MDP is preferable to all improper ones. Thus, instead of imposing

30

local constraints on the cost values, Definition 2.16 introduces a global one. On the positive side, this

allows more choices for the cost function, and hence admits more MDPs than the weak definition.

On the other hand, the weak definition provides an easier way to check whether an MDP is an SSP

problem or not.

2.1.7 MDPs with an Initial State

Solutions to MDPs discussed up till now map every state in the state space to an action or a distri-

bution over actions. We call such policies complete. In many settings, learning a complete optimal

policy for an MDP is not needed. Instead, we may be interested in a policy that performs optimally

starting from a specific state, called the initial state and denoted as s0. If the initial state is known,

it makes sense to calculate only a partial policy πs0 closed w.r.t. s0.

Definition 2.17. Partial Policy. A Markovian policy π : S ′ × A → [0, 1] over a set of states S ′ is

partial if S ′ is a subset of but not necessarily equal to the whole state space S. ♣

Definition 2.18. Policy Closed with Respect to State s. A partial policy πs : S ′ ×A → [0, 1] over

a set of states S ′ is closed with respect to state s if any state s′ reachable by πs from s is contained

in S ′. ♣

Put differently, a policy closed w.r.t. a state s must specify an action for any state s′ that can be

reached via that policy from s. Such a policy can be viewed as a restriction of a complete policy π

to a set of states S ′ iteratively constructed as follows:

• Let S ′ = {s}.

• Add to S ′ all the states that π can reach from the states in S ′ in one time step.

• Repeat the above step until S ′ does not change.

Computing a closed partial policy can be easier than a complete one, because the former typ-

ically does not need to be specified over the entire state space, parts of which may not even be

31

reachable from s0. For the same reason, such a policy also takes less space to store. The advantages

of closed partial MDP solutions have prompted research into variants of finite-horizon, infinite-

horizon discounter-reward, and stochastic shortest-path problems where the initial state is assumed

to be known. Below, we adapt the strong definition of SSP MDPs (Definition 2.16) to account

for the knowledge of the initial state. The definitions of the other MDP classes can be modified

analogously.

Definition 2.19. Stochastic Shortest-Path MDP with an Initial State. (Strong definition.) An SSP

MDP with an initial state, denoted as SSPs0 MDP, is a tuple 〈S,A, T , C,G, s0〉, where S, A, T , C,

and G are as in the strong SSP MDP definition (2.16) and satisfy that definition’s conditions, and

s0 ∈ S is the initial state where the execution of any policy for this MDP starts. ♣

An optimal solution of an SSPs0 MDP is a partial policy π∗s0 closed with respect to s0 whose

value function satisfies V ∗(s0) ≤ V π′(s0) for any other policy π′ closed w.r.t. s0. The presence

of the initial state does not prevent the main results for FH, IHDR, and SSP MDPs, including the

Optimality Principle, from applying to FHs0 , IHDRs0 , and SSPs0 problems as well.

2.1.8 Relationships Among the Basic MDP Classes

Our discussion from Section 2.1.3 up to this point has touched upon several flavors of three funda-

mental MDP classes for which an optimal solution is both well-defined and guaranteed to exist —

finite-horizon, infinite-horizon discounted-reward, and SSP MDPs. As we show in this subsection,

SSP MDPs are, in fact, strictly more general than the other MDP types, as the following theorem

states.

Theorem 2.5. Denote the set of all finite-horizon MDPs as FH, the set of all infinite-horizon dis-

counted-reward MDPs as IHDR, and the set of all SSP MDPs as SSP. The following statements

hold [6]:

FH ⊂ SSP

32

IHDR ⊂ SSP

Similarly, for versions of these classes with a known initial state,

FHs0 ⊂ SSPs0

IHDRs0 ⊂ SSPs0

♦

We do not provide a formal proof of these facts, but outline its main idea. Our high-level

approach is to show that each finite-horizon and infinite-horizon discounted-reward MDP can be

compiled into an equivalent SSP MDP. Let us start with finite-horizon MDPs. Suppose we are given

an FH MDP 〈S,A,D, T ,R〉. Replace the state space S of such an MDP with the set S ′ = S × D.

This transformation makes the current decision epoch part of the state and is the key step in our

proof. Replace T with a stationary transition function T ′ s.t. T ′((s, t), a, (s′, t+ 1)) = p whenever

T (s, a, s′) = p. By similarly changing R, construct a new reward function R′ and replace R

with a cost function C = −R′ . Finally, assuming |D| = H < ∞, let the set of goal states be

G = {(s,H) | s ∈ S}. The tuple we just constructed, 〈S ′,A, T ′, C,G〉, clearly satisfies the strong

definition of SSP MDP.

Now suppose we are given an IHDR MDP 〈S,A,D, T ,R〉 with a discount factor γ. The main

insight in transforming this MDP into an SSP problem is to replace R with C = −R and to add a

special goal state sg to S , where the system can transition at any time step with probability 1 − γ

using any action from any state (the transition function T needs to be scaled so that the probabilities

of all other outcomes sum to γ). Transitioning to sg from any state using any action will incur the

cost of 0. It is easy to verify that the new MDP conforms to the strong SSP MDP definition with

G = {sg}, and it can be shown that every stationary deterministic Markovian policy in it is optimal

if and only if it is optimal in the original IHDR MDP.

From a theoretical standpoint, Theorem 2.5 allows us to concentrate on developing algorithms

for SSP, since FH and IHDR are merely its subclasses. In practice, however, since FH and IHDR are

more specialized, some techniques that do not extend to SSP can handle them more efficiently than

33

the algorithms applying to SSP as a whole. In particular, this is true of the approximation algorithms

proposed this dissertation: those of them that target specifically FH and IHDR MDPs (Chapter

4) perform much better on these problems than the approaches designed for the SSP scenarios in

general (Chapter 3).

Finally, we point out that the presence or absence of a known initial state in a stochastic shortest-

path problem does not actually make a difference from the point of view of computational complex-

ity:

Theorem 2.6. SSPs0 = SSP ♦

Indeed, for every SSPs0 MDP, solving the same MDP but without an initial state provides a

solution to the original SSPs0 MDP MDP. Conversely, given an SSP MDP with state space S, we

can construct its version with an initial state by adding a new state s0 to S and making all actions

have a possible transition from s0 to any state in S with probability 1/|S|. Finding an optimal policy

closed w.r.t. s0 for the resulting problem necessarily yields a complete optimal policy for the SSP

MDP we started with.

Why, then, do we need a separate class of goal-oriented MDPs with an initial state? The expla-

nation is similar to the reason why algorithms for SSP do not necessarily perform well in practice

on its FH and IHDR subclasses. Although in the worst case solving an SSPs0 MDP takes as much

resources as solving an SSP MDP, many SSPs0 instances can be solved much more efficiently (from

the empirical point of view) than their SSP equivalents, because the fraction of the state space

reachable from s0 (and hence even theoretically relevant to finding a solution closed w.r.t. s0) can

be much smaller than the state space as a whole. In short, although the knowledge of the initial state

does not help always, in many cases it does, making it beneficial to design algorithms specifically

tailored to the case when the initial state is known.

2.1.9 Factored MDPs

Although defining an MDP class takes just a few lines of text, describing an MDP instance can be

much more cumbersome. The most conceptually straightforward way is to implicitly enumerate

34

state and action spaces by specifying just the number of each and give (stationary) transition and

reward functions as sets of matrices, one matrix of size |S|2 per action. This type of representation

is called atomic or flat, and has two major drawbacks. First, it is practical only for relatively small

MDPs: a flat MDP description scales quadratically in the number of states. Second, it does not

explicitly convey the structure of the problem at hand, e.g., the sparseness of its transition matrices,

that could otherwise let a solver perform some optimizations.

Factored Stochastic Shortest-Path MDPs

To avoid the drawbacks of the flat representation, one can instead specify each state as a combination

of values of several state variables relevant to the problem at hand, i.e., factor the state space into

constituent variables [16]. Doing so helps compactly describe both the state space itself and other

MDP components. Below, we give a factored counterpart of the strong definition of SSP MDPs with

an initial state; factored versions of FH, IHDR, and weak SSP MDPs, with and without the initial

state, are defined similarly.

Definition 2.20. Factored SSP MDP with an initial state. A factored SSP MDP with an initial state

is a tuple 〈X ,S,A, T , C,G, s0〉 obeying the conditions in Definition 2.16, where

• X = {X1, . . . , Xn} is a set of state variables (sometimes also called features or domain

variables) whose domains are sets dom(X1), . . . , dom(Xn) respectively,

• The finite state space is represented as a set S = dom(X1)× . . .× dom(Xn),

• The finite set of all actions is A,

• The transition function is represented as a mapping T : (dom(X1)× . . .×dom(Xn))×A×

(dom(X1) × . . . × dom(Xn)) → [0, 1] s.t. for any s ∈ S, a ∈ A,
∑

s′∈S T (s, a, s′) equals

either 0 or 1,

• The cost function is represented as a mapping C : (dom(X1) × . . . × dom(Xn)) × A ×

(dom(X1)× . . .× dom(Xn))→ R,

35

• The goal set G is represented as a set of states satisfying a specified logical formula over

assignments of values to variables in X , and

• The initial state s0 is specified as a vector in dom(X1)× . . .× dom(Xn). ♣

Other than the state variable-oriented representation of the key MDP elements, this definition

has another notable difference from the earlier definitions of MDP classes. Namely, it allows the

transition function to sum to 0 for some state-action pairs. This lets us express the fact that certain

actions are not applicable in certain states, thereby explicitly showing that some transition matrices

are sparse. In a given state of a factored MDP, an agent may only choose among actions that are

applicable there. In spite of this detail, all theoretical results that hold for the previously reviewed

MDP types hold for their factored equivalents as well.

Definition 2.20 states what a factored MDP is at an abstract level, without saying how exactly

each of its components, e.g., the transition function, should be described. In what follows we exam-

ine two approaches to characterizing factored MDPs. To make the discussion concrete, we introduce

some additional terminology. We call an assignment of a value xi ∈ dom(Xi) to a variable Xi a lit-

eral over Xi. Without loss of generality, in this dissertation we assume the state variables of MDPs

in question to be binary, i.e., have dom(Xi) = {True,False} for all i. All finite discrete factored

MDPs can be converted into this binary form. We call a literal that assigns the True value to its

variable Xi a positive literal and denote it, with a slight abuse of notation, Xi, just like the variable

itself. Similarly, we call a literal that assigns the False value a negative literal and denote it as ¬Xi.

PPDDL-style Representation

The PPDDL-style representation takes its name from the Probabilistic Planning Domain Definition

Language [101] and reflects the semantics of MDP descriptions in it. Figure 3.1 in Chapter 3 shows

an MDP described in PPDDL. In the PPDDL-style representation, an MDP’s components have the

following form:

• The set X is given as a collection of appropriately named variables with specified domains.

36

For a binary factored MDP, it may appear as follows:

X = {A : {True,False}, B : {True,False}, C : {True,False}, D : {True,False}}

• The state space S is the set of all conjunctions of literals over all the state variables. Again

assuming binary variables, an example of a state is s = (A,¬B,¬C,D).

• Each action in the set A is a tuple of the form

〈prec, 〈p1, add1, del1〉, · · · , 〈pm, addm, delm〉〉

s.t. all such tuples in A together specify the transition function T (s, a, s′) as follows:

– prec is the action’s precondition represented as a conjunction of literals. We interpret an

action’s precondition to say that the action may cause a transition only from those states

that have all of the literals in the precondition. More formally, we say that the action is

applicable only in states where the precondition holds.

– 〈p1, add1, del1〉, · · · , 〈pm, addm, delm〉 is the list of the action’s probabilistic outcomes

or effects. The description of an effect consists of the effect’s probability pi and two lists

of changes the effect makes to the state. In particular, addi, the i-th add effect, is the

conjunction of positive literals that the i-th effect adds to the state description. Similarly,

the i-th delete effect is the conjunction of negative literals that the i-th effect adds to the

state description. Implicitly, inserting a positive literal removes the negative literal over

the same variable, and vice versa. For each pair of an action’s probabilistic outcomes,

we assume that the effects are distinct, i.e., that either addi 6= addj or deli 6= delj or

both.

We interpret this specification as stating that if an action is applied in a state where

its precondition holds, nature will “roll the dice” and select one of the action’s effects

according to the effects’ probabilities. The chosen outcome will cause the agent to

transition to a new state by making changes to the current state as dictated by the corre-

37

sponding add and delete effect. Formally, T (s, a, s′) = pi whenever a is applicable in s

and s′ is the result of changing s with the i-th effect.

Example: Suppose we apply action a = 〈A, 〈0.3, B ∧ C,
∧
∅〉, 〈0.7, B,¬A ∧ ¬D〉〉 in state

s = (A,¬B,¬C,D), where
∧
∅ stands for the empty conjunction. The action’s precondition,

the singleton conjunction A, holds in s, so the action is applicable in this state. Suppose

that nature chooses effect 〈0.7, B,¬A ∧ ¬D〉. This effect causes a transition to state s′ =

¬A ∧B ∧ ¬C ∧ ¬D.

• The size of the cost function C(s, a, s′) description is polynomial in |X |, the number of state

variables, and |A|. As an example of such a specification, we could associate a cost attribute

with each action a ∈ A and set cost(a) = ca. The cost attribute’s value ca should be

interpreted as the cost incurred by using a in any state s where a is applicable, independently

of the state s′ where the agent transitions as a result of applying a in s. C(s, a, s′) is undefined

whenever a is not applicable in s.

• The goal set G is implicitly given by a conjunction of literals over a subset of the variables in

X that any goal state has to satisfy. For instance, if the goal conjunction is A∧¬C ∧D, then

there are two goal states in our MDP, (A,B,¬C,D) and (A,¬B,¬C,D).

• Finally, the initial state s0 is specified by the set of all positive literals in that state. The

literals over all other variables are assumed to be negative. For example, in an MDP with

state variables A,B,C, and D, the set {A,C} denotes the initial state s0 = (A,¬B,C,¬D).

A PPDDL-style description is convenient when actions change variables in a correlated manner,

i.e., have correlated effects and just a few outcomes. For instance, under the aforementioned action

a = 〈A, 〈0.3, B∧C,
∧
∅〉, 〈0.7, B,¬A∧¬D〉〉, the sets of variables {B,C} and {A,B,D} always

change their values together, and a has only two outcomes.

38

RDDL-style Representation

At the same time, for some MDPs, a PPDDL-style description is not the most convenient choice.

E.g., consider the problem of managing a network of n servers, in which every running server has

some probability of going down and every server that is down has some probability of restarting at

every time step if the network administrator does not interfere. This setting is known as the Sysadmin

scenario [39]. In a formal factored specification of Sysadmin, its state space could be given by a

set of binary state variables {X1, . . . , Xn}, each variable indicating the status of the corresponding

server. Thus, the state space size would be 2n. We would have a noop action that applies in every

state and determines what happens to each server at the next time step if the administrator does

nothing. Note, however, that, since each server can go up or down independently from others (i.e.,

variables change values in an uncorrelated fashion), at each time step the system can transition from

the current state to any of the 2n states. Therefore, to write down a description of noop, we would

need to specify 2n outcomes — an enormous number even for small values of n. In general, such

actions are common in scenarios where many objects evolve independently and simultaneously, as

in Sysadmin. They also arise naturally when the MDP involves exogenous events, changes that

the agent cannot control and that occur in parallel with those caused by the agent’s own actions.

Examples of exogenous events include natural cataclysms and actions of other agents.

An MDP like this is more compactly formulated as a Dynamic Bayesian Network (DBN) [26],

a representation particularly well suited for describing actions with uncorrelated effects. One MDP

description language that expresses an MDP as a DBN is RDDL (Relational Dynamic influence Dia-

gram Language) [86], so we denote this representation as RDDL-style. Under this representation, for

each action and each domain variable, an engineer needs to specify a conditional probability distri-

bution (CPD) over the values of that variable in the next state if the action is executed. Suppose, for

instance, we want to say that if the status of the i-th server is “up” at time step t and the administrator

does not intervene, then with probability 0.5 it will remain “up” at the next time step; similarly, if it is

currently “down,” it will remain “down” with probability 0.9. Then the CPD P (Xt+1
i = “up”|Xt

i =

“up”, Action = noop) = 0.5, P (Xt+1
i = “down”|Xt

i = “down”, Action = noop) = 0.9 fully

characterizes the noop’s effect on variable Xi.

An advantage of the RDDL-style representation is that the size of each action’s description,

39

as illustrated by the above example, can be only polynomial in the number of domain variables

in the cases when in the PPDDL-style representation it would be exponential. At the same time,

expressing correlated effects with DBNs can be tedious. Thus, the PPDDL-style and RDDL-style

representations are largely complementary, and the choice between them depends on the problem at

hand.

2.1.10 Complexity of Solving MDPs

The computational complexity results presented in this section serve a motivation for a significant

fraction of this dissertation’s contributions, especially those presented in Chapter 3. When analyzing

the computational complexity of a problem class, it is important to keep in mind that the complexity

is defined in terms of the input size. For MDPs, the input size is the size of an MDP’s description.

We have seen two of ways of describing MDPs:

• By specifying them in a flat representation, i.e., by explicitly enumerating their state space,

action space, etc., and

• By specifying them in a factored representation, i.e., in terms of a set of variablesX1, . . . , Xn.

The key observation for the MDP complexity analysis is that for a given factored MDP, its

explicitly enumerated state space is exponential in the number of state variables — if the number

of state variables is |X |, then its state space size is 2|X |. Similarly, flat descriptions of the transition

and reward/cost functions are exponential in the size of their factored counterparts. As we have

already observed, a factored description can make MDPs much easier to write down. However, as

the results below show, it makes them look difficult to solve with respect to their input length.

We begin by characterizing the complexity of solving MDPs in the flat representation.

Theorem 2.7. Solving finite-horizon MDPs in the flat representation is P -hard. Solving infinite-

horizon discounted-reward and SSP MDPs in the flat representation is P -complete [77]. ♦

Finite-horizon MDPs are not known to be in P , because solving them appears to require com-

puting an action for each augmented state in the set S × D, which, in turn, could be exponential

40

in the size of S if |D| = 2|S|. The above result also indicates that infinite-horizon and SSP MDPs

are some of the hardest polynomially solvable problems. In particular, they likely cannot benefit

significantly from parallelization [77].

Since casting MDPs into a factored representation drastically reduces their description size,

factored MDPs belong to a different computational complexity class:

Theorem 2.8. Factored finite-horizon, infinite-horizon discounted-reward, and SSP MDPs are

EXPTIME-complete [66, 35]. ♦

EXPTIME-complete problem classes are much harder than P -complete or P -hard ones — the

former are known to contain problems not solvable in polynomial time on modern computer archi-

tectures. However, it is not that factored representation makes solving MDPs very difficult; rather,

it makes specifying them very easy compared to the hardness of solving them.

When the initial state is known, factored MDPs’ computational complexity can be somewhat

reduced by assuming that optimal policies that reach the goal from the initial state do so in a max-

imum number of steps polynomial in the number of state variables. Intuitively, this amounts to

supposing that if we start executing an optimal policy at the initial state, we will visit only a “small”

number of states before ending up at the goal. This assumption often holds true in practice; indeed,

non-contrived problems requiring policies that visit a number of states exponential in the number

of state variables (i.e., linear in the size of the state space) are not common. Moreover, executing

such a policy would likely take a very long time, making its use impractical even if we could obtain

it reasonably quickly. To get a sense for how long an execution of an exponentially-sized policy

would take, observe that in an MDP with only 100 binary state variables such a policy would need

to visit on the order of 2100 states.

For MDPs with an initial state and a polynomially sized optimal policy, the following result

holds:

Theorem 2.9. Factored SSP MDPs with an initial state in which an optimal policy reaches the goal

from the initial state in a maximum number of steps polynomial in the number of state variables are

41

PSPACE-complete [66, 35]. ♦

Crucially, with or without these assumptions, factored MDPs are hard not just to solve optimally

but even to approximate, with no hope of discovering more efficient methods in the future unless

a series of equivalences such as P = NP are proven to be valid. Since factored representations

are dominant in AI, the above results have pushed MDP research in the direction of methods that

improve the efficiency of solving MDPs empirically but not necessarily theoretically.

2.2 Optimally Solving General MDPs: Fundamental Algorithms

We begin our review of MDP solution algorithms by concentrating on a fundamental set of optimal

techniques that forms the basis for most of the advanced approaches. We describe the versions of

these techniques and their theoretical results for the most general class we study, SSP (Definition

2.16). All of them also apply to factored SSP MDPs with and without the initial state.

The algorithms we survey here aim to compute an optimal stationary deterministic Markovian

policy π∗ : S → A for a given SSP MDP. The Optimality Principle (Theorem 2.3) guarantees

the existence, although not the uniqueness, of such a policy. The policy these algorithms return is

complete, i.e., prescribes an action for every state in the state space. In the rest of this section, by

writing “policy” we will always mean a complete stationary deterministic Markovian one.

There are two broad groups of approaches to solving MDPs optimally. The first is based on

iterative techniques that use dynamic programming, whereas the other formulates an MDP as a

linear program. Iterative dynamic programming approaches are relatively more popular, thanks to

being amenable to a wider variety of optimizations, and this section focuses on them. The linear

programming-based methods are beyond the scope of this dissertation.

2.2.1 Policy Evaluation

The first algorithm we consider, per se, does not solve an SSP MDP as a whole. Rather, it is a

building block that lets us find value functions of MDP policies.

At a high level, evaluating an SSP MDP policy amounts to solving the system of equations

42

V π(s) = 0 (if s ∈ G)

=
∑
s′∈S
T (s, π(s), s′)

[
C(s, π(s), s′) + V π(s′)

]
(otherwise) (2.7)

These equations are linear, and there are a total of |S| variables, one for each state, so the system

can be solved in O(|S|3) time using Gaussian Elimination or other algorithms. However, there is

another approach, iterative dynamic programming, which, as already mentioned, is more amenable

to optimizations. Its pseudocode is shown in Algorithm 2.1. Its main idea is to start by initializing

the values of all states with an arbitrary approximation V π
0 of V π. Then, it computes a series of

successive refinements V π
n using the existing approximations V π

n−1. Thus, the algorithm proceeds

in iterations, and the nth iteration applies the following operator to the values of all the non-goal

states:

V π
n (s)←

∑
s′∈S
T (s, π(s), s′)

[
C(s, π(s), s′) + V π

n−1(s′)
]

(2.8)

It can be shown that for any proper policy π, the sequence of value functions produced by this

procedure asymptotically converges in the uniform metric to a unique fixed point. Moreover, this

fixed point is the same as the solution to the system of linear equations 2.7 [6]:

Theorem 2.10. For an SSP MDP and a proper policy π, ∀s ∈ S, limn→∞ V
π
n (s) = V π(s), irre-

spective of the initialization V π
0 . ♦

However, full convergence may take an infinite number of iterations, so for the algorithm to work

in practice we need a convergence criterion. An appropriate such criterion is called ε-consistency,

and we define it after first introducing an auxiliary notion of residual.

43

Definition 2.21. Residual (Policy Evaluation). The residual at a state s at iteration n in the it-

erative policy evaluation algorithm, denoted as residualn(s), is the magnitude of the change in

the value of state s at iteration n in the algorithm, i.e., residualn(s) = |V π
n (s) − V π

n−1(s)|. The

residual at iteration n is the maximum residual across all states at iteration n of the algorithm, i.e.,

residualn = maxs∈S residualn(s). ♣

Definition 2.22. ε-consistency (Policy Evaluation). The value function V π
n computed at iteration

n in iterative policy evaluation is called ε-consistent if the residual at iteration n+ 1 is less than ε.

The value of a state s is called ε-consistent at iteration n if the residual of V π
n at s is smaller than

ε. ♣

Intuitively, the residual denotes the maximum change in the values of states from one iteration to

the next. Our policy evaluation algorithm terminates when the value function V π
n is ε-consistent, i.e.,

the change in values becomes less than a user-defined ε. Unfortunately, for general SSP MDPs, we

cannot provide an easily computable bound on the number of iterations required for ε-consistency.

It is important to note that an ε-consistent V π
n may not be ε-optimal (i.e., be within ε of the

fixed-point value V π). In fact, even for relatively small values of ε, an ε-consistent value function

may be quite far from V π. However, in practice tiny values of ε typically do translate to ε-consistent

value functions that are very close to the fixed point.

2.2.2 Policy Iteration

Theoretically, using the policy evaluation algorithm from the previous section, we could find an

optimal SSP MDP policy by evaluating all proper policies and choosing the lowest-cost one. Policy

iteration (PI) [45] is based on this simple idea but makes it more practical. It replaces the brute-

force policy enumeration by a more intelligent search, so that many suboptimal proper policies

do not have to be explored. More specifically, PI evaluates a sequence of ever-better policies that

eventually converges to the optimal one.

Algorithm 2.2 describes the pseudocode for PI. PI begins by evaluating an initial policy π0

as shown previously. Next, based on the value of the current policy, it constructs a better one in

44

Algorithm 2.1: Iterative Policy Evaluation
1 Input: SSP MDP M = 〈S,A, T , C,G〉, proper policy π, ε > 0
2 Output: an approximation of π’s value function V π

3

4 function IterativePolicyEvaluation(SSP MDP M , policy π, ε > 0)
5 begin
6 initialize V π0 arbitrarily for each state
7 n← 0
8 repeat
9 n← n+ 1

10 foreach s ∈ S do
11 compute V πn (s)←

∑
s′∈S T (s, π(s), s′)

[
C(s, π(s), s′) + V πn−1(s′)

]
12 residualn(s)← |V πn (s)− V πn−1(s)|
13 end
14 until maxs∈S residualn(s) < ε;
15 return V πn
16 end

a policy improvement step. The algorithm keeps alternating between policy evaluation and policy

improvement until it cannot improve the policy anymore. Before discussing the policy improvement

step, we define a few more concepts.

Definition 2.23. Q-value under a Value Function. The Q-value of state s and action a under

a value function V , denoted as QV (s, a), is the one-step lookahead computation of the value of

taking a in s under the belief that V is the true expected cost to reach a goal, i.e., QV (s, a) =∑
s′∈S T (s, a, s′) [C(s, a, s′) + V (s′)]. ♣

Definition 2.24. Action Greedy w.r.t. a Value Function. An action a is greedy w.r.t. a value

function V in a state s if a has the lowest Q-value under V in s among all actions, i.e., a =

argmina′∈AQ
V (s, a′). ♣

Any value function V induces a policy πV that uses only actions greedy w.r.t. V :

Definition 2.25. Greedy Policy. A greedy policy πV for a value function V is a policy that in every

state uses an action greedy w.r.t V , i.e., πV (s) = argmina∈AQ
V (s, a). ♣

45

Algorithm 2.2: Policy Iteration
1 Input: SSP MDP M = 〈S,A, T , C,G〉, ε > 0
2 Output: a policy, optimal if ε is sufficiently small
3

4 function PolicyIteration(SSP MDP M , ε > 0)
5 begin
6 initialize π0 to be an arbitrary proper policy
7 n← 0
8 repeat
9 n← n+ 1

10 Policy Evaluation: compute an ε-consistent V πn−1

11 Policy Improvement:
12 foreach state s ∈ S do
13 πn(s)← πn−1(s)

14 ∀a ∈ A compute Q(V πn−1)(s, a)

15 Vn(s)← mina∈AQ
(V πn−1)(s, a)

16 if Q(V πn−1)(s, πn−1(s)) > Vn(s) then
17 πn(s)← argmina∈AQ

(V πn−1)(s, a)
18 end
19 end
20 until πn == πn−1;
21 return πn
22 end

The policy improvement step computes a greedy policy under V πn−1 . In particular, it first

computes the Q-value of each action under V πn−1 in a given state s. Then it assigns a greedy action

in s as πn(s). The ties are broken arbitrarily, except if πn−1(s) still has the lowest Q-value, in which

case this action is preferred.

Each policy improvement step is guaranteed to improve the policy as long as the original π0 was

proper [5]. Thus, πn monotonically improves, guaranteeing that PI converges and yielding a policy

that cannot be improved further. Moreover, it converges to an optimal policy in a finite number of

iterations, since there are a finite number of distinct policies.

Theorem 2.11. Policy iteration on an SSP MDP, if initialized with a proper policy π0, successively

improves the policy in each iteration, i.e., ∀s ∈ S, V πn(s) ≤ V πn−1(s), and converges to an optimal

policy π∗ [5]. ♦

46

PI provides several opportunities for optimization. One of them consists in running the policy

evaluation algorithm (Algorithm 2.1) for only one or a few iterations during each policy evaluation

step. Indeed, running it to ε-consistency each time can be wasteful, since PI as a whole does not de-

pend upon evaluating policies exactly. Rather, the value function needs to be improved just enough

so that the next better policy can be obtained in the policy improvement step.

The algorithms that incorporate this and other changes to the basic PI method are appropriately

known as modified policy iteration (MPI) [97, 81]. They converge to the optimal policy under the

following general conditions:

Theorem 2.12. Modified policy iteration on an SSP MDP, if initialized with a proper policy π0,

converges to an optimal policy π∗, as long as iterative policy evaluation is run for at least one

iteration before each policy improvement step, and the value function V π0
0 that initializes the first run

of iterative policy evaluation satisfies the condition ∀s ∈ S,mina∈A
∑

s′∈S T (s, a, s′)[C(s, a, s′) +

V π0
0 (s′)] ≤ V π0

0 (s). ♦

2.2.3 Value Iteration

Value iteration (VI), originally proposed by Richard Bellman in 1957 [3], forms the basis of many

advanced MDP algorithms. It takes a perspective complementary to PI’s. PI can be visualized as

searching in the policy space and computing the current value function using the current policy. VI

switches the relative importance of policies and value functions. It searches directly in the value

function space and whenever necessary produces a greedy policy based on the current state values.

By doing this, it tries to solve the system of Bellman equations in the Optimality Principle for SSP

MDPs (Equations 2.5), the set of identities that the optimal value function must satisfy.

VI’s pseudocode is presented in Algorithm 2.3. It computes the solution to the Bellman equa-

tions via successive refinements, using an approach similar to iterative policy evaluation (Algorithm

2.1). The key idea is to approximate V ∗ with value functions Vn so that the sequence {Vn}∞n=0

converges to V ∗ as n tends to infinity. The Optimality Principle tells us that once V ∗ is found, an

optimal policy can be “read off” of it by determining a V ∗-greedy action in every state.

47

The algorithm proceeds in iterations. It first initializes all state values with an arbitrary value

function V0. In the n-th iteration, it makes a full sweep of the state space, i.e. computes a new ap-

proximation Vn(s) for all states with the help of the value function Vn−1 from the previous iteration:

Vn(s)← min
a∈A

∑
s′∈S
T (s, a, s′)

[
C(s, a, s′) + Vn−1(s′)

]
. (2.9)

Algorithm 2.3: Value Iteration
1 Input: SSP MDP M = 〈S,A, T , C,G〉, ε > 0
2 Output: a policy, optimal if ε is sufficiently small
3

4 function ValueIteration(SSP MDP M , ε > 0)
5 begin
6 initialize V0 arbitrarily for each state
7 n← 0
8 repeat
9 n← n+ 1

10 foreach s ∈ S do
11 compute Vn(s) using Bellman backup at s (Equation 2.9)
12 residualn(s)← |Vn(s)− Vn−1(s)|
13 end
14 until maxs∈S residualn(s) < ε;
15 return a greedy policy πVn // see Definition 2.25
16 end

The operator in Equation 2.9 is known as Bellman backup or Bellman update. Thus, VI can be

understood as an algorithm that searches for the fixed point of the synchronously applied Bellman

backup operator (i.e., Bellman backup applied at all states simultaneously in every iteration), which

also happens to be the solution of the Bellman equations. VI is also a dynamic programming algo-

rithm — the whole layer of values Vn is stored for the next iteration. Moreover, it can be thought

of as a message passing algorithm to achieve a global information flow. Via Bellman backup, it

passes local messages (between states that are connected by actions) and thereby ends up comput-

ing a globally optimal value function. Last but not least, VI relates to the shortest path algorithms

in graph theory. If all actions are deterministic, it reduces to the Bellman-Ford algorithm [23].

As already mentioned, the sequence of value functions generated by VI converges to the optimal

48

in the limit. However, unlike PI, which requires an initial proper policy, VI converges without

restrictions:

Theorem 2.13. For the sequence of value functions {Vn}∞n=0 produced by value iteration on an

SSP MDP, ∀s ∈ S, limn→∞ Vn(s) = V ∗(s), irrespective of the initializing value function V0. ♦

The termination condition of VI mimics that of the iterative policy evaluation algorithm. Below

we define slightly more general notions of a residual (also called Bellman error in the case of VI)

and ε-consistency, which will be used in the rest of this dissertation.

Definition 2.26. Residual (Bellman Backup). In an SSP MDP, the residual at a state sw.r.t. a value

function V , denoted as ResV (s), is the magnitude of the change in the value of state s if Bellman

backup is applied to V at s once, i.e., ResV (s) = |V (s)−mina∈A(
∑

s′∈S T (s, a, s′)[C(s, a, s′) +

V (s′)])|. The residual w.r.t. a value function V , denoted as ResV and called Bellman error, is the

maximum residual w.r.t. V across all states if Bellman backup is applied to V at each state once,

i.e., ResV = maxs∈S Res
V (s). ♣

Definition 2.27. ε-consistency (Bellman Backup). A state s is called ε-consistent w.r.t. a value

function V if V is ε-consistent at s, i.e., ResV (s) < ε. A value function V is called ε-consistent if it

is ε-consistent at all states, i.e., if ResV < ε. ♣

As shown in Algorithm 2.3, we terminate VI when its value function is ε-consistent, i.e., its

Bellman error is small. This typically indicates that VI is quite close to the optimal value function,

and hence an optimal policy.

As a final note on VI, the Bellman backup operator that lies at the core of this algorithm satisfies

a useful property called monotonicity. To define it, we denote the set of all value functions of an

MDP as V .

49

Definition 2.28. Operator Monotonicity. An operator T : V → V , which applies to a value func-

tion to obtain a new value function, is monotonic if ∀ V1, V2 ∈ V, V1 ≤ V2 =⇒ TV1 ≤ TV2. ♣

In other words, if a value function V1 is componentwise greater (or less) than another value

function V1 then the same inequality holds true between TV1 and TV2, i.e., the value functions

that are obtained by applying this operator T on V1 and V2. We can prove that the synchronously

applied Bellman backup operator used in VI is monotonic for value functions of SSP MDPs [40].

As a corollary, if a value function (Vk) is a lower (or upper) bound on V ∗ for all states, then all

intermediate value functions thereafter (Vn, n > k) continue to remain lower (respectively, upper)

bounds. This is because V ∗ is the fixed point of Bellman backup.

The notion of monotonicity exists for value functions as well:

Definition 2.29. Value Function Monotonicity. Let value function V ′ be the result of applying an

operator T to a value function V . V is called monotonic w.r.t. T if V ≤ V ∗ and V ≤ V ′ or if

V ≥ V ∗ and V ≥ V ′. ♣

When the operator w.r.t. which a value function is monotonic is clear from context, we will

refer to that value function simply as “monotonic”. Bellman backup applied to a monotonic value

function V of an SSP MDP gives an especially strong guarantee: the resulting value function is

always “closer” to V ∗ than V was.

2.2.4 Asynchronous Value Iteration

One of the biggest drawbacks of VI (also called synchronous VI, since it uses Bellman backup in a

synchronous manner) is that it requires full sweeps of the state space. The state spaces are usually

large for real problems, making this strategy impractical. In the meantime, Bellman backups at some

states can change the value function considerably, while at others, where the values have nearly

converged, they can be a waste of time. This intuition goes a long way in suggesting optimizations

for value function computation. To enable these optimizations, the asynchronous VI framework

(Algorithm 2.4) relaxes the requirement that all states need to be backed up in each iteration.

50

Algorithm 2.4: Asynchronous Value Iteration
1 Input: SSP MDP M = 〈S,A, T , C,G〉, ε > 0
2 Output: a policy, optimal if ε is sufficiently small
3

4 function AsynchronousValueIteration(SSP MDP M , ε > 0)
5 begin
6 initialize V arbitrarily for each state
7 while ResV ≥ ε do
8 select a state s
9 compute V (s) using a Bellman backup at s (Equation 2.9)

10 update ResV (s)

11 end
12 return a greedy policy πV

13 end

The convergence of asynchronous VI to the optimal value function (in the limit) requires an

additional restriction that no state gets starved, i.e., that all states are backed up an infinite number of

times. Under this constraint, for asynchronous VI we can prove that ∀s ∈ S, limε→0 V (s) = V ∗(s)

[5]. As with synchronous VI, in practice we cannot run the algorithm forever, so a termination

condition similar to that of synchronous VI is employed. It checks whether the current value function

is ε-consistent for some small nonzero ε.

Asynchronous VI forms the basis for several families of VI-related algorithms because it allows

the flexibility to choose a backup order intelligently. Next, we review one of these families, known

under the umbrella term heuristic search.

2.3 Optimally Solving MDPs with an Initial State: Heuristic Search

The algorithms discussed in the previous section do not use the knowledge of the initial state, even

if it is available for the MDP at hand. In the meantime, as mentioned in Section 2.1.7, if the initial

state is known, we are interested in partial MDP policies. Intuitively, since they are smaller in size

than complete ones, they should also be more efficient to compute. In this section, we discuss a set

of techniques that support this commonsense observation. They employ an entity called heuristic

function to help them find an optimal partial policy closed w.r.t. the initial state s0 without touching

every state in the state space as synchronous VI and PI do. Accordingly, these algorithms are

collectively known as heuristic search methods.

51

Definition 2.30. Heuristic Function. A heuristic function V0 is a value function that initializes

state values when an MDP solution algorithm inspects them for the first time. ♣

In fact, we have already seen an example of a heuristic function (henceforth referred to simply

as heuristic) before — the value function V0 that initialized VI (Algorithm 2.3). For VI, we viewed

V0 as chosen arbitrarily. In reality, both VI and heuristic search methods tend to perform better

when their heuristic encodes good estimates of the optimal values of different states. Such estimates

are usually derived by a domain expert for a particular problem based on some insights about the

scenario in question. For example, if the agent is a robot in a setting modeled with an SSPs0 MDP,

a reasonable heuristic would assign high values to states in which the robot is broken, indicating

that these states are very costly. Compared to them, states that are close to the goal should get much

lower values.

Heuristic search algorithms equipped with informative heuristics are the most efficient methods

for optimally solving MDPs. For the new MDP classes presented in Chapter 5, we develop solution

techniques of this type. In the remainder of this section, we formalize the notion of heuristic search

by describing it as an abstract algorithmic framework. We also examine in detail two concrete

approaches that implement this framework. Like in Section 2.2, we focus on stochastic shortest-

path problems, those expressible as SSPs0 MDPs.

2.3.1 FIND-AND-REVISE— a Schema for Heuristic Search

All heuristic search algorithms are instances of a general schema called FIND-AND-REVISE (Al-

gorithm 2.5) [12]. To discuss it, we need several new concepts.

Throughout our analysis, we will view the connectivity structure of an MDP M ’s state space

as a directed hypergraph GS , which we call the connectivity graph of M . A directed hypergraph

generalizes the concept of a regular graph by allowing each hyperedge, or k-connector, to have one

source but several destinations. In the case of an MDP, the corresponding hypergraph GS has S as

the set of vertices, and for each state s and action a pair has a k-connector whose source is s and

whose destinations are all states s′ s.t. T (s, a, s′) > 0. In other words, it has a k-connector for

linking each state via an action to the state’s possible successors under that action. We now define

52

several more hypergraph-related notions.

Definition 2.31. Reachability. A state sn is reachable from s1 in GS if there is a sequence of states

and actions s1, a1, s2, . . . , sn−1, an−1, sn, where for each i, 1 ≤ i ≤ n − 1, the node for si is the

source of the k-connector for action ai and si+1 is one of its destinations. ♣

Definition 2.32. The Transition Graph of an MDP Rooted at a State. The transition graph of an

MDP rooted at state s is Gs, a subgraph of the MDP’s connectivity graph GS . Its vertices are s and

only those states s′ that are reachable from s in GS . Its hyperedges are only those k-connectors that

originate at s or at some state reachable from s in GS . ♣

In this section, we will mostly refer to the transition graphGs0 rooted at the initial state. This hy-

pergraph includes only states reachable via some sequence of action outcomes from s0. Historically,

MDP transition graphs are also known as AND-OR graphs.

Definition 2.33. The Transition Graph of a Policy Rooted at a State. The transition graph of a

partial deterministic Markovian policy πs : S ′ → A is a subgraph of the MDP’s connectivity graph

GS that contains only the states in S ′ and, for each state s ∈ S ′, only the k-connector for the action

a s.t. π(s) = a. ♣

Definition 2.34. The Greedy Graph of a Value Function Rooted at a State. The greedy graph GVs

of value function V rooted at state s is the union of transition graphs of all policies πVs greedy w.r.t.

V and closed w.r.t. s. ♣

That is,GVs contains all states that can be reached via some πVs from s. As with general transition

graphs, we will mostly be interested in greedy graphs of value functions rooted at the initial state

s0.

As the final pieces of terminology before we proceed, recall that the residual ResV (s) (Defini-

tion 2.26) is the magnitude of change in the value of a state as a result of applying a Bellman backup

53

to value function V . A state s is called ε-consistent w.r.t. V if ResV (s) < ε (Definition 2.27) and

ε-inconsistent otherwise.

Algorithm 2.5: FIND-AND-REVISE
1 Input: SSPs0 MDP M = 〈S,A, T , C,G, s0〉, heuristic V0, ε > 0
2 Output: a policy closed w.r.t. s0, optimal if V0 is admissible, ε is sufficiently small, and FIND is
3 systematic
4

5 function FIND-AND-REVISE(SSPs0 MDP M , heuristic V0, ε > 0)
6 begin
7 V ← V0
8 while V ’s greedy graph GVs0 contains a state s with ResV (s) ≥ ε do
9 FIND a state s in GVs0 with ResV (s) ≥ ε

10 REVISE V (s)

11 end
12 return a greedy policy πVs0 closed w.r.t. s0
13 end

The idea of FIND-AND-REVISE is quite simple. It iteratively searches the greedy graph of the

current value function for an ε-inconsistent state and updates the value of that state and possibly of

a few others with a Bellman backup. This typically changes the greedy graph, and the cycle repeats.

Note that FIND-AND-REVISE is essentially a flavor of asynchronous VI (Section 2.2.4).

Figure 2.1: MDP showing a possible impact of a heuristic on the efficiency of policy computation via FIND-
AND-REVISE. FIND-AND-REVISE guided by a good heuristic may never visit the arbitrarily large part of
the state space represented by the cloud, yielding enormous time and memory savings compared to VI.

Crucially, the greedy graph that FIND-AND-REVISE starts with is induced by some heuristic

function V0. To demonstrate the difference V0 can make on the number of states a FIND-AND-

REVISE-like algorithm may have to store, we present the following example.

54

Example: Consider the transition graph Gs0 of the SSPs0 MDP in Figure 2.1. This MDP has

many states, four of which (the initial state s0, the goal state sg, and two other states s1 and s2) are

shown, while the rest are denoted by the cloud. Action costs are shown for a subset of the MDP’s

actions; assume that costs are nonnegative for actions in the cloud. At least one of the actions, a1,

has several probabilistic effects, whose probabilities do not matter for this example and are omitted.

Note that π∗s0 for this MDP is unique and involves taking action a2 from s0 straight to the goal; thus,

V ∗(s0) = 10. All other policies involve actions a1, a5, and a3 or a4. Therefore, the cost of reaching

the goal from s0 using them is at least 4 · 3 = 12 > 10, making these policies suboptimal.

Now, the transition graph Gs0 of the MDP in Figure 2.1 can be arbitrarily large, depending on

the number of states in the cloud. This is the largest set of states an MDP solution algorithm may

have to store while searching for π∗s0 . Compare Gs0 to GV
∗

s0 , the greedy graph of the optimal value

function. GV
∗

s0 contains only the states visited by π∗s0 , i.e., s0 and sg, as established above. This is the

very smallest set of states we can hope to explore while looking for π∗s0 . Finally, consider GV0s0 for a

heuristic value function V0 that assigns V0(sg) = 0 and, for instance, V0(s1) = V0(s2) = 7. These

values would induce QV0(s0, a1) = 4 + 7 = 11 > QV0(s0, a2) = 10, making a2 more preferable in

s0 and thus immediately helping discover the optimal policy. Thus, GV0s0 consists of s0 and sg, and

starting FIND-AND-REVISE from such an V0 allows FIND-AND-REVISE to evaluate only four

states before finding π∗s0 . Contrast this with an algorithm such as VI, which, even initialized with a

very good V0, will still necessarily visit the entire transition graph rooted at the initial state, Gs0 . As

this example shows, FIND-AND-REVISE in combination with a good heuristic can make finding

π∗s0 arbitrarily more efficient than via VI or PI.

The fact that FIND-AND-REVISE may never touch some of the states, as in the above example,

might seem alarming. After all, asynchronous VI algorithms, one of which is FIND-AND-REVISE,

in general fail to find an optimal policy if they starve some states, and FIND-AND-REVISE appears

to be doing exactly that. As it turns out, however, if FIND-AND-REVISE’s FIND procedure is

systematic and the heuristic function FIND-AND-REVISE is using is admissible, FIND-AND-

REVISE is guaranteed to converge to an optimal solution for a sufficiently small ε.

Definition 2.35. Systematicity. Let Ki(s) be the total number of FIND-AND-REVISE iterations

55

that state s has spent in the greedy graph rooted at s0 with ResV (s) > ε between iterations i and

i + K. The FIND-AND-REVISE’s FIND procedure is called systematic if for all i > 1 and for

all s ∈ S the probability that FIND will choose s for the REVISE step at least once after iteration i

approaches 1 as Ki(s) goes to∞. ♣

This technical definition has an intuitive meaning — a FIND procedure is systematic (i.e.,

searches the greedy graph systematically) if it does not starve any of the states possibly relevant

to finding the optimal solution. Such a FIND procedure will not allow an ε-inconsistent state to stay

in the greedy graph forever without its value being revised. At the same time, it may ignore states

that at some point leave the greedy graph for good.

Definition 2.36. Heuristic Admissibility. A heuristic V0 is admissible if for all states s in the

transition graph Gs0 , V0(s) ≤ V ∗(s) in cost-minimization MDPs and V0(s) ≥ V ∗(s) in reward-

maximization MDPs. Otherwise, the heuristic is called inadmissible. ♣

Theorem 2.14. For an SSPs0 MDP and an ε > 0, if FIND-AND-REVISE has a systematic FIND

procedure and is initialized with an admissible monotonic heuristic, it converges to a value function

that is ε-consistent over the states in its greedy graph rooted at s0 after a finite number of REVISE

steps [11, 12]. ♦

Theorem 2.15. For an SSPs0 MDP, if FIND-AND-REVISE has a systematic FIND procedure and

is initialized with an admissible monotonic heuristic, as ε goes to 0 the value function and policy

computed by FIND-AND-REVISE approaches, respectively, the optimal value function and an

optimal policy over all states reachable from s0 by at least one optimal policy [11, 12]. ♦

Theorem 2.15 contains a small caveat. As with VI, although in the limit a vanishingly small

residual implies optimality, for finite values of ε FIND-AND-REVISE can return a significantly

suboptimal policy. Nonetheless, in practice this rarely happens.

56

FIND-AND-REVISE’s pseudocode intentionally leaves the FIND and REVISE procedures un-

specified — it is in their implementations that various heuristic search algorithms differ from each

other. Their REVISE methods tend to resemble one another, as they are all based on the Bellman

backup operator. Their FIND methods, however, can be vastly distinct. An obvious approach to

finding ε-inconsistent states is via a simple systematic search strategy such as depth-first search.

Indeed, depth-first search is used in this manner by several proposed FIND-AND-REVISE algo-

rithms, e.g., HDP [12] and LDFS [14]. Employing depth-first search for the purpose of identifying

weakly explored states also echoes similar approaches in solving games, non-deterministic plan-

ning problems, and other related fields [14]. However, in tackling MDPs this strategy is usually

outperformed by more sophisticated search methods. Historically, the first of them was the LAO∗

[41] algorithm, which eventually gave rise to several other techniques: ILAO∗ [41], BLAO∗ [7], and

RLAO∗ [24]. However, this family is outside the scope of our work. Instead, we explore FIND-

AND-REVISE approaches derived from the RTDP algorithm [2].

2.3.2 RTDP

The name “RTDP” stands for Real-Time Dynamic Programming (RTDP) [2]. Similar to LAO∗, this

algorithm prompted a significant number of variants — LRTDP [13], BRTDP [73], FRTDP [90], and

VPI-RTDP [88] — the first of which will be discussed in the next subsection. At a high level, RTDP-

based algorithms operate by simulating the current greedy policy to sample “paths”, or trajectories,

through the state space, and performing Bellman backups only on the states in those trajectories.

These updates change the greedy policy and make way for further state value improvements.

The process of sampling a trajectory is called a trial. As shown in Algorithm 2.6, each trial

consists of repeatedly selecting a greedy action abest in the current state s (line 18), performing a

Bellman backup on the value of s (line 19), and transitioning to a successor of s under abest (line

20). A heuristic plays the same role in RTDP as in LAO∗ — it provides initial state values in order

to guide action selection during early state space exploration.

Each sampling of a successor during a trial that does not result in a termination of the trial

corresponds to a FIND operation in FIND-AND-REVISE, as it identifies a possibly ε-inconsistent

state to update next. Each Bellman backup maps to a REVISE instance.

57

Algorithm 2.6: RTDP
1 Input: SSPs0 MDP M = 〈S,A, T , C,G, s0〉, heuristic V0, timeout T
2 Output: a policy closed w.r.t. s0, optimal if V0 is admissible and T is sufficiently large
3

4 V ← V0
5

6 function RTDP(SSPs0 MDP M , timeout T)
7 begin
8 while time T has not run out do
9 TRIAL(M , s0)

10 end
11 return a greedy policy πVs0 closed w.r.t. s0
12 end
13

14

15 function TRIAL(SSPs0 MDP M , state s)
16 begin
17 while s /∈ G do
18 abest ← arg mina∈AQ

V (s, a)

19 V (s)← QV (s, abest)
20 s← simulate action abest in s
21 end
22 end

The original RTDP version [2] has two related weaknesses, the main one being the lack of a

principled termination condition. Although RTDP is guaranteed to converge asymptotically to V ∗

over the states in the domain of an optimal policy π∗s0 , it does not provide any mechanisms to detect

when it gets near the optimal value function or policy. The lack of a stopping criterion, although

unfortunate, is not surprising. RTDP was designed for operating under time pressure, and would

almost never have the luxury of planning for long enough to arrive at an optimal policy. In these

circumstances, a convergence detection condition is not necessary.

The lack of convergence detection leads to RTDP’s other drawback. As RTDP runs longer, V at

many states starts to converge. Visiting these states again and again becomes a waste of resources,

yet this is what RTDP keeps doing because it has no way of detecting convergence. An extension of

RTDP we will look at next addresses both of these problems by endowing RTDP with a method to

recognize proximity to the optimal value function over relevant states.

58

2.3.3 LRTDP

Labeled RTDP (LRTDP) [13] works in largely the same way as RTDP, but also has a mechanism for

identifying ε-consistent states and marking them as solved. The following theorem about the basic

RTDP algorithm’s convergence provides a theoretical basis for LRTDP’s termination condition:

Algorithm 2.7: LRTDP
1 Input: SSPs0 MDP M = 〈S,A, T , C,G, s0〉, heuristic V0, ε > 0, (optional) timeout T
2 Output: a policy closed w.r.t. s0, optimal if V0 is admissible and ε is sufficiently small
3

4 V ← V0
5

6 function LRTDP(SSPs0 MDP M , ε > 0, (optional) timeout T)
7 begin
8 while s0 is not labeled solved and time T has not run out do LRTDP-TRIAL(M , s0, ε)
9 return a greedy policy πVs0 closed w.r.t. s0

10 end
11

12 function LRTDP-TRIAL(SSPs0 MDP M , state s, ε > 0)
13 begin
14 visited← empty stack
15 while s is not labeled solved do
16 push s onto visited
17 if s ∈ G then break
18 abest ← arg mina∈AQ

V (s, a)

19 V (s)← QV (s, abest)
20 s← simulate action abest in s
21 end
22 while visited 6= empty stack do
23 s← pop the top of visited
24 if ¬CHECK-SOLVED(M, s, ε) then break
25 end
26 end

Theorem 2.16. For RTDP initialized with a monotonic admissible heuristic, the value of a state s

is ε-consistent under a value function V and will remain ε-consistent at s for all value functions

generated by RTDP from V if ResV (s) < ε and ResV (s′) < ε for all descendants s′ of s in the

greedy graph GVs . ♦

59

Algorithm 2.8: CHECK-SOLVED
1 function CHECK-SOLVED((SSPs0 MDP M , state s, ε)
2 begin
3 ret val← true
4 open← empty stack
5 closed← empty stack
6 push s onto open
7 while open 6= empty stack do
8 s← pop the top of open
9 push s onto closed

10 if ResV (s) ≥ ε then
11 ret val← false
12 continue
13 end
14 abest ← arg mina∈AQ

V (s, a)
15 foreach s′ ∈ S s.t. T (s, abest, s

′) > 0 do
16 if s′ is not labeled solved and s′ /∈ open ∪ closed then push s′ onto open
17 end
18 end
19 if ret val == true then
20 foreach s′ ∈ closed do label s′ solved
21 else
22 while closed 6= empty stack do
23 s← pop the top of closed
24 V (s)← mina∈AQ

V (s, a)

25 end
26 end
27 return ret val
28 end

In other words, s’s value is guaranteed to remain ε-consistent forever from the point when RTDP

arrives at a value function V s.t. Bellman backups cannot change either V (s) or the values of any

of s’s descendants in GVs by more than ε. Informally, the reason for this is that the value V (s) of

a state is determined solely by the values of its descendants in the (implicitly maintained) greedy

graphGVs . Therefore, hypothetically, V (s) can change by more than ε only under two circumstances

— either if GVs changes, or if the values of some of s’s descendants in GVs change by more than ε.

As it turns out, in a FIND-AND-REVISE algorithm started from a monotone admissible heuristic,

the sole way to modify GVs is by updating a value of a state within GVs . Updating states outside GVs

will never make them part of GVs because, by the monotonicity property (Definition 2.29), Bellman

backups can only increase the values of states and therefore make them only less attractive and less

60

eligible to be part of a greedy graph. This implies that there is actually just one way for RTDP to

change V (s) by more than ε — by changing a value of a descendant of s in GVs by more than ε.

However, this would contradict the premise of the above theorem that all the descendants of s are

already ε-consistent.

LRTDP (Algorithm 2.7) implements a mechanism for detecting convergence implied by the

above theorem in its CHECK-SOLVED method (Algorithm 2.8). To verify that the value of a state

s has stabilized, CHECK-SOLVED checks whether the residual at s or any of its descendants inGVs

is at least ε (lines 10-12 of Algorithm 2.8). For this purpose, it keeps two stacks — open, with states

still to be checked for ε-consistency, and closed, with already checked states. In every iteration it

takes a state off the open stack (line 8), moves it onto closed (line 9), and sees whether the state’s

residual is greater than ε. If so, s cannot be labeled as solved yet (line 11). Otherwise, CHECK-

SOLVED expands the state just examined (lines 14-16) in order to check this state’s successors as

well. In this way, all descendants of states s′ in GVs with ResV (s′) < ε eventually end up being

examined by CHECK-SOLVED. If the residuals of all these states are smaller than ε, all of them,

including s, are labeled solved (line 20). Otherwise, those whose residuals are at least ε get updated

with Bellman backups (lines 22-25).

LRTDP uses CHECK-SOLVED to label states it visits during the trials (lines 22-24 of Algorithm

2.7) and, most importantly, to terminate trials early once they end up at a labeled state (line 15).

The labeling procedure makes LRTDP’s convergence to an ε-consistent value function orders of

magnitude faster than RTDP’s [13]. Moreover, it makes LRTDP useful not only in real-time settings

but for offline planning as well.

LRTDP’s versatility, simplicity, and efficiency when equipped with a good heuristic make it a

popular choice for many problems. In Chapter 4, we introduce its efficient derivative for finite-

horizon problems, LR2TDP [54].

61

Chapter 3

EXTRACTING LATENT STRUCTURE OF FACTORED MDPS

As discussed in the Introduction and Background chapters, one of the biggest challenges facing

planning under uncertainty is the scalability of the available solution techniques. Indeed, in Sections

2.1.9 and 2.1.10, we established that the only explicit representation practical for describing large

MDPs is a factored one1, but the traditional optimal MDP algorithms such as VI scale polynomially

in the size of an MDP’s state space and hence exponentially in the size of its factored description.

This dramatically limits MDPs’ practical utility.

Meanwhile, humans perform surprisingly well at probabilistic planning. Although the policies

they come up with can be far from optimal in terms of utility, usually they achieve the desired goal.

There are three key ingredients that contribute to humans’ relative success in this area. One of them

is an extensive use of heuristics: when looking for a plan, we use plenty of intuitions about the

problem that are not apparent to machines. Another helping factor is our ability to make crude but

effective approximations. For instance, people rarely reason about the exact probabilities of action

outcomes. In fact, sometimes they implicitly assume that actions are deterministic and have only

their most likely effects, e.g., that driving to a shop will not cause a flat tire. Although a flat tire is

clearly a possibility, in many circumstances ignoring it makes coming up with a decent plan much

easier and faster. The third and perhaps the most important ingredient is our skill at recognizing

abstractions and generalizing conclusions across different situations. As an example, after realizing

that the walls of a particular Mars crater are too steep for the exploration rover to escape, a human

planner would order the rover to abandon attempts to collect any of the rock samples in the crater,

while a traditional MDP solver might rediscover this navigational problem over and over again as it

considered collecting each rock sample in turn. Crucially, people employ these three approaches in

concert, so that they make up for each others’ weaknesses.

1Alternatively, one can describe MDPs implicitly by building a simulator and tackle them with reinforcement learning
[93]. However, these approaches are even less scalable than techniques used in planning.

62

The low scalability threshold of the basic VI and PI has made researchers consider largely the

same approximation tricks as those used by humans, resulting in three major families of algorithms.

We have already discussed one of them, heuristic search (Section 2.3). Another one, which we call

determinization-based approximation, is founded on the idea of assuming that when constructing a

policy, the agent can choose any particular outcome of an action at will, i.e., that the agent is dealing

with a much simpler, deterministic planning problem. Note how this assumption parallels ignoring

undesirable action outcomes, as humans do; it also has the same advantage — speed. The last fam-

ily of approximation algorithms is dimensionality reduction. It views an MDP as a problem in |S|

dimensions (an agent needs to pick an action for each state) and maps it into a lower-dimensional

space. This effectively ties together action choices in different states, enabling information gener-

alization across the state space and thus mimicking our ability to carry over judgments about one

situation to others.

Why, then, has automated planning under uncertainty failed to attain the human level in many

applications so far? We hypothesize the lack of integration of the above techniques as the primary

reason for this shortfall. Contrary to the way humans do it, AI planning systems have been employ-

ing heuristics, determinization, and dimensionality reduction separately, letting the drawbacks of

the individual approaches manifest themselves. Indeed, both the algorithms for computing heuris-

tics and the top determinization-based planners such as RFF [95] suffer from the same weakness as

VI — they reason about each encountered state individually. Dimensionality reduction addresses

this issue, but has a downside of its own. Many scenarios lack a natural metric or another obvious

way to construct a dimensionality-reducing mapping automatically, which brings a human in the

loop and makes these techniques non-autonomous. We will examine all three paradigms in finer

detail in Section 3.7, but hope that even their cursory overview shows the potential of unifying these

approaches.

In this chapter, we attempt to fulfill this vision by proposing algorithms that automatically dis-

cover and exploit state abstractions to solve large factored goal-oriented MDPs. These methods

efficiently mine the latent structure of MDPs using their determinizations and turn this structure into

a low-dimensional parameter space. This parameter space can then be used to compute informative

heuristics for FIND-AND-REVISE-like methods or solve the MDP directly. In either case, algo-

rithms operating on the latent problem representation are fast, have a small memory footprint, and

63

provide previously unnoticed insights into the structure of factored MDPs.

3.1 Overview

Specifically, our algorithms generate two kinds of abstraction, basis functions and nogoods, each

of which describes sets of states that share a similar relationship to the planning goal. Both basis

functions and nogoods are represented as logical conjunctions of state variable values, but they en-

code diametrically opposite information. When a basis function holds in a state (i.e., every variable

mentioned in the basis function has the same value in the state as it does in the basis function itself),

this guarantees that a certain trajectory of action outcomes has a positive probability of reaching the

goal. Our algorithms associate weights with each basis function, encoding the relative quality of

the different trajectories. In contrast, when a nogood holds in a state, it signifies that the state is a

dead end; no trajectory can reach the goal from this state. Continuing the Mars rover example, a

conjunction that describes the presence of the rover in the steep-walled crater would be a nogood.

Our basis functions and nogoods are similar in spirit to the rules learned in logical theories

in explanation-based learning [47] and constraint satisfaction [27], but our work applies them in

a probabilistic context (e.g., learns weights for basis functions) and provides new mechanisms for

their discovery. Previous MDP algorithms have also used basis functions [37, 87], but to perform

generalization between different problems in a domain rather than during the course of solving

a single problem. Other researchers have also used hand-generated basis functions in a manner

similar to ours [36, 38, 39]; our techniques circumvent the main weakness of these approaches by

generating the abstractions automatically.

3.1.1 Discovering Nogoods and Basis Functions

We generate basis functions by regressing goal descriptions along an action outcome trajectory

using a determinized version of the probabilistic domain theory. Thus, the trajectory is potentially

executable in all states satisfying the basis function. This justifies performing Bellman backups

on basis functions, rather than states, thereby generalizing experience across similar states. Since

many basis functions typically hold in a given state, the value of a state is a complex function of the

applicable basis functions.

64

The nogoods are discovered with a novel machine learning algorithm that operates in two phases.

First it generates candidate nogoods with a probabilistic sampling procedure using basis functions

and previously discovered dead ends as training data. Then it tests the candidates with a planning

graph [9] to ensure that no trajectories to the goal exist from states containing the nogood.

3.1.2 Exploiting Nogoods and Basis Functions

We present three algorithms that leverage the basis function and nogood abstractions to speed up

MDP solution and reduce the amount of memory required for it:

• GOTH [56, 58] uses a full classical planner to generate a heuristic function for an MDP

solver for use as an initial estimate of state values. While classical planners have been known

to provide an informative approximation of state value in probabilistic problems, they are too

expensive to call from every newly visited state. GOTH amortizes this cost across multiple

states by associating weights to basis functions and thus generalizing the heuristic computa-

tion. Empirical evaluation shows GOTH to be an informative heuristic that saves heuristic

search methods, e.g., LRTDP, considerable time and memory.

• RETRASE [55, 58] is a self-contained MDP solver based on the same information-sharing

insight as GOTH. However, unlike GOTH, which sets the weight of each basis function

only once to compute an initial guess of states’ values, RETRASE learns the basis functions’

weights by evaluating each function’s “usefulness” in a decision-theoretic way. By aggregat-

ing the weights, RETRASE constructs a state value function approximation and, as we show

empirically, produces better policies than the participants of the International Probabilistic

Planning Competition (IPPC) on many domains while using little memory.

• SIXTHSENSE [57, 58] is a method for quickly and reliably identifying dead ends, i.e., states

with no possible trajectory to the goal, in MDPs. In general, for factored MDPs this problem

is intractable — one can prove that determining whether a given state has a trajectory to

the goal is PSPACE-complete [35]; therefore, it is unsurprising that modern MDP solvers

often waste considerable resources exploring these doomed states. SIXTHSENSE can act as a

submodule of an MDP solver, helping it detect and avoid dead ends. SIXTHSENSE employs

65

machine learning, using basis functions as training data, and is guaranteed never to generate

false positives. The resource savings provided by SIXTHSENSE are determined by the fraction

of dead ends in an MDP’s state space and reach 90% on some IPPC benchmark problems.

In the rest of the chapter, some of whose content was previously published in [55], [56], [57],

and [58], we describe these algorithms, discuss their theoretical properties, and evaluate them em-

pirically. Section 3.2 reviews some additional topic-specific background material to complement

what was covered in Chapter 2 and introduces relevant definitions, illustrating these with a running

example. Sections 3.4, 3.5, and 3.6 present descriptions of and empirical results on GOTH, RE-

TRASE, and SIXTHSENSE respectively. Section 3.7 discusses the related work. Section 3.8 points

out potential extensions of the presented techniques.

3.2 Preliminaries

The algorithms presented in this chapter apply to a type of probabilistic planning problems that can

be roughly characterized as factored SSPs0 MDPs (Definition 2.20) with dead ends — states from

which the goal cannot be reached with any policy. Note that, formally, SSPs0 MDPs require the

existence of at least one complete proper policy (Definition 2.14) and therefore cannot have dead

ends. At the same time, probabilistic planning researchers have long used goal-oriented benchmark

problems with dead-end states to gauge the performance of approximate MDP solvers, because

many realistic scenarios do have these states and because they make for difficult test cases [65]. In

this chapter, we assume that the agent is dealing with a problem that conforms to the strong SSPs0

definition (2.19) except for the existence of a proper policy, and that the agent has to pay a high

user-defined penalty if it enters a dead end. In Chapter 5, we present a theoretical analysis of such

problems, formalized as fSSPUDEs0 MDPs (Definition 5.14). This analysis will also reveal that

GOTH, RETRASE, and SIXTHSENSE are indirectly geared toward solving goal-oriented MDPs so

as to maximize the probability of an agent reaching the goal successfully, i.e., towards optimizing

the MAXPROB criterion (Definition 5.12).

We assume the goal-oriented MDPs to be given in a PPDDL-style representation. As mentioned

in Section 2.1.9, such representations take their name from the Probabilistic Planning Domain De-

scription Language. Below, we introduce an example scenario in PPDDL that will help illustrate

66

concepts related to our techniques in subsequent sections, and show how to cast it as a factored

goal-oriented MDP.

3.2.1 Example

The scenario we will be referring to is called GremlinWorld. Consider a gremlin that wants to sab-

otage an airplane and stay alive in the process. The gremlin can pick up several tools to accomplish

the task. The gremlin can either tweak the airplane with a screwdriver and a wrench, or smack

it with a hammer. However, with high probability, smacking leads to accidental detonation of the

airplane’s fuel, which destroys the airplane but also kills the gremlin.

In Figure 3.1, GremlinWorld is formulated in PPDDL. In PPDDL, an MDP specification is

split into two parts, the domain and the problem. The domain consists of a set of typed constants

describing the objects in the scenario of interest, a set of typed predicates describing possible re-

lationships among these objects/constants, and a set of parametrized action schemata describing

what can be done to the objects. Grounding predicates with objects gives the MDP’s state variables,

while grounding action schemata yields individual actions. Thus, a domain is a characterization of

an MDP’s state and action spaces and of the transition function. The problem part of a PPDDL

description states the set of literals that hold in the initial state and the goal.

Thus, Figure 3.1 specifies GremlinWorld as a factored goal-oriented MDP with five state vari-

ables, gremlin-alive, plane-broken, has(Hammer), has(Wrench), and has(Screwdriver), abbreviated

asG, P ,H ,W , and S respectively. Therefore, in the factored MDP definition,X = {G,P,H,W, S}.

The problem involves five actions,A = {pick-up(Screwdriver), pick-up(Wrench), pick-up(Hammer),

tweak(), smack()}. Each action has a precondition; e.g., the smack() action’s precondition is the

single-literal conjunction H = has(Hammer), so smack() can only be used in states where the

gremlin has a hammer. Actions’ preconditions, effects, and effect probabilities compactly spec-

ify the transition function T . For simplicity, we make C assign the cost of 1 to all actions, which

conforms to the restriction on C imposed by the SSP MDP definition. In general, for the simplic-

ity of exposition, in this chapter we will assume that an action’s cost is independent of the state

where the action is applied, and denote it, with a slight abuse of notation, as C(a). We stress,

however, that our algorithms do not depend on this assumption and work for arbitrary cost func-

67

(define (domain GremlinWorld)
(:types tool)
(:predicates (has ?t - tool)

(gremlin-alive)
(plane-broken))

(:constants Wrench - tool
Screwdriver - tool
Hammer - tool)

(:action pick-up
:parameters (?t - tool)
:precondition (and (not (has ?t)))
:effect (and (has ?t)

(decrease reward 1)))

(:action tweak
:parameters ()
:precondition (and (has Screwdriver)

(has Wrench))
:effect (and (plane-broken)

(decrease reward 1)))

(:action smack
:parameters ()
:precondition (and (has Hammer))
:effect (and (plane-broken)

(decrease reward 1)
(probabilistic 0.9

(and (not (gremlin-alive))))))
)

(define (problem GremlinProb)
(:domain GremlinWorld)
(:init (gremlin-alive))
(:goal (and (gremlin-alive) (plane-broken)))

)

Figure 3.1: A PPDDL-style description of the running example MDP, GremlinWorld, split into domain and
problem parts.

68

(:action pick-up-0
:parameters (?t - tool)
:precondition (and (not (has ?t)))
:effect (and (has ?t)))

(:action tweak-0
:parameters ()
:precondition (and (has Screwdriver)

(has Wrench))
:effect (and (plane-broken)

(decrease reward 1)))

(:action smack-0
:parameters ()
:precondition (and (has Hammer))
:effect (and (plane-broken)

(decrease reward 1)))

(:action smack-1
:parameters ()
:precondition (and (has Hammer))
:effect (and (plane-broken)

(not (gremlin-alive))
(decrease reward 1)))

Figure 3.2: The all-outcomes determinization of the GremlinWorld domain

tions. The goal set G consists of all states where the gremlin is alive and the airplane is broken.

Finally, we assume that the gremlin starts alive with no tools and the airplane is originally intact, i.e.

s0 = (G,¬P,¬H,¬W,¬S).

3.2.2 Additional Background

In this subsection, we cover some advanced background topics not mentioned in Chapter 2 but im-

mediately relevant to the topic of this part of the dissertation: domain determinization, inadmissible

heuristics, and planning graphs.

69

Domain Determinization

Successes of some approximate MDP solvers starting with FFReplan [99] have demonstrated the

promise of determinizing the domain D of the given MDP, i.e., disregarding the probabilities in

the transition function, and working only with the state transition graph. The main insight of these

approaches is that the determinized MDP can be solved with classical planning approaches, e.g.,

FF [44] or LAMA [83], which are much faster than the traditional optimal MDP solvers. Naturally,

solutions to deterministic scenarios are merely plans, not policies; however, the speed of the classi-

cal planners allows calling them many times from different states in an MDP determinization and

aggregating their plans into a partial policy for the original problem.

Our techniques use the all-outcomes determinization [99]Dd of the domainD at hand. Namely,

in the example in Figure 3.1, let us denote the precondition of each action as prec, an action’s out-

comes as o1, . . . , on, and their probabilities as p1, . . . , pn. The all-outcomes determinization Dd ,

shown for the GremlinWorld domain in Figure 3.2 with predicates and constants omitted for simplic-

ity, contains, for every action a in the original domain, the set of deterministic actions a1, . . . , an,

each with a’s precondition prec and effect oi. Dd, coupled with a description of the initial state and

the goal, can be viewed as a deterministic MDP in which a plan from a given state to the goal exists

if and only if a corresponding trajectory has a positive probability in the original probabilistic MDP

with domain D. Importantly, the state of the art in classical planning makes solving a deterministic

problem much faster than solving a probabilistic problem of a comparable size. Our abstraction

framework exploits these facts to efficiently extract the structure of the given MDP by finding plans

in Dd and processing them as shown in Section 3.3.

Inadmissible Heuristics

Recall from Definition 2.30 that a heuristic is a value function that initializes the state values for an

MDP algorithm. In heuristic search algorithms such as LRTDP, heuristics help avoid visiting irrel-

evant states but must be admissible (Definition 2.36) for these methods to converge to an optimal

policy. At the same time, inadmissible heuristics tend to be more informative in practice, approx-

imating V ∗ better on average. Informativeness often translates into a smaller number of explored

states (and the associated memory savings) with reasonable sacrifices in optimality. The concept of

70

heuristic informativeness has no universally accepted definition but, as is commonly done, we adopt

the number of states visited by a planner under the guidance of a heuristic as a measure of it. Later

in this chapter, we show how basis functions let us derive a highly informative heuristic, GOTH, at

the cost of admissibility.

A successful class of MDP heuristics is based on the all-outcomes determinization of the prob-

abilistic domain D at hand [10]. To obtain a value for state s in D, determinization heuristics try to

approximate the cost of a plan from s to a goal in an MDP determinization Dd (finding a plan itself

even in this relaxed version of an MDP is generally NP-hard). For instance, the FF heuristic [44],

denoted hFF , ignores the negative literals (the delete effects) in the outcomes of actions in Dd and

attempts to find the cost of the cheapest solution to this new relaxed problem. It is inadmissible but,

in our experience, is the most informative general MDP heuristic. We use hFF as the baseline to

evaluate the performance of GOTH.

Planning Graph

Our work makes use of the planning graph data structure [9], a directed graph alternating between

proposition and action “levels”. The 0-th level (a proposition level) contains a vertex for each literal

present in the initial state s of a given planning problem. Action levels (odd levels) contain vertices

for all actions, including a special no-op action, whose preconditions are present (and pairwise

“nonmutex”) in the previous proposition level. Subsequent proposition levels (even levels) contain

all literals from the effects of the actions in the previous action level. Two literals in a proposition

level are mutex if all actions achieving them are pairwise mutex in the previous action level. Two

actions in an action level are mutex if their effects are inconsistent, one’s precondition is inconsistent

with the other’s effect, or their preconditions are mutex in the previous proposition level. As levels

increase, additional actions and literals appear (and mutexes disappear) until a fixed point is reached.

The deterministic planner Graphplan [9] uses the planning graph as a polynomial-time reachability

test for the goal, and we use this structure in a procedure to discover nogoods in Section 3.6.

71

3.3 Generating State Abstractions

One way to understand the meaning of the state abstractions at the core of the techniques presented

in subsequent sections is to examine the process by which these abstractions can be generated. We

start by explaining this process and then discuss the properties of the abstractions it produces.

Let an execution trace e = s, a1, s1, . . . , an, sn, be a sequence where s is the trace’s starting state,

a1 is a probabilistic action applied in s that yielded state s1, and so on. An example of an execution

trace from GremlinWorld is e′ = (G,¬P,¬H,¬W,¬S), pick-up(Hammer), (G,¬P,H,¬W,¬S),

smack(), (G,P,H,¬W,¬S).

We define a trajectory of an execution trace e to be a sequence

t(e) = s, out(a1, 1, e), . . . , out(an, n, e)

where s is e’s starting state, and out(ak, k, e) is a conjunction of literals representing the par-

ticular outcome of action ak that was sampled at the k-th step of e’s execution. E.g., t(e′) =

(G,¬P,¬H,¬W,¬S), H, P is a trajectory of the example execution trace e′.

We say that t(e) is a goal trajectory if the last state sn of e is a goal state; t(e′) just shown is a

goal trajectory. A suffix of t(e) is a sequence

ti(e) = out(ai, i, e), . . . , out(an, n, e)

for some 1 ≤ i ≤ n.

Suppose we are given an MDP and a goal trajectory t(e) of some execution trace of length n in

this MDP. Let prec(a) denote the precondition of an action a (a literal conjunction) and lit(c) stand

for the set of literals forming conjunction c. Moreover, let a′i denote the deterministic action whose

precondition equals the precondition of the i-th action in t(e), i.e., prec(ai), and whose effect is

denoted as effect(a′i) and equals out(ai, i, e). In terms of this notation, a trajectory can be viewed

as an ordinary deterministic plan.

Now, imagine using the given trajectory t(e) to generate the following sequence of literal con-

junctions:

72

bn = G

bi =
∧[

[lit(bi+1) \ lit(effect(a′i))] ∪ lit(prec(a′i))
]

for n− 1 ≥ i ≥ 0

This can be done with a simple multistep procedure. We start with bn = G, the MDP’s goal

conjunction. Afterwards, at step i ≤ n − 1, we first remove from bi+1 the literals of action a′i’s

outcome. Then, we conjoin the result to the literals of ai’s precondition, obtaining conjunction bi.

We call this procedure regression of the goal through trajectory t(e), or regression for short [78].

As an example, consider regressing trajectory t(e′) from GremlinWorld. In this case, b2 = G =

G∧P . First we remove from b2 literal P , the outcome of the last action, smack(), of e′. The result is

G. Then, we add to it the precondition of smack(), literal H , producing G ∧H . Thus, b1 = G ∧H .

Similarly, we remove from b1 the outcome of pick-up(Hammer) and add the precondition of this

action, which is empty, to the result, obtaining b0 = G. At this point regression terminates.

A basis function is defined to be a literal conjunction b produced at some step of regressing the

goal through some trajectory. Whenever all literals of a basis function (or of a conjunction of literals

in general) are present in state s we say that the conjunction holds in or represents s. For instance,

b1 = G ∧ H from the above example holds in state (G,¬P,H,¬W,S). An alternative view of a

basis function b is a mathematical function fb : S → {1,∞} having the value of 1 in all states in

which conjunction b holds and∞ in all others. Due to this equivalence, we will use the term “basis

function” to refer to both a conjunction of literals and the corresponding mathematical function.

Basis functions are a central concept behind the algorithms in this chapter, so it is important

to understand the intuition behind them. Any goal trajectory is potentially a causally important se-

quence of actions. Regressing it gives us preconditions for the trajectory’s suffixes. Basis functions

are exactly these trajectory suffix preconditions. Thus, regression of the trajectories can be thought

of as unearthing the relevant causal structure necessary for the planning task at hand. Moreover, our

basis functions underlie that causal structure.

There are often many trajectories whose preconditions are consistent with (i.e., are a subcon-

junction of) a given basis function. We say that a basis function b enables a set of goal trajectories

T if the goal can be reached from any state represented by b by following any of the trajectories in

73

T assuming that nature chooses the “right” outcome for each action of the trajectory.

Since each basis function is essentially a precondition (the weakest precondition for a trajectory),

it typically holds in many states of the MDP at hand. Therefore, obtaining a goal trajectory t(e) from

some state lets us generalize this qualitative reachability information to many other states via basis

functions yielded by regressing the goal through this trajectory. Moreover, t(e) may have interesting

numeric characterizations, e.g. cost, probability of successful execution, etc. To generalize these

quantitative descriptions across many states as well, we associate aweightwith each basis function.

The semantics of basis function weight depends on the algorithm, but in general it reflects the quality

of the set of trajectories enabled by the basis function.

Now, consider the value of an MDP’s state. As preconditions, basis functions tell us which goal

trajectories are possible from that state. Basis function weights tell us how “good” these trajectories

are. Since the quality of the set of goal trajectories possible in a state is a strong indicator of the

state’s value, knowing basis functions with their weights allows for approximating the state value

function.

As we just showed, a problem’s causal structure can be efficiently derived from its goal trajec-

tories via regression. Thus, a relatively cheap source of trajectories would give us a way to readily

extract the structure of the problem. Fortunately, at least two such methods exist. The first one is

based on the insight that whenever a trial in an MDP solver such as RTDP or LRTDP (Sections

2.3.2 and 2.3.3) reaches the goal, we get a trajectory “for free”, as a byproduct of the solver’s usual

computation. The caveat with using this technique as the primary strategy of getting trajectories

is the time it takes an MDP solver’s trials to start attaining the goal. Indeed, the majority of trials

at the beginning of planning terminate in states with no path to the goal, and it is at this stage that

knowing the problem’s structure would be most helpful for improving the situation. Therefore, our

algorithms mostly rely on a different trajectory generation approach. Note that any trajectory in an

MDP is a plan in the all-outcomes determinization Dd of that MDP and vice versa. Since classical

planners are very fast, we can use them to quickly find goal trajectories in Dd from several states of

our choice.

By definition, basis functions represent only the states from which reaching the goal is possible.

However, the MDPs we would like to solve also contain another type of states, dead ends, that fall

outside of the basis function framework as presented so far. Such states, in turn, can be classified

74

into two kinds; explicit dead ends, in which no actions are applicable, and implicit ones, which do

have applicable actions but no sequence of them leads to the goal with a positive probability. In

GremlinWorld, there are no explicit dead ends but every state with literal ¬G is an implicit dead

end.

To extend information generalization to dead ends as well, we consider another kind of literal

conjunctions that we call nogoods. Nogoods’ defining property is that any state in which a nogood

holds is a dead end. Notice the duality between nogoods and basis functions: both have exactly

the same form but give opposite guarantees about a state. Whereas a state represented by a basis

function provably cannot be a dead end, a state represented by a nogood certainly is one. Despite the

representational similarity, identifying nogoods is significantly more involved than discovering basis

functions. Fortunately, the duality between the two allows using the latter to derive the former and

collect the corresponding benefits, as one of the algorithms we are about to present, SIXTHSENSE,

demonstrates.

3.4 GOTH Heuristic

Our presentation of the abstraction framework begins with an example of its use in a heuristic

function. As already mentioned, heuristics reduce FIND-AND-REVISE MDP solvers’ resource

consumption by helping them avoid many of the states (and memoizing corresponding state-value

pairs) that are not visited by the final partial policy. The most informative MDP heuristics, e.g.,

hFF , are based on the all-outcomes determinization of the domain. However, although efficiently

computable, such heuristics add an extra level of relaxation of the original MDP, besides determiniz-

ing it. For instance, hFF is liable to highly underestimate states’ true expected cost of getting to the

goal because in addition to discarding the domain’s probabilities it ignores actions’ delete effects

(i.e., negative literals, such as ¬G, in actions’ outcomes) in the determinized version.

On the other hand, a lot of promise has been shown by several probabilistic planners that solve

full (non-relaxed) determinizations, e.g., FFReplan, HMDPP [50], and others. It is natural to won-

der, then: do the improved heuristic estimates of using a full classical planner on non-relaxed deter-

minized domains provide enough gains to compensate for the potentially increased cost of heuristic

computation?

75

As we show in this section, the answer is “No and Yes”. We propose a new heuristic called

GOTH (Generalization Of Trajectories Heuristic) [56], which efficiently produces heuristic state

values using deterministic planning. The most straightforward implementation of this idea, in which

a classical planner is called every time a state is visited for the first time, does produce better heuristic

estimates and reduces search but the cost of so many calls to the classical planner vastly outweighs

any benefits. The crucial observation we make is that basis functions provide a way to amortize

these expensive planner calls by generalizing the resulting heuristic values to give guidance on

similar states. By performing this generalization in a careful manner, one may dramatically reduce

the amount of classical planning needed, while still providing more informative heuristic values

than heuristics with more levels of relaxation.

3.4.1 GOTH Description

In our explanations, we will be referring to GOTH’s pseudocode in Algorithm 3.1. Given a fac-

tored goal-oriented MDP split into a domainD = 〈S,A, T , C〉 and problem P = 〈G, s0〉, a heuristic

search solver using GOTH starts with GOTH’s initialization. During initialization, GOTH deter-

minizes D into its classic counterpart, Dd (line 5). This operation needs to be done only once. Our

implementation performs the all-outcomes determinization (Section 3.2), because it is likely to give

much better value estimates than the single-outcome one [99]. However, more involved flavors of

determinization described in the Related Work section may yield even better estimation accuracy.

Calling a Deterministic Planner

Once Dd has been computed, the probabilistic planner starts exploring the state space. For every

state s that requires heuristic initialization, GOTH first checks if it is an explicit dead end (lines

10-10). This check is in place for efficiency, since GOTH should not try to use more expensive

methods of analysis on such states.

For a state s that is not an explicit dead end, GOTH tries to obtain a deterministic plan. To do

this, GOTH constructs a problem Ps with the original problem’s goal and s as the initial state (line

30), feeds Ps along with Dd to a classical planner (line 31), denoted as DetP lan in the pseudocode

of Algorithm 3.1, and sets a timeout. If s is an implicit dead end, DetP lan either proves this or

76

unsuccessfully searches for a plan until the timeout. In either case, it returns without a plan (line

33), at which point s is presumed to be a dead end and assigned a very high penalty value (lines

15-15). If s is not a dead end, DetP lan usually returns a plan from s to the goal. The cost of this

plan is taken as the heuristic value of s (line 22). SometimesDetP lanmay fail to find a plan before

the timeout, leading the MDP solver to falsely assume s to be a dead end. In practice, we have not

seen this hurt GOTH’s performance.

Regression-Based Generalization

By using a full-fledged classical planner, GOTH produces more informative state estimates than

hFF , as evidenced by our experiments. However, invoking the classical planner for every newly

encountered state is costly; if GOTH did that, it would be prohibitively slow. To ensure speed,

we use our insight about the generalization power of basis functions. Whenever GOTH computes

a deterministic plan, it regresses it, as described in Section 3.2 and in lines 27-45 of Algorithm

3.1. In the process, it notes down the resulting basis functions with associated weights set to the

costs of the regressed plan suffixes (line 39). Then it memoizes these basis function-weight pairs

and, if appropriate, updates the already known functions’ weights (lines 18, 19). When GOTH

encounters a new state s, it minimizes over the weights of all basis functions stored so far that hold

in s (lines 12-12). In doing so, GOTH, to a first approximation, sets the heuristic value of s to

be the cost of the cheapest currently known trajectory that originates at s (the exact meaning of

this value is explained in the next paragraph). Thus, the weight of one basis function can become

generalized as the heuristic value of many states. This way of computing a state’s value is very

fast, and GOTH employs it before invoking a classical planner. However, s’s heuristic value may

be needed even before GOTH has any basis function that holds in s. In this case, GOTH uses the

classical planner as described above (line 31), computing a value for s and augmenting its basis

function set. Evaluating a state first by generalization (lines 12-12) and then, if generalization fails,

by classical planning (lines 13-24) greatly amortizes the cost of each classical solver invocation and

drastically reduces the computation time compared to using a deterministic planner alone.

77

Algorithm 3.1: GOTH Heuristic
1 Input: factored goal-oriented MDP consisting of domain D = 〈S,A, T , C〉 and
2 problem P = 〈G, s0〉, timeout T , state s
3 Output: a heuristic value of s
4

5 Dd ← Det(D) // Det is a determinization routine, omitted from the pseudocode
6 Map← empty map from basis functions to weights
7

8 function GOTH(state s, domain D, problem P , timeout T)
9 begin

10 if no action a ∈ A is applicable in s then return a large penalty
11 else if a nogood holds in s then return a large penalty
12 else if some b.f. f ′ from Map holds in s then return minb.f.s f that hold in s{Map[f]}
13 else
14 〈cost of plan,Map′〉 ← GetBasisFuncsForS(s, P, T)
15 if cost of plan ==∞ then return a large penalty
16 else
17 foreach 〈f, weight〉 in Map′ do
18 if f is not in Map then insert 〈f, weight〉 into Map
19 else update Map[f] by incorporating weight into Map[f]’s running average
20 end
21 if SchedulerSaysYes then learn nogoods from discovered dead ends
22 return cost of plan
23 end
24 end
25 end
26

27 function GetBasisFuncsForS(state s, problem P , timeout T)
28 begin
29 Map′ ← empty map from basis functions to weights
30 Ps ← 〈G, s〉
31 plan← DetP lan(Dd, Ps, T) // DetP lan is a classical planning routine, omitted
32 if plan == null then
33 return 〈∞, null〉
34 else
35 f ← G
36 weight← 0
37 foreach i = length(plan) through 1 do
38 a← i-th action in plan
39 weight← weight+ C(a)
40 f ←

∧
[[lit(f) \ lit(effect(a))] ∪ lit(prec(a))]

41 insert 〈f, weight〉 into Map′

42 end
43 return 〈weight,Map′〉
44 end
45 end

78

Weight Updates

Different invocations of the deterministic planner occasionally yield the same basis function more

than once, each time potentially with a new weight. Which of these weights should we use? The dif-

ferent weights are caused by a variety of factors, not the least of which are nondeterministic choices

made within the classical planner2. Thus, the basis function weight from any given invocation may

be far from the average cost of the plans for which this basis function is a precondition. For this

reason, it is generally beneficial to assign to a basis function the average of the weights computed for

it by classical planner invocations so far (line 19). Note that to compute the average we need to keep

the number of times the function has been re-discovered (this detail is omitted from the pseudocode

for the simplicity of exposition).

Dealing with Implicit Dead Ends

The discussion so far has ignored an important detail. When a classical planner is called on an

implicit dead end, by definition, no trajectory is discovered, and hence no basis functions. Thus,

this invocation is seemingly wasted from the point of view of generalization: it does not contribute

to reducing the average cost of heuristic computation as described thus far.

As it turns out, we can, in fact, amortize the cost of discovery of implicit dead ends in a way

similar to reducing the average time of other states’ evaluation. To do so, we use the known dead

ends along with stored basis functions to derive nogoods — basis functions’ duals in our abstraction

framework. We remind the reader that nogoods generalize dead ends in precisely the same way

as basis functions do with non-dead ends. Thus, nogoods help recognize many dead ends without

resorting to classical planning. Our nogood learning mechanism is called SIXTHSENSE and is

described in Section 5. It needs to be invoked at several points throughout GOTH’s running time

as prescribed by a scheduler that is also described in that section. For now, we abstract away the

operation of SIXTHSENSE in line 21 of GOTH’s pseudocode. With nogoods available, positively

deciding whether a state is a dead end is as simple as checking whether any of the known nogoods

hold in it (lines 11-11).

2For instance, LPG [34], which relies on a stochastic local search strategy for action selection, may produce distinct
paths to the goal when invoked twice from the same state, with concomitant differences in basis functions and/or their
weights.

79

Speed and Memory Performance

To facilitate empirical analysis of GOTH, it is helpful to look at the extra speed and memory cost

an MDP solver incurs while using it.

Concerning GOTH’s memory utilization, we emphasize that, similar to hFF and many other

heuristics, GOTH does not store any of the states it is given for heuristic evaluation. It merely re-

turns heuristic values of these states to the MDP solver, which can then choose to store the resulting

state-value pairs or discard them. However, to compute the values, GOTH needs to memoize the

basis functions and nogoods it has extracted so far. As our experiments demonstrate, the size of the

set of basis functions and nogoods discovered by GOTH throughout an MDP solver’s running time

is rather small. It is more than compensated for by the reduction in the number of states explored

by the MDP solver thanks to GOTH’s informativeness, when compared to hFF .

Timewise, GOTH’s performance is largely dictated by the speed of the employed deterministic

planner and the number of times the planner is invoked. Another factor that may influence GOTH’s

speed is determining the “cheapest” basis function that holds in a state (line 12 of GOTH’s pseu-

docode), since it requires iterating, on average, over a constant fraction of the known basis functions.

Although fast solutions for this pattern-matching problem are possible, all that we are aware of (e.g.,

[31]) pay for an increase in speed with degraded memory performance.

Theoretical Properties

Two especially important theoretical properties of GOTH are the informativeness of its estimates

and its inadmissibility. The former ensures that, compared to hFF , GOTH causes MDP solvers

to explore fewer states. At the same time, like hFF , GOTH is inadmissible. One source of inad-

missibility comes from the general lack of optimality of deterministic planners. Even if they were

optimal, however, employing timeouts to terminate the classical planner occasionally causes GOTH

to falsely assume states to be dead ends. Finally, the basis function generalization mechanism also

contributes to inadmissibility. The set of discovered basis functions is almost never complete, and

hence even the smallest basis function weight known so far may be an overestimate of a state’s true

value, as there may exist an even cheaper goal trajectory from this state that GOTH is unaware of.

In spite of theoretical inadmissibility, in practice using GOTH usually yields very good policies

80

whose quality is often better than of those found under the guidance of hFF .

3.4.2 Experimental Results

Our experiments compare the performance of a heuristic search-based MDP solver using GOTH to

that of the same solver under the guidance of hFF across a wide range of domains. In our experience,

hFF , included as part of the miniGPT suite [10], outperforms all other well-known MDP heuristics

on most International Probabilistic Planning Competition (IPPC) domains, e.g., the min-min and

atom-min heuristics supplied in the same package.

Implementation Details

Our implementation of GOTH is done C++ and uses a portfolio of two classical planners, FF and

LPG, to solve the domain determinization. To evaluate a state, it launches both planners as in line

31 of Algorithm 3.1 in parallel and takes the heuristic value from the one that returns sooner. The

timeout for each deterministic planner for finding a plan from a given state to a goal was 25 seconds.

Experimental Setup

We tested GOTH and hFF by letting them guide the LRTDP planner (Section 2.3.3) available in

miniGPT. Our benchmarks were six probabilistic domains, five of which come from the two most

recent IPPCs with goal-oriented problems, IPPC-2006 and IPPC-2008: Machine Shop [70], Trian-

gle Tireworld (IPPC-2008), Exploding Blocksworld (IPPC-2008 version), Blocksworld (IPPC-2006

version), Elevators (IPPC-2006), and Drive (IPPC-2006). All of the remaining domains from IPPC-

2006 and IPPC-2008 are either easier versions of the above (e.g., Tireworld from IPPC-2006) or

have features not supported by our implementation of LRTDP (e.g., rewards, universal quantifica-

tion, etc.) so we were not able to test on them. Additionally, we perform a brief comparison of

LRTDP+GOTH against FFReplan, since this planner shares some insights with GOTH. In all ex-

periments except measuring the effect of generalization, the planners had a 24-hour limit to solve

each problem. All experiments for GOTH, as well as those for RETRASE and SIXTHSENSE, de-

scribed in sections 3.5.2 and 3.6.2 respectively, were performed on a dual-core 2.8 GHz Intel Xeon

processor with 2GB of RAM.

81

Comparison against hFF

In this subsection, we use each of the domains to illustrate various aspects and modes of GOTH’s

behavior and compare it to the behavior of hFF . As shown below, on five of the six test domains

LRTDP+GOTH substantially outperforms LRTDP+hFF .

We start the comparison by looking at a domain whose structure is especially inconvenient for

hFF , Machine Shop. Problems in this set involve two machines and a number of objects equal to the

ordinal of the corresponding problem. Each object needs to go through a series of manipulations, of

which each machine is able to do only a subset. The effects of some manipulations may cancel the

effects of others (e.g., shaping an object destroys the layer of paint sprayed on it). Thus, the order

of actions in a trajectory is critical. This domain illuminates the drawbacks of hFF , which ignores

delete effects and does not distinguish good and bad action sequences as a result. Machine Shop has

no dead ends.

Figures 3.3 and 3.4 show the speed and memory performance of LRTDP equipped with the

two heuristics on those problems from MachineShop (and two other domains) that at least one

these planners could solve without running out of memory. As implied by the preceding discussion

of GOTH’s space requirements, the memory consumption of LRTDP+GOTH is measured by the

number of states, basis functions, and nogoods whose values need to be maintained (GOTH caches

the basis functions and LRTDP caches the states). In the case of LRTDP+hFF all memory used is

only due to LRTDP’s state caching because hFF by itself does not memoize anything. On Machine

Shop, the advantage of LRTDP+GOTH is clearly vast, reaching several orders of magnitude. In

fact, LRTDP+hFF runs out of memory on the three hardest problems, whereas LRTDP+GOTH is

far from that.

Concerning policy quality, we found the use of GOTH to yield optimal or near-optimal policies

on Machine Shop. This contrasts with hFF whose policies were on average 30% more costly than

the optimal ones.

The structure of the Triangle Tireworld domain, unlike Machine Shop’s, is not particularly ad-

versarial for hFF . However, LRTDP+GOTH noticeably outperforms LRTDP+hFF on it too, as

Figures 3.3 and 3.4 indicate. Nonetheless, neither heuristic saves enough memory to let LRTDP

solve past problem 8. In terms of solution quality, both planners find optimal policies on the prob-

82

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

C
P

U
 T

IM
E

 I
N

 S
E

C
O

N
D

S

MACHINE SHOP PROBLEM #

h
FF

GOTH

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4
x 10

4

C
P

U
 T

IM
E

 I
N

 S
E

C
O

N
D

S

TRIANGLE TIREWORLD−08 PROBLEM #

h
FF

GOTH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2000

4000

6000

8000

10000

C
P

U
 T

IM
E

 I
N

 S
E

C
O

N
D

S

BLOCKSWORLD−06 PROBLEM #

h
FF

GOTH

Figure 3.3: GOTH outperforms hFF on Machine Shop, Triangle Tireworld, and Blocksworld in speed by a
large margin.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
x 10

5

#
S

T
A

T
E

S
+

B
A

S
IS

 F
U

N
C

S

MACHINE SHOP PROBLEM #

h
FF

GOTH

1 2 3 4 5 6 7 8 9 10
0

5

10
x 10

6

#
S

T
A

T
E

S
+

B
A

S
IS

 F
U

N
C

S

TRIANGLE TIREWORLD−08 PROBLEM #

h
FF

GOTH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3
x 10

4

#
S

T
A

T
E

S
+

B
A

S
IS

 F
U

N
C

S

BLOCKSWORLD−06 PROBLEM #

h
FF

GOTH

Figure 3.4: GOTH’s advantage over hFF on Machine Shop, Triangle Tireworld, and Blocksworld in mem-
ory is large as well.

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

LO
G

2(L
R

T
D

P
+

G
O

T
H

 T
IM

E
)

LOG
2
(LRTDP+h

FF
 TIME)

MS
TTW
EBW
EL
DR
BW

0 5 10 15 20
0

5

10

15

20

LO
G

2(L
R

T
D

P
+

G
O

T
H

 M
E

M
O

R
Y

)

LOG
2
(LRTDP+h

FF
 MEMORY)

MS
TTW
EBW
EL
DR
BW

Figure 3.5: The big picture: GOTH provides a significant advantage on large problems. Points below the
dashed diagonals correspond to problem instances on which LRTDP+GOTH did better than LRTDP+hFF ,
i.e. used less time/memory. Note that the axes are on a Log scale.

lems they can solve.

The results on Exploding Blocksworld (EBW, Figure 3.5) are similar to those on Triangle Tire-

world, where the LRTDP+GOTH’s more economical memory consumption eventually translates to

83

a speed advantage. Importantly, however, on several EBW problems LRTDP+GOTH is superior to

LRTDP+hFF in a more illustrative way: it manages to solve four problems on which LRTDP+hFF

runs out of space. The policy quality under the guidance of either heuristic is nearly identical.

The Drive domain is small, and using GOTH on it does not provide significant benefit. On

Drive problems, planners spend most of the time in decision-theoretic computation (rather than the

computation of heuristic values) but explore no more than around 2000 states. LRTDP under the

guidance of GOTH and hFF explores roughly the same number of states, but since this number is

small, generalization does not play a big role and GOTH incurs the additional overhead of main-

taining the basis functions without getting a significant benefit from them. Perhaps surprisingly,

however, GOTH sometimes leads LRTDP to find policies with higher success rates (coverage),

while never causing it to find worse policies than hFF . The difference in policy quality reaches

50% on the Drive domain’s largest problems. Reasons for this are a topic for future investigation.

On the remaining test domains, Elevators and Blocksworld, LRTDP+GOTH dominates

LRTDP+hFF in both speed and memory while providing policies of equal or better quality. Figures

3.3 and 3.4 show the performance on Blocksworld as an example. Classical planners in our portfolio

cope with determinized versions of these domains very quickly, and abstraction ensures that the

obtained heuristic values are spread over many states. Similar to the case of EBW, the effectiveness

of GOTH is such that LRTDP+GOTH can solve even the five hardest problems of Blocksworld,

which LRTDP+hFF could not.

Figure 3.5 provides the big picture of the comparison. For each problem we tried, it contains a

point whose coordinates are the logarithms of the amount of time/memory that LRTDP+GOTH and

LRTDP+hFF took to solve that problem. Thus, points that lie below the Y = X line correspond

to problems on which LRTDP+GOTH did better according to the respective criterion. The axes of

the time plot of Figure 3.5 extend to log2(86400), the logarithm of the time cutoff (86400s, i.e., 24

hours) that we used. The points that lie on the extreme right or top of these plots denote problems

that could not be solved under the guidance of at least one of the two heuristics. Overall, the time

plot shows that, while LRTDP+GOTH ties with or is slightly beaten by LRTDP+hFF on Drive

and smaller problems of other domains, it enjoys a comfortable advantage on most large problems.

In terms of memory, this advantage extends to most medium-sized and small problems as well, and

sometimes translates into a qualitative difference, allowing LRTDP+GOTH to handle problems that

84

EBW EL TTW DR MS BW
2.07 4.18 1.71 1.00 14.40 7.72

Table 3.1: Average ratio of the number of states memoized by LRTDP under the guidance of hFF to the
number under GOTH across each test domain. The bigger these numbers, the more memory GOTH saves
the MDP solver compared to hFF .

LRTDP+hFF cannot.

Why does GOTH’s and hFF ’s comparative performance differ from domain to domain? For an

insight, refer to Table 3.1. It displays the ratio of the number of states explored by LRTDP+hFF to

the number explored by LRTDP+GOTH, averaged for each domain over the problems that could

be solved by both planners. As mentioned in Section 3.2.2, we take the number of states explored

under the guidance of a heuristic to be a measure of the heuristic’s informativeness, Thus, Table 3.1

reflects the relative informativeness of GOTH and hFF . Note the important difference between the

data in this chart and memory usage as presented on the graphs: the information in the table disre-

gards memory consumption due to the heuristics, thereby separating the description of heuristics’

informativeness from a characterization of their efficiency. Associating the data in the table with the

relative speeds of LRTDP+hFF and LRTDP+GOTH on the test domains reveals a clear trend; the

size of LRTDP+GOTH’s speed advantage is strongly correlated with its memory advantage, and

hence with its advantage in informativeness. In particular, GOTH’s superiority in informativeness

is not always sufficient to compensate for its computation cost. Indeed, the 1.71× average reduc-

tion (compared to hFF) in the number of explored states on Triangle Tireworld is barely enough

to make good the time spent on deterministic planning (even with generalization). In contrast, on

domains like Blocksworld, where GOTH causes LRTDP to visit many times fewer states than hFF ,

LRTDP+GOTH consistently solves the problems much faster.

Benefit of Generalization

Our main hypothesis regarding GOTH has been that generalization is vital for making GOTH

computationally feasible. To test it and measure the importance of basis functions and nogoods for

GOTH’s operation, we ran a version of GOTH with generalization turned off on several domains,

i.e., with the classical planner being invoked from every state passed to GOTH for evaluation.

85

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

C
P

U
 T

IM
E

 I
N

 S
E

C
O

N
D

S

MACHINE SHOP PROBLEM #

GOTH/NO GEN
GOTH

Figure 3.6: GOTH is much faster with generalization than without.

(As an aside, note that this is akin to the strategy of FFReplan, with the fundamental difference that

GOTH’s state values are eventually overridden by the decision-theoretic training process of LRTDP.

We explore the relationship between FFReplan and GOTH further in the next subsection.)

As expected, GOTH without generalization proved to be vastly slower than full GOTH. For

instance, on Machine Shop LRTDP+GOTH with generalization turned off is approximately 30-40

times slower (Figure 3.6) by problem 10, and the gap is growing at an alarming rate, implying that

without our generalization technique the speedup over hFF would not have been possible at all. On

domains with implicit dead ends, e.g., Exploding Blocksworld, the difference is even more dramatic,

reaching over two orders of magnitude.

Furthermore, at least on the relatively small problems on which we managed to run LRTDP

+GOTH/NO GEN, we found the quality of policies (measured by the average trajectory length)

yielded by “generalized” GOTH to be typically better than with generalization off. This result is

somewhat unexpected, since generalization is an additional layer of approximation on top of de-

terminizing the domain. We attribute this phenomenon to “generalized” GOTH’s weight-averaging

update strategy (line 19 of Algorithm 3.1; see also the corresponding discussing in subsection Weight

Updates of Section 3.4.1). As pointed out earlier, the weight of a basis function (i.e., the length of

a plan, in the case of GOTH/NO GEN) from any single classical planner invocation may not be

reflective of the basis function’s quality, and GOTH/NO GEN will suffer from such noise more

than regular GOTH. In any event, even if GOTH without generalization yielded better policies, its

slowness would make its use unjustifiable in practice.

86

One may wonder whether generalization can also benefit hFF the way it helped GOTH. While

we have not conducted experiments to verify this, we believe the answer is “No”. Unlike full deter-

ministic plan construction, finding a relaxed plan sought by hFF is much easier and faster. Consid-

ering that the generalization mechanism involves iterating over many of the available basis functions

to evaluate a state, any savings that may result from avoiding hFF ’s relaxed plan computation will

likely be negated by this iteration.

Computational Profile

An interesting aspect of GOTH’s modus operandi is the fraction of the computational resources an

MDP solver uses that is due to GOTH. E.g., across the Machine Shop domain, LRTDP+GOTH

spends 75-90% of the time in heuristic computation, whereas LRTDP+hFF only 8-17%. Thus,

GOTH is computationally much heavier than hFF but causes LRTDP to spend drastically less time

exploring the state space.

Comparison with FFReplan

Before continuing, we would like to emphasize again that, in contrast to FFReplan, GOTH is a

heuristic function meant to guide a FIND-AND-REVISE MDP solver and is not a standalone plan-

ner by itself. Nonetheless, one can find similarities between GOTH’s and FFReplan’s underlying

ideas. Indeed, both employ deterministic planners, FFReplan — for action selection directly, while

GOTH — for state evaluation. However, since GOTH is not a self-contained planner, it lets a

dedicated MDP solver correct its judgment. As a consequence, even though GOTH per se ignores

probabilistic information in the domain, probabilities are (or can be) taken into account during the

solver’s search for a policy. FFReplan, on the other hand, ignores them entirely. Due to this dis-

crepancy, performances of FFReplan and a planner guided by GOTH are typically very distinct.

For instance, FFReplan is faster than most decision-theoretic planners. At the same time, FFReplan

has difficulty dealing with probabilistic subtleties. It is known to come up with very low success

rate policies on probabilistically interesting problems, e.g., on almost all problems of Triangle Tire-

world’06 [65]. In these MDPs, “cheap” trajectories are easy to accidentally deviate from into costly

areas of the state space, a pitfall that determinization-based planners like FFReplan often fail to

87

recognize. LRTDP+GOTH can handle such scenarios much better: as stated above, it produces

optimal, 100% success-rate policies on the first eight out of ten problems of the even harder version

of Triangle Tireworld that appeared at IPPC-2008.

3.4.3 Summary

GOTH is a heuristic function that provides a heuristic search-based MDP solver with informative

state value estimates using costs of plans in the deterministic version of the given MDP. Computing

such plans is expensive. To amortize the time spent on their computation, GOTH employs basis

functions, which generalize the cost of one plan/trajectory to many states. As the experiments show,

this strategy and the informativeness of state value estimates make GOTH into a more effective

heuristic than the state of the art, hFF .

3.5 RETRASE

In GOTH, the role of information transfer via basis functions and nogoods was primarily to reuse

computation in the form of classical planner invocations and thus save time. In this section, we

present an MDP solver called RETRASE, Regressing Trajectories for Approximate State Evaluation

[55, 58] that employs basis functions in a similar way but this time chiefly for the purpose of drasti-

cally reducing the memory footprint.

As we already discussed, many dynamic programming-based MDP algorithms such as VI suffer

from the same critical drawback — they represent the state value function extensionally, i.e., as a

table, thus requiring memory (and time) exponential in the number of state variables of a factored

MDP. Since this extensional representation grows very rapidly, these approaches do not scale to

handle large problems, e.g., the largest ones from the IPPC.

Two broad approaches have been proposed for avoiding creation of a state-value table. One

method consists in computing the policy online with the help of a domain determinization, e.g.,

the all-outcomes one. In online settings, the policy needs to be decided on-demand, only for the

current state at each time step. Once an action for the current state is selected, the agent executes

it, transitions to another state, and the process repeats. This makes maintaining a state-value table

unnecessary (although potentially useful). Running a classical planner on a domain determinization

88

helps choose an action in the current state without resorting to this table. Determinization-based

planners, e.g., FFHop [100], are often either slow due to invoking a classical planner many times

or, as in the case of FFReplan, disregard the probabilistic nature of actions and have trouble with

probabilistically interesting domains [65].

The other strategy, dimensionality reduction, maps the MDP state space to a parameter space

of lower dimension. Typically, the mapping is done by constructing a small set of basis func-

tions, learning weights for them, and combining the weighted basis function values into the values

of states. Researchers have successfully applied dimensionality reduction by manually defining a

domain-specific basis function set in which basis functions captured some human intuition about the

domain at hand. It is relatively easy to find such a mapping in domains with ordinal (e.g., numeric)

state variables, especially when the numeric features correlate strongly with the value of the state,

as in Gridworlds, Sysadmin, and FreeCraft [38, 39, 36]. In contrast, dimensionality reduction is

difficult to use in nominal (also known as discrete or logical) domains, such as those used in the

IPPC. Besides not having metric quantities, there is often no valid distance function between states

(indeed, the distance between states is usually asymmetric and violates the triangle equality). It is

extremely hard for a human to devise basis functions or a reduction mapping in nominal domains.

The focus of section is an automatic procedure for doing so.

To our knowledge, there has been little work on mating decision theory, determinization, and

dimensionality reduction. With the RETRASE algorithm, we are bridging the gap, proposing a fu-

sion of these ideas that removes the drawbacks of each. RETRASE learns a compact value function

approximation successful in a range of nominal domains. As with GOTH, the cornerstone of RE-

TRASE is the abstraction framework described in earlier sections. In particular, in the same way

as GOTH, RETRASE constructs the approximation by obtaining a set of basis functions automat-

ically with the help of planning in a determinized version of the domain at hand. However, being

a full probabilistic planner, unlike GOTH, it also learns the weights for these basis functions by

the decision-theoretic means and aggregates them to compute state values as other dimensionality-

reduction methods do. Thus, as opposed to GOTH, RETRASE tries to incorporate the probabilistic

information lost at the determinization stage back into the solution. The set of basis functions is

normally much smaller than the set of reachable states, thus giving our planner a large reduction in

memory requirements as well as in the number of parameters to be learned, while the implicit reuse

89

of classical plans thanks to basis functions makes it fast.

We demonstrate the practicality of RETRASE by comparing it to the top IPPC-2004, 06 and

08 performers and other state-of-the-art planners on challenging problems from these competitions.

RETRASE demonstrates orders of magnitude better scalability than the best optimal planners, and

frequently finds significantly better policies than the top-performing approximate solvers.

3.5.1 RETRASE Description

The main intuition underlying RETRASE is that extracting basis functions defined in Section 3.3

from an MDP is akin to mapping the MDP to a lower-dimensional parameter space. In practice,

this space is much smaller than the original state space, since only the relevant causal structure is

retained3, giving us large reduction in space requirements. Solving this new problem amounts to

learning weights, a quantitative measure of each basis function’s quality. There are many imaginable

ways to learn them; in this dissertation, we explore one such method — a modified version of RTDP.

The weights reflect the fact that basis functions differ in the total expected cost of goal trajec-

tories they enable as well as in the total probability of these trajectories. At this point, we stress

that RETRASE makes two approximations on its way to computing an MDP’s value function, and

one of them is related to the semantics of basis function weights and importance. Any given basis

function enables only some subset W of the goal trajectories in a given state and is oblivious to

all other trajectories originating in that state. The other trajectories may or may not be preferable

to the ones in W (e.g., because the former may lead the agent to the goal with 100% probability).

Therefore, the importance of the trajectories (and hence of corresponding basis functions!) depends

on the state. Our intuitive notion of weights ignores this subtlety, since in RETRASE, the weight

of a basis function does not vary with states in which this basis function holds. Thus, a weight as

we compute it here is, in effect, a reflection of the “average” importance of the corresponding basis

function across the states this basis function represents. This is the first approximation made by

RETRASE.

The above details notwithstanding, the differences among basis function weights exist also be-

cause each trajectory considers only one outcome of each of its actions. The sequence of outcomes

3We can also strictly limit the size of this space by putting a bound on the number of basis functions we are willing to
handle.

90

Algorithm 3.2: RETRASE
1 Input: factored goal-oriented MDP consisting of domain D = 〈S,A, T , C〉 and
2 problem P = 〈G, s0〉, trial length L, timeout T
3 Output: a policy closed w.r.t. s0
4

5 Dd ← Det(D) // Det is a determinization routine, omitted from the pseudocode
6 Map← empty map from basis functions to weights
7 DE ← empty set of dead ends
8

9 function RETRASE(domain D, problem P , trial length L, timeout T)
10 begin
11 // Do modified RTDP over the basis functions
12 repeat
13 s← s0
14 foreach num steps = 1 through L do
15 â← arg mina{C(a) +

∑
s′∈S T (s, a, s′)Value(s′, P, T)}

16 ModifiedBellmanBackup(s, â,D, P, T)
17 s←simulate action â in s
18 end
19 until until stopped;
20 return a policy πs0 closed w.r.t. s0 and greedy w.r.t. the value function induced by Value(.)
21 end
22

23 function Value(state s, problem P , timeout T)
24 begin
25 if s ∈ DE then return a large penalty
26 else if some member f ′ of Map holds in s then return minb.f.s f that hold in s{Map[f]}
27 else
28 〈cost of plan,Map′〉 ← GetBasisFunctionsForS(s, P, T) // see Algorithm 3.1
29 if cost of plan ==∞ then
30 insert s into DE
31 return a large penalty
32 else
33 foreach 〈f, weight〉 in Map′ do
34 if f is not in Map then insert 〈f, weight〉 into Map

35 end
36 return cost of plan
37 end
38 end
39 end
40

41 function ModifiedBellmanBackup(state s, action a, domain D, problem P , timeout T)
42 begin
43 foreach b.f. f that holds in s and enables a do
44 Map[f]← C(a) +

∑
s′∈S T (s, a, s′)Value(s′, P, T)

45 end
46 end

91

the given trajectory considers may be quite unlikely. In fact, getting some action outcomes that the

trajectory does not consider may prevent the agent from ever getting to the goal. Thus, since each

trajectory has an associated basis function, it may be much “easier” to reach the goal in the presence

of some basis functions than others.

Now, given that each state is generally represented by several basis functions, what is the con-

nection between the state’s value and their weights? In general, the relationship is quite complex:

under the optimal policy, trajectories enabled by several basis functions may be possible. However,

determining the subset of basis functions enabling these trajectories is at least as hard as solving

the MDP exactly. Instead, we approximate the value of a state by the minimum weight among all

basis functions that represent the state. This amounts to saying that the “better” a state’s “best” basis

function is, the “better” is the state itself, and is the second approximation RETRASE makes.

Thus, deriving useful basis functions and their weights gives us an approximation to the optimal

value function.

Algorithm’s Operation

The pseudocode of RETRASE is presented in Algorithm 3.2. For a step-by-step example of RE-

TRASE’s operation please refer to the proof of Theorem 3.1. RETRASE starts by computing the

determinization Dd of the domain (line 5). Like GOTH, it uses Dd to rapidly compute the basis

functions. The algorithm explores the state space by running modified RTDP trials (lines 12-19),

memoizing all the dead ends and basis functions it learns along the way. Whenever during state

evaluation (line 15) RETRASE finds a state that is neither a known dead end nor has any basis

functions that hold in it, RETRASE uses the regression procedure GetBasisFuncsForS(.) (line 28)

outlined in Algorithm 3.1 to generate a basis function for it. Regression yields not only the basis

functions but also an approximate cost of reaching the goal in Dd from any state with a given basis

function via the given plan. We use these values to initialize the corresponding basis functions’

weights (lines 33-35). As in GOTH, if the deterministic planner can prove the non-existence of a

plan or simply cannot find a plan before some timeout, the state in question is deemed to be a dead

end (lines 30-31).

For each state s visited by the modified RTDP, the ModifiedBellmanBackup(.) routine updates

92

the weight of each basis function that enables the execution of the currently optimal action a (lines

41-46). The expected cost of taking a becomes the new weight of each such basis function. The

intuitive reason for updating the basis functions enabling a is that a can be executed in any state

where these basis functions hold; hence, the quality of a should be reflected in these basis functions’

weights. Conversely, a cannot be executed wherever basis functions that do not enable it hold, so

the expected cost of taking a is irrelevant to determining the weights of those basis functions.

Theoretical Properties

A natural question about RETRASE is that of convergence. To answer it, we prove the following

negative result:

Theorem 3.1. There are problems on which RETRASE may not converge. ♦

Proof. By the theorem statement we mean that, on some problems, depending on the order in

which basis functions are discovered, RETRASE may indefinitely oscillate over a set of several

policies with different expected costs. One such MDP M is presented in Figure 3.7, which shows

M ’s transition graph and action set. Solving M amounts to finding a policy of minimum expected

cost that takes the agent from state s0 to state sg and uses actions a1 — a5. The optimal solution to

M is a linear plan s0 − a1 − s1 − a4 − s4 − a5 − sg.

To see that RETRASE fails to converge onM , we simulate RETRASE’s operation on this MDP.

Recall that RETRASE executes a series of trials, all originating at s0.

Trial 1. To choose an action in s0, RETRASE needs to evaluate states s1 and s2. It does not yet

have any basis functions to do that, so it uses the GetBasisFuncsForS(.) procedure in Algorithm

3.1 to generate them, together with initial estimates for their weights.

Suppose the procedure first looks for a basis function for s1 and finds the plan s1 − a4 − s4 −

a5−sg. Regressing it yields the following basis function-weight pairs: weight(A∧B∧C∧D) = 0,

weight(A ∧ B ∧ C) = 1, weight(A ∧ B) = 2. A ∧ B is the only basis functions that holds in

s1 so far. Therefore, the current estimate for the value of s1, V (s1), is 2. Accordingly, the current

estimate for the value of action a1 in s0, QV (s0, a1), becomes C(a1) + V (s1) = 4.

93

(a) Actions (b) Transition graph

Figure 3.7: An example MDP on which RETRASE fails to converge that has four state variables, A,B,C,
and D, five actions shown in part a) of the figure, and the transition graph induced by them shown in part b)
of the figure.

Next, suppose that for state s2, GetBasisFuncsForS(.) finds the plan s2−a3−sg. Regressing it

yields one basis function-weight pair in addition to the already discovered ones,weight(A∧D) = 1.

Function A ∧D is the only one that holds in s2, so we get V (s2) = 1 and QV (s0, a2) = 2.

Now RETRASE can choose an action in s0. Since at the moment QV (s0, a1) > QV (s0, a2), it

picks a2 and executes it, transitioning to s2.

In s2, RETRASE again needs to evaluate two actions, a3 and a4. Notice that a4 leads to s5,

which is a dead end. GetBasisFuncsForS(.) discovers this fact by failing to produce any basis

functions for s5. Thus, V (s5) is a very large dead-end penalty, e.g. 1000000, yieldingQV (s2, a4) =

1000001. However, a3 may also lead to a dead end, s3, with P = 0.5, so QV (s2, a3) = 500001.

Nonetheless, a3 is more preferable, so this is the action that RETRASE picks in s2.

At this time, RETRASE performs a modified Bellman backup in s2. The only known basis

function that holds in s2 and enables the chosen action a3 is A ∧ D. Therefore, RETRASE sets

94

weight(A ∧D) = QV (s2, a3) = 500001.

Executing a3 in s2 completes the trial with a transition either to goal sg or to dead end s3.

Trial 2. This time, RETRASE can select an action in s0 without resorting to regression. Currently,

V (s1) = 2, since A ∧ B with weight(A ∧ B) = 2 is the minimum-weight basis function in s1.

However, V (s2) = 500001 due to the backup performed during trial 1. Therefore, QV (s0, a1) = 4

but QV (s0, a2) = 500002, making a1 look more attractive. So, RETRASE chooses a1, causing a

transition to s1.

In s1, the choice is between a3 and a4. The values of both are easily calculated with known

basis functions, QV (s1, a3) = 500001 and QV (s1, a4) = 2.

The natural choice is a4, and RETRASE performs the corresponding backup. The basis func-

tions enabling a4 in s1 are A ∧ B and A ∧ D. Their weights become QV (s1, a4) = 2 after the

update.

The rest of the trial does not change any weights and is irrelevant to the proof.

Trial n ≥ 3. Crucially, basis function A ∧ D, whose weight changed in the previous trials, holds

both in state s1 and in state s2. Due to the update in s2 during trial 1, weight(A ∧ D) became

large and made s1 look beneficial. On the other hand, thanks to the update in s1 during trial 2,

weight(A ∧ D) became small and made s2 look beneficial. It is easy to see that this cycle will

continue in subsequent trials: in the odd ones, RETRASE will prefer action a1 in state s0, and in

the even ones it will prefer a2 in s0. As a result, RETRASE will keep on switching between two

policies, one of which is suboptimal.

Overall, the classes of problems on which RETRASE may diverge is difficult to characterize.

Predicting whether RETRASE may diverge on a particular problem is an area for future work. We

maintain, however, that a lack of theoretical guarantees is not indicative of a planner’s practical

performance. Indeed, several IPPC winners, including FFReplan, have a weak theoretical profile.

The experimental results show that RETRASE too performs very well on many of the planning

community’s benchmark problems.

95

3.5.2 Experimental Results

Our goal in this subsection is to demonstrate two important properties of RETRASE – (1) scala-

bility and (2) quality of solutions in complex, probabilistically interesting domains. We start by

showing that RETRASE easily scales to problems on which the state-of-the-art optimal and non-

determinization-based approximate planners run out of memory. Then, we illustrate RETRASE’s

ability to compute better policies for hard problems than state-of-the-art approximate solvers.

Implementation Details

RETRASE is implemented in C++ and uses the miniGPT [10] package’s code for RTDP as its

basis. Our implementation is in the prototype stage and does not fully support some of the PPDDL

language features used to describe IPPC problems (e.g. universal quantification, disjunctive goals,

rewards, etc.).

Experimental Setup

We report results on six problem sets — Triangle Tireworld (TTW) from IPPC-2006 and -2008,

Drive from IPPC-2006, Exploding Blocksworld (EBW) from IPPC-2006 and -2008, and Elevators

from IPPC-2006. In addition, we ran RETRASE on a few problems from IPPC-2004. Since our

implementation does not yet support such PPDDL features as universal quantification, we were

unable to test on the remaining domains from these competitions. However, we emphasize that most

of the six domains we evaluate on are probabilistically interesting and hard. Even the performance

of the best IPPC participants on most of them leaves a lot of room for improvement, which attests

to their informativeness as testbeds for our planner.

To provide a basis for comparison, for each of the above domains we also present the results of

the best IPPC participants. Namely, we give the results of the IPPC winner on that domain, of the

overall winner of that IPPC, and ours. For the memory consumption experiment, we ran two VI-

family planners, LRTDP with inadmissible hFF (LRTDP+hFF), and LRTDP+OPT — LRTDP with

the admissible Atom-Min-1-Forward|Min-Min heuristic [10]. Both are among the top-performing

decision-theoretic planners.

We ran RETRASE on the test problems under the restrictions resembling those of IPPC-2006

96

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

L
O

G
1

0
(#

 S
T

A
T

E
S

/

B
A

S
IS

 F
U

N
C

S
)

TRIANGLE TIREWORLD−08 PROBLEM #

ReTrASE
LRTDP

OPT

LRTDP
FF

Figure 3.8: Memory usage on logarithmic scale: RETRASE is much more efficient than both LRTDP+OPT
and LRTDP+hFF .

and -2008. Namely, for each problem, RETRASE had a maximum of 40 minutes for training, as

did all the planners whose results we present here. RETRASE then had 30 attempts to solve each

problem. In IPPC-2006 and -2008, the winner was decided by the success rate of their policy —

the percentage of 30 execution trials of their policy that finished in a goal state. Accordingly, on the

relevant graphs we present both RETRASE’s success rate and that of its competitors.

While analyzing the results, it is important to be aware that our RETRASE implementation is

not optimized. Consequently, RETRASE’s potential efficiency is likely even better than indicated

by the experiments.

Comparing Scalability

We begin by showcasing the memory savings of RETRASE over traditional, decision-theoretic

planners exemplified by LRTDP+OPT and LRTDP+hFF on the Triangle Tireworld domain. Figure

3.8 demonstrates the savings of RETRASE to increase dramatically with problem size. In fact, nei-

ther LRTDP variant is able to solve past problem 8 as both run out of memory, whereas RETRASE

copes with all ten problems. Scalability comparisons for other domains we tested on yield generally

similar results.

Non-decision-theoretic approximate algorithms (e.g., the determinization-based ones) do not

suffer from the scalability issues as much as LRTDP. Thus, it is more meaningful to compare RE-

TRASE against them in terms of the quality of produced solutions. As we show, RETRASE’s

scalability allows it to successfully compete on IPPC problems with any participant.

97

Comparing Solution Quality: Success Rate

Continuing with the Triangle Tireworld domain, we compare the success rates of RETRASE, RFF

[95] — the overall winner of IPPC-2008, and HMDPP [50] — the winner of IPPC-2008 on this

particular domain. Note that Triangle Tireworld, perhaps the most famous probabilistically in-

teresting domain, was designed largely to confound solvers that rely on domain determinization

[65], e.g., FFReplan; therefore, performance on it is particularly important for evaluating a new

determinization-based planner. As Figure 3.9 shows, on this domain RETRASE ties with HMDPP

by achieving the maximum possible success rate, 100%, on all ten problems and outperforms the

competition winner, which cannot solve problem 10 at all and achieves only 83%-success rate on

problem 9.

On the IPPC-2006 Drive domain, RETRASE also fares well (Figure 3.10). Its average success

rate is just ahead of the unofficial domain winner (FFReplan) and of the IPPC-2006 winner (FPG

[19]), but the differences among all three are insignificant.

For the Exploding Blocksworld domain on the IPPC-2006 version (Figure 3.11), RETRASE

dominates other planners by a considerable margin on almost every problem. Its edge is especially

noticeable on the hardest problems, 11 through 15. On the most recent EBW problem set, from

IPPC-2008 (Figure 3.12), RETRASE performs well too. Even though its advantage is not as ap-

parent as in IPPC-2006, it is nonetheless ahead of its competition in terms of the average success

rate.

The Elevators and Triangle Tireworld-06 domains are easier than the ones presented above.

Surprisingly, on many of the Elevators problems RETRASE did not converge within the allocated

40 minutes and was outperformed by several planners. We suspect this is due to bad luck RETRASE

has with basis functions in this domain. However, on TTW-06 RETRASE was the winner on every

problem.

Comparing Solution Quality: Expected Cost

On problems where RETRASE achieves the maximum success rate it is interesting to ask how

close the expected trajectory cost that its policy yields is to the optimal. The only way we could

find out the expected cost of an optimal policy for a problem is by running an optimal planner on

98

1 2 3 4 5 6 7 8 9 10
0

50

100

%
 S

U
C

C
E

S
S

F
U

L
 T

R
IA

L
S

TRIANGLE TIREWORLD−08 PROBLEM #

ReTrASE
HMDPP
RFF−PG

Figure 3.9: RETRASE achieves perfect success rate on Triangle Tireworld-08.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

%
 S

U
C

C
E

S
S

F
U

L
 T

R
IA

L
S

DRIVE PROBLEM #

ReTrASE
FFReplan
FPG

Figure 3.10: RETRASE is at par with the competitors on Drive.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

%
 S

U
C

C
E

S
S

F
U

L
 T

R
IA

L
S

EXPLODING BLOCKSWORLD−06 PROBLEM #

ReTrASE
FFReplan
FPG

Figure 3.11: RETRASE dominates on Exploding Blocksworld-06.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

%
 S

U
C

C
E

S
S

F
U

L
 T

R
IA

L
S

EXPLODING BLOCKSWORLD−08 PROBLEM #

ReTrASE
HMDPP
RFF−PG

Figure 3.12: RETRASE outmatches all competitors on Exploding Blocksworld-08, although by a narrow
margin.

99

it. Unfortunately, the optimal planner we used, LRTDP+OPT, scales enough to solve only relatively

small problems (at most a few million states). On such problems we found RETRASE to produce

trajectories of expected cost within 5% of the optimal.

Comparison to FFHop

FFReplan has been a very powerful planner and a winner of at least one IPPC. However, recent

benchmarks defeat it by exploiting its near-complete disregard for probabilities when computing

a policy. Researchers have proposed a powerful improvement to FFReplan, FFHop [100], and

demonstrated its capabilities on problems from IPPC-2004. Due to the current lack of support for

some PPDDL language features we were not able to run RETRASE on most IPPC-2004 domains.

Table 3.2 compares the success rates of the two planners on the IPPC-2004 problems we did test.

Even though RETRASE performs better on these problems, the small size of the experimental base

makes the comparison of RETRASE and FFHop inconclusive.

Problem name FFHop RETRASE
exploding-block 93.33% 100%
g-tire-problem 60% 70%

Table 3.2: Success rates on some IPPC-2004 problems.

To conclude, while we did not test on all IPPC domains, our current experimental evaluation

clearly demonstrate RETRASE’s scalability improvements over the VI-family planners and its at-

par or better performance on many competition problems compared to state-of-the-art approximate

systems.

3.5.3 Summary

RETRASE is an MDP solver based on a combination of state abstraction and dimensionality re-

duction. It automatically extracts basis functions, which provide a compact representation of the

given MDP while retaining its causal structure. Simultaneously with discovering basis functions,

it learns weights for the already discovered ones using modified Bellman backups. These weights

100

let RETRASE evaluate states without memoizing state values explicitly. Such an approach allows

RETRASE to solve larger problems than the best performers of several recent IPPCs.

3.6 SIXTHSENSE

Although basis functions efficiently generalize information about states from which reaching the

goal is possible, they have nothing to say about dead ends. As a result, algorithms that use only

basis functions for information transfer cannot avoid either caching dead ends or rediscovering

them every time they run into them. In fact, the issue of quickly and reliably recognizing dead

ends plagues virtually all modern MDP solvers. For instance, in IPPC-2008 [17], the domains with

a complex dead-end structure, e.g., Exploding Blocksworld, have proven to be some of the most

challenging. Surprisingly, however, there has been little research on methods for effective discovery

and avoidance of dead ends in MDPs. Of the two types of dead ends, implicit ones confound

planners the most, since they do have executable actions. However, explicit dead ends can be a

resource drain as well, since verifying that none of the available actions are applicable in a state can

be costly if the number of actions and such states is large.

Broadly speaking, existing planners use one of two approaches for identifying dead ends. Recall

that in this chapter we are working with a variant of factored SSPs0 MDPs with dead end states,

entering which incurs a high user-defined penalty. When faced with a yet-unvisited state, many

planners (e.g., LRTDP) apply a heuristic value function, which hopefully recognizes dead ends and

immediately assigns this penalty to them. This method is fast to invoke but often fails to catch

many implicit dead ends due to the problem relaxation inevitably used by the heuristics. Failure to

detect them causes the planner to waste much time in exploring the states reachable from implicit

dead ends, these states being dead ends themselves. Other MDP solvers use state value estimation

approaches that recognize dead ends reliably but are very expensive; for example, RFF, HMDPP,

and RETRASE employ full deterministic planners. When a problem contains many dead ends, these

MDP solvers may spend a lot of their time launching classical planners from dead ends. Indeed,

most probabilistic planners would run faster if recognizing dead ends was not so computationally

expensive.

In this section, we complete our abstraction framework by presenting a novel mechanism,

101

SIXTHSENSE [57, 58], to do exactly this — quickly and reliably identify dead-end states in MDPs.

Underlying SIXTHSENSE is a key insight: large sets of dead-end states can usually be characterized

by a compact logical conjunction, a nogood, which “explains” why no solution exists. For example,

a Mars rover that flipped upside down will be unable to achieve its goal, regardless of its location,

the orientation of its wheels, etc. Knowing this explanation lets a planner quickly recognize millions

of states as dead ends. Crucially, dead ends in most MDPs can be described with a small number of

nogoods.

SIXTHSENSE learns nogoods by generating candidate conjunctions with a bottom-up greedy

search (resembling that used in rule induction [22]) and testing them to avoid false positives with

a planning graph-based procedure. A vital input to this learning algorithm are basis functions,

derived as shown in the previous sections. SIXTHSENSE is provably sound — every nogood output

represents a set of true dead-end states. We empirically demonstrate that SIXTHSENSE speeds up

two different types of MDP solvers on several IPPC domains with implicit dead ends and show the

performance improvements SIXTHSENSE gives to GOTH and RETRASE. Overall, SIXTHSENSE

tends to identify most of the dead ends that the solvers encounter, reducing memory consumption

by as much as 90%. Because SIXTHSENSE runs quickly, on large problems with dead ends it also

gives a 30-50% speedup. With these savings, it enables planners to solve problems they could not

previously handle.

3.6.1 SIXTHSENSE Description

To discover nogoods, we devise a machine learning generate-and-test algorithm that is an integral

part of SIXTHSENSE. The “generate” step proposes a candidate conjunction, using some of the

dead ends the planner has found so far as training data. For the testing stage, we develop a novel

planning graph-based algorithm that tries to prove that the candidate is indeed a nogood. Nogood

discovery happens in several attempts called generalization rounds. First we outline the generate-

and-test procedure for a single round in more detail and then describe the scheduler that decides

when a generalization round is to be invoked.

Algorithm 3.3 shows SIXTHSENSE’s pseudocode. We remind the reader the meaning of two

pieces of notation established in Section 3.3 that this pseudocode uses: for a set of literals c,
∧
c

102

stands for the conjunction of all literals in c; for a conjunction of literals c, lit(c) stands for the set

of all literals in c.

Generation of Candidate Nogoods

There are many ways to generate a candidate but if, as we conjecture, the number of explana-

tions/nogoods in a given problem is indeed very small, naively constructed hypotheses, e.g., con-

junctions of literals picked uniformly at random, are very unlikely to be nogoods and pass the test

stage. Instead, our procedure makes an “educated guess” by employing basis functions according

to one crucial observation. Recall that, by definition, basis functions are preconditions for goal tra-

jectories. Therefore, no state represented by them can be a dead end. On the other hand, any state

represented by a nogood, by the nogoods’ definition, must be a dead end. These facts combine into

the following observation: a state may be represented by a basis function or by a nogood but not

both.

Of more practical importance to us is its corollary that any conjunction that has no conflicting

pairs of literals (a literal and its negation) and contains the negation of at least one literal in every

basis function (i.e., defeats every basis function) is a nogood. This fact provides a guiding principle

— form a candidate by going through each basis function in the problem and, if the candidate

does not defeat it, picking the negation of one of the basis function’s literals. By the end of the

run, the candidate provably defeats all basis functions and hence can only hold either in states with

no trajectories to the goal, i.e., dead ends, or in no states at all (if it contains conflicting literals,

e.g., A and ¬A). The idea has a big drawback though: finding all basis functions in an MDP is

prohibitively expensive. Fortunately, it turns out that making sure a candidate defeats only a few

randomly selected basis functions (100-200 for the largest problems we encountered) is enough in

practice for the candidate to be a nogood with reasonably high probability (although not for certain,

motivating the need for verification). Therefore, to use the learning algorithm, a caller needs to

provide it with a “training” set of basis functions, denoted as BF in Algorithm 3.3. Candidate

generation in lines 10-17 of SIXTHSENSE’s pseudocode proceeds as just described: the candidate’s

set of literals c is formed by picking a defeating literal for each known basis function.

So far, we have not specified how exactly the defeating literals should be chosen. Here as well

103

Algorithm 3.3: SIXTHSENSE

1 Input: factored goal-oriented MDP consisting of domain D = 〈S,A, T , C〉 and
2 problem P = 〈G, s0〉, set of all domain literals L, training set of non-generalized dead-end states DE,
3 training set of basis functions BF
4 Output: a nogood or null
5

6 Dd ← Det(D) // Det is a determinization routine, omitted from the pseudocode
7

8 function LearnNogood(set of d.e.s DE, set of b.f.s BF , set of all literals L, goal conjunction G)
9 begin

10 // construct a candidate set of literals
11 c← {}
12 foreach b.f. f ∈ BF do
13 if c does not defeat f then
14 L← SampleDefeatingLiteral(DE, f, c)
15 c← c ∪ {L}
16 end
17 end
18 // check candidate with planning graph, and perform pruning if it is a nogood
19 if CheckWithPlanningGraph(c,L,G) then
20 foreach literal L ∈ c do if CheckWithPlanningGraph(c \ {L},L,G) then c← c \ {L}
21 else return null
22 // if we got here then the candidate set of literals forms a valid nogood
23 // upon receiving the nogood below, the caller should clear the dead-end set DE
24 return

∧
c

25 end
26

27 function CheckWithPlanningGraph(literal conjunction c′, set of all literals L, goal conjunction G)
28 begin
29 c′ ← set of negations of all literals in c′

30 foreach literal G in (lit(G) \ c′) do
31 c′′ ← c′ ∪ {¬G} ∪ (L \ (c′ ∪ {G}))
32 if PlanningGraph(c′′, Dd,G) == success then return false
33 end
34 return true
35 end
36

37 function SampleDefeatingLiteral(set of dead ends DE, basis function f , literal conjunction c′)
38 begin
39 foreach literal L ∈ lit(f) s.t. ¬L /∈ c′ do cntr¬L ← 0
40 foreach dead-end state d ∈ DE do
41 if

∧
c′ holds in d then

42 foreach literal L ∈ lit(f) s.t. ¬L /∈ c′ and ¬L holds in d do cntr¬L ← cntr¬L + 1
43 end
44 end
45 return a literal L′ sampled according to P (L′) ∼ cntrL′
46 end

104

we can do better than naive uniform sampling. Intuitively, the frequency of a literal’s occurrence in

the dead ends that the MDP solver has encountered by any given point in its running time correlates

with the likelihood of this literal’s presence in nogoods. Therefore, as SIXTHSENSE is iterating

over the basis functions in lines 12-17, for every basis function f its SampleDefeatingLiteral(.)

subroutine samples a literal defeating f from the distribution induced by literals’ frequencies of

occurrence in the dead ends represented by the constructed portion of the nogood candidate (lines

37-46).

Nogood Verification

As already established, if in the above candidate generation procedure we used the set of all basis

functions that exist for a given MDP, verifying the resulting candidate would not be necessary (other

than making sure that the candidate does not contain pairs of conflicting literals). However, in

general we do not have all possible basis functions at our disposal. Consequently, we need to

make sure that the candidate created by SIXTHSENSE from the available basis functions is indeed

a nogood. Let us denote the problem of establishing whether a given conjunction is a nogood as

NOGOOD-DECISION.

Theorem 3.2. NOGOOD-DECISION is PSPACE-complete. ♦

Proof. See the Appendix. The proof is via a reduction from the deterministic plan existence prob-

lem in factored goal-oriented MDPs.

In the light of Theorem 3.2, we may realistically expect an efficient algorithm for NOGOOD-

DECISION to be either sound or complete, but not both. A sound algorithm would never conclude

that a candidate is a nogood when it is not. A complete one would pronounce a candidate to be

a nogood whenever the candidate is in fact a nogood. A key component of our work is a sound

algorithm for identifying nogoods. It is based on the observation that all the per-state checks in the

naive scheme in the above proof can be replaced by only a few, whose running time is polynomial

in the problem size. Although sound, this operation is incomplete, i.e., may reject some candidates

that are actually nogoods. Nonetheless, it is effective at identifying nogoods in practice.

105

To verify a nogood candidate consisting of a set c of literals efficiently, we group all non-goal

states represented by
∧
c into several superstates of c. We define a superstate of a literal set c to be

a set consisting of:

• All of c’s literals,

• The negation of one of the goal literals that are not present in c, i.e., the negation of a literal

in lit(G) \ c;

• All literals over all other variables in the domain, i.e., the variables not participating in any of

the literals added above.

As an example, suppose the complete set of literals in our problem is {A,¬A,B,¬B,C,¬C,

D,¬D,E,¬E}, the goal is A ∧ ¬B ∧ E, and the candidate nogood literal set is {A,C}. Then the

superstates our algorithm constructs for this candidate are {A,B, C,D,¬D,E,¬E} and {A,B,

¬B,C,D,¬D,¬E} (the negation of a goal literal in each superstate is highlighted in bold).

The intuition behind this definition of superstates of c is as follows. Every non-goal state s

represented by
∧
c is “contained” in one of superstates of c in the sense that there is a superstate

of c containing all of s’s literals. Moreover, if a superstate has no trajectory to the goal, no such

trajectory exists for any state contained in the superstate, implying that these states are all dead ends.

Combining these two observations, if no goal trajectory exists from any superstate of c then all the

states represented by the candidate are dead ends. By definition, such a candidate is a nogood.

Accordingly, to find out whether the candidate is a nogood, our procedure runs the planning

graph algorithm on each of the candidate’s superstates (lines 27-35) in the all-outcomes determiniza-

tion of the MDP. Each planning graph instance returns success if and only if it can reach all the

goal literals and resolve all mutexes between them. The initial set of mutexes fed to the planning

graph for a given superstate are just the mutexes between each literal and its negation, if both are

present in that superstate.

106

Theorem 3.3. A candidate set of literals forms a nogood if the planning graph expansion on each of

its superstates in the all-outcomes determinization either a) fails to achieve at least one goal literal

or b) fails to resolve mutexes between any two of the goal literals. ♦

Proof. Since the planning graph is sound when it reports that the goal is not reachable from a

given set of literals and mutexes between them, its failure on all superstates in the all-outcomes

determinization of the given MDP indicates the candidate is a true nogood.

Our verification procedure is incomplete for two reasons. First, since each superstate has more

literals than any single state it contains, it may have a goal trajectory that is impossible to execute

from any state. Second, the planning graph algorithm is incomplete by itself; it may declare plan

existence when no plan actually exists.

At the cost of incompleteness, our algorithm is only polynomial in the problem size. To see this,

recall that each planning graph expansion from a superstate is polynomial in the number of domain

literals, and note that the number of superstates is linear in the number of goal literals.

If the verification test is passed, we try to prune away unnecessary literals (lines 20-20) that may

have been included into the candidate during sampling. This analog of Occam’s razor strives to

reduce the candidate to a minimal nogood and often gives us a much more general conjunction than

the original one at little extra verification cost.

If the learning algorithm returns a nogood, the MDP solver should discard the set of dead ends

DE that served as training data and, when learning needs to be invoked again, pass in a new dead-

end set. The motivation for this step will become clear once we discuss scheduling of SIXTHSENSE

invocations.

Scheduling

Since we do not know the number of nogoods in the problem a priori, we need to perform several

generalization rounds (learning procedure invocations). Optimally deciding when to do that is hard,

if not impossible, but we have designed an adaptive scheduling mechanism that works well in prac-

tice. It tries to estimate the size of the training set likely sufficient for learning an extra nogood,

and invokes learning when that much data has been accumulated. When generalization rounds start

107

failing, the scheduler calls them exponentially less frequently. Thus, very little computation time is

wasted after all nogoods that could reasonably be discovered have been discovered. (There are cer-

tain kinds of nogoods whose discovery by SIXTHSENSE, although possible, is highly improbable.

We elaborate on this point in Section 3.8.)

Our algorithm is inspired by the following tradeoff. The sooner a successful generalization round

happens, the earlier SIXTHSENSE can start using the resulting nogood, saving time and memory. On

the other hand, trying to learn a nogood too soon, with hardly any training data available, is unlikely

to succeed. The exact balance is difficult to pinpoint even approximately, but our empirical trials

indicate three helpful trends: (1) The learning algorithm is capable of operating successfully with

surprisingly little training data, as few as 10 dead ends. The number of basis functions does not play

a big role provided there is more than about 100 of them. (2) If a generalization round fails with

statistics collected from a given number of dead ends, their number usually needs to be increased

drastically. However, because learning is probabilistic, such a failure could also be accidental,

so it is justifiable to return to the “bad” training data size occasionally. (3) A typical successful

generalization round saves the planner enough time and memory to compensate for many failed

ones. These three regularities suggest the following strategy:

• Initially, the scheduler waits for a small batch of basis functions, BF in Algorithm 3.3, and

a small number of dead ends, DE, to be accumulated before invoking the first generalization

round. For the reasons above, our implementation used the initial settings of |BF | = 100 and

|DE| = 10 for all problems.

• After the first round and including it, whenever a round succeeds the scheduler waits for a

number of dead ends not represented by the known nogoods equal to half of the previous

batch size to arrive before invoking the next round. Decreasing the batch size in this way

is usually worth the risk according to observations (2) and (3) and because the round before

succeeded. If a round fails, the scheduler waits for the accumulation of twice the previous

number of unrecognized dead ends before trying generalization again.

Perhaps unexpectedly, in many cases we have seen very large training dead-end sets decrease the

probability of learning a nogood. This phenomenon can be explained by training sets of large sizes

108

sometimes containing subcollections of dead ends “caused” by different nogoods. Consequently, the

literal occurrence statistics induced by such a mix make it hard to generate reasonable candidates.

This finding has led us to restrict the training batch size (DE in Algorithm 3.3) to 10, 000. If,

due to exponential backoff, the scheduler is forced to wait for the arrival of n > 10, 000 dead

ends, it skips the first (n − 10, 000) and retains only the latest 10, 000 for training. For the same

locality considerations, the dead-end training set should be emptied at the end of each successful

generalization round.

Theoretical Properties

Before presenting the experimental results, we analyze SIXTHSENSE’s properties. The most impor-

tant one is that the procedure of identifying dead ends as states in which at least one nogood holds

is sound. It follows directly from the nogood’s definition.

Importantly, SIXTHSENSE puts no bounds on the nogood length, being theoretically capable of

discovering any nogood. One may ask: are there any nontrivial bounds on the amount of training

data for SIXTHSENSE to generate a nogood of a given length with at least a given probability?

As the following argument indicates, even if such bounds exist they are likely to be of no use in

practice. For SIXTHSENSE to generate any given nogood, the training data must contain many dead

ends caused by this nogood. However, depending on the structure of the problem, most such dead

ends may be unreachable from the initial state. If the planning algorithm that uses SIXTHSENSE

(e.g., LRTDP) never explores those parts of the state space, no amount of practically collectable

training data will help SIXTHSENSE discover some of the nogoods with high probability.

At the same time, we can prove another important property of SIXTHSENSE:

Theorem 3.4. Suppose the set of dead ends DE passed to SIXTHSENSE as training data contains

only those dead ends that are not represented by any nogood from a particular set NG. If SIXTH-

SENSE succeeds in learning a nogood using the set DE, this nogood will not be in NG. ♦

Proof. Stated differently, this theorem says that if SIXTHSENSE’s training data excludes dead ends

represented by previously discovered nogoods, those nogoods will not be rediscovered again. Ac-

cording to Algorithm 3.3, each nogood candidate is built up iteratively by sampling literals from

109

a distribution induced by training dead ends that are represented by the constructed portion of the

candidate. Also, by the theorem’s assumption, no training dead end is represented by any previously

learned nogood. Therefore, the probability of sampling a known nogood (lines 12-17) is 0.

Regarding SIXTHSENSE’s speed, the number of frequently encountered nogoods in any given

problem is rather small, which makes identifying dead ends by iterating over the nogoods very

quick. Moreover, a generalization round is polynomial in the amount of training data. We point out,

however, that obtaining the training data theoretically takes exponential time. Nevertheless, since

training dead ends are identified as a part of the usual planning procedure in most MDP solvers, the

only extra work to be done for SIXTHSENSE is obtaining a few basis functions. Their required num-

ber is so small that in nearly every probabilistic problem they can be quickly obtained by invoking

a speedy deterministic planner from several states. This explains why in practice SIXTHSENSE is

very fast.

Last but not least, we believe that SIXTHSENSE can be incorporated into nearly any existing

solver for factored goal-oriented MDPs, since, as explained above, the training data required by

SIXTHSENSE is either available in these solvers and can be cheaply extracted, or can be obtained

independently of the solver’s operation by invoking a deterministic planner.

3.6.2 Experimental Results

Our goal in the experiments was to explore the benefits SIXTHSENSE brings to different types of

planners, as well as to gauge the effectiveness of nogoods and the amount of computational resources

taken to generate them. We used three IPPC domains as benchmarks: Exploding Blocksworld-08

(EBW-08), Exploding Blocksworld-06 (EBW-06), and Drive-06. IPPC-2006 and -2008 contained

several more domains with dead-end states, but, with respect to dead ends, their structure is sim-

ilar to that of the domains we chose. The only exception is the Triangle Tireworld-08 domain,

whose representational artifacts do not allow for generalizing dead ends with SIXTHSENSE. In all

experiments, we restricted each participating MDP solver to use no more than 2 GB of memory.

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

S
A

V
IN

G
S

 A
S

 P
E

R
C

E
N

T
A

G
E

EXPLODING BLOCKSWORLD−06 PROBLEM #

Memory savings
Time savings

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

S
A

V
IN

G
S

 A
S

 P
E

R
C

E
N

T
A

G
E

EXPLODING BLOCKSWORLD−08 PROBLEM #

Memory savings
Time savings

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

S
A

V
IN

G
S

 A
S

 P
E

R
C

E
N

T
A

G
E

DRIVE PROBLEM #

Memory savings
Time savings

Figure 3.13: Time and memory savings due to nogoods for LRTDP+hFF (representing the “Fast but Insen-
sitive” type of planners) on 3 domains, as a percentage of resources needed to solve these problems without
SIXTHSENSE (higher curves indicate bigger savings; points below zero require more resources with SIXTH-
SENSE). The reduction on large problems can reach over 90% and even enable more problems to be solved
(their data points are marked with a ×).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

S
A

V
IN

G
S

 A
S

 P
E

R
C

E
N

T
A

G
E

EXPLODING BLOCKSWORLD−06 PROBLEM #

Memory savings
Time savings

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

S
A

V
IN

G
S

 A
S

 P
E

R
C

E
N

T
A

G
E

EXPLODING BLOCKSWORLD−08 PROBLEM #

Memory savings
Time savings

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

S
A

V
IN

G
S

 A
S

 P
E

R
C

E
N

T
A

G
E

DRIVE PROBLEM #

Memory savings
Time savings

Figure 3.14: Resource savings from SIXTHSENSE for LRTDP+GOTH/NO 6S (representing the “Sensitive
but Slow” type of planners).

Structure of Dead Ends in IPPC Domains

Among the IPPC benchmarks, we found domains with only two types of implicit dead ends. In

the Drive domain, which exemplifies the first of them, the agent’s goal is to stay alive and reach

a destination by driving through a road network with traffic lights. The agent may die trying but,

because of the domain formulation, this does not necessarily prevent the car from driving. Thus, all

of the implicit dead ends in the domain are generalized by the singleton conjunction (not alive). A

few other IPPC domains, e.g., Schedule, resemble Drive in having one or several exclusively single-

literal nogoods representing all the dead ends. Such nogoods are typically easy for SIXTHSENSE to

derive.

EBW-06 and -08’s dead ends are much more complex. In the EBW domain, the objective is to

rearrange a number of blocks from one configuration to another, and each block might explode in

the process. For each goal literal, EBW has two multiple-literal nogoods explaining when this literal

cannot be achieved. For example, if block b4 needs to be on block b8 in the goal configuration, then

111

any state in which b4 explodes before being picked up by the manipulator or in which b8 explodes

is a dead end, represented either by nogood (not (no − destroyed b4)) ∧ (not (holding b4)) ∧

(not (on b4 b8)) or by (not (no− destroyed b8))∧ (not (on b4 b8)). We call such nogoods statis-

tically identifiable and point out that EBW also has others too, described in Section 3.8. The variety

and structural complexity of EBW nogoods makes them challenging to learn.

Planner Types

As we discussed at the beginning of this section, MDP solvers can be divided into two groups ac-

cording to the way they handle dead ends. Some of them identify dead ends using fast but unreliable

means like heuristics, which miss a lot of dead ends, causing the planner to waste time and memory

exploring useless parts of the state space. We will call such planners “fast but insensitive” with

respect to dead ends. Most others use more accurate but also more expensive dead-end identifica-

tion mechanisms. We term these planners “sensitive but slow” in their treatment of dead ends. The

monikers for both types apply only to the way these solvers handle dead ends and not to their overall

performance. With this in mind, we demonstrate the effects SIXTHSENSE has on each type.

Benefits to Fast but Insensitive Planners

This group of planners is represented in our experiments by LRTDP with the hFF heuristic. We will

call this combination LRTDP+hFF , and LRTDP+hFF equipped with SIXTHSENSE — LRTDP+hFF

+6S for short. Implementationwise, SIXTHSENSE is incorporated into hFF . When evaluating a

newly encountered state, hFF first consults the available nogoods produced by SIXTHSENSE. Only

when the state fails to match any nogood does hFF resort to its traditional means of estimating the

state value. Without SIXTHSENSE, hFF misses many dead ends, since it ignores actions’ delete

effects.

Figure 3.13 shows the time and memory savings due to SIXTHSENSE across three domains

as the percentage of the resources LRTDP+hFF took to solve the corresponding problems (the

higher the curves are, the bigger the savings). No data points for some problems indicate that

neither LRTDP+hFF nor LRTDP+hFF+6S could solve them with only 2GB of RAM. There are a

112

few large problems that could only be solved by LRTDP+hFF+6S. Their data points are marked

with a × and savings for them are set at 100% (e.g., on problem 14 of EBW-06) as a matter of

visualization, because we do not know how much resources LRTDP+hFF would need to solve

them. Additionally, we point out that as a general trend, problems grow in complexity within each

domain with the increasing ordinal. However, the increase in difficulty is not guaranteed for any two

adjacent problems, especially in domains with a rich structure, causing the jaggedness of graphs for

EBW-06 and -08.

As the graphs demonstrate, the memory savings on average grow very gradually but can reach

staggering 90% on the largest problems. In fact, on the problems marked with a ×, they enable

LRTDP+hFF+6S to do what LRTDP+hFF cannot. This qualitative advantage of LRTDP+hFF+6S

is due to the fact that, since nogoods help it recognize many states as dead ends, it does not ex-

plore (and hence memoize) these states’ successors, which are also dead ends. In other words,

LRTDP+hFF+6S does not visit nearly as many fruitless states as LRTDP+hFF . Notably, the time

savings are lagging for the smallest and some medium-sized problems (approximately 1-7). Each of

them takes only a few seconds to solve, so the overhead of SIXTHSENSE is noticeable. However, on

large problems, SIXTHSENSE fully comes into its element and saves 30% or more of the planning

time.

Benefits to Sensitive but Slow Planners

Planners of this type include top IPPC performers RFF and HMDPP, as well as RETRASE and

others. Most of them use a deterministic planner, e.g., FF, on a domain determinization to find plans

from the given state to the goal and use such plans in various ways to construct a policy. Whenever

the deterministic planner can prove nonexistence of a path to the goal or simply fails to find one

within a certain time, these MDP solvers consider the state from which the planner was launched to

be a dead end. Due to the properties of classical planners, this method of dead-end identification is

reliable but rather expensive. To model it, we employed LRTDP with the GOTH heuristic. GOTH

evaluates states with classical planners, so including or excluding SIXTHSENSE from GOTH allows

for simulating the effects SIXTHSENSE has on the above algorithms. As SIXTHSENSE is part of

the standard GOTH implementation, GOTH without it is denoted as GOTH/NO 6S. Figure 3.14

113

illustrates LRTDP+GOTH’s behavior. Qualitatively, the results look similar to LRTDP+hFF+6S’s

but there is a subtle critical difference — the time savings in the case of LRTDP+hFF+6S grow

faster. This is a manifestation of the fundamental distinction of SIXTHSENSE in the two settings.

For the “Sensitive but Slow”, SIXTHSENSE helps recognize implicit dead ends faster (and obviates

memoizing them). For the “Fast but Insensitive”, it in addition obviates exploring many of the

implicit dead ends’ successors, causing a faster savings growth with problem size.

Benefits to ReTrASE.

RETRASE is perhaps the most natural MDP solver to be augmented with SIXTHSENSE. It already

uses basis functions to store information about non-dead-end states, and utilizing nogoods would

allow it to capitalize on the abstraction framework even more, providing additional insights into the

benefits for other planners that might employ the abstraction framework to serve all of their state

space representation needs.

To measure the effect of SIXTHSENSE on RETRASE and get a different perspective on the role

of SIXTHSENSE than in the previous experiments, we ran RETRASE and RETRASE+6S for at

most 12 hours on each of the 45 problems of the EBW-06, -08, and Drive sets, and noted the policy

quality, as reflected by the success rate, at fixed time intervals. For smaller problems, we measured

policy quality every few seconds, whereas for larger ones — every 5-10 minutes. Qualitatively,

the trends on all the problems were similar, so here we study them on the example of problem 12

from the EBW-06 set, one of the hardest problems attempted. For this problem, after 12 hours of

CPU running time, RETRASE+6S extracted 62267 basis functions and learned their weights; it

also discovered 79623 dead ends. Out of these dead ends, 18392 were identified by RETRASE+6S

running a deterministic planner starting at them having this planner fail to find a path to the goal.

The remainder, i.e., 77%, were discovered with 15 nogoods that SIXTHSENSE derived. Since every

deterministic planner call from a non-dead-end state typically yields several basis functions, SIXTH-

SENSE saved RETRASE at least (79623 − 18392)/(62267 + 79623) ≈ 43% of classical planner

invocations, with accompanying time savings. On the other hand, RETRASE’s running time is not

occupied solely by basis function extraction — a significant fraction of it consists of basis function

weight learning and state space exploration. Besides, SIXTHSENSE, although fast, was not instan-

114

0 2 4 6 8 10 12
0

20

40

60

80

100
%

 S
U

C
C

E
S

S
FU

L
TR

IA
LS

CPU TIME (HOURS)

ReTrASE+6S

ReTrASE

Figure 3.15: SIXTHSENSE speeds up RETRASE by as much as 60% on problems with dead ends. The plot
shows this trend on the example of problem 12 of EBW-06.

taneous. Therefore, based on this model we expected the overall speedup caused by SIXTHSENSE

to be less than 40% and likely also less than 30%.

With this in mind, please refer to Figure 3.15 showing the plots of policy quality yielded by

RETRASE and RETRASE+6S versus time. As expected intuitively, the use of SIXTHSENSE does

not change RETRASE’s pattern of convergence, and the shape of the two plots are roughly similar.

(If allowed to run for long enough both planners should converge to policies of the same quality,

although the plots do not show this.) However, surprisingly, the time it takes RETRASE+6S to

arrive at a policy of the quality RETRASE gets after 12 hours of execution turns out to be about

5.5 hours. Thus, the speedup SIXTHSENSE has yielded is considerably larger than predicted by our

model, roughly 60% versus the expected 30% or less.

Additional code instrumentation revealed an explanation for this discrepancy. The model just

sketched implicitly assumes that the time cost of a successful deterministic planner call (one that

yields basis functions) and one that proves the state to be a dead end to be the same. This appears

to be far from reality; the latter, on average, was over 4 times more expensive. With this factor

taken into account, the model would forecast a 64% time savings on classical planner calls due to

employment of SIXTHSENSE, which agrees with the actual data much better.

Regarding memory savings, SIXTHSENSE helps RETRASE as well, but the picture here is much

clearer. Indeed, since RETRASE memoizes only basis functions (with weights), dead ends, and

115

nogoods, a 43% reduction in the total number of these as predicted by our model straightforwardly

translates to the corresponding memory reduction our experiments showed. We point out, however,

that even without SIXTHSENSE, RETRASE’s memory requirements are very low compared to other

MDP solvers, and reducing them even further is a less significant performance gain than the boost

in speed.

Last but not least, we found that SIXTHSENSE almost never takes more than 10% of LRTDP+hFF

+6S’s or LRTDP+GOTH’s running time. For LRTDP+hFF+6S, this fraction includes the time spent

on deterministic planner invocations to obtain the basis functions, whereas in LRTDP+GOTH, the

classical plans are available to SIXTHSENSE for free. In fact, as the problem size grows, SIXTH-

SENSE eventually gets to occupy less than 0.5% of the total planning time. As an illustration of

SIXTHSENSE’s operation, we found out that it always finds the single nogood in the Drive domain

after using just 10 dead ends for training, and manages to acquire most of the statistically identi-

fiable nogoods in EBW. In the available EBW problems, their number is always less than several

dozens, which, considering the space savings they bring, attests to nogoods’ high efficiency.

3.6.3 Summary

SIXTHSENSE is a machine learning algorithm for discovering the counterpart of basis functions,

nogoods. The presence of a nogood in a state guarantees the state to be a dead end. Thus, nogoods

help a planner quickly identify dead ends without memoizing them, helping save memory and time.

SIXTHSENSE serves as a submodule of a planner that periodically attempts to “guess” nogoods

using dead ends the planner visited and basis functions the planner discovered as training data. It

checks each guess using a sound planning graph-based verification procedure. Depending on the

type of MDP solver, SIXTHSENSE vastly speeds it up, reduces its memory footprint, or both, on

MDPs with dead-end states.

3.7 Related Work

In spirit, the concept of extracting useful state information in the form of basis functions is related

to explanation-based learning (EBL) [47, 51]. In EBL, the planner would try to derive control rules

for action selection by analyzing its own execution traces. In practice, EBL systems suffer from

116

accumulating too much of such information, whereas the approaches we have presented do not.

The idea of using determinization followed by regression to obtain basis functions has parallels

to some research on relational MDPs, which uses first-order regression on optimal plans in small

problem instances to construct a policy for large problems in a given domain [37, 87]. However, our

function aggregation and weight learning methods are completely different from theirs. In most of

the literature on using basis functions to solve MDPs, the basis functions are constructed manually

by domain experts [36, 38, 39]. One of the main strengths of our approaches lies in generating them

automatically, without human intervention.

RETRASE, in essence, exploits basis functions to perform dimensionality reduction, but basis

functions are not the only known alternative to serve this purpose. Other flavors of dimensionality

reduction include algebraic and binary decision diagrams (ADDs/BDDs), and principle component

analysis (PCA)-based methods. SPUDD, Symbolic LAO*, and Symbolic RTDP are optimal algo-

rithms that exploit ADDs and BDDs for a compact representation and efficient backups in an MDP

[29, 43]. While they are a significant improvement in efficiency over their non-symbolic counter-

parts, these optimal algorithms still do not scale to large problems. APRICODD, an approximation

scheme developed over SPUDD [92], showed promise, but it is not clear whether it is competitive

with today’s top methods since it has not been applied to the competition domains.

Some researchers have applied non-linear techniques like exponential PCA and NCA for dimen-

sionality reduction [48, 84]. These methods assume the original state space to be continuous and

hence are not applicable to typical planning benchmarks.

In fact, most basis function-based dimensionality reduction techniques are not applied in nom-

inal domains. A notable exception is FPG [19], which performs policy search and represents the

policy compactly with a neural network. Our experiments demonstrate that RETRASE outperforms

FPG consistently on several domains.

The use of determinization for solving MDPs in general was inspired by advances in classical

planning, most notably the FF solver [44]. The practicality of the new technique was demonstrated

by FFReplan [99] that used the FF planner on an MDP determinization for direct selection of an ac-

tion to execute in a given state. More recent planners to employ determinization that are, in contrast

to FF-Replan, successful at dealing with probabilistically interesting problems include RFF-RG/BG

[95]. At the same time, the latter kind of algorithms typically invokes a deterministic planner many

117

more times than our techniques do. This forces them to avoid the all-outcomes determinization, as

these invocations would be too costly otherwise. Other related planners include Temptastic [102],

precautionary planning [32], and FFHop [100].

The employment of determinization for heuristic function computation was made famous by the

FF heuristic, hFF [44], originally part of a classical planner by the same name. LRTDP [13] and

HMDPP [50] adopted this heuristic with no modifications as well. In particular, HMDPP runs hFF

on a “self-loop determinization” of an MDP, thereby forcing hFF ’s estimates to take into account

some of the problem’s probabilistic information.

To our knowledge, there have been no previous attempts to handle identification of dead ends in

MDPs. The “Sensitive but Slow” and “Fast but Insensitive” mechanisms were not actually designed

specifically for the purpose of identifying dead ends and are unsatisfactory in many ways. One

possible reason for this omission may be that most MDPs studied by the Artificial Intelligence and

Operations Research communities until recently had no dead ends. However, MDPs with dead

ends have been receiving attention in the past few years as researchers realized their probabilistic

interestingness [65]. Besides the analogy to EBL, SIXTHSENSE can also be viewed as a machine

learning algorithm for rule induction, similar in purpose, for example, to CN2 [22]. While this

analogy is valid, SIXTHSENSE operates under different requirements than most such algorithms,

because we demand that SIXTHSENSE-derived rules (nogoods) have zero false-positive rate. Last

but not least, our term “nogood” shares its name with and closely mirrors the concept from the

areas of truth maintenance systems (TMSs) [25] and constraint satisfaction problems (CSPs) [27].

However, our methodology for finding nogoods has little in common with algorithms used in that

literature.

3.8 Future Research Directions

The experiments indicate that the proposed abstraction framework is capable of advancing the state

of the art in planning under uncertainty. Nonetheless, there are several promising directions for

future improvement.

118

Making Structure Extraction Faster

Even though the employment of basis functions in GOTH renders GOTH much faster than other-

wise, the relatively few classical planner invocations that have to be made are still expensive, and

GOTH’s advantage in informativeness is not always sufficient to secure an overall advantage in

speed for the MDP solver that uses it. Incidentally, we noticed that on some of the domains RE-

TRASE spends a lot of time discovering basis functions that end up having high weights (i.e., are

not very “important”). We see two ways of handling the framework’s occasional lack of speed in

discovering useful problem structure.

The first approach is motivated by noticing that the speed of basis function extraction depends

critically on how fast the available deterministic planners are on the deterministic version of the

domain at hand. Therefore, the speed issue can be alleviated by adding more modern classical

planners to the portfolio and launching them in parallel in the hope that at least one will be able

to cope quickly with the given domain. Of course, this method may backfire when the number of

employed classical planners exceeds the number of cores on the machine where the MDP solver

is running, since the planners will start contending for resources. Nonetheless, up to that limit,

increasing the portfolio size should help. In addition, using a reasonably-sized portfolio of planners

may help reduce the variance in the time it takes to arrive at a deterministic plan.

The above idea is an extensional approach to accelerate the domain structure extraction, one

that increases the performance of the algorithm by making more computational resources available

to it. There is also an intensional one, that improves the algorithm itself. The ultimate reason for

the frequent discovery of “useless” basis functions via deterministic planning is the fact that a basis

function’s importance is largely determined by the probabilistic properties of the corresponding

trajectory, something the all-outcomes determinization completely discards. An alternative would

be to give classical planners a domain determinization that retains at least some of its probabilistic

structure. Although seemingly paradoxical, such determinizations exist, e.g., the one proposed by

the authors of HMDPP [50]. Its use could improve the quality of obtained basis functions and thus

reduce the deterministic planning time spent on discovering subpar ones. Different determinization

strategies may also ease the task of the classical planners provided that the determinization avoids

enumerating all outcomes of every action without significant losses in solution quality.

119

Lifting Representation to First-Order Logic

Another potentially fruitful research direction is increasing the power of abstraction by lifting the

representation of basis functions and nogoods to first-order logic. Such representation’s benefits are

apparent, for example, in the EBW domain. In EBW, besides the statistically identifiable nogoods,

there are others of the form “block b is not in its goal position and has an exploded block somewhere

in the stack above it”. Indeed, to move b one would first need to remove all blocks, including the

exploded one, above it in the stack, but in EBW exploded blocks cannot be relocated. Expressed in

first-order logic, the above statement would clearly capture many dead ends. In propositional logic,

however, it would translate to a disjunction of many ground conjunctions, each of which is a nogood

corresponding to one possible position of the exploded block in the stack above b. Each such ground

nogood separately accounts for a small fraction of dead ends in the MDP and is almost undetectable

statistically, preventing SIXTHSENSE from discovering it.

Handling Conditional Effects

So far, we have assumed that an action’s precondition is a simple conjunction of literals. PPDDL’s

most recent versions allow for a more expressive way to describe an action’s applicability via con-

ditional effects. Figure 3.16 shows an action with this feature. In addition to the usual precondition,

this action has a separate precondition controlling each of its possible effects. Depending on the

state, any subset of the action’s effects can be executed.

(:action be-evil
:parameters ()
:precondition (and (gremlin-alive))
:effect (and

(if (and (has Screwdriver) (has Wrench))
(and (plane-broken)))

(if (and (has Hammer))
(and (plane-broken)

(probabilistic 0.9
(and (not (gremlin-alive))))))))

Figure 3.16: Action with conditional effects

120

The presented algorithms currently do not handle problems with this construct for two reasons.

First, regression as defined in the Section 2.2 does not work for conditional effects. However,

its definition can be easily extended to such cases. As a starting step, consider a goal trajectory

t(e) and suppose that outcome out(ai, i, e), part of t(e), is the result of applying action ai in state

si−1 of e. Denote the precondition of k-th conditional effect of ai as cond preck(ai). When e

was sampled, conjunction out(ai, i, e) was generated in the following way. For every k, it was

checked whether cond preck(ai) holds in si−1. If it did, the dice were rolled to select the out-

come of the corresponding conditional effect. Denote this outcome as cond outk(ai, i, e). Fur-

thermore, let lit(cond outk(ai, i, e)) = ∅ (i.e., let cond outk(ai, i, e) be an empty conjunction) if

cond preck(ai) does not hold in si.

By definition, cond preck(ai) can be empty in either of two cases:

• If cond preck(ai) does not hold in si−1;

• If cond preck(ai) holds in si−1 but while sampling cond outk(ai, i, e) we happened to pick

an outcome that does not modify si−1.

In light of this fact, define the cumulative precondition of out(ai, i, e) as

cu prec(out(ai, i, e)) = prec(ai) ∧

[∧
k

{cond preck(ai) s.t. lit(cond outk(ai, i, e)) 6= ∅}

]

and observe that

out(ai, i, e) =
∧
k

{cond outk(ai, i, e)}.

Thus, cu prec(out(ai, i, e)) is a conjunction of preconditions of those conditional effects of ai

that contributed at least one literal to out(ai, i, e). In other words, it is the minimum necessary

precondition of out(ai, i, e). Therefore, to extend regression to actions with conditional effects we

simply substitute cu prec(out(ai, i, e)) for prec(ai) into the formulas for generating basis functions

from Section 2.2.

121

Unfortunately, there is a second, practical difficulty with making GOTH, RETRASE, and SIXTH-

SENSE work in the presence of conditional effects. Recall that our primary way of obtaining goal

trajectories for regression is via deterministic planning. Determinizing an ordinary probabilistic ac-

tion yields the number of deterministic actions equal to the number of original action’s outcomes.

In the presence of conditional effects, this statement needs to be qualified. Each conditional effect

can be thought of as describing an “action within an action” with its own probabilistic outcomes.

These “inside actions” need not be mutually exclusive. Therefore, the number of outcomes of an

action with conditional effects is generally exponential in the latter’s number. As a consequence,

determinizing such actions may lead to a blowup in problem representation size. Further research

is needed to identify special cases in which the determinization of conditional effects can be done

efficiently.

Beyond Goal-Oriented MDPs

So far, the probabilistic planning community has predominantly concentrated on goal-oriented

MDPs. However, there are interesting problems of other types as well. As an example, consider

the Sysadmin domain [17], in which the objective is to keep a network of computers running for

as long as possible. Such reward-maximization problems have received little attention up until now

(possibly with the exception of Sysadmin itself and a few other benchmark domains). Extending

the automatic abstraction framework to reward-maximization problems is a potentially impactful

research direction. However, it meets with a serious practical as well as theoretical difficulty. Recall

that the natural deterministic analog of SSP MDPs are shortest-path problems. Researchers have

studied them extensively and developed a wide range of very efficient tools for solving them, such

as FF, LPG, LAMA, and others. As shown earlier, the techniques presented here critically rely on

these tools for extracting the basis functions and estimating their weights. In contrast, the clos-

est classical counterpart of probabilistic reward-maximization scenarios are longest-path problems.

Known algorithms for various deterministic formulations of this setting are at best exponential in

the state space size, explaining the lack of fast solvers for them. In their absence, the invention of

alternative efficient ways of automatically extracting important causal information is an important

step on the way to extending abstraction beyond goal-oriented MDPs.

122

Abstraction Framework and Existing Planners

Despite improvements being possible, our abstraction framework is useful even in its current state,

as evidenced by both the experimental and theoretical results. Moreover, it has a property that makes

its use very practical; the framework is complementary to the other powerful ideas incorporated in

successful solvers of the recent years, e.g., HMDPP, RFF, FFHop, and others. Thus, abstraction can

greatly benefit many of these solvers and also inspire new ones. As an example, note that FFRe-

plan could be enhanced with abstraction in the following way. It could extract basis functions from

deterministic plans it is producing while trying to reach the goal and store each of them along with

their weight and the last action regressed before obtaining that particular basis function. Upon en-

countering a state represented by at least one of the known basis functions, “generalized FFReplan”

would select the action corresponding to the basis function with the smallest weight. Besides an

accompanying speed boost, which is a minor point in the case of FFReplan since it is very fast

as is, FFReplan’s robustness could be greatly improved, since this way its action selection would

be informed by several trajectories from the state to the goal, as opposed to just one. Employed

analogously, basis functions could speed up FFHop, an MDP solver that has great potential but

is somewhat slow in its current form. In fact, we believe that virtually any algorithm for solving

factored goal-oriented MDPs could have its convergence accelerated if it regresses the trajectories

found during policy search and carries over information from well explored parts of the state space to

the weakly probed ones with the help of basis functions and nogoods. We hope to verify this conjec-

ture in the future. At the same time, solvers of discounted-reward MDPs are unlikely to gain much

from the kind of abstraction proposed in this chapter, even though, mathematically, the described

techniques will work even on this MDP class. In Chapter 2, we mentioned that discounted-reward

MDPs can be viewed as SSP MDPs where each action has some probability of leading directly to

the goal [6]. As a result, any sequence of actions in a discounted-reward MDP is a goal trajectory.

This leads to an overabundance of discoverable basis functions, potentially making their number

comparable to the number of states in the problem (in theory, the number of basis functions can

reach 3|X |, where |X | is the number of state variables).

A different approach for making abstraction benefit existing planners is to let RETRASE pro-

duce a value function estimate and to allow another planner, e.g. LRTDP, complete the solution of

123

the problem starting from this estimate. This idea is reminiscent of hybridized planning [70] and

is motivated by the fact that it is hard to know when RETRASE has converged on a given problem

(and whether it ever will). Therefore, it makes sense to have an algorithm with convergence guaran-

tees take over from RETRASE at a certain point. Empirical research is needed to determine when

the switch from RETRASE to another solver should happen.

3.9 Summary

A central issue that limits practical applicability of automated planning under uncertainty is the

scalability of available techniques. In this chapter, we have presented a powerful approach to tackle

this fundamental problem — an abstraction framework that extracts problem structure and exploits

it to spread information gained by exploring one region of the MDP’s state space to others.

The components of the framework are the elements of problem structure called basis functions

and nogoods. The basis functions are preconditions for those sequences of actions (trajectories)

that take the agent from some state to the goal with positive probability. As such, each applies

in many of the MDP’s states, sharing associated reachability information across them. Crucially,

basis functions are easy to come by via fast deterministic planning or even as a byproduct of the

normal probabilistic planning process. While basis functions describe only MDP states from which

reaching the goal is possible, their counterparts, nogoods, identify dead ends, from which the goal

cannot be reached. Crucially, the number of basis functions and nogoods needed to characterize the

problem space is typically vastly smaller than the problem’s state space. Thus, the framework can

be used in a variety of ways that increase the scalability of the state of the art methods for solving

MDPs.

We have described three approaches illustrating the framework’s operation, GOTH, RETRASE,

and SIXTHSENSE. The experimental results show the promise of the outlined abstraction idea.

Although we describe several ways to enhance our existing framework, even as is it can be utilized

to qualitatively improve scalability of virtually any modern MDP solver and inspire the techniques

of tomorrow.

124

Chapter 4

PLANNING EFFICIENTLY WITHOUT A GOAL

The increase in the scalability of algorithms for solving factored goal-oriented MDP over the

past decade has been largely due to the extensive use of classical planners as subroutines in MDP

approximation techniques. Indeed, nearly all successful planners of the past years, from FFReplan

to RETRASE introduced in the previous chapter, have critically relied on the ability to find a tra-

jectory to a goal state in a determinization of a given MDP. Unfortunately, while powerful on many

problems, this strategy implicitly biases the approximation methods towards goal-oriented MDPs

with particular characteristics and renders them completely ineffective on others.

4.1 Overview

The weaknesses of the existing solution techniques have been demonstrated by the new benchmark

MDPs of the 2011 International Probabilistic Planning Competition [86] (IPPC-2011). These prob-

lems belong to the class of factored finite-horizon scenarios with an initial state, denoted as FHs0

and described by transforming the FH MDP definition (2.10) in the same way as the definition of

SSP MDPs (2.16) is transformed into the factored SSPs0 MDP definition (2.20). Like SSPs0 , FHs0

models many important problems, from inventory management [80] to teaching a skill to a student

over a given number of lessons [86]. Formally, factored FHs0 is a subclass of factored SSPs0 , so

we would expect all the algorithms for the latter to extend to the former. However, this turns out not

to be the case in practice.

For example, the determinization-based algorithms (including those introduced in Chapter 3)

that can solve SSPs0 MDPs are inapplicable to FHs0 MDPs, due to the goal structure of the latter.

In SSP MDPs in general, finding a path to the goal is nontrivial. In fact, the probability of reaching

the goal from s0 serves as a reasonable proxy optimization criterion when solving SSPs0 MDPs

approximately, since optimizing the expected cost of doing so is hard and because in goal-oriented

scenarios reaching the goal is semantically more important than cost minimization. It is the goal

125

attainment probability that was the measure of policy quality in the previous IPPCs and in the ex-

periments in Chapter 3, and determinization-based planning excelled at optimizing it. In contrast,

finding the goal from any given state in FH MDPs is very easy. Recall from the proof of Theorem

2.5 that if a FH MDP is viewed as a goal-oriented problem, then all states at the problem’s horizon

are goals; the agent will get to the goal eventually no matter what policy it follows. Thus, goal

attainment probability is not meaningful in FH MDPs. Moreover, it is not clear how to use deter-

ministic planning to optimize the expected reward over a fixed number of steps, the main policy

quality criterion in FH MDPs. Fast deterministic planners are usually highly suboptimal in terms of

the cost of the plans that they find, and are not designed to look for plans of a specific length.

Another aspect of IPPC-2011 MDPs preventing both determinization-based and the more con-

ventional dynamic programming-based solvers is their high-entropy transition functions. For prob-

abilistic planning problems, we define the entropy of the transition function as the average entropy

of the successor state distribution of a state-action pair. Intuitively, problems with a high-entropy

transition function not only have a high average number of successors per state-action pair, but also

a large number of highly likely ones among them. In real-world systems, high-entropy transition

functions are common and are often caused by natural dynamics, effects of exogenous events or

forces of nature that cannot be directly controlled but that need to be taken into account during

planning. The exogenous events, e.g., changes in weather, alter the state in parallel with an agent’s

actions, enabling the world to transition to many states with a high probability in just one time step.

This thwarts determinization-based solvers because the all-outcome determinizations of such prob-

lems have very large branching factors. The branching factor cannot always be easily reduced by

omitting low-probability action outcomes, because the pruned problem can become an overly crude

approximation of the original one. For instance, in the Mars rover example, disregarding various

possibilities of equipment failure, which generally have low probabilities, may render the planning

problem trivial. Due to the large branching factors, solving such determinizations becomes difficult

even for classical planners, negating the main strength of determinization-based techniques. For dy-

namic programming-based solvers, high-entropy transition functions create similar complications.

At the core of all these algorithms is a Bellman backup operator similar to the one in Equation 2.9,

evaluating which for a single state requires iterating over all positive-probability successors of all

corresponding state-action pairs — a prohibitively expensive step in the cases when the transition

126

function is high-entropy.

An algorithm with a great potential to tackle large factored FHs0 MDPs is UCT [52], a Monte

Carlo Tree Search technique. Originally invented as a reinforcement learning strategy, it does not

explicitly manipulate the transition function’s probabilities and is optimal in the limit. A version

of it, PROST [49], was the winner of IPPC-2011. At the same time, to be successful, UCT needs

several of its parameters and components to be tuned well. For a specific problem, this process may

be justifiable. However, UCT’s parameter values carry over poorly from one scenario to the next,

making UCT fairly brittle as a general autonomous MDP solver.

The contribution of this dissertation to the state of the art in solving large factored FHs0 MDPs

is a series of three techniques culminating in a top-performing, easily tunable algorithm for these

problems:

• The algorithm that forms a theoretical basis for the other two is LR2TDP [54]. LR2TDP is

founded on a crucial observation that for many FHs0 MDPs with initial state s0 and horizon

H , which we will henceforth denote as M(s0, H), one can produce a successful policy by

solving M(s0, h), the same MDP but with a much smaller horizon h, and “extending” its

solution up to horizon H . Therefore, under time constraints, trying to solve the sequence of

MDPs M(s0, 1),M(s0, 2), · · · with increasing horizon will often yield a near-optimal policy

even if the computation is interrupted long before the planner gets to tackle MDP M(s0, H).

This strategy, which we call reverse iterative deepening, is at the heart LR2TDP. Its crucial

distinction from iterative deepening is that it obtains a solution for MDP M(s0, h) by aug-

menting the solution forM(s0, h−1) obtained earlier, as opposed to building it from scratch.

This gives LR2TDP higher speed and better anytime performance than that of its forerunner,

LRTDP.

• Although LR2TDP’s intuition addresses the issue of anytime performance, by itself it does

not enable LR2TDP to handle large branching factors. For this purpose, we introduce GLUT-

TON [54], a planner derived from LR2TDP and our entry in IPPC-2011. GLUTTON endows

LR2TDP with optimizations that help achieve competitive performance on difficult problems

with large branching factors – subsampling the transition function, separating out natural dy-

127

namics, caching transition function samples, and using primitive cyclic policies as a fall-back

solution.

• Both LR2TDP and GLUTTON do most of their planning offline: they try to find a policy

closed w.r.t. s0, which potentially involves many states, and only then execute it. This is

wasteful if the policy needs to be executed only a few times, since only a few of the states will

end up getting visited. The last algorithm for factored FHs0 MDPs that we propose, GOUR-

MAND [59], is an online version of LR2TDP. It incorporates many of the same optimizations

as GLUTTON and plans as the agent travels through the state space, thereby saving valuable

computational resources. PROST, the winner of IPPC-2011, is also an online algorithm, but

GOURMAND has many fewer parameters and outperforms PROST thanks to generalizing bet-

ter across different scenarios.

4.2 Preliminaries

Before delving into the details of LR2TDP, GLUTTON, and GOURMAND, we slightly change the

FH MDP-related notation introduced in Chapter 2 and discuss the main competitor of the techniques

we propose, the UCT algorithm.

4.2.1 Notation

As for SSPs0 problems, an optimal policy for FHs0 MDPs must satisfy a special version of the Bell-

man equations (Equations 2.1). To make subsequent explanations clearer, we introduce a change

of variable in these equations by expressing value functions not in terms of the current time t but

in terms of the number of steps, h, remaining to reach the horizon. In an FHs0 MDP M(s0, H),

we have h = H − t + 1. For simplicity, in this chapter we also assume that the transition and

reward functions of the MDPs we are dealing with are stationary and denote them as T (s, a, s′) and

R(s, a, s′), respectively, although the algorithms we will discuss can be easily adapted to nonsta-

tionary transitions and rewards as well. With these alterations, the Bellman equations for FH MDPs

become

128

V ∗(s, 0) = 0 ∀s ∈ S (4.1)

V ∗(s, h) = max
a∈A

[∑
s′∈S
T (s, a, s′)[R(s, a, s′) + V ∗(s′, h− 1)]

]
∀h ∈ [1, H], s ∈ S. (4.2)

When discussing solution techniques, we will reason about the augmented state space of an

FHs0 MDP M(s0, H), which is a set S × {0, . . . ,H} of state-number of steps-to-go pairs. In these

terms, an optimal solution of M(s0, H) is a policy π∗s0,H maximizing the expected reward that can

be collected starting from augmented state (s0, H).

4.2.2 Additional Background

In the probabilistic planning community, finite-horizon problems have not yet received as much

attention as goal-oriented MDPs, and the main algorithms developed specifically for them have

been the mathematically fundamental, but not very efficient, VI and PI. At the same time, these

problems can be viewed as acyclic MDP with a special structure, implying that heuristic search

algorithms for acyclic MDP algorithms, such as AO∗ [75], apply to them without modification. A

more recent method for solving FHs0 MDPs is UCT, which appears to have a number of advantages

over VI/PI and AO∗. Below, we review a version of VI specialized to finite-horizon scenarios and

then concentrate on UCT.

Value Iteration

VI for finite-horizon MDPs is simpler and more efficient than for SSP problems (Algorithm 2.3).

For the former, unlike for the latter, the maximum length of any trajectory equals the MDP’s horizon

H . This allows the optimal value function to be computed in a single pass over the state space by

setting V ∗(s, 0) = 0 as in Equation 4.1 and computing V ∗(s, h) as h ranges from 1 to H using

Equation 4.2. However, space-wise this flavor of VI is more wasteful, as it has to store a number for

each state in the augmented state space.

129

UCT

At a high level, UCT [52] works in a similar way to RTDP: it samples a series of trials. Each

trial consists of choosing an action in the current state, simulating the action, virtually transitioning

to a new state, and repeating this process in that new state. However, UCT’s state value update

strategy is distinctly different. It does not use Bellman backups, instead estimating the state value

as an aggregate of the rewards obtained starting from this state so far. Moreover, in each visited

state UCT picks an action based on the action’s current quality estimate (an approximation of the

action’s Q-value) and an “exploration term”. The exploration term forces UCT to choose actions

that have been tried rarely in the past, even if their estimated quality is low. The avoidance of

Bellman backups makes UCT suitable for many scenarios other MDP algorithms cannot handle

(e.g., when the transition function is not known explicitly or has a high entropy). However, it also

extorts a price: unlike in VI or RTDP, UCT’s action quality estimates do not improve monotonically.

This leads UCT to try suboptimal actions from time to time and prevents it from having a reliable

termination condition indicating when UCT is near convergence.

Online versus Offline Planning

Many planning algorithms, including VI, LRTDP, and UCT, allow offline planning mode, when the

planner tries to find a complete optimal policy, or at least an optimal policy closed w.r.t. (s,H), be-

fore executing it. In many cases, doing so is infeasible and unnecessary — the problem may have so

many states that they cannot all be visited over the lifetime of the system, so finding π∗ for them is

a waste of time. E.g., over its lifetime a robot will ever find itself in only a small fraction of possible

configurations. Such problems may be better solved online, i.e., by finding π∗ or its approximation

for the current state, executing the chosen action, and so on. In many scenarios, the MDP needs

to be solved online and under time constraint. Ways of adapting MDP solvers to the online setting

vary depending on the algorithm.

130

4.3 LR2TDP

We begin by introducing LR2TDP, an extension of LRTDP for finite-horizon problems. Like its

predecessor, LR2TDP solves an MDP for the given initial state s0 optimally in the limit and has a

good anytime performance. Extending LRTDP to finite-horizon problems may seem an easy task,

but its most straightforward extension performs worse than the one we propose, LR2TDP.

4.3.1 LR2TDP Description

As a reminder, LRTDP for goal-oriented MDPs (Algorithm 2.7) operates in a series of trials starting

at the initial state s0. Each trial consists of choosing the greedy best action in the current state

according to the current value function, performing a Bellman backup on the current state, sampling

an outcome of the chosen action, transitioning to the corresponding new state, and repeating the

cycle. A trial continues until it reaches a goal or a converged state. At the end of each trial, LRTDP

performs a special convergence check on all states in the trial to prove, whenever possible, the

convergence of these states’ values. Once it can prove that s0 has converged, LRTDP halts.

Thus, the most straightforward adaptation of LRTDP to an FHs0 MDP M(s0, H), which we

call LRTDPFH , is to let each trial start at (s0, H) and run for at most H time steps. Indeed, if we

convert a finite-horizon MDP to its goal-oriented counterpart, all states H steps away from s0 are

goal states. However, as we explain below, LRTDPFH ’s anytime performance is not very good, so

we turn to a more sophisticated approach.

Our algorithm, LR2TDP, follows a strategy that we name reverse iterative deepening. As its

pseudocode in Algorithm 4.1 shows, it uses LRTDPFH in a loop to solve a sequence of MDPs

M(s0, 1),M(s0, 2), · · · ,M(s0, H), in that order. In particular, LR2TDP first decides how to act

optimally in (s0, 1), i.e., assuming there is only one more action to execute — this is exactly equiv-

alent to solving M(s0, 1). Then, LR2TDP runs LRTDPFH to decide how to act optimally starting

at (s0, 2), i.e., two steps away from the horizon — this amounts to solving M(s0, 2). Then it runs

LRTDPFH again to decide how to act optimally starting in (s0, 3), thereby solving M(s0, 3), and

so on. Proceeding this way, LR2TDP either eventually solves M(s0, H) or, if operating under a

time limit, runs out of time and halts after solving M(s0, h
′) for some h′ < H .

Crucially, in the spirit of dynamic programming, LR2TDP reuses state values computed while

131

Algorithm 4.1: LR2TDP
1 Input: FHs0 MDP M(s0, H) = 〈S,A, T ,R, H, s0〉, heuristic V0, ε > 0, (optional) timeout T
2 Output: a policy closed w.r.t. s0, optimal if V0 is admissible, ε is sufficiently small, and T is
3 sufficiently large
4

5 V ← V0
6

7 function LR2TDP(FHs0 MDP M(s0, H), ε > 0, (optional) timeout T)
8 begin
9 foreach s ∈ S do V (s, 0)← 0

10 foreach h = 1, . . . ,H or until time T runs out do
11 tstart ← current time
12 π ← LRTDPFH (M(s0, h), ε, T)
13 tend ← current time
14 T ← T − (tend − tstart)
15 end
16 return π
17 end
18

19 function LRTDPFH (FHs0 MDP M(s, h), ε > 0, (optional) timeout T ′)
20 begin
21 // Convert M(s, h) into the equivalent goal-oriented MDP Mh

g

22 S ′ ← S × {0, . . . , h}
23 G ← {(s′, 0) | s′ ∈ S}
24 Mh

g ← 〈S ′,A, T ,−R,G, s0〉
25 // Run LRTDP (Algorithm 2.7), memoizing the values of all the encountered augmented states
26 πs0,h ← LRTDP(Mh

g , ε, T
′)

27 return πs0,h
28 end

solvingM(s0, 1),M(s0, 2), . . . ,M(s0, h−1) when tackling the next MDP in the sequence,M(s0, h).

Namely, observe that any (s, h′) in the augmented state space of any MDP M(s0, h
′′) also belongs

to the augmented state spaces of all MDPs M(s0, h
′′′), h′′′ ≥ h′′, and V ∗(s, h′) is the same for all

these MDPs. Therefore, by the time LR2TDP gets to solving M(s0, h), values of many of its states

will have been updated or even converged as a result of handling some M(s0, i), i < h. Accord-

ingly, LR2TDP memoizes values and convergence labels of all augmented states ever visited by

LRTDPFH while solving for smaller horizon values, and reuses them to solve subsequent MDPs

in the above sequence. Thus, solving M(s0, h) takes LR2TDP only an incremental effort over the

solution of M(s0, h− 1).

LR2TDP can be viewed as backchaining from the goal in an acyclic goal-oriented MDP. Indeed,

132

a finite-horizon MDP M(s0, H) is simply a goal-oriented MDP whose state space is the augmented

state space of M(s0, H), and whose goals are all states of the form (s,H). It has no loops because

executing any action leads from some state (s, h) to another state (s′, h− 1). LR2TDP essentially

solves such MDPs by first assuming that the goal is one step away from the initial state, then two

steps from the initial state, and so on, until it addresses the case when the goal is H steps away from

the initial state. Compare this with LRTDPFH ’s behavior when solving M(s0, H). LRTDPFH

does not backtrack from the goal; instead, it tries to forward-chain from the initial state to the

goal (via trials) and propagates state values backwards whenever it succeeds. As an alternative

perspective, LRTDPFH iterates on the search depth, while LR2TDP iterates on the distance from

the horizon. The benefit of the latter is that it allows for the reuse of computation across different

iterations. In a sense, LR2TDP is a natural generalization of VI to finite-horizon problems with an

initial state: VI for FHs0 MDPs essentially relies on reverse iterative deepening too, but uses it to

compute actions for all states for each distance h to horizon, as opposed to only those reachable

from a particular starting state s0 in h steps as LR2TDP does.

Clearly, both LRTDPFH and LR2TDP eventually arrive at the optimal solution. So, what are

the advantages of LR2TDP over LRTDPFH? We argue that if stopped before convergence, the

policy of LR2TDP is likely to be much better for the following reasons:

• In many MDPs M(s0, H), the optimal policy for M(s0, h) for some h << H is optimal or

near-optimal for M(s0, H) itself. E.g., consider a manipulator that needs to transfer blocks

regularly arriving on one conveyor belt onto another belt. The manipulator can do one pick-

up, move, or put-down action per time step. It gets a unit reward for moving each block, and

needs to accumulate as much reward as possible over 50 time steps. Delivering one block

from one belt to another takes at most 4 time steps: move manipulator to the source belt,

pick up a block, move manipulator to the destination belt, release the block. Repeating this

sequence of actions over 50 time steps clearly achieves maximum reward for M(s0, 50). In

other words, M(s0, 4)’s policy is optimal for M(s0, 50) as well.

Therefore, explicitly solvingM(s0, 50) for all 50 time steps is a waste of resources — solving

M(s0, 4) is enough. However, LRTDPFH will try to do exactly the former: it will spend a

lot of effort trying to solve M for horizon 50 at once. Since it “spreads” its effort over many

133

time steps, it will likely fail to completely solve M(s0, h) for any h < H by the deadline.

Contrariwise, LR2TDP solves the given problem incrementally, and may have a solution for

M(s0, 4) (and hence for M(s0, 50)) if stopped prematurely.

• When LRTDPFH starts running, many of its trials are very long, since each trial halts only

when it reaches a converged state, and at the beginning reaching a converged state takes

about H time steps. Moreover, at the beginning, each trial causes the convergence of only

a few states (those near the horizon), while the values of augmented states with small time

step values change very little. Thus, the time spent on executing the trials is largely wasted.

In contrast, LR2TDP’s trials when solving an MDP M(s0, h) are very short, because they

quickly run into states that converged while solving M(s0, h− 1) and before, and often lead

to the convergence of most of a trial’s states. Hence, we can expect LR2TDP to be faster.

• As a consequence of large trial length, LRTDPFH explores (and therefore memorizes) many

augmented states whose values (and policies) will not have converged by the time the planning

process is interrupted. Thus, it risks using up available memory before it runs out of time, and

to little effect, since it will not know well how to behave in most of the stored states anyway.

In contrast, LR2TDP typically knows how to act optimally in a large fraction of augmented

states in its memory.

Note that, incidentally, LR2TDP works in much the same way as VI, raising a question: why

not use VI in the first place? The advantage of asynchronous dynamic programming over VI in

finite-horizon settings is similar to its advantage in goal-oriented settings. A large fraction of the

state space may be unreachable from s0 in general and by the optimal policy in particular. LR2TDP

avoids storing information about many of these states, especially if guided by an informative heuris-

tic. In addition, in finite-horizon MDPs, many states are not reachable from s0 within H steps,

further increasing potential savings from using LR2TDP.

So far, we have glossed over a subtle question: if LR2TDP is terminated after solvingM(s0, h),

h < H , what policy should it use in augmented states (s, h′) that it has never encountered? There

are two cases to consider — a) LR2TDP has labeled s as solved for some h′′ < min{h, h′}, and b)

LR2TDP has not solved (or even visited) s for any time step. In the first case, LR2TDP can simply

134

find the largest value h′′ < min{h, h′} for which (s, h′′) is solved and return the optimal action for

(s, h′′). This is the approach we use in GLUTTON, a further development of LR2TDP, and it works

well in practice. Case b) is more complicated and may arise, for instance, when s is not reachable

from s0 within h steps. One possible solution is to fall back on some simple default policy in such

situations, an approach analogous to using rollout policies in UCT. We discuss this option when

describing the implementation of GLUTTON.

4.3.2 Max-Reward Heuristic

LR2TDP is a FIND-AND-REVISE algorithm (Section 2.3.1), and will converge to an optimal

solution if initialized with an admissible heuristic, i.e., an upper bound on V ∗. For this purpose,

LR2TDP uses an estimate we call the Max-Reward heuristic. Its computation hinges on knowing

the maximum reward Rmax any action can yield in any state, or an upper bound on it. Rmax can be

automatically derived for an MDP using simple domain analysis.

To produce a heuristic value V0(s, h) for (s, h), Max-Reward finds the largest horizon value

h′ < h for which LR2TDP already has an estimate V (s, h′). Recall that LR2TDP is likely to have

V (s, h′) for some such h′, since it solves the given MDP in the reverse iterative deepening fashion.

If so, Max-Reward sets V0(s, h) = V (s, h′) + (h− h′)Rmax; otherwise, it sets V0(s, h) = hRmax.

The bound obtained in this way is often loose but is guaranteed to be admissible.

4.4 GLUTTON

In spite of its good anytime behavior, LR2TDP by itself does not perform well on finite-horizon

MDPs with high-entropy transition functions. As discussed earlier, high-entropy transition functions

can be induced by the natural dynamics of a problem, especially if the scenario involves exogenous

events. To remedy LR2TDP’s weaknesses, we present GLUTTON, our entry at the IPPC-2011

competition that endows LR2TDP with mechanisms for efficiently handling natural dynamics and

other optimizations.

135

4.4.1 GLUTTON Description

At a high level, GLUTTON can be viewed as a version of LR2TDP for factored FHs0 MDPs, aug-

mented with several approximations for increased efficiency. Pure LR2TDP does not make use of

an MDP’s state variable factorization and, as a consequence, is oblivious to a lot of problem struc-

ture. GLUTTON fills that gap; below we describe each of its factorization-based optimizations in

detail.

Subsampling the Transition Function

GLUTTON’s way of dealing with a high-entropy transition function is to subsample it. For each

encountered state-action pair (s, a), GLUTTON samples a set Us,a of successors of s under a, and

performs Bellman backups using states in Us,a:

V ∗(s, h) ≈ max
a∈A

R(s, a) +
∑

s′∈Us,a

T (s, a, s′)V ∗(s′, h− 1)

 (4.3)

The size of Us,a is chosen to be much smaller than the number of states to which a could

transition from s. There are several heuristic ways of setting this value, e.g. based on the entropy

of the transition function. At IPPC-2011 we chose |Us,a| for a given problem to be a constant:

GLUTTON first tried to solve a problem with |Us,a| = 20 and then, if there was time remaining,

with |Us,a| = 30. Overall, we found GLUTTON to be fairly insensitive to |Us,a| values past 20. We

purposefully did not make an attempt to carefully tune this parameter, in order to demonstrate that

GLUTTON’s performance is robust across a wide range of benchmarks even with crudely picked

|Us,a|.

Subsampling can give an enormous improvement in efficiency for GLUTTON at a reasonably

small reduction in the solution quality compared to full Bellman backups. However, subsampling

alone does not make solving many of the IPPC benchmarks feasible for GLUTTON. Consider, for

instance, the Sysadmin problem, introduced in Section 2.1.9, that involves maintaining a network of

servers. In its instance with 50 servers (and hence 50 state variables), there are a total of 51 ground

actions, one for restarting each server plus a noop action. Each action can potentially change all 50

136

variables, and the value of each variable is sampled independently from the values of others. Sup-

pose we set |Us,a| = 30. Even for such a small size of Us,a, determining the current greedy action in

just one state could require 51 · (50 · 30) = 76, 500 variable sampling operations. Considering that

the procedure of computing the greedy action in a state may need to be repeated billions of times,

the need for further improvements, such as those describe next, quickly becomes evident.

Separating Out Natural Dynamics

One of our key observations is the fact that the efficiency of sampling successor states for a given

state can be drastically increased by reusing some of the variable samples when generating suc-

cessors for multiple actions. To do this, we separate each action’s effect into those due to natural

dynamics (exogenous effects), those due to the action itself (pure effects), and those due to some

interaction between the two (mixed effects). More formally, assume that an MDP with natural dy-

namics has a special action noop that captures the effects of natural dynamics when the controller

does nothing. In the presence of natural dynamics, for each non-noop action a, the set X of a

problem’s state variables can be represented as a disjoint union

X = X exa ∪ X purea ∪ Xmixeda ∪ X nonea

Moreover, for the noop action we have

X = (∪a6=noop(X exa ∪ Xmixeda)) ∪ X nonenoop

where Xex
a are variables acted upon only by the exogenous effects, Xpure

a — only by the pure

effects, Xmixed
a — by both the exogenous and pure effects, and Xnone

a are not affected by the action

at all. For example, in a Sysadmin problem with n machines, for each action a other than the noop,

|Xpure
a | = 0, |X exa | = n−1, and |X nonea | = 0, since natural dynamics acts on any machine unless the

administrator restarts it. |Xmixed
a | = 1, consisting of the variable for the machine the administrator

restarts. Notice that, at least in the Sysadmin domain, for each non-noop action a, |Xex
a | is much

larger than |Xpure
a |+|Xmixed

a |. Intuitively, this is true in many real-world domains as well — natural

137

dynamics affects many more variables than any single non-noop action. These observations suggest

generating |Us,noop| successor states for the noop action, and then modifying these samples in order

to obtain successors for other actions by resampling some of the state variables using each action’s

pure and mixed effects.

We illustrate this technique on the example of approximately determining the greedy action in

some state s of the Sysadmin-50 problem. Namely, suppose that for each action a in s we want

to sample a set of successor states Us,a to evaluate Equation 4.3. First, we generate |Us,noop| noop

sample states using the natural dynamics (i.e., the noop action). Setting |Us,noop| = 30 for the

sake of the example, this takes 50 · 30 = 1500 variable sampling operations, as explained pre-

viously. Now, for each resulting s′ ∈ Us,noop and each a 6= noop, we need to re-sample vari-

ables X purea ∪ Xmixeda and substitute their values into s′. Since |X purea ∪ Xmixeda | = 1, this takes

one variable sampling operation per action per s′ ∈ Us,noop. Therefore, the total number of addi-

tional variable sampling operations to compute sets Us,a for all a 6= noop is 30 noop state samples ·

1 variable sample per non-noop action per noop state sample · 50 non-noop actions = 1500. This

gives us 30 state samples for each non-noop action. Thus, to evaluate Equation 4.3 in a given state

with 30 state samples per action, we have to perform 1500 + 1500 = 3000 variable sampling op-

erations. This is about 25 times fewer than the 76,500 operations we would have to perform if we

subsampled naively. Clearly, in general the speedup will depend on how “localized” actions’ pure

and mixed effects in the given MDP are compared to the effects of natural dynamics.

The caveat of sharing the natural dynamics samples for generating non-noop action samples

is that the resulting non-noop action samples are not independent, i.e., are biased. However, in our

experience, the speedup from this strategy (as illustrated by the above example) and associated gains

in policy quality when planning under time constraints outweigh the disadvantages due to the bias

in the samples.

Caching the Transition Function Samples

In spite of the already significant speedup due to separating out the natural dynamics, we can com-

pute an approximation to the transition function even more efficiently. Notice that nearly all the

memory used by algorithms such as LR2TDP is occupied by the state-value table containing the

138

values for the already visited augmented states (s, h). Since LR2TDP populates this table lazily (as

opposed to VI), when LR2TDP starts running the table is almost empty and most of the available

memory on the machine is unused. GLUTTON uses this memory as a cache for samples from the

transition function. That is, when GLUTTON analyzes a state-action pair (s, a) for the first time, it

samples successors of s under a as described above and stores them in this cache (in Section 4.2.1,

we assumed the MDP to be stationary, so the samples for (s, a) do not need to be cached sepa-

rately for each number of steps-to-go h). When GLUTTON encounters (s, a) again, it retrieves the

samples for it from the cache, as opposed to re-generating them. Initially, the GLUTTON process is

CPU-bound, but due to caching it quickly becomes memory-bound as well. Thus, the cache helps

GLUTTON make the most of the available resources. When all of the memory is filled up, GLUTTON

starts gradually shrinking the cache to make room for the growing state-value table. Currently, it

chooses state-action pairs for eviction and replacement randomly.

Default Policies

Since GLUTTON subsamples the transition function, it may terminate with an incomplete policy —

it may not know a good action in states it missed due to subsampling. To pick an action in such a

state (s, h′), GLUTTON first attempts to use the trick discussed previously, i.e., to return either the

optimal action for some solved state (s, h′′), h′′ < h′, or a random one. However, if the branching

factor is large or the amount of available planning time is small, GLUTTON may need to do such

random “substitutions” for so many states that the resulting policy is very bad, possibly worse than

the uniformly random one.

As it turns out, for many MDPs there are simple cyclic policies that do much better than the

completely random one. A cyclic policy consists in repeating the same sequence of steps over and

over again. Consider, for instance, the robotic manipulator scenario from Section 4.3. The optimal

policy for it repeats an action cycle of length 4. In general, near-optimal cyclic policies are difficult

to discover. However, it is easy to evaluate the set of primitive cyclic policies for a problem, each of

which repeats a single action.

This is exactly what GLUTTON does. For each action, it evaluates the cyclic policy that repeats

that action in any state by simulating this policy several times and averaging the reward. Then,

139

it selects the best such policy and compares it to three others, also evaluated by simulation: (1)

the “smart” policy computed by running LR2TDP with substituting random actions in previously

unencountered states, (2) the “smart” policy with substituting the action from the best primitive

cyclic policy in these states, and (3) the completely random policy. For the actual execution, GLUT-

TON uses the best of these four. As we show in the Experiments section, for several domains pure

primitive cyclic policies turned out to be surprisingly effective.

Our concept of default policies, e.g., the cyclic ones, parallels the notion of rollout policies in

UCT. UCT uses rollout policies in states that it has not encountered previously and hence has no

information about, similar to GLUTTON. The effectiveness of cyclic policies in GLUTTON suggests

that they may benefit UCT and its variants as well.

4.5 GOURMAND

In spite of its optimizations, across the factored FHs0 MDP benchmarks of the IPPC-2011 com-

petition the LRTDP-based GLUTTON gets slightly outperformed by a system called PROST [49].

PROST is based on the UCT algorithm, a technique that, among other achievements, has drastically

improved machines’ ability to play Go [33] and Solitaire [8]. Recently, UCT has been closely stud-

ied as a probabilistic planning tool: in addition to PROST, all other IPPC-2011 participants except

GLUTTON were derived from it as well. Perhaps unexpectedly, despite being beaten by PROST,

GLUTTON dominated all of these other UCT-based planners. Meanwhile, besides the use of UCT

and LRTDP respectively, another major difference between PROST and GLUTTON was how they

used these algorithms. While PROST employed UCT in an online manner, interleaving planning

and execution, GLUTTON constructed policies offline.

Critically analyzing these results, we ask: is the nascent trend of using UCT as the dominant

probabilistic planning algorithm justified? Which, of UCT and LRTDP, performs better if both

are used online? Does LRTDP have any practical advantages over UCT in online mode? To start

answering these questions, we compare the suitability of UCT and LRTDP to solving finite-horizon

MDPs online under time constraints.

In an online setting, the planner decides on the best or near-optimal action in the current state,

executes it, decides on an action in the state where it ends up, and so on. As mentioned in Section

140

4.2.2, the advantage of this approach is the that planner spends much less resources on analyzing

states the agent never visits — they are only analyzed as a side-effect of computing an action for a

state it does visit. Of course, online planning is feasible only if the agent can afford to plan in the

middle of acting. In this section, we assume this to be the case, and, in fact, many real-life scenarios

do conform to this assumption. E.g., consider a robot trying to navigate an environment with a lot

of people. Instead of computing a policy offline by considering the probabilities of people showing

up in its path, it can decide on the direction in which to move until the next decision epoch, e.g.,

for 1 second, in order to avoid running into anyone. Executing the action will bring it to a different

state, where it can repeat the decision process.

There are many possible ways of choosing good actions online for the states the agent encounters

without solving the entire MDP. A principled approach to doing this is illustrated by Figure 1.1. At

the t-th decision epoch in a finite-horizon MDP M(s0, H), when the agent is in a state s, the agent

finds an optimal policy π∗s,Lt for the MDP M(s, Lt), a problem that is identical to the original

one except for the start state, which is now s, and the horizon Lt < h, where h = H − t + 1.

The agent can then choose action π∗s,Lt(s, Lt) recommended by M(s, Lt)’s optimal policy. This

action selection rule has the intuitive property that if the number Lt, which we call lookahead,

is as large as the number of decision epochs h remaining till the end of the process, an optimal

policy resulting from it, an Lt-lookahead policy, is optimal for the original MDP starting from

augmented state (s, h). Note that this does not imply that as Lt approaches h, the quality of an

optimal Lt-lookahead policy, as measured by its value function, monotonically approaches that of

π∗s,h. Indeed, one can construct pathological examples in which increasing lookahead up to a certain

point results in policies of deteriorating quality. However, in many non-contrived real-life examples,

larger lookahead generally translates to a better policy. Thus, given a time constraint, obtaining the

best approximation in practice according to this scheme requires determining the optimal, or at least

a good, value of Lt for each decision epoch. Unfortunately, these lookahead values are usually

unknown a-priori for the problem at hand.

We claim that because of the difficulty of choosing the Lt values, LRTDP is generally better

suited for solving finite-horizon MDPs under time constraints than UCT. In particular, UCT does not

have a convergence condition, making it hard to determine the time it takes it to converge for a given

lookahead L and effectively forcing the practitioner to specify the same L for all decision epochs

141

based on a guess. In the meantime, a good L is heavily problem-dependent. Setting it too high may

prevent UCT from converging to a good action for the state for this lookahead within a reasonable

time and will force it to pick an action largely at random. Setting it too low may make UCT’s

behavior too myopic. On the other hand, LRTDP, thanks to its convergence condition, can help

determine a good lookahead value automatically via a reverse iterative deepening strategy of the kind

used in GLUTTON. Moreover, if the time constraint is specified for executing the entire process, not

on a per-epoch-basis, iterative deepening LRTDP allows for a strategy that distributes the available

computation time among different decision epochs in the process in a problem-independent manner

and without human intervention. We implement these observations in a novel LRTDP-based planner

called GOURMAND [59] that robustly solves finite-horizon MDP online and performs better than

both GLUTTON and PROST.

4.5.1 GOURMAND Description

GOURMAND is analogous to PROST in that both use a version of a basic algorithm, LRTDP and

UCT respectively, to choose an action in an augmented state (s, h) encountered at the t-th decision

epoch of the process as described above, by trying to solve the state for some lookahead. However,

while PROST needs an engineer to specify the value of the lookahead and the timeout to devote

to choosing an action at epoch t, GOURMAND determines both of these values without human

intervention. GOURMAND is also related to GLUTTON — they share the same flavor of LRTDP,

LR2TDP, and some of the engineering optimizations such as subsampling the transition function.

A major difference between the two is the mode in which they use LR2TDP. GLUTTON uses it in an

offline fashion. As a result, when the time T allocated for solving the MDP runs out, GLUTTON may

not have solved all the states reachable by its policy from s0 and has to resort to ad-hoc methods

of action selection, e.g., the primitive cyclic policies, when it encounters such states during the

computed policy’s execution. GOURMAND does not have this difficulty: thanks to its online use of

LR2TDP and its time allocation strategy, it makes an informed action choice in any state where it

ends up.

Algorithm 4.2 shows GOURMAND’s pseudocode. Initially, GOURMAND distributes the total

available time T equally among the H decision epochs (lines 9, 15) and, while choosing an action

142

Algorithm 4.2: GOURMAND

1 Input: FHs0 MDP M(s0, H) = 〈S,A, T ,R, H, s0〉, heuristic V0, ε > 0, timeout T
2 Output: none (executes actions for states encountered at time steps 1, . . . ,H)
3

4 V ← V0
5

6 // Running averages of the amount of time it takes to solve a state for lookahead L
7 Ts0 ← 0
8 TsL ←∞ for all L = 1, . . . ,H

9 T ← T
10

11 function GOURMAND(FHs0 MDP M(s0, H), ε > 0, timeout T)
12 begin
13 s← s0
14 foreach t = 1, . . . ,H do
15 Tt ← T

H−t+1

16 if t == 1 then
17 π ← LR2TDP TIMED(M(s0, H), ε, Tt)

18 T ← T − Tt
19 L̂t ← largest L for which augmented state (s0, L) has been solved
20 π∗

s,L̂t
← π

21 else
22 Lt ← largest L ≤ H − t+ 1 s.t. TsL < Tt

23 T̂t ← Tt + (Tt − TsLt)(H − t)
24 L̂t ← Lt

25 if (L̂t < H − t+ 1) and (TsLt+1 < T̂t or TsLt+1 ==∞) then L̂t ← Lt + 1
26 tstart ← current time
27 π∗

s,L̂t
← LR2TDP TIMED(M(s, L̂t), ε, T̂t);

28 tend ← current time
29 T ← T − (tend − tstart)
30 end
31 s← execute action π∗

s,L̂t
(s, L̂t) in s

32 end
33 end
34

35 function LR2TDP TIMED(FHs0 MDP M(s′0, L̂), ε > 0, timeout T)
36 begin
37 tstart ← current time
38 tend ← current time
39 foreach L = 1, . . . , L̂ or until time T runs out do
40 π ←LRTDPFH (M(s′0, L), ε, T − (tend − tstart)) // see Algorithm 4.1
41 tend ← current time
42 if TsL ==∞ then TsL ← 0
43 TsL ← update average with (tend − tstart)
44 end
45 return π
46 end

143

during the initial decision epoch (time step 1), tries to estimate how long solving a state takes, on

average, for different lookahead values (lines 16-21, 39-44). In subsequent decision epochs, these

estimates will let GOURMAND determine the largest lookahead for which a given state can be solved

within a given time constraint. To obtain the estimates, GOURMAND runs a specially instrumented

version of LR2TDP (Algorithm 4.1) called LR2TDP TIMED from the initial state, timing how

long LR2TDP takes to solve for lookahead values L = 1, 2, At some point, the time T0 = T
H

allocated to the first decision epoch runs out. By then, GOURMAND achieves two things. First, it

solves s0 for some lookahead L̂0 (line 19), and can select an action in s0 according to the optimal

policy for M(s0, L̂0) (line 31). Second, in the process of solving for lookahead L̂0 it gets estimates

TsL of the time it takes to solve a state completely for lookaheads L = 1, 2, . . . , L̂0 (lines 41 -

43). Note that getting these estimates is possible ultimately due to LR2TDP’s stopping condition,

which lets us know when LR2TDP has (nearly) converged for a given lookahead L and hence how

long solving for this lookahead takes. Thus, GOURMAND’s entire strategy hinges on this property

of LR2TDP.

In each epoch t past the initial one, GOURMAND figures out the largest finite lookahead value

Lt for which it should be able to solve for the current and all subsequent epochs if it divided the

remaining time equally among them, i.e., allocated time Tt = T
H−t+1 to each (line 22). It does

this based on the estimates TsL it has obtained previously. Then, GOURMAND decides whether it

realistically may be able to solve the current decision epoch for an even larger lookahead L̂t without

impacting performance guarantees for future decision epochs, i.e. while ensuring that it can solve

them for lookaheadLt. To see the intuition for how GOURMAND can achieve this, observe that since

TsLt < Tt, if GOURMAND solved the current epoch just for lookahead Lt, there would probably

be some extra time of approximately (Tt − TsLt) left. By itself, this extra time chunk does not

let GOURMAND solve for a lookahead bigger than Lt. However, if GOURMAND “borrows” similar

extra time chunks from future decision epochs t′ > t, solving for a larger lookahead now may well

be possible. Since there are (H − t) decision epochs after t, the total amount of additional time

GOURMAND can gain via such borrowing is (Tt − TsLt)(H − t). Accordingly, GOURMAND adds

(Tt − TsLt)(H − t) to Tt (line 23) and determines whether it can increase the target lookahead

to Lt + 1 thanks to the borrowed time. Establishing this may be complicated by the fact that

GOURMAND does not necessarily know how long solving for Lt+1 takes, in which case its estimate

144

for TsLt+1 is∞ (line 8) . However, both in the case when TsLt+1 is unknown and in the case when

it is known to be less that T̂t, GOURMAND takes the risk and sets the target lookahead L̂t to Lt + 1

(line 25) anyway.

GOURMAND then sets off solving MDP M(s, L̂t) until it either manages to solve the current

state s for lookahead L̂t or the allocated time T̂t runs out (line 27). Throughout this operation it has

LR2TDP TIMED measure how long solving s takes for lookaheads L = 1, 2, . . . , L̂t and update

the running averages TsL accordingly (lines 41 - 43).

Although not shown in the pseudocode explicitly, GOURMAND uses many of the optimizations

to the basic LR2TDP introduced in GLUTTON (Section 4.4): subsampling the transition function,

separating out natural dynamics, and caching. They allow GOURMAND to cope with the previously

discussed challenges of many finite-horizon MDPs, such as high-entropy transition functions.

4.6 Experimental Results

In the previous sections, we introduced a succession of four increasingly sophisticated algorithms:

LRTDPFH , LR2TDP, GLUTTON, and GOURMAND. We have claimed that each of these ap-

proaches is superior to its predecessor in one way or another. In this section, we provide an empir-

ical foundation for these claims. We start by showing the advantage of LR2TDP over LRTDPFH .

Then we study the effects of the individual optimizations added to LR2TDP on the performance of

GLUTTON. Last but not least, we compare the performance of GOURMAND to that of GLUTTON

and PROST across all IPPC-2011 problems, demonstrating that GOURMAND dominates GLUT-

TON thanks to its online nature and outmatches PROST thanks to its robustness. C++ imple-

mentations of GLUTTON and GOURMAND similar to those used in the experiments are avail-

able at http://www.cs.washington.edu/ai/planning/glutton.html and http:

//www.cs.washington.edu/ai/planning/gourmand.html, respectively.

4.6.1 Experimental Setup

The results are reported using the setting of IPPC-2011 [86]. At IPPC-2011, the competitors needed

to solve 80 problems. The problems came from 8 domains, 10 problems each. Within each domain,

problems were numbered 1 through 10, with problem size/difficulty roughly increasing with its

145

number. All problems were reward-maximization finite-horizon MDPs with the horizon of 40.

They were described in the RDDL language [85] (see Section 2.20), but translations to the older

format, PPDDL, were available and participants could use them instead. The participants had a total

of 24 hours of wall clock time to allocate in any way they wished among all the problems. Each

participant ran on a separate large instance of Amazon’s EC2 node (4 virtual cores on 2 physical

cores, 7.5 GB RAM).

The 8 benchmark domains at IPPC-2011 were Sysadmin (abbreviated as Sysadm in some figures

in this section), Game of Life (GoL), Traffic, Skill Teaching (Sk T), Recon, Crossing Traffic (Cr Tr),

Elevators (Elev), and Navigation (Nav). Sysadmin, Game of Life, and Traffic domains are very large

(many with over 250 states). Recon, Skill Teaching, and Elevators are smaller but require a larger

planning lookahead to behave near-optimally. Navigation and Crossing Traffic essentially consist

of goal-oriented MDPs. The goal states are not explicitly marked as such; instead, they are the only

states visiting which yields a reward of 0, whereas the highest reward achievable in all other states

is negative.

A planner’s solution policy for a problem was assessed by executing the policy it produced 30

times on a special server. Each of the 30 rounds would consist of the server sending the problem’s

initial state, the planner sending back an action for that state, the server executing the action, noting

down the reward, and sending a successor state, and so on. After 40 such exchanges, another round

would start. A planner’s performance was judged by its average reward over 30 rounds.

In most of the experiments, we show planners’ normalized scores on various problems. The

normalized score of planner Pl on problem p always lies in the [0, 1] interval and is computed as

follows:

scorenorm(Pl, p) =
max{0, sraw(Pl, p)− sbaseline(p)}
maxi{sraw(Pli, p)} − sbaseline(p)

(4.4)

where sraw(Pl, p) is the average reward of the planner’s policy for p over 30 rounds,maxi{sraw(Pli,

p)} is the maximum average reward of any IPPC-2011 participant on p, and sbaseline(p) = max{

sraw(random, p), sraw(noop, p)} is the baseline score, the maximum of expected rewards yielded

by repeating the noop action in any state and choosing actions randomly. Roughly, a planner’s score

146

is its policy’s reward as a fraction of the highest reward of any participant’s policy on the given

problem.

In the experiments that follow next and illustrate the benefits of reverse iterative deepening and

GLUTTON’s optimizations, we gave different variants of GLUTTON at most 18 minutes to solve

each of the 80 problems (i.e., divided the 24 hours given under the competition conditions equally

among all problem instances).

4.6.2 Reverse Iterative Deepening

Running either LR2TDP or LRTDPFH on IPPC-2011 problems is infeasible without the optimiza-

tions included in the GLUTTON planner. Therefore, to demonstrate the power of iterative deepen-

ing, we built a version of GLUTTON denoted GLUTTON-NO-ID that uses LRTDPFH instead of

LR2TDP. A-priori, we may expect two advantages of GLUTTON over GLUTTON-NO-ID. First, ac-

cording to the intuition in Section 4.3, GLUTTON should have a better anytime performance. That

is, if GLUTTON and GLUTTON-NO-ID are interrupted T seconds after starting to solve a problem,

GLUTTON’s solution should be at least as good as GLUTTON-NO-ID’s. Second, GLUTTON should

be faster because GLUTTON’s trials are on average shorter than GLUTTON-NO-ID’s. The length of

the latter’s trials is initially equal to the horizon, while most of the former’s end after only a few

steps. Under limited-time conditions such as those of IPPC-2011, both of these advantages should

translate to better solution quality for GLUTTON. To verify this prediction, we ran GLUTTON and

GLUTTON-NO-ID under IPPC-2011 conditions (i.e., on a large instance of Amazon EC2 with a 24-

hour limit) with 18 minutes per problem and calculated their normalized scores on all the problems

using Equation 4.4. The scores were averaged for each domain.

Figure 4.1 compares GLUTTON’s and GLUTTON-NO-ID’s results. On most domains, GLUT-

TON-NO-ID performs worse than GLUTTON, and on Sysadmin, Elevators, and Recon the difference

is very large. This is a direct consequence of the above theoretical predictions. Both GLUTTON-NO-

ID and GLUTTON are able to solve small instances on most domains within allocated time. How-

ever, on larger instances, both GLUTTON-NO-ID and GLUTTON typically use up all of the allocated

time for solving the problem, and both are interrupted while solving. Since GLUTTON-NO-ID has

worse anytime performance, its solutions on large problems tend to be worse than GLUTTON’s. In

147

fact, the Recon and Traffic domains are so complicated that GLUTTON-NO-ID and GLUTTON are

almost always stopped before finishing to solve them. As we show when analyzing cyclic policies

in Section 4.6.3, on Traffic both planners end up falling back on such policies, so their scores are

the same. However, on Recon cyclic policies do not work very well, causing GLUTTON-NO-ID to

fail dramatically due to its poor anytime performance.

4.6.3 Effects of GLUTTON’s Optimizations

The role of each of GLUTTON’s optimizations is difficult to evaluate precisely, since they often work

in concert with each other. As an approximation, to provide an idea of a given optimization’s merit,

we created a version of GLUTTON with that optimization turned off and pitted it against full-fledged

GLUTTON. The results are presented in the next few subsections.

Separating out Natural Dynamics

In particular, GLUTTON-NO-SEP-ND is a version of GLUTTON that does not separate out the nat-

ural dynamics of a problem. Namely, when computing the greedy best action for a given state,

GLUTTON-NO-SEP-ND samples the transition function of each action independently. For any given

problem, the number of generated successor state samples N per state-action pair was the same for

GLUTTON and GLUTTON-NO-SEP-ND, but varied slightly from problem to problem around the

value of 30. To gauge the performance of GLUTTON-NO-SEP-ND, we ran it on all 80 problems

under the IPPC-2011 conditions. We expected GLUTTON-NO-SEP-ND to perform worse overall

— without factoring out natural dynamics, sampling successors should become more expensive, so

GLUTTON-NO-SEP-ND’s progress towards the optimal solution should be slower.

Figure 4.2 compares the performance of GLUTTON and GLUTTON-NO-SEP-ND. As predicted,

GLUTTON-NO-SEP-ND’s scores are noticeably lower than GLUTTON’s. However, we discovered

the performance pattern to be richer than that. As it turns out, GLUTTON-NO-SEP-ND solves small

problems from small domains (such as Elevators, Skill Teaching, etc.) almost as fast as GLUTTON.

This effect is due to the presence of caching. Indeed, sampling the successor function is expensive

during the first visit to a state-action pair, but the samples get cached, so on subsequent visits to this

pair neither planner incurs any sampling cost. Crucially, on small problems, both GLUTTON and

148

Sysadm GoL Traffic Sk T Recon Cr Tr Elev Nav
0

0.5

1
N

or
m

. S
co

re

Glutton−NO−ID
Glutton

Figure 4.1: Average normalized scores of GLUTTON with and without iterative deepening (denoted as
GLUTTON and GLUTTON-NO-ID in the plot, respectively) on all of the IPPC-2011 domains.

Sysadm GoL Traffic Sk T Recon Cr Tr Elev Nav
0

0.5

1

N
or

m
. S

co
re

Glutton−NO−SEP−ND
Glutton

Figure 4.2: Average normalized scores of GLUTTON with and without separation of natural dynamics (de-
noted as GLUTTON and GLUTTON-NO-SEP-ND in the plot, respectively) on all of the IPPC-2011 domains.

Sysadm GoL Sk T Cr Tr Elev Nav
0

100

200

Problem 2 of ...

T
im

e
(s

ec
)

Glutton−NO−CACHING

Glutton

Figure 4.3: Time it took GLUTTON with and without caching to solve problem 2 of six IPPC-2011 domains.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Game of Life Problem #

N
or

m
. S

co
re

Cyclic Policy
"Smart" Policy

Figure 4.4: Normalized scores of the best primitive cyclic policies and of GLUTTON’s “smart” policies on
Game of Life.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Traffic Problem #

N
or

m
. S

co
re

Cyclic Policy
"Smart" Policy

Figure 4.5: Normalized scores of the best primitive cyclic policies and of the “smart” policies produced by
GLUTTON on Traffic.

149

GLUTTON-NO-SEP-ND have enough memory to store the samples for all state-action pairs they

visit in the cache. Thus, GLUTTON-NO-SEP-ND incurs a higher cost only at the initial visit to a

state-action pair, which results in an insignificant speed increase overall.

In fact, although this is not shown explicitly in Figure 4.2, GLUTTON-NO-SEP-ND occasion-

ally performs better than GLUTTON on small problems. This happens because for a given state,

GLUTTON-NO-SEP-ND-produced samples for all actions are independent. This is not the case with

GLUTTON since these samples are derived from the same set of samples from the noop action.

Consequently, GLUTTON’s samples have more bias, which makes the set of samples somewhat

unrepresentative of the actual transition function.

The situation is quite different on larger domains such as Sysadmin. On them, both GLUTTON

and GLUTTON-NO-SEP-ND at some point have to start shrinking the cache to make space for the

state-value table, and hence may have to resample the transition function for a given state-action

pair over and over again. For GLUTTON-NO-SEP-ND, this causes an appreciable performance hit,

immediately visible in Figure 4.2 on the Sysadmin domain.

Caching Transition Function Samples

GLUTTON’s clone without the caching feature is called GLUTTON-NO-CACHING. GLUTTON-NO-

CACHING is so slow that it cannot handle most IPPC-2011 problems. Therefore, to show the

effect of caching we run GLUTTON and GLUTTON-NO-CACHING on instance 2 of six IPPC-2011

domains (all domains but Traffic and Recon, whose problem 1 is already very hard), and record the

amount of time it takes them to solve these instances. Instance 2 was chosen because it is harder

than instance 1 and yet is easy enough that GLUTTON can solve it fairly quickly on all six domains

both with and without caching.

As Figure 4.3 shows, even on problem 2 the speed-up due to caching is significant, reaching

about 2.5× on the larger domains such as Game of Life, i.e., where it is most needed. On domains

with big branching factors, e.g., Recon, caching makes the difference between success and utter

failure.

150

Cyclic Policies

The cyclic policies evaluated by GLUTTON are seemingly so simple that it is hard to believe they

ever beat the policy produced after several minutes of GLUTTON’s “honest” planning. Indeed, on

most problems GLUTTON does not resort to them. Nonetheless, they turn out to be useful on a

surprising number of problems. Consider, for instance, Figures 4.4 and 4.5. They compare the

normalized scores of GLUTTON’s “smart” policy produced at IPPC-2011, and the best primitive

cyclic policy across various problems from these domains.

On Game of Life (Figure 4.4), GLUTTON’s “smart” policies for the easier instances clearly win.

At the same time, notice that as the problem size increases, the quality of cyclic policies nears and

eventually exceeds that of the “smart” policies. This happens because the increase in difficulty of

problems within the domain is not accompanied by a commensurate increase in time allocated for

solving them. Therefore, the quality of the “smart” policy GLUTTON can come up with within

allocated time keeps dropping, as seen on Figure 4.4. Granted, on Game of Life the quality of

cyclic policies is also not very high, although it still helps GLUTTON score higher than 0 on all

the problems. However, the Traffic domain (Figure 4.5) proves that even primitive cyclic policies

can be very powerful. On this domain, they dominate anything GLUTTON can come up with on its

own, and approach in quality the policies of PROST, the winner on this set of problems. It is due to

them that GLUTTON performed reasonably well at IPPC-2011 on Traffic. Whether the success of

primitive cyclic policies is particular to the structure of IPPC-2011 scenarios or generalizes beyond

them is a topic for future research.

4.6.4 UCT vs. LRTDP

The objective of our last set of experiments was to compare the performance of online LRTDP as

used in GOURMAND to that of online UCT as used in PROST and offline LRTDP as used in GLUT-

TON across a diverse collection of finite-horizon MDPs, and to analyze patterns in their behavior.

To this end, we present these planners’ results on all IPPC-2011 problems but, unlike in previously

discussed experiments, pay special attention to intra-domain performance trends.

As in previous experiments, each planner ran for 24 hours on an Large Instance of Amazon

EC2 server, but instead of allocating an equal amount of time to all problems, they used a more

151

1 2 3 4 5 6 7 8 9 10
0

0.5

1
N

or
m

. S
co

re

Elevators Problem #

Glutton
Prost
Gourmand

Figure 4.6: All planners are tied on the Elevators domain. Planners’ normalized scores are computed as in
Equation 4.4.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

N
or

m
. S

co
re

Crossing Traffic Problem #

Figure 4.7: GOURMAND (avg. score 0.9052) and GLUTTON vastly outperform PROST (0.6099) on the
Crossing Traffic domain.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

N
or

m
. S

co
re

Game of Life Problem #

Glutton
Prost
Gourmand

Figure 4.8: PROST (avg. score 0.9934) outperforms GOURMAND (0.8438) on the Game of Life domain.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

N
or

m
. S

co
re

Navigation Problem #

Glutton
Prost
Gourmand

Figure 4.9: GOURMAND (avg. score 1.0) and GLUTTON vastly outperform PROST (0.4371) on the Naviga-
tion domain.

152

1 2 3 4 5 6 7 8 9 10
0

0.5

1

N
or

m
. S

co
re

Recon Problem #

Glutton
Prost
Gourmand

Figure 4.10: GOURMAND and PROST are tied on the Recon domain. Planners’ normalized scores are
computed as in Equation 4.4

1 2 3 4 5 6 7 8 9 10
0

0.5

1

N
or

m
. S

co
re

Skill Teaching Problem #

Glutton
Prost
Gourmand

Figure 4.11: GOURMAND and PROST are tied on the Skill Teaching domain.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

N
or

m
. S

co
re

Sysadmin Problem #
Figure 4.12: PROST (avg. score 0.9978) outperforms GOURMAND (0.8561) on the Sysadmin domain.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

N
or

m
. S

co
re

Traffic Problem #
Figure 4.13: PROST (avg. score 0.9791) outperforms GOURMAND (0.8216) on the Traffic domain.

153

sophisticated strategy. Its high-level idea was to solve easy problems first and devote more time to

harder ones. To do so, GLUTTON and GOURMAND first solved problem 1 from each domain. Then

they kept redistributing the remaining time equally among the remaining problems and picking the

next problem from the domain whose instances on average had been the fastest to solve. As a

result, the hardest problems got 40-50 minutes of planning. This strategy was feasible for them

because LR2TDP’s convergence criterion indicated when a given problem was solved and the next

one could be tackled. The IPPC-2011 winner, PROST, did not have this luxury because it was using

UCT, but was able to use a similar time allocation strategy thanks to several preset parameters.

In particular, PROST’s authors specified a single tuned lookahead value, L = 15, for all of the

benchmark problems. PROST also had a per-epoch timeout. To compute a policy, in each decision

epoch PROST would run UCT with L = 15 for the time specified by the timeout, return the best

action (according to the value function upon termination) to the server, which simulated the action

and sent PROST a new state. If UCT happened to re-visit a state across the 30 policy execution

attempts, it returned an action for it immediately, without waiting for the timeout. In this case,

the freed-up time was redistributed among subsequent epochs. Because of this, PROST could also

execute all 30 rounds before the time allocated to this problem was up. When this happened, the

remaining time was distributed among the remaining problems. The ultimate effect was similar to

the case of GLUTTON and GOURMAND: larger problems got more time.

The overall results for each planner and domain are presented in Figures 4.7 - 4.13. Across all

domains, GOURMAND earned the average score of 0.9183±0.0222, PROST— 0.8608±0.0220, and

GLUTTON— 0.7701± 0.0235, i.e., GOURMAND outperformed PROST by a statistically significant

amount, and PROST, in turn, did noticeably better than GLUTTON.

Several performance patterns deserve a special note. First, we revisit the intuition we stated

at the beginning that if the value of L chosen for UCT is too large, by the timeout UCT will still

be very far from convergence and pick an action largely at random, whereas online LRTDP will

converge completely for a smaller lookahead and make a more informed decision. While it may be

true for vanilla UCT implementations without a heuristic, PROST’s performance on the IPPC-2011

benchmarks does not confirm this. In particular, consider the Sysadmin, Game of Life, and Traffic

domains. All of them require a very small lookahead, typically up to 8, to come up with a near-

optimal policy. Moreover, they have extremely large branching factors (around 250 for some states

154

of the largest Sysadmin instances). Since UCT used L = 15, one might expect it to make hardly any

progress due to the enormous number of extra states it has to explore. Nonetheless, PROST wins on

these domains overall, despite the fact that on many instances GOURMAND routinely solves states

for L = 6. We hypothesize that on these problems, UCT may be arriving at a good policy much

sooner than its value function converges, possibly due to the help of the heuristic with which PROST

endows it. The fact that UCT does not need to perform Bellman backups, which are expensive in

MDPs with large branching factors as in these domains, probably also contributed to its convergence

speed. Nonetheless, more experimentation is needed for a more conclusive explanation.

Second, the figures show GOURMAND’s performance to be more uniform than PROST’s. The

lookahead parameter for PROST was empirically picked to give good results across many of the

competition domains (competition rules allowed this). Indeed, PROST performed very well on aver-

age and even outperformed GOURMAND on three domains above. Yet, due to its adaptive strategy,

online LRTDP implemented by GOURMAND does not suffer sharp drops in performance on some

problems sets as UCT implemented by PROST does, and is robust across all benchmark domains.

In fact, UCT’s overall defeat was caused by very poor performance on two domains, Navigation

(Figure 4.9) and Crossing Traffic (Figure 4.7). Incidentally, both of them are in effect goal-oriented

domains — the agent incurs a cost for every decision epoch it is not in one of the special states

staying in which is “free”. Crucially, to reach these states successfully, one needs to select actions

very carefully during the first decision epochs of the process. For instance, in Crossing Traffic,

the agent is trying to cross a motorway. It can do this either safely, by making detours, or by

boldly dashing across the moving stream of cars, which can kill the agent. Getting to the other side

via detours takes longer, and the agent has to plan with a sufficient lookahead during the first few

decision epochs of the process to realize that this is the safer course of action. This highlights the

main drawback of guessing a value for L — even within the same domain, L = 15 is sufficient

for some problems but not others, leading to catastrophic consequences for the agent in the latter

case. Online and offline LR2TDP, as used in GOURMAND and GLUTTON respectively, eventually

arrives at a sufficiently large lookahead thanks to reverse iterative deepening and solves many such

problems successfully.

In comparison to GLUTTON, both GOURMAND and PROST demonstrate a pronounced overall

advantage. Since GLUTTON attempts to solve problems offline, by the timeout it often fails to visit

155

many states that its policy can visit from the initial state. This is not very noticeable on domains

with relatively small problems, such as Navigation, Recon, Skill Teaching, and Elevators, which

can usually be solved nearly completely by the timeout even in the offline mode. However, on

very large problems of Game of Life, Sysadmin, and Traffic, offline planning does not pay off: by

the timeout, GLUTTON’s policy on them is far from being closed with respect to s0. In order to

compensate for this, during policy execution GLUTTON uses the default policies, which in many

cases do not help enough. To exacerbate the situation, GLUTTON spends considerable effort on

states it never encounters during the evaluation rounds. This is precisely the weakness of offline

planning in situations when the produced policy needs to be executed only a few times. Indeed,

since each IPPC-2011 problem has horizon 40 and needs to be attempted 30 times during evaluation,

the number of distinct states for which performance “really matters” is at most 30 · 39 + 1 = 1171

(the initial state is encountered 30 times). The number of states GLUTTON visits and tries to learn

a policy for during training is typically many orders of magnitude larger. Thus, GLUTTON’s main

undoing is resource misallocation. GOURMAND and PROST do not suffer from this issue to such

a significant degree, because by planning online they always make an informed choice of action in

states that they visit.

Last but not least, we point out that the presence of a termination condition in LRTDP can

give rise to many adaptive time allocation strategies, of which GOURMAND exploits only one. Our

objective in designing and evaluating GOURMAND was not to pick the best such strategy. Rather, it

was to demonstrate that at least some of them can yield an online planner that is significantly more

robust, performant, and easier to deploy than UCT. GOURMAND’s results on IPPC-2011 domains

showcase this message.

4.7 Related Work

Several techniques similar to subsampling and separating natural dynamics have been proposed in

the reinforcement learning and concurrent MDP literature, e.g., [79] and [72], respectively. An

alternative way of increasing the efficiency of Bellman backups is performing them on a symbolic

value function representation, e.g., as in symbolic RTDP [30]. A great improvement over Bellman

backups with explicitly enumerated successors, it nonetheless does not scale to many IPPC-2011

156

problems.

There has not been much literature on analyzing the performance of UCT in solving MDPs with

known transition and reward functions, other than the aforementioned publications on GLUTTON

[54], GOURMAND [59], and PROST [49], and work on a modification of UCT called BRUE [28].

The latter points out that the basic UCT tries to optimize cumulative regret, whereas in probabilistic

planning with a known model minimizing simple regret is more appropriate. BRUE, a version of

UCT for minimizing simple regret, has superior convergence properties compared to UCT but still

provides no principled mechanism for detecting convergence. There have also been attempts to

examine UCT’s properties in the context of adversarial planning [82].

A promising class of approaches for solving finite-horizon MDPs offline that could potentially

have much lower resource consumption than any existing techniques is automatic dimensionality

reduction [19, 58]). We have showed its power on goal-oriented MDPs in Chapter 3, but compact-

ifying the value function of finite-horizon MDPs appears to follow different intuitions. We are not

aware of any such algorithms for this type of problems. The methods for solving finite-horizon

MDPs online have been studied fairly little.

4.8 Future Research Directions

The AI research on efficient methods for solving large finite-horizon MDPs is still in its infancy.

Although the use of UCT, LRTDP, and, more recently, of an improved version of AO∗ [15] has

provided considerable insights into this type of problems, none of these approaches are fully satis-

factory in their current form.

In particular, none of the existing methods sufficiently exploit the structure of factored finite-

horizon MDPs. In Chapter 3, we have demonstrated that for goal-oriented scenarios, extracting

and using their latent structure can yield fully automatic speedy planning techniques with a small

memory footprint. However, these algorithms rely on the presence of non-trivial goal states and

therefore are not applicable to finite-horizon MDPs. Dimensionality reduction methods created for

(similarly goal-less) infinite-horizon discounted-reward MDPs [39] can probably be extended to

finite horizons, but require hand-crafted basis functions and thus are not human-independent. The

discovery of autonomous dimensionality reduction algorithms for factored FH MDPs would mark

157

an important research advance for this problem type.

An orthogonal research direction concerns combining the advantages of model-free and dynamic

programming-based state value updates in MDPs with high-entropy transition functions. Note that

difficulties with such transition functions, which, as a reminder, model the effects of exogenous

events, are not particular to finite-horizon problems. Exogenous events are present in many goal-

oriented scenarios too, and ways of dealing with them in those settings are equally poorly studied.

GLUTTON’s and GOURMAND’s subsampling of the transition function as a way of adapting Bellman

backups to large numbers of possible state transitions is not ideal, because it breaks the theoretical

guarantees inherent to methods such as VI and LRTDP. On the other hand, completely ignoring the

explicitly given state transition probabilities and relying purely on Monte Carlo simulations, as UCT

does, is wasteful. Moreover, UCT gives only asymptotic quality guarantees, which cannot be used

to detect convergence reliably. This is a significant drawback, as our experimental comparison of

GOURMAND and PROST has shown. It appears that further progress in efficient methods for solving

FH MDPs hinges on inventing a new state update mechanism that would perform well in the face of

high-entropy transition functions and at the same time would allow for implementing a principled

convergence check.

Besides algorithms based on iteratively improving the value function or policy of an MDP, there

is also a fundamentally different solution strategy. It consists in guessing a general parametrized

form of a good policy for the problem at hand and choosing its parameter values appropriately.

This approach has successfully tackled MDPs with infinite state or action spaces [80], where more

conventional algorithms are simply inapplicable. An example of a general class of policies that work

well in many scenarios is the class of cyclic policies. Intuitively, cyclic policies repeat the same

sequence of actions over and over again. In the scenario discussed earlier in this chapter involving

a robotic arm that transfers objects from one conveyor belt to another, a cyclic policy is optimal.

Unfortunately, it is not clear how to easily compute a reasonable cyclic policy automatically or how

to verify that policies of this type are suitable for a given problem. However, in light of success

of even very primitive cyclic policies on some benchmark MDP domains (e.g., Traffic), research in

this area can potentially yield a high payoff.

158

4.9 Summary

Although any finite-horizon MDP can technically be converted to a goal-oriented one, for a variety

of reasons the approximate determinization-based dimensionality reduction techniques of the pre-

vious chapter do not apply to the finite-horizon case. This prompts the question: how do we solve

these goal-less MDPs efficiently? The lack of meaningful goal states in FH MDPs turns out to de-

feat many other existing approaches as well, leaving us only with the most basic techniques for this

problem class, e.g., VI.

To fill this gap, we have introduced three algorithms for handling large FHs0 MDPs. The first

of them, LR2TDP, is an adaptation of LRTDP to FHs0 MDPs based on reverse iterative deepen-

ing. The strategy gives LR2TDP anytime performance superior to that of the more straightforward

LRTDP version for finite-horizon problems. However, by itself it does not allow LR2TDP to scale

to FHs0 MDPs with complex characteristics, e.g., with high-entropy transition functions. In the

meantime, high-entropy transition functions arise in many scenarios as a way to model exogenous

events or other components of a scenario’s natural dynamics. To allow LR2TDP to cope with com-

plicated FHs0 problems, we equip it with a number of optimizations and implement them in the

second system described in this chapter, GLUTTON.

GLUTTON participated in the IPPC-2011 competition and performed well, but was topped by

a UCT-based solver, PROST. UCT is a powerful technique naturally suited to dealing with high-

entropy transition functions. All participants of IPPC-2011 other than GLUTTON were based on it.

The fact that GLUTTON lost to one of them but outperformed the other three made us examine the

advantages and drawbacks of LR2TDP that served as GLUTTON’s foundation when compared to

UCT. It turns out that LR2TDP has at least one practically important feature than UCT lacks —

a convergence criterion. If, unlike in GLUTTON, LR2TDP is used in the online mode, its conver-

gence criterion makes it more adaptable and easier to tune than online UCT. To test this observation,

we have introduced a third planner for FHs0 MDPs, GOURMAND, which is built around an online

version of LR2TDP. An extensive experimental comparison shows that online LR2TDP indeed

performs better overall than online UCT, with LR2TDP’s advantage being largely due to its conver-

gence criterion.

In spite of UCT’s and LR2TDP’s successes, the current state of the art in solving large finite-

159

horizon MDPs leaves a lot of room for improvement. The invention of automatic dimensionality

reduction methods for this class of problems, along with a more flexible state value update rule

and mechanisms for constructing good cyclic policies for such scenarios, will result in vastly more

capable FH MDP algorithms.

160

Chapter 5

BEYOND STOCHASTIC SHORTEST-PATH MDPS

While the scalability of the available solution techniques is an important factor that determines

the usefulness of MDPs as a modeling tool, it is not the only one. Many scenarios whose state and

action space sizes are well within the scalability limits of modern planning algorithms cannot be

solved only because they do not fit the assumptions of any known MDP class. For instance, there

is only one widely accepted MDP type that can model goal-oriented settings, the stochastic shortest

path MDPs (Definitions 2.16 and 2.19). It comes with two restrictions:

• SSP MDPs must have a complete proper policy, one that can reach the goal from any state

with probability 1.

• Every improper policy must incur an infinite cost from any state from which it has a positive

probability of never reaching the goal.

Many scenarios with very natural characteristics violate one of both of these clauses. The first

restriction essentially confines SSP MDPs to problems with no catastrophic events that could pre-

vent an agent from reaching the goal. Such catastrophic events are a possibility to be reckoned with

in many settings, e.g., robotics, and ignoring them is sometimes completely unacceptable. More-

over even if a given goal-oriented MDP has no dead ends, verifying this fact can be nontrivial, which

further complicates the use of the SSP model. The requirement of improper policies accumulating

infinite cost if they do not reach the goal forbids the situations in which an agent is interested in

maximizing the probability of reaching the goal, as opposed to minimizing the expected cost of do-

ing so. These settings could be modeled by assigning the cost of 0 to each action and the reward

of 1 for reaching the goal. However, under this reward function, policies that never lead to the goal

have a cost of 0, which is unacceptable according to the SSP MDP definition. Researchers have

tried to develop planning formulations where reasoning about dead ends is possible (e.g., the afore-

mentioned criterion of maximizing the probability of reaching the goal), but the models proposed

161

to date do not cover many interesting cases, and their mathematical properties are still understood

relatively poorly.

5.1 Overview

The final contribution of this dissertation is a set of SSP MDP extensions that remove this model’s

constraints, along with optimal algorithms for solving them. These new MDP classes show how

far the SSP formalism can be extended without turning goal-oriented MDPs into a theoretically

interesting but computationally infeasible construct. Their exposition is organized as follows:

• We begin with generalized SSP MDPs (GSSPs0) [61], a class that allows a more general action

reward model than SSP . Although it does not admit completely unrestricted action rewards

(an issue we rectify later in the chapter), it properly contains several notable classes of infinite-

horizon problems. We define the semantics of optimal solutions for GSSPs0 problems and

propose a new heuristic search framework for them, called FRET (Find, Revise, Eliminate

Traps). We also show that the previously discussed scenarios where an agent wants to maxi-

mize the probability of reaching the goal form a subclass of GSSPs0 that we call MAXPROB.

Since MAXPROB is contained in GSSPs0 , FRET can solve it as well and is, to our knowledge,

the first heuristic search framework to do so. Our investigation of MAXPROB’s mathemati-

cal properties completes with a derivation of a VI-like algorithm that can solve MAXPROB

MDPs independently of initialization (previously, VI was known to yield optimal solutions to

MAXPROB only if initialized strictly inadmissibly [80]).

• Although MAXPROB forms the basis for our theory of goal-oriented MDPs with dead ends,

by itself it evaluates policies in a rather crude manner, completely disregarding their cost. Our

next SSP extension, one that takes costs into account as well, is SSP MDPs with avoidable

dead ends (SSPADEs0) [60]. SSPADEs0 MDPs always include an initial state and have well-

defined easily computable optimal solutions if dead ends are present but avoidable from it.

Besides defining SSPADEs0 , we describe the modifications required for the existing FIND-

AND-REVISE algorithms to work correctly on these problems.

• Next, we introduce cost-aware classes of MDPs with dead ends that admit that dead ends

162

may exist and the probability of running into them from the initial state may be positive no

matter how hard the agent tries. Mathematically, there are two ways of dealing with such

situations. The first is to assume that entering a dead end, while highly undesirable, carries

only a finite penalty. This is the approach we take in SSP MDPs with unavoidable dead ends

and a finite penalty (fSSPUDEs0) [60]. As with SSPADEs0 , we show that existing heuristic

search algorithms need only slight adjustments to work with fSSPUDEs0 .

• The other way of treating dead ends is to view them not only as unavoidable but also as ex-

torting an infinitely high cost if an agent hits one. We model such scenarios with SSP MDPs

with unavoidable dead ends and an infinite penalty (iSSPUDEs0) [60, 96]. Conceptually,

iSSPUDEs0 MDPs represent the most difficult settings: since every policy in them reaches an

infinite-cost state from s0, the expected cost of any policy at s0 is also infinite. This makes

SSP’s cost-minimization criterion uninformative. The most recent attempt to take both poli-

cies’ goal probability and cost into account assumed these criteria to be independent, and

therefore constructed a Pareto set of non-dominated policies as a solution to this optimization

problem [18]. Computing such a set is generally intractable. Instead, we claim that a natural

primary objective for scenarios with unavoidable infinitely costly dead ends is to maximize

the probability of getting to the goal (i.e., to minimize the chance of getting into a lethal ac-

cident, a dead-end state). However, of all policies maximizing this chance we would prefer

those that reach the goal in the least costly way (in expectation). This is exactly the multiob-

jective criterion we propose for iSSPUDEs0 . Solving iSSPUDEs0 is conceptually much more

involved than handling the SSP extensions above, and in this chapter we present an optimal

tractable algorithm for it.

• In conclusion of our work on SSP extensions, we present stochastic simple longest path

MDPs (SSLPs0). Their definition imposes no restrictions whatsoever on action costs/rewards

or the existence of proper policies. Because of this, SSLPs0 includes all of the aforementioned

SSP extensions as special cases. When defining the notion of an optimal policy for SSLPs0 ,

we explicitly concentrate only on Markovian policies, since no general policy for them may

dominate all others in terms of expected reward. Discovering the best Markovian policy for an

163

SSLPs0 MDP is a probabilistic counterpart of computing a simple longest path between two

nodes in a graph, known to be NP-hard in the size of the state space [89] (in fact, this deter-

ministic problem is a special case of the probabilistic one). Thus, the most efficient algorithms

for SSLPs0 MDPs are exponential in SSLPs0 problems’ flat representation unless P = NP .

Nonetheless, SSLPs0 has a theoretical value of showing that removing all restrictions from

the SSP definition can be a liability.

The mathematical treatment of goal-oriented MDPs with dead ends complements the methods

introduced in Chapter 3 for identifying dead ends in factored planning problems in practice. Namely,

recall that the SIXTHSENSE algorithm described in Section 3.6 provides MDP solvers with a mech-

anism that recognizes dead-end states quickly and efficiently. As the experiments we present in

this chapter demonstrate, SIXTHSENSE greatly benefits the algorithms for the MDP classes above,

serving as a source of informative heuristic values for them. Thus, our work provides a complete

set of tools for problems with dead ends: fundamental optimal algorithms for solving them as well

as a powerful optimization in the form of SIXTHSENSE to make these algorithms’ implementations

efficient.

5.2 Preliminaries

All the background material relevant to understanding this chapter has been covered previously, but

we introduce several new pieces of notation to facilitate the explanations.

5.2.1 Notation

In Section 2.2.3, we described Bellman backup as a procedure that updates the value of a state by

applying Equation 2.9 (or its analogue for IHDR or FH MDPs) to it. In this chapter and its theorems’

proofs contained in the Appendix, we view Bellman backup as an operator on the set of all value

functions of an MDP. Namely, fix an ordering on the set S of an MDP’s states. A value function

V of this MDP can be regarded as a vector whose j-th component is the value of the j-th state of

S in the chosen ordering. In this sense, the set of all value functions V of an MDP forms a Banach

space [80]. By Bellman backup we will mean the application of Equation 2.9 or its analogue for the

MDP class at hand to some V ∈ V . We will distinguish between two kinds of Bellman backup. The

164

local Bellman backup operator applies to the value of a single state s, leaving the values of other

untouched, and will be denoted as

B(s) : V → V. (5.1)

The full Bellman backup applies at all states s ∈ S simultaneously, and will be denoted as

B : V → V. (5.2)

Viewed alternatively, full Bellman backup is equivalent to local Bellman backups synchronously

applied at all states, as in standard VI.

We will be discussing Bellman backup operators and VI algorithms based on them for several

MDP classes, and will distinguish between these different versions by denoting the Bellman backup

and VI version for MDP class X as BX (or BX(s)) and VIX , respectively. E.g., the VI for SSP

MDPs in Section 2.2.3 will be denoted as VISSP ; this algorithm uses full Bellman backup BSSP .

When discussing GSSPs0 and SSLPs0 , we will be working with reward functions and hence in

the reward-maximization setting to emphasize that actions’ rewards in these classes do not have to

be primarily negative, as is SSP MDPs. On the other hand, for MDPs with dead ends we will take

a cost-based view, since the cost function in these problems must obey similar requirements as for

SSP .

A lot of the material in the chapter will focus on the existence and properties of optimal sta-

tionary deterministic Markovian policies for various MDP types. We will use the term “stationary

deterministic Markovian” often in the process and therefore abbreviate it to s.d.M. for conciseness.

5.3 Generalized SSP MDPs: Enabling Zero-Reward Cycles

In the introduction to this chapter, we briefly mentioned problems in which the criterion of interest is

maximizing the probability of reaching the goal from another state. For instance, consider planning

the process of powering down a nuclear reactor. In this setting, actual action costs (insertion of con-

165

trol rods, adjusting coolant level, penalty for unsuccessful shutdown, etc.) required for performing

cost optimization are difficult to obtain. Optimizing for the successful shutdown probability obvi-

ates the need for them and is therefore a more advantageous approach. As we already discussed,

to formulate a probability-maximization MDP it is enough to set the action costs to 0 and let the

reward for reaching the goal be 1 (or any other positive number). The main reason why the result-

ing MDP does not belong to SSP is that its transition graph contains goal-free “loops” of zero-cost

actions (e.g., “insert control rods”, “raise control rods”). Another example of an MDP with such

zero-cost loops (or, more generally, strongly connected components) is shown in Figure 5.1, where

the loops are formed by pairs of actions {s1, s2} and {s3, s4}. These zero-cost regions of the state

space allow an agent to stay there without paying anything and without ever going to the goal — a

situation disallowed by the SSP MDP definition.

In this section, we define generalized stochastic shortest-path (GSSPs0) MDPs, a class of prob-

lems that relaxes SSP’s restrictions on action rewards and admits problems with zero-cost regions in

their transition graph. While seemingly a small extension of SSPs0 , GSSPs0 has vastly more com-

plicated mathematical properties. They will force us to develop a new heuristic search framework,

FRET, for this MDP class. We will also show that GSSPs0 contains several notable classes of MDPs

(see Figure 1.2): SSPs0 itself, positive-bounded MDPs (POSB), and negative MDPs (NEG) [80].

The theory of GSSPs0 MDPs will be a stepping stone to our analysis of planning in the presence of

dead ends in later sections.

5.3.1 Definition

Definition 5.1. GSSPs0 MDP. A generalized stochastic shortest path (GSSPs0) MDP is a tuple 〈S,

A, T ,R,G, s0〉, where S, A, T , R = −C, G, and s0 are as in the SSPs0 MDP definition (2.19),

under the following conditions:

1. There exists a policy π that is proper w.r.t. s0.

2. The expected sum of nonnegative rewards yielded by any policy π, denoted as V π
+ , is bounded

166

from above starting from any state s, time step t and execution history hs,t, i.e.,

V π
+ (hs,t) = E

[∞∑
t′=0

max{0, R
πhs,t
t′+t }

]
<∞. (5.3)

♣

The objective is to find a reward-maximizing policy π∗s0 that reaches the goal from s0 with

probability 1, i.e., 1

π∗s0 = argsup
π proper w.r.t. s0

V π(s0) (5.4)

As before, we denote the value function of an optimal policy as V ∗. By the definition of π∗s0 ,

this value function satisfies

V ∗(s0) = sup
π proper w.r.t. s0

V π(s0) (5.5)

The GSSPs0 definition has two notable aspects. The first of them is the definition’s condition 2

that bounds the expected nonnegative reward of all policies. Without it, GSSPs0 MDPs could have

artifacts such as two states s and s′ with an action a s.t. T (s, a, s′) = 1, T (s′, a, s),R(s, a, s′) = 1,

and R(s′, a, s) = −1. Effectively, s and s′ form a cycle with alternating transition costs. For

any policy π that uses a both in s and in s′, V π(s) and V π(s′) would be ill-defined, since the

expected reward series starting at these states would fail to converge. Condition 2 makes such

cycles impossible, because for policies like π, V π
+ (s) = V π

+ (s′) =∞.

The second important subtlety concerns Equation 5.4. When selecting the optimal policy, this

equation considers only proper policies. In contrast, when computing optimal policies for SSP

MDPs, both in the Optimality Principle (Theorem 2.3) and in the VI algorithm (Algorithm 2.3) we

1The “argsup” expression in Equation 5.4 is well-defined, because, as a consequence of Theorem 5.1, there exists a
policy whose value function is supπ proper w.r.t. s0 V

π(s0).

167

Figure 5.1: An example GSSPs0 MDP presenting multiple challenges for computing the optimal value
function and policy efficiently. State sg is the goal.

considered all existing policies. Why do we need to explicitly restrict ourselves to proper policies

as candidate solutions in the case of GSSPs0? The simple answer is that in SSP MDPs, a reward-

maximizing policy is always proper, whereas in GSSPs0 MDPs this may not be so. Intuitively, since

SSP MDPs disallow zero- and positive-reward cycles, the faster the agent reaches a goal state, the

less cost it will incur, i.e., going for the goal is the best thing to do in an SSP problem. In GSSPs0

scenarios, zero-reward cycles are possible. As a consequence, if reaching the goal requires incurring

a cost but a zero-reward cycle is available, the reward-optimal course of action for the agent is to stay

in the zero-reward cycle. However, semantically, we want the agent to go for the goal. Considering

only proper policies during optimization, as Equation 5.4 requires, enforces these semantics.

One may ask whether it is natural in a decision-theoretic framework to prefer a policy that

reaches the goal over one that maximizes reward, as the presented semantics may do. Note, how-

ever, that this ostensible clash of optimization criteria in GSSPs0 MDPs can always be avoided: it

is intuitively clear and can be shown formally that if attaining the goal in a GSSPs0 MDP has a

sufficiently high reward, the best goal-striving policy will also be reward-maximizing. That is, in

this case, both optimization criteria will yield the same solution. At the same time, determining

the “equalizing” goal reward value can be difficult, and GSSPs0 removes the need for doing this.

To sum up, the traditional decision-theoretic solution semantics and the semantics of GSSPs0 MDP

solutions are largely equivalent, but the latter makes the modeling process simpler by needing fewer

parameters in the model.

As another consequence of the GSSPs0 optimal solution definition, for any state s from which

no policy reaches the goal with probability 1, V ∗(s) = −∞. This follows from Equation 5.5,

because for such states, supπ proper w.r.t. s0 V
π(s) = sup∅ V

π(s) = −∞. Moreover, no such state

is reachable from s0 by any policy proper w.r.t. s0.

168

5.3.2 Mathematical Properties

GSSPs0 problems have the following mathematical properties, illustrated by the MDP in Figure 5.1,

some of which drastically change the behavior of the known SSPs0 MDP solution techniques.

Theorem 5.1. The Optimality Principle for Generalized SSP MDPs. For a GSSPs0 MDP, define

V π(hs,t) = E[
∑∞

t′=0R
πhs,t
t′+t] for any state s, time step t, execution history hs,t, and policy π proper

w.r.t. hs,t. Let V π(hs,t) = −∞ if π is improper w.r.t. hs,t. The optimal value function V ∗ for this

MDP exists, is stationary Markovian, and satisfies, for all s ∈ S,

V ∗(s) = max
a∈A

[∑
s′∈S
T (s, a, s′)[R(s, a, s′) + V ∗(s′)]

]
(5.6)

and, for all sg ∈ G, V ∗(sg) = 0. Moreover, at least one optimal policy π∗s0 proper w.r.t. s0 and

greedy w.r.t. the optimal value function is stationary deterministic Markovian and satisfies, for all

s ∈ S,

π∗s0(s) = argmax
a∈A

[∑
s′∈S
T (s, a, s′)[R(s, a, s′) + V ∗(s′)]

]
. (5.7)

♦

Proof. Although the full proof is postponed until the Appendix, its intuition is important for ex-

plaining subsequent material, so we describe it here. Its main insight is that a GSSPs0 MDP can be

converted to an equivalent SSPs0 MDP problem, for which a similar Optimality Principle has already

been established (Theorem 2.3). Namely, consider the transition graph of a GSSPs0 MDP such as

the one in Figure 5.1, and observe that for any policy π, V π(s1) = V π(s2) and V π(s3) = V π(s4).

This is because {s1, s2} and {s3, s4} form zero-reward cycles (or, more generally, zero-reward

strongly connected components of the transition graph), and the agent can travel within them “for

free”. Therefore, for the purpose of finding the optimal value function, each of the sets {s1, s2}

and {s3, s4} can be treated as a single state. Now, imagine the MDP in Figure 5.1 where the set

{s1, s2} along with transitions between s1 and s2 has been replaced by a new state ŝ1,2 and {s3, s4}

169

has been similarly replaced by ŝ3,4. Further, suppose we identified ŝ1,2 as a dead end and elimi-

nated it from the MDP entirely — the corresponding GSSPs0 MDP states s1 and s2 are dead ends

and therefore are not reachable from s0 by any optimal policy anyway. Recalling that action re-

wards can be treated as negative costs, the resulting problem would clearly be an SSPs0 MDP, since

it would have no zero-reward regions and no dead ends. The optimal value function V̂ ∗ for this

MDP would be equivalent to V ∗ for the original GSSPs0 MDP, with V ∗(s3) = V ∗(s4) = V̂ ∗(ŝ3,4),

V ∗(s0) = V̂ ∗(s0), and V ∗(sg) = V̂ ∗(sg). With a more detailed justification, this lets us conclude

that the Optimality Principle holds for GSSPs0 MDPs simply because it holds for SSPs0 problems.

Despite the possibility of transforming a GSSPs0 MDP problem into an SSPs0 problem, the

former class is not a subclass of the latter. As implied by Theorem 5.5, deriving an optimal policy

from the optimal value function of a GSSPs0 MDP is significantly more complicated (conceptually

as well as computationally) than for its SSPs0 counterpart.

Theorem 5.2. Define local Bellman backup for GSSPs0 MDPs to be the operator BGSSPs0 (s) : V →

V that applies the transformation

V ′(s)← max
a∈A

[∑
s′∈S
T (s, a, s′)[R(s, a, s′) + V (s′)]

]
(5.8)

to a value function V at a state s. The optimal value function V ∗ of a GSSPs0 MDP is a fixed point

of BGSSPs0 (s), i.e., BGSSPs0 (s)V
∗ = V ∗, for all s ∈ S. ♦

Proof. It is a direct consequence of the Optimality Principle stating that V ∗ must satisfy Equation

5.6.

As an example, for the GSSPs0 MDP in Figure 5.1, it can be easily verified that the optimal

value function V ∗(s0) = −0.5, V ∗(s1) = V ∗(s2) = −∞, V ∗(s3) = V ∗(s4) = −1, V ∗(sg) = 0

indeed satisfies the Bellman equation and is a fixed point of BGSSPs0 (s). Unfortunately, the Opti-

mality Principle for GSSPs0 MDPs does not allow us to directly apply Bellman backups in a VI-like

algorithm to solve this class of problems, due to three complications described next.

170

Theorem 5.3. For a GSSPs0 MDP, BGSSPs0 (s) can have suboptimal fixed points V ≥ V ∗. ♦

Proof. For the GSSPs0 MDP in Figure 5.1, consider an admissible value function V (s0) = 4,

V (s1) = V (s2) = 2, V (s3) = V (s4) = 1, V (sg) = 0. All policies greedy w.r.t. V are improper

w.r.t. s0 and hence suboptimal, but V stays unchanged under BGSSPs0 (s) for any s.

The issues with BGSSPs0 (s) do not end here. Returning to the example in Figure 5.1, note that

for V ∗(s1) = V ∗(s2) = −∞, since no policy can reach the goal from these states, so their values

can be updated with Bellman backups ad infinitum but never converge. The situation with s3 and

s4 is even trickier. Like s1 and s2, they are also part of a cycle, but reaching the goal from them is

possible. However, staying in the loop forever accumulates more reward (0) than going to the goal

(-1), frustrating BGSSPs0 (s) as well. The situation with full Bellman backup is even more dire:

Theorem 5.4. Define full Bellman backup for GSSPs0 MDPs to be the operator BGSSPs0 : V → V

that applies the transformation

V ′(s)← max
a∈A

[∑
s′∈S
T (s, a, s′)[R(s, a, s′) + V (s′)]

]

to a value function V at all states s simultaneously. If initialized with an arbitrary admissible V ,

BGSSPs0 may never converge. ♦

Proof. For the GSSPs0 MDP in Figure 5.1, consider an admissible value function V (s0) = 2.5,

V (s1) = −5, V (s2) = −6, V (s3) = 1, V (s4) = 2, V (sg) = 0. Applying BGSSPs0 to V yields

V ′ s.t. V ′(s0) = 1.5, V ′(s1) = −6, V ′(s2) = −5, V ′(s3) = 2, and V ′(s4) = 1, and applying

BGSSPs0 to V ′ yields V ′′ = V . Thus, BGSSPs0 indefinitely cycles between two value functions that

have distinct values at all states except the goal.

The last complication that prevents us from using the Optimality Principle for solving GSSPs0

MDPs is the fact that, even if V ∗ is known, an optimal policy cannot be computed simply by taking

greedy actions w.r.t. V ∗:

171

Theorem 5.5. For a GSSPs0 MDP, there can be s.d.M. policies greedy w.r.t. V ∗ but improper w.r.t.

s0. ♦

Proof. For the GSSPs0 MDP in Figure 5.1, consider the policy that reaches s3 from s0 and then

loops between s3 to s4 indefinitely. It is greedy w.r.t. V ∗ but never reaches the goal.

Due to the existence of multiple value functions that are fixed points for local Bellman backup

for all states, heuristic search algorithms based on the FIND-AND-REVISE framework will also

yield suboptimal solutions for this class of problems. A potential optimal approach for tackling

GSSPs0 MDPs would follow up on the intuition of Theorem 5.1 by finding the problematic sets of

states like {s1, s2} and {s3, s4} in Figure 5.1, replacing each of them with a single state, and then

solving the resulting SSPs0 MDP. Unfortunately, the conversion of a GSSPs0 MDP into an SSPs0

problem requires discovering all such problematic regions. This involves visiting the entire state

space and makes the procedure too expensive.

Thus, the failure of Bellman backup leaves us with no known optimal but space- and time-

efficient techniques capable of solving GSSPs0 MDPs. Next, we present an algorithmic framework

that resolves this difficulty.

5.3.3 FRET — a Schema for Heuristic Search for GSSPs0 MDPs

Our framework, called FRET (Find, Revise, Eliminate Traps), encompasses algorithms that can

solve GSSPs0 MDPs when initialized with an admissible heuristic. At the highest level, FRET

starts with a GSSPs0 MDP M̂i = M and an admissible heuristic V̂i = V0 for it, and, given an ε > 0,

• Runs FIND-AND-REVISE initialized with V̂i to obtain a value function V̂ ′i ≤ V̂i for M̂i that

is ε-consistent over all states s reachable from s0 via at least one V̂ ′i -greedy policy. This V̂ ′i

may highlight problematic regions in M̂i such as {s1, s2} and {s3, s4} in Figure 5.1, where

an agent “wants” to stay by following a policy greedy w.r.t. V̂ ′i from the initial state.

• Performs an ELIMINATE-TRAPS step by detecting some of the problematic regions and

changing V̂ ′i and M̂i to remove them. Specifically, this step modifies M̂i to produce an-

other MDP, M̂i+1, in which each problematic region highlighted by V̂ ′i is either replaced by a

172

single state or, if the goal is unreachable from it, completely discarded. For instance, in M̂i+1,

the region {s3, s4} in Figure 5.1 would be replaced by a new state ŝ3,4, with all transitions

that previously used to lead to s3 or s4 leading to ŝ3,4 in M̂i+1; the {s1, s2} region would

be eliminated entirely. ELIMINATE-TRAPS also turns V̂ ′i into V̂i+1, an admissible value

function for M̂i+1.

• Iterates the two previous steps, using the output of ELIMINATE-TRAPS as input to FIND-

AND-REVISE. The process stops when ELIMINATE-TRAPS fails to modify the current

MDP M̂i and its value function V̂ ′i . If ε is small enough, V̂ ′i is the optimal value function for

M̂i. Moreover, V̂ ′i can be “expanded” into an optimal (or near-optimal) value function for the

the original MDP M for all of M ’s states reachable from s0 by an optimal policy. That is,

like FIND-AND-REVISE on SSPs0 MDPs, FRET is guaranteed to converge to V ∗ for M

over the states visited by optimal policies from s0 if run for a sufficiently long time.

• Extracts a policy proper w.r.t. s0 from the resulting value function for M . If FRET is allowed

to run long enough to converge to V ∗, the extracted policy is guaranteed to be optimal.

To explain the technique in more detail, we first review several definitions that proved useful in

explaining the FIND-AND-REVISE framework, FRET’s analogue for SSPs0 MDPs, and introduce

several new ones.

Definitions

A central notion for FRET is that of the greedy graph of a value function rooted at s (Definition

2.34). GVs is the combined reachability graph of all policies greedy w.r.t. V and rooted at s. As

with FIND-AND-REVISE on SSPs0 problems, the key to FRET’s efficiency is updating the current

value function V only at the states in GVs0 . This lets FRET avoid visiting the entire state space when

computing a policy rooted at s0.

A concept related to the greedy graph is an MDP’s transition graph (also known as the reacha-

bility graph) rooted at s (Definition 2.32), a directed graph Gs of all states that can be reached from

s. It can be expressed in terms of value functions’ greedy graphs as Gs = ∪V ∈VGVs .

173

We now formalize the concept of the problematic zero-reward regions such as {s1, s2} and

{s3, s4} in Figure 5.1 that were mentioned in the high-level overviews of Theorem 5.1’s proof and

of FRET:

Definition 5.2. Trap. In the transition graph Gs0 of a GSSPs0 MDP, a trap is a strongly connected

component (SCC) C = {SC , AC} consisting of a set SC of states and a set AC of hyperedges with

the following properties:

• SC contains no goal states, i.e., G ∩ SC = ∅.

• SC is “closed” w.r.t. AC , i.e., for every hyperedge in AC , its source and all of its destinations

are in SC .

• If s ∈ SC is the source of a hyperedge AC and s1, . . . sn ∈ SC are this AC’s destinations,

then for the action a corresponding to AC ,R(s, a, si) = 0 for all 1 ≤ i ≤ n. ♣

Informally, a trap is a strongly connected component of G all of whose internal hyperedges corre-

spond to actions with exclusively zero-reward outcomes.

Definition 5.3. Potential Permanent Trap. In the transition graph Gs0 of a GSSPs0 MDP, a poten-

tial permanent trap is a trap C with the following properties:

• Gs0 has no hyperedges whose source is in C and at least one of whose destinations is not in

C.

• C is maximal, in the sense that no trap of Gs0 properly contains it. ♣

Definition 5.4. Permanent Trap. A permanent trap w.r.t. a GSSPs0 MDP’s value function V and

state s is a trap C with the following properties:

• C is contained in V ’s greedy graph Gs0 rooted at s0.

174

• Gs0 has no hyperedges whose source is in C and at least one of whose destinations is not in

C. ♣

Put simply, a potential permanent trap is a trap escaping from which (and, in particular, reaching

the goal) is impossible. If an agent enters it, it will stay there forever no matter what policy it uses.

Thus, a potential permanent trap consists entirely of dead-end states. The region {s1, s2} in Figure

5.1 is an example of a potential permanent trap. At the same time, no policy greedy w.r.t. a given

value function may visit a given potential permanent trap from s0 (hence the word “potential” in its

name). A permanent trap, on the other hand, is a set of dead ends that can be visited by an agent

if the agent starts at s0 and uses actions greedy w.r.t. a particular value function. For instance, in

Figure 5.1, {s1, s2} is a permanent trap w.r.t. s0 and V s.t. V (s1) = 10, V (s3) = 2, but is not a

permanent trap w.r.t. s0 and V s.t. V (s1) = −3, V (s3) = 2. It is easy to see that a permanent trap

is always a strongly connected subcomponent of some potential permanent trap. Observe that, since

there is no way to reach the goal from any state s of a permanent trap, V ∗(s) = −∞.

Definition 5.5. Potential Transient Trap. In the transition graphGs0 of a GSSPs0 MDP, a potential

transient trap is a trap C with the following properties:

• Gs0 has a hyperedge whose source is in C and at least one of whose destinations is not in C.

• C is maximal, in the sense that no trap of Gs0 properly contains it. ♣

Definition 5.6. Transient Trap. A transient trap w.r.t. a GSSPs0 MDP’s value function V and state

s is a trap C with the following properties:

• C is contained in V ’s greedy graph GVs0 .

• Gs0 has a hyperedge whose source is in C and at least one of whose destinations is not in C.

• GVs0 has no hyperedges whose source is in C and at least one of whose destinations is not in

C. ♣

175

Potential transient traps are regions like {s3, s4} in Figure 5.1. All their internal transitions bring

zero reward, so an agent can stay in them forever without incurring any cost. However, unlike for

potential permanent traps, escaping from a potential transient trap is possible. A transient trap is

a zero-reward state space region that an agent that starts at s0 can run into and will not be able to

leave if this agent uses only V -greedy actions. However, the agent can escape from a transient trap

w.r.t. V if it uses an action that, according to V , looks suboptimal. Such traps are called “transient”

because they look like traps (i.e., appealing state space regions from which reaching the goal is

impossible using seemingly optimal actions) only if the agent evaluates its actions w.r.t. V . If the

agent updates V to a new value function V ′, it may be able to exit the trap via an action that appeared

suboptimal according to V but is optimal according to V ′. More concretely, for the MDP in Figure

5.1, consider a value function V s.t. V (s1) = −∞, V (s3) = V (s4) = 1, V (sg) = 0. W.r.t. s0

and V , {s3, s4} is a transient trap, because V -greedy actions lead an agent from s0 to s4 and then

back to s3, forcing the agent to stay in {s3, s4}. However, if the agent revises its state estimates to

a value function V ′ s.t. V ′(s1) = −∞, V ′(s3) = V ′(s4) = −2, V ′(sg) = 0, {s3, s4} will not be a

transient trap anymore: V ′-greedy actions will lead the agent from s0 straight to the goal.

Algorithm Description

We can now cast the operation of FRET in terms of these definitions. Throughout the explanation,

we will be referring to the pseudocode in Algorithms 5.1 and 5.2.

As already mentioned, FRET iteratively applies two transformations (lines 9-13 of Algorithm

5.1) to a GSSPs0 MDP M and its admissible value function V0. The first of them, FIND-AND-

REVISE, behaves as described in Section 2.3.1. It repeatedly searches the greedy graph GV̂iŝ0 of

the current value function V̂i and the current MDP M̂i for states whose values have not reached

ε-consistency yet and revises their values with local Bellman backups BGSSPs0 (s), possibly chang-

ing GV̂iŝ0 in the process. The properties of FIND-AND-REVISE guarantee that if FIND-AND-

REVISE’s initialization function in the i-th iteration of FRET, V̂i, is admissible, then so is FIND-

AND-REVISE’s output function in that iteration, V̂ ′i . However, the examples in the previous sub-

section have demonstrated that in the presence of zero-reward actions FIND-AND-REVISE’s Bell-

man backups may never arrive at the optimal value function for M̂i and that the greedy graph GV̂
′
i
ŝ0

176

Algorithm 5.1: FRET
1 Input: GSSPs0 MDP M = 〈S,A, T ,R,G, s0〉, admissible heuristic V0, ε > 0
2 Output: a policy closed w.r.t. s0, optimal if V0 is admissible and ε is sufficiently small
3

4 T2OrigS ← ∅ // global map from transient traps to their sets of states; modified by the call in line 37
5

6 function FRET(GSSPs0 MDP M , heuristic V0, ε > 0)
7 begin
8 M̂i ←M, V̂i ← V0
9 repeat

10 V̂ ′i ← Find-and-Revise(M̂i, V̂i, ε) // see Algorithm 2.5
11 〈M̂i+1, V̂i+1〉 ← Eliminate-Traps(M̂i, V̂

′
i)

12 M̂i ← M̂i+1, V̂i ← V̂i+1

13 until V̂i+1 = V̂ ′i ;
14 foreach s ∈ S do V (s)← −∞ // lines 14-16 build the equivalent of V̂i for the original MDP M
15 foreach s ∈ S ∩ Ŝi do V (s)← V̂i(s) // Ŝi is the state set of MDP M̂i

16 foreach ŝ ∈ Ŝi \ S do foreach s ∈ T2OrigS[ŝ] do V (s)← V̂i(ŝ)
17 Processed← G
18 GVs0 ← {S

V , AV } // V ’s greedy graph rooted at s0
19 while Processed 6= SV do
20 choose s ∈ SV r Processed, a ∈ A s.t. T (s, a, s′) > 0 for some s′ ∈ Processed
21 πs0(s)← a
22 Processed← Processed ∪ {s}
23 end
24 return πs0
25 end
26

27 function Eliminate-Traps(GSSPs0 MDP M , value function V)
28 begin
29 GVs0 ← {S

V , AV } // V ’s greedy graph rooted at s0
30 SCC ← TarjanZero(GVs0) // finds SCCs with only zero-reward hyperedges; pseudocode

omitted
31 Traps← ∅
32 foreach SCC C = {S,A} ∈ SCC do
33 if (@ V -greedy a, s ∈ S, s′ /∈ S s.t. T (s, a, s′) > 0) and (G ∩ S == ∅) then
34 Traps← Traps ∪ {C}
35 end
36 end
37 M̂ ← Transform-MDP(M,Traps) // M̂ = 〈Ŝ, Â, T̂ , R̂, Ĝ, ŝ0〉
38 foreach s ∈ Ŝ ∩ S do V̂ (s)← V (s)
39 foreach C = {S,A} ∈ Traps do
40 if ∃a ∈ A, s ∈ S, s′ /∈ S s.t. T (s, a, s′) > 0 // if C is a transient trap then
41 ŝ← state in Ŝ s.t. T2S[ŝ] = S

42 V̂ (ŝ)← mins∈S V (s)

43 end
44 end
45 return 〈M̂, V̂ 〉
46 end

177

Algorithm 5.2: Transform-MDP
1 // see Algorithm 5.1 for the definition of global map T2OrigS
2
3 function Transform-MDP(GSSPs0 MDP M , set of traps Traps)
4 begin
5 T2S ← ∅ // a mapping from traps to sets of states contained in each trap
6 Ŝ ← S \

⋃
C∈Traps[S s.t. C = {S,A}], Â ← A, Ĝ ← G

7 foreach C = {S,A} ∈ Traps do
8 if ∃a ∈ A, s ∈ S, s′ /∈ S s.t. T (s, a, s′) > 0 then
9 OrigStateSet← ∅

10 foreach s ∈ S do
11 if T2OrigS[s] 6= null then
12 OrigStateSet← OrigStateSet ∪ T2OrigS[s]
13 Remove the entry for s from T2OrigS
14 else OrigStateSet← OrigStateSet ∪ {s}
15 end
16 Ŝ ← Ŝ ∪ {ŝ} // ŝ is new, T2OrigS[ŝ]← OrigStateSet, T2S[ŝ]← S
17 else foreach s ∈ S do if T2OrigS[s] 6= null then Remove entry for s from T2OrigS
18 end
19 foreach s ∈ Ŝ do
20 if s ∈ S then
21 foreach a ∈ A do
22 if ∃sd in a permanent trap in Traps s.t. T (s, a, sd) > 0 then
23 foreach s′ ∈ Ŝ do T̂ (s, a, s′)← 0
24 continue
25 end
26 foreach s′ ∈ Ŝ do
27 if s′ ∈ S then T̂ (s, a, s′)← T (s, a, s′), R̂(s, a, s′)←R(s, a, s′)
28 else T̂ (s, a, s′)←

∑
s′′∈T2S[s′] T (s, a, s′′), R̂(s, a, s′)←

∑
s′′∈T2S[s′]

T (s,a,s′′)R(s,a,s′′)
T̂ (s,a,s′)

29 end
30 end
31 else
32 foreach s′ ∈ T2S[s] do
33 foreach a ∈ A do
34 if ∃sd in a permanent trap in Traps s.t. T (s′, a, sd) > 0 then continue
35 if ¬(

∑
s′′∈T2S[s] T (s

′, a, s′′) < 1 ∨ ∃s′′ ∈ T2S[s] s.t. R(s′, a, s′′) 6= 0) then
36 continue
37 else
38 Â ← Â ∪ {as′} // as′ is a newly created action
39 foreach s1, s2 ∈ Ŝ do T̂ (s1, as′ , s2)← 0

40 foreach ŝ ∈ Ŝ do
41 if ŝ ∈ S then T̂ (s, as′ , ŝ)← T (s′, a, ŝ), R̂(s, as′ , ŝ)←R(s′, a, ŝ)
42 else
43 T̂ (s, as′ , ŝ)←

∑
s′′∈T2S[ŝ] T (s

′, a, s′′)

44 R̂(s, as′ , ŝ)←
∑
s′′∈T2S[ŝ]

T (s′,a,s′′)R(s′,a,s′′)
T̂ (s,as′ ,ŝ)

45 end
46 end
47 end
48 end
49 end
50 end
51 end
52 if s0 ∈ S ∩ Ŝ then ŝ0 ← s0 else ŝ0 ← ŝ ∈ Ŝ s.t. s0 ∈ T2S[ŝ]

53 return M̂ = 〈Ŝ, Â, T̂ , R̂, Ĝ, ŝ0〉
54 end

178

of FIND-AND-REVISE’s output value function in the i-th iteration of FRET, V̂ ′i , may contain

permanent and transient traps.

The second step, ELIMINATE-TRAPS (lines 27-46 of Algorithm 5.1), searches GV̂
′
i
ŝ0

for traps

and changes M̂i and V̂ ′i into a new MDP M̂i+1 and value function V̂i+1 s.t. M̂i+1 has none of

the discovered traps of M̂i, and V̂i+1 is the admissible “version” of V̂ ′i for M̂i+1. To find traps,

ELIMINATE-TRAPS employs Tarjan’s algorithm [94] (its pseudocode is omitted) to identify all

maximal SCCs ofGV̂
′
i
ŝ0

all of whose internal hyperedges have zero reward (line 30). It then considers

only those of the discovered zero-reward SCCs that have no goal states and outgoing edges in this

graph (lines 32-36), i.e., satisfy the definition of either a permanent or a transient trap (Definitions

5.4 and 5.6).

The logic for using M̂i to construct a new MDP M̂i+1 without the discovered traps is captured

in the Transform-MDP routine (Algorithm 5.2). We will call M̂i+1 a contraction of M̂i:

Definition 5.7. Contraction of a GSSPs0 MDP. For a GSSPs0 MDP M , a contraction of M is an

MDP M̂ that results from eliminating some traps from M using Algorithm 5.2. ♣

Abstracting away from Transform-MDP’s many technical details, its high-level idea is very straight-

forward. Transform-MDP takes the state space of M̂i, excludes from it all the states in the identified

traps, and, for each removed transient trap, adds a single new state to replace the discarded states

of that trap. These newly added states represent the states of the eliminated transient traps in the

contraction M̂i+1:

Definition 5.8. Representative of a state from a trap. For a GSSPs0 MDP M and a trap C =

{S,A} in it, suppose M̂ is a contraction of M where the set of states S of M has been replaced by

a single state ŝ. For any state s ∈ S of M , ŝ is the representative of s in M̂ . ♣

The states of eliminated permanent traps do not have representatives in the state space of M̂i+1.

As discussed previously, the ultimate aim of trying to solve M̂i+1 with FIND-AND-REVISE or

179

transforming it into yet another MDP is computing a (near-) optimal policy for the original MDP

M from s0. States from permanent traps cannot be part of it, since, by definition, M has a proper

policy w.r.t. s0 that avoids such states entirely. Therefore, there is no need to consider them any

further once they have been recognized as belonging to permanent traps.

Once the state space Ŝ of M̂i+1 has been constructed as above, Transform-MDP modifies other

components of M̂i to be consistent with Ŝ. Among other changes, for every state of Ŝ, it eliminates

any action that in M̂i leads to a state in a permanent trap. It also modifies the transition function of

other actions so that any transitions to a state in a transient trap in M̂i lead to the representative of

that trap’s states in M̂i+1.

We now consider the operation of Transform-MDP in more detail. Transform-MDP starts by

setting M̂i+1’s state space Ŝ to M̂i’s state space less the discovered traps, M̂i+1’s action space

Â to M̂i’s action space, and M̂i+1’s goal set Ĝ to M̂i’s goal set (line 6 of Algorithm 5.2). Then

Transform-MDP adds to Ŝ (line 16) a representative of each eliminated transient (line 8) trap. At

this stage, some work needs to be done to maintain a mapping T2OrigS from the states of M̂i+1

that represent the original MDP M ’s traps to the sets of states in those traps. T2OrigS is necessary

to transform the solution of a contraction of M to a solution of M itself once FRET exits its main

loop (line 16 of Algorithm 5.1). For each transient trap C of M̂i, the maintenance (lines 9-16 of

Algorithm 5.2) involves determining the setOrigStateSet of states of the original MDPM that are

represented by the states of that trap (lines 11-14) and entering that set into T2OrigS for M̂i+1’s

representative ŝ of C (line 16). Note that if C turns out to be a permanent trap in M̂i, all of its

states representing traps of M are removed from T2OrigS (line 17), because C will not have a

representative in M̂i+1 or M̂i+1’s contractions.

The purpose of the bulk of Transform-MDP’s pseudocode is construct M̂i+1’s transition function

T̂ and reward function R̂ for each state-action pair of M̂i+1’s (lines 19-51 of Algorithm 5.2). For

each state s ∈ Ŝ , the construction process depends on whether the state has been inherited from

M̂i (lines 20-31) or whether it is a representative of a trap of M̂i (lines 31-50), i.e., is not in M̂i’s

state space. In the former case, all actions that in M̂i used to lead from s to a state of an eliminated

permanent trap are rendered inapplicable in s (line 22-25). For the remaining actions, their transition

probabilities from s to other states inherited from M̂i, along with rewards for such transitions,

remain the same as in M̂i (line 27). However, the probabilities and rewards for their transitions

180

from s to states of eliminated transient traps of M̂i are summed up for M̂i+1’s representatives of

these traps (line 28).

The initialization of the transition and reward function for state-action pairs where the state s is

a representative of M̂i’s transient trap is analogous to the case when s has been inherited from M̂i,

but the details are slightly more complicated. Specifically, since s is not a state of M̂i+1, no actions

inherited from M̂i are applicable in it. Instead, for each state s′ of M̂i represented by s in M̂i+1 and

every action a of M̂i, Transform-MDP creates a new action as′ in M̂i+1 (line 38), applicable only

in s (line 39). There are two exceptions to this rule:

• If a in M̂i leads from a state s′ represented by s to a state in an eliminated permanent trap of

M̂i, no new action in M̂i+1 is created for the pair (s′, a) (line 34).

• No new action in M̂i+1 is created for M̂i’s state-action pairs (s′, a) where s′ is represented

by s and a leads from s′ exclusively to states represented by s via zero-reward transitions

(line 36). The analogue of a for s in M̂i+1 would be a deterministic self-loop with zero

reward, which would turn s into a single-state transient trap of M̂i+1, contrary to our intent of

introducing s in order to eliminate a trap in the first place.

For each created action as′ , its transition probabilities and rewards for s are initialized (lines 40-46)

in the same way as in lines 26-29, i.e., as if they would be for s′ if s′ was inherited from M̂i.

Transform-MDP finishes the construction of M̂i+1 by initializing its initial state by either letting

it be the same as for M̂i or, if s0 is in an eliminated transient trap of M̂i, to a state representing that

trap in M̂i+1.

Returning to ELIMINATE-TRAPS (Algorithm 5.1), after producing M̂i+1 using Transform-

MDP it converts V̂ ′i into an admissible value function for this new MDP. Observe that M̂i+1’s state

space Ŝ is different from M̂i’s state space in only two ways: some transient traps have been replaced

by single representative states, and states of some permanent traps are missing. Thus, to convert V̂ ′i

to an admissible value function for M̂i+1, all we need to do is to admissibly initialize the values

of the representative states and remove the values of states in the eliminated traps; the values of

states that are shared between M̂i+1 and M̂i can stay as they are under V̂ ′i . This is exactly what

ELIMINATE-TRAPS does in lines 38-43 of Algorithm 5.1. ELIMINATE-TRAPS sets the values

181

of trap representatives to the lowest value under V̂ ′i of any state in the corresponding trap. In fact,

the value of any state in that trap would work just as well. The intuition behind this step is that in

a transient trap, any state can be reached “for free” (i.e., by paying zero cost) from any other state

of that trap, implying that under the optimal value function, the values of all states in a given trap

must be equal. Therefore, since V̂ ′i is admissible for M̂i (the properties of FIND-AND-REVISE

guarantee this, due to the admissibility of the heuristic V0), V̂ ′i ’s value of any state in any of M̂i’s

traps is an upper bound on the value of the representative of that trap in M̂i+1.

FRET’s repetition of FIND-AND-REVISE and ELIMINATE-TRAPS steps cannot continue

forever: each ELIMINATE-TRAPS invocation produces an MDP whose state space is smaller than

that of the current MDP, and each FIND-AND-REVISE invocation is guaranteed to halt after a

finite number of REVISE operations. Thus, eventually FRET exits its main loop with an MDP M̂i

and a near-optimal value function V̂i for it. What is the relationship between M̂i and the input MDP

M? It is easy to see that M̂i is M ’s contraction, obtained by successively eliminating traps of M .

A crucial implication of this insight is the fact that a value function for M̂i can be “expanded” into

a value function for M :

Definition 5.9. Expansion of a value function. Let V̂ be a value function for a contraction M̂ =

〈Ŝ, Â, T̂ , R̂, Ĝ, ŝ0〉 of a GSSPs0 MDP M = 〈S,A, T ,R,G, s0〉. An expansion of V̂ for M is a

value function V s.t.

V (s) =

V̂ (s) if s ∈ S ∩ Ŝ

V̂ (ŝ) if s is in a trap of M whose set of states has been replaced by state ŝ in M̂

−∞ otherwise

(5.9)

♣

Moreover, the expansion of M̂i’s optimal value function is clearly the optimal value function for

M . FRET performs such an expansion as its penultimate step (lines 14-16 of Algorithm 5.1), right

before computing a policy for M .

182

The convergence characteristics of FRET are summarized by the results below. Although some

of these theorems require FRET’s heuristic to be not only admissible but also monotonic (Definition

2.29), their versions hold even when the heuristic does not have this property. However, their proofs

for the case of a non-monotonic admissible heuristic are significantly more complicated than those

presented here. In the proofs, E denotes the operator implemented in FRET’s ELIMINATE-TRAPS

step.

Theorem 5.6. For a GSSPs0 MDP and any ε > 0, if FRET has a systematic FIND procedure and

is initialized with an admissible heuristic that is finite and monotonic w.r.t. BGSSPs0 (s) for all states

s, FRET converges to a value function that is ε-consistent over the states in its greedy graph rooted

at s0 after a finite number of REVISE and ELIMINATE-TRAPS steps. ♦

Proof. See the Appendix. The proof is somewhat technical and relies on several lemmas that are

also presented in the Appendix, but its underlying idea is simple and has been discussed above:

ELIMINATE-TRAPS keeps decreasing MDP’s size, and each call to FIND-AND-REVISE halts

after a finite time for any ε > 0.

Theorem 5.7. For a GSSPs0 MDP, if FRET has a systematic FIND procedure and is initialized with

an admissible heuristic that is finite and monotonic w.r.t. BGSSPs0 (s) for all states s, as ε goes to 0 the

value function and policy computed by FRET approaches, respectively, the optimal value function

and an optimal policy over all states reachable from s0 by at least one optimal s.d.M. policy. ♦

Proof. See the Appendix. Like the proof of the Optimality Principle (Theorem 5.1), the proof of

the above claim is based on the observation that a GSSPs0 problem can be turned into an equivalent

SSPs0 MDP. In particular, the proof shows that running FRET on a GSSPs0 MDP amounts to lazily

performing such a conversion. If FRET is run long enough (i.e., ε is sufficiently small), it reduces

to executing FIND-AND-REVISE on the resulting SSPs0 MDP, a process known to converge to an

optimal solution (Theorem 2.15).

183

Upon convergence to an ε-consistent V , FRET constructs a policy greedy w.r.t. V as in lines 17-

23 of the pseudocode. Theorem 5.5 showed that for V ∗, constructing π∗s0 by simply taking arbitrary

V ∗-greedy actions would not be enough. Instead, FRET builds an output policy by using V -greedy

actions to connect states in GVs0 either directly to the goal states or to states already connected to

the goal states, as long as this is possible. If the value function V at which FRET halts is either

V ∗ or sufficiently close to V ∗, the policy πs0 produced at the end of this process has an important

property: every trajectory of πs0 originating at every state of GVs0 eventually terminates in a goal

state. Thus, πs0 is proper w.r.t. every state in GVs0 and, if V is close to V ∗, optimal:

Theorem 5.8. For a GSSPs0 MDP, any policy πs0 derived by FRET from the optimal value function

is optimal and proper w.r.t. s0. ♦

Proof. See the Appendix. Intuitively, the result holds because, by construction, πs0 is greedy w.r.t.

V ∗ and from every state reachable by πs0 from s0, executing πs0 with a positive probability results

in a trajectory that leads to the goal. Thus, the agent that follows πs0 starting at s0 is bound to arrive

at a goal state eventually.

As for FIND-AND-REVISE for SSPs0 MDPs, in general a policy constructed by FIND-AND-

REVISE w.r.t. an ε-consistent V may be suboptimal. However, for ε sufficiently close to 0 this

does not happen.

Example

To illustrate FRET’s operation, we simulate its pseudocode on the GSSPs0 MDP in Figure 5.1.

Suppose FRET starts with V̂0(s0) = 4, V̂0(s1) = V̂0(s2) = 2, V̂0(s3) = V̂0(s4) = 1, V̂0(sg) = 0.

This function already satisfies V̂0 = BGSSPs0 (s)V̂0, so the FIND-AND-REVISE step in the zeroth

iteration finishes immediately with V̂ ′0 = V̂0. ELIMINATE-TRAPS then buildsGV̂
′
0
s0 , which includes

only states s0, s1, and s2. The only (permanent) trap is formed by s1, s2. Thus, ELIMINATE-

TRAPS produces an MDP M̂1 with s1 and s2 and transitions to them from s0 missing, and constructs

a value function V̂1(s0) = 4, V̂1(s3) = V̂1(s4) = 1, V̂1(sg) = 0. In the first round, FIND-AND-

REVISE starts with M̂1 and V̂1 and converges to V̂ ′1(s0) = 1.5, V̂ ′1(s3) = V̂ ′1(s4) = 1, V̂ ′1(sg) = 0.

184

G
V̂ ′1
s0 , consisting of s0, s3, and s4, again contains a trap, this time a transient one formed by s3, s4.

The ELIMINATE-TRAPS step discovers this trap and constructs a new MDP M̂2 whose state space

consists of s0, sg, and a representative ŝ3,4 of the eliminated transient trap. It also puts together an

admissible value function V̂2 for M̂2 s.t. V̂2(s0) = 1.5, V̂2(ŝ3,4) = 1, and V̂2(sg) = 0. Finally, in

the second round, FIND-AND-REVISE converges to V̂ ′2(s0) = −0.5, V̂ ′2(ŝ3,4) = −1, V̂ ′2(sg) = 0.

G
V̂ ′2
s0 contains no traps, so FRET has converged; in fact, in this example, V̂ ′2 is optimal for M̂2.

Therefore, its expansion V (s0) = −0.5, V (s1) = V (s2) = −∞, V (s3) = V (s4) = −1, V (sg) = 0

is optimal for the MDP in Figure 5.1.

5.3.4 GSSPs0 and Other MDP Classes

Despite GSSPs0 relaxing the conditions on action rewards, one might view the remaining re-

quirements of its definition as still too restrictive. In this section, we try to allay these concerns by

showing that several established MDP types as well as at least one newly formulated class can be

viewed as subclasses of GSSPs0 , with the benefit of FRET being applicable to them as well. Figure

1.2 displays the hierarchy of MDP classes derived in this section.

SSPs0 MDPs

We begin the analysis by showing that GSSPs0 contains SSPs0 , the class that motivated us to define

GSSPs0 in the first place:

Theorem 5.9. SSPs0 under the weak definition of its components (Definition 2.15) is contained in

GSSPs0 . ♦

Proof. SSPs0 satisfies both requirements of the GSSPs0 definition (5.1). Namely, every SSPs0

MDP has a complete proper policy. Also, under the weak definition (2.15), all actions of an SSPs0

MDP have a positive cost (negative reward), so the expected sum of nonnegative rewards of any of

its policies must be 0 from any state.

In light of Theorem 2.5, this result implies that FHs0 and IHDRs0 are subclasses of GSSPs0 too;

in addition, due to Theorem 2.6, GSSPs0 also contains the versions of all these classes without the

185

initial state. As we demonstrate next, these are are at least two more known MDP classes that can

be regarded as special cases of GSSPs0 .

Positive-Bounded MDPs

Definition 5.10. Positive-bounded (POSB) MDP. A POSB MDP [80] is a tuple 〈S,A, T ,R〉, with

components as described in Definition 2.1, under the following conditions:

• For every state s ∈ S, there must exist an action a ∈ A whose immediate expected reward at

s is nonnegative, i.e.,
∑

s′∈S T (s, a, s′)R(s, a, s′) ≥ 0.

• V π
+ (s) = E [

∑∞
t=0 max{0, Rπst }] <∞ for all policies π for all states s ∈ S (GSSPs0 has an

identical requirement). ♣

Solving a POSB MDP means finding a policy that maximizes the undiscounted expected reward

over an infinite number of steps starting from every state. The POSB MDP definition implies that

such a policy always exists and has a nonnegative value everywhere (see Proposition 7.2.1b in [80]).

Although at first glance POSB appears to be rather different from GSSPs0 , the former is a subclass

of the latter:

Theorem 5.10. POSB ⊂ GSSPs0 . ♦

Proof. See the Appendix. The proof consists in embedding a POSB instance into a GSSPs0 MDP

of a comparable size.

Negative MDPs

Definition 5.11. Negative (NEG) MDP. A NEG MDP [80] is a tuple 〈S,A, T ,R〉, with compo-

nents as described in Definition 2.1, under the following conditions:

186

• For all s ∈ S, a ∈ A the expected reward of a must be nonpositive:
∑

s′∈S T (s, a, s′)R(s, a,

s′) ≤ 0.

• There must exist at least one policy π s.t. V π(s) > −∞ for all s ∈ S. ♣

As with POSB MDPs, an optimal policy for a NEG problem maximizes long-term expected

reward at every state, and every NEG instance is also a GSSPs0 instance:

Theorem 5.11. NEG ⊂ GSSPs0 . ♦

Proof. The proof, analogous to the one for Theorem 5.10, is presented in the Appendix.

MAXPROB MDPs

There is yet another interesting type of MDPs that FRET can solve. We have seen examples of them

before: these are goal-oriented MDPs in which an agent wants a policy leading to the goal with the

highest probability. The nuclear reactor shutdown scenario described at the beginning of this section

is an instance of this MDP kind, as are other problems where action costs are irrelevant or too hard

to model and where no policy proper w.r.t. s0 may exist. The evaluation measure that assesses

policy quality by the policy’s probability of eventually reaching the goal was used at IPPC-2006 and

-2008 [17] to judge the performance of various MDP solvers. It is also the criterion we employed

to evaluate the RETRASE and GOTH algorithms in Chapter 3. We call this optimization criterion

MAXPROB and define a corresponding MDP class:

Definition 5.12. MAXPROB MDP. Given a goal-oriented MDP M = 〈S,A, T ,R,G, (s0)〉 with

an optional initial state s0, let s′g be a new state that does not belong to M ’s state space S, and let

a′g be a new action that does not belong to A. The MAXPROB MDP MMP derived from M is a

tuple 〈S ′,A′, T ′,R′,G′, (s0)〉, where

• S ′ = S ∪ {s′g};

187

• A′ = A ∪ {a′g};

• T ′(s, a, s′) = T (s, a, s′) for all s ∈ S, a ∈ A, s′ ∈ S; T ′(s, a, s′g) = 0 for all s ∈ S \ G and

a 6= a′g; T ′(s, a′g, s′g) = 1 for all s ∈ S; T ′(s′g, a, s′g) = 1 for all a ∈ A′;

• R′(sg, a′g, s′g) = 1 whenever sg ∈ G, and 0 for all other triplets;

• G′ = {s′g};

• s0 is the same as in M , if M has it. ♣

Note that M does not need to be an SSPs0 MDP — it only needs to have a set of goal states.

MMP, the MAXPROB derivative of M , has largely the same state space and transition function as

M , but adds a special goal state s′g and action a′g. The state s′g is the sole goal inMMP. Transitioning

to s′g is possible from any state of M , but only via a′g. However, in MMP, the only transitions that

bring a non-zero reward, the reward of 1, are those from a goal state ofM to s′g; all others, including

the transitions to s′g from non-goals of M , bring no reward. As an upshot, the only way to get some

reward in MMP is by reaching the goal of MMP via a goal state of M .

The MAXPROB MDP MMP derived from a goal-oriented MDP M has an important property:

even if M has no proper policy w.r.t. its initial state, MMP always does, due to the extra action a′g

leading to the goal from any state in MMP’s state space. In fact, by the construction of MMP, the

following theorem holds:

Theorem 5.12. Consider a policy π in a goal-oriented MDP M . For the MAXPROB MDP MMP

derived from M , the value V π(s) for any state s ∈ SMMP w.r.t. which π is closed is the probability

that π, if executed in M , eventually reaches the goal from s. ♦

Thus, the MAXPROB criterion gives us a way to reason about the “best” policy for problems that,

due to the lack of a proper policy, do not conform to any of the MDP class definitions discussed so

far.

188

Crucially, MAXPROB MDPs derived from problems with an initial state do not belong to SSPs0 ,

because MAXPROB, unlike SSPs0 , admits MDPs whose value functions can have transient traps

(Definition 5.6). Because of this, the heuristic search machinery developed for SSPs0 does not work

for MAXPROB MDPs. Fortunately, MAXPROB MDPs can be solved by FRET as a consequence

of the following result:

Theorem 5.13. MAXPROB ⊂ POSB ⊂ GSSPs0 . ♦

Proof. See the Appendix. The proof shows that, even though MAXPROB MDPs have goal states

and POSB MDPs do not, mathematically the structure of the former is a special case of the structure

of the latter.

To test FRET’s effectiveness, in our empirical evaluation we concentrate on MAXPROB MDPs

derived from hard problems without a proper policy used at IPPC. We show that in terms of the

MAXPROB criterion, FRET can solve them optimally and much more efficiently than the only

other optimal algorithm available for solving them, the inadmissibly initialized VI. We also point

out that MAXPROB will play a central role in our analysis of goal-oriented MDPs with dead ends in

the next section.

5.3.5 Heuristics for GSSPs0

Unsurprisingly, due to the complete prior lack of heuristic search methods for solving MDPs with

traps (such MDPs abound even in previously established classes like POSB and NEG), research

in admissible heuristics for them has also been nonexistent. To prompt it, we suggest a technique

that can both serve as a standalone admissible heuristic for GSSPs0 MDPs in a factored form and

help other admissible heuristics for this MDP class when they are invented.

The heuristic we propose is based on the SIXTHSENSE module [57] (Section 3.6). SIXTHSENSE

operates by learning nogoods, sound but incomplete rules that help identify states as dead ends.

The following observation motivates the use of SIXTHSENSE for factored GSSPs0 problems. In

GSSPs0 MDPs, many of the dead ends are located in permanent traps. As we have demonstrated,

permanent traps are the regions of the state space where value functions are difficult for Bellman

189

backup to improve. Consequently, an admissibly initialized FIND-AND-REVISE algorithm is

likely to visit them and enter them in the state value table before ELIMINATE-TRAPS corrects

their values. Employing SIXTHSENSE during the FIND-AND-REVISE step should detect dead-

end states early and set the correct values for them, thereby helping FIND-AND-REVISE avoid

actions that may lead to them. These “dangerous” actions typically have other states as potential

outcomes as well, so in the long run identifying dead ends helps prevent unnecessary visits to large

parts of the state space. Moreover, since SIXTHSENSE’s nogoods efficiently identify dead ends on-

the-fly, these states’ values do not need to be memorized. The empirical evaluation presented next

supports the validity of this reasoning.

5.3.6 Experimental Results

To evaluate the performance of FRET, we compare it to VI. VI and, with some modifications, PI are

the only two other major algorithms able to solve GSSPs0 optimally. However, since they do not use

heuristics to exclude states from consideration, they necessarily memorize the value of every state

in an MDP’s state space. Therefore, their space efficiency, the main limiting factor of MDP solvers’

scalability, is the same, and the results of our experimental comparison apply to PI as well.

In the experiments, we use problems from the Exploding Blocksworld (EBW) set of IPPC-

2008 [17]. As was done during the IPPC itself and the performance evaluation on these problems

in Chapter 3, we assess policy quality of FRET and VI in terms of their policies’ probability of

reaching the goal from s0. We stress once again that finding an optimal policy according to this

criterion amounts to solving the corresponding MAXPROB MDP, which belongs to the GSSPs0

class. Unlike the participants of IPPC, FRET and VI can solve this optimization problem directly.

We use LRTDP in the FIND-AND-REVISE step of FRET, aided by the following SIXTH-

SENSE-based heuristic V0:

V0(s) =

0 if s = s′g in the derived MAXPROB MDP MMP

0 if s if SIXTHSENSE can prove that s is a dead end in the original MDP M

1 if s is neither a goal nor can be proved a dead end in the original MDP M

(5.10)

190

1 2 3 4 5 6
0

2

4

6
x 10

6

S

T
A

T
E

S
M

E
M

O
R

IZ
E

D

EXPLODING BLOCKSWORLD−08 PROBLEM #

FRET
VI

Figure 5.2: Under the guidance of an admissible
heuristic, FRET uses much less memory than VI.

1 2 3 4 5 6
0

1

2
x 10

4

C
P

U
 T

IM
E

IN
 S

E
C

O
N

D
S

EXPLODING BLOCKSWORLD PROBLEM #

FRET
VI

Figure 5.3: VI lags far behind FRET in speed.

In the MAXPROB MDP MMP derived from a goal-oriented MDP M , the former dead ends of M

are states from which getting to the former goals of M , and hence getting any reward other than 0,

is impossible. Therefore, their value under V ∗ in MMP is 0. Since SIXTHSENSE can point out a

large fraction of M ’s dead ends, we can assign V0 for these states to be 0. Similarly, V0 will be 0 at

the sole goal state s′g of MMP, where the action a′g leads from M ’s goal states. For all other states,

V0 will assign 1, the highest reward any policy possibly can obtain in MMP. Since SIXTHSENSE is

provably sound, V0 is guaranteed to be admissible.

All MDPs in EBW have a specified initial state s0. FRET uses this information to compute

a policy rooted at s0, but VI by default still tries to compute a value function and policy for all

states, even those not reachable from the initial state. To make the comparison fair, we modified

VI to operate only on states reachable from s0 as well. In the experiments, VI uses an inadmissible

heuristic that assigns value 0 to all non-goal states of M , and 1 to M ’s goals.

The experiments were run with 2GB of RAM. The results are presented in Figures 5.2 and 5.3.

EBW problems increase in state space size from the lowest- to highest-numbered one. Out of the

15 available, FRET solved the first 6 before it ran out of memory, whereas VI managed to solve

only 4. (As a side note, some IPPC participants managed to solve more problems; however, this is

not surprising because those algorithms are suboptimal). Also, FRET solved problem 6 faster than

VI solved problem 4. These data indicate that even with such a crude heuristic as in Equation 5.10,

FRET significantly outperforms VI in time and memory consumption. Moreover, no heuristic can

help VI avoid memorizing the entire reachable state space and thus allow it to solve bigger problems,

whereas with the advent of more powerful admissible GSSPs0 MDP heuristics the scalability of

FRET will only increase.

191

5.3.7 Summary

The MDP class we have presented, GSSPs0 , extends SSP by relaxing SSP’s restriction on the reward

model. Unlike SSP, GSSPs0 allows regions where an agent can stay forever without reaching the

goal or incurring any reward. Although this extension is seemingly small, sophisticated machinery

such as the new heuristic search framework FRET is required to cope with it. Moreover, thanks

to admitting such zero-reward regions, GSSPs0 contains other established MDP classes, POSB

and NEG, in addition to SSP. Most importantly, GSSPs0 subsumes and provides algorithms for

MAXPROB, a class of problems where the main objective is maximizing an agent’s probability of

reaching the goal. MAXPROB will prove vital to the analysis of MDPs with dead ends, the main

subject of the next section.

5.4 SSP MDPs with Dead Ends

MAXPROB MDPs (Definition 5.12) are one way to think about policy quality optimization in the

presence of dead ends. At the same time, maximizing the probability of reaching the goal without

any concern for the expected cost is often an overly crude approach. A remedy lies in extending the

cost-oriented SSPs0 class to allow dead-end states.

Straightforwardly introducing dead ends into an SSP MDP’s state space under the expected cost

minimization criterion breaks existing decision-theoretic solution methods such as VI, preventing

them from ever converging. As an alternative, researchers have suggested approximate algorithms

that are aware of the possibility of dead ends and try to avoid them when computing a policy —

RETRASE [55, 58] from Chapter 3 as well as HMDPP [50], RFF [95], and several other techniques

behave in this way. However, these attempts have lacked a theoretical analysis of how to incorporate

dead ends into SSP MDPs in a principled way, and optimize more for the probability of reaching

the goal rather than policy cost.

5.4.1 Overview

We begin developing a theory of goal-oriented MDPs with dead ends by introducing SSPADEs0 , a

small extension of SSPs0 that has well-defined policies optimal in terms of expected cost as long as

dead ends can be avoided from the initial state.

192

The other two classes proposed in this section analyze the case when dead ends cannot be dodged

with 100%-probability. Besides computational challenges mentioned above, these situations present

semantic difficulties. Consider an improper SSPs0 MDP, one that conforms to the SSPs0 definition

(2.19) except for the requirement of proper policy existence, and hence has unavoidable dead ends.

In such an MDP, the objective of finding a policy that minimizes the expected cost of reaching the

goal becomes ill-defined. That objective assumes that for at least one policy, the cost incurred by

all of the policy’s trajectories is finite; however, this cost is finite only for proper policies, all of

whose trajectories terminate at the goal. Thus, all policies in an improper SSP may have an infinite

expected cost, making the cost criterion unhelpful for selecting the “best” policy. The key question

becomes: can we repair cost-based optimization in the presence of unavoidable dead ends, or should

we take the dead ends’ infinite penalty as a given and choose policies that reduce the risk of failure

above all else?

The former option is a possibility in scenarios where the penalty of hitting a dead end can be

approximated with a high but finite number. For instance, suppose the agent buys an expensive

ticket for a concert of a favorite band in another city, but remembers about it only on the day of the

event. Getting to the concert venue requires a flight, either by hiring a business jet or by a regular

airline with a layover. The first option is very expensive but almost guarantees making the concert

on time. The second is much cheaper but, since the concert is so soon, missing the connection,

a somewhat probable outcome, means missing the concert. Nonetheless, the cost of missing the

concert is only the price of the ticket, so a rational agent would choose to travel with a regular

airline. Accordingly, the MDP class we propose for this case, fSSPUDEs0 , assumes that the agent

can put a price (penalty) on ending up in a dead end state and wants to compute a policy with the

least expected cost (including the possible penalty). While seemingly straightforward, this intuition

is tricky to operationalize because of several subtleties. We overcome these subtleties and show how

fSSPUDEs0 can be solved with easy modifications to existing SSPs0 algorithms.

For the cases with infinite dead-end penalty we introduce another MDP class, iSSPUDEs0 . Con-

sider, for example, the task of planning an ascent to the top of Mount Everest for a group of human

alpinists. Such an ascent is fraught with inherent lethal risks, and to any human, the price of their

own life can be taken as infinite. In this setting, SSP’s cost-minimization criterion is uninforma-

tive, as discussed above, since every policy reaches an infinite-cost state. Instead, a natural primary

193

objective here is to maximize the probability of getting to the goal (i.e., to minimize the chance of

getting into a lethal accident, a dead-end state), in the same way as in MAXPROB MDPs. However,

of all policies maximizing this probability, we would prefer the least costly one (in expectation).

This is exactly the multiobjective criterion we propose for this MDP class.

Intuitively, the objectives of fSSPUDEs0 and iSSPUDEs0 MDPs are related — as fSSPUDEs0’s

dead-end penalty gets bigger, the optimal policies for both classes become equal in terms of their

probability of reaching the goal. We provide a theoretical and an empirical analysis of this in-

sight, showing that solving an fSSPUDEs0 MDP yields a MAXPROB-optimal policy if the dead-end

penalty is high enough.

5.4.2 SSPADEs0: SSP MDPs with Avoidable Dead Ends

Although the definition of SSPs0 [12] requires the existence of a complete proper policy, note that an

optimal solution for these MDPs exists even if there is a policy proper merely w.r.t. the initial state.

In other words, the requirement of a complete proper policy is there to make computing an optimal

solution easy or at all possible, but not to ensure its existence. Based on this insight, we leave the

issue of solution computability aside for the moment and formulate the definition of a goal-oriented

MDP with avoidable dead ends.

Definition 5.13. SSPADEs0 MDP. An SSPs0 MDP with avoidable dead ends (SSPADEs0 MDP) is

a tuple 〈S,A, T , C,G, s0〉 where S,A, T , C,G, and s0 are as in the SSPs0 MDP definition (2.19),

under the following conditions:

• There exists at least one proper policy w.r.t. s0.

• For every improper s.d.M. policy π, for every s ∈ S where π is improper, V π(s) =∞. ♣

Solving a SSPADEs0 MDP means finding a policy π∗s0 = arg minπ V
π(s0).

In SSPADEs0 MDPs, dead ends may abound in parts of the state space not visited by policies

proper w.r.t. s0, making this class more general than SSPs0 . However, returning to the question

194

of finding an optimal solution for a SSPADEs0 MDP, the SSPADEs0 definition’s lax requirements

predictably break several algorithms that work for SSPs0 MDPs.

Value Iteration

VISSP , value iteration for SSP and SSPs0 , does not converge on SSPADEs0 , because the optimal

costs for dead ends are infinite. One might think that we may be able to adapt VISSP to SSPADEs0

by restricting computation to the subset of states reachable from s0. However, even this is not true,

because SSPADEs0 requirements do not preclude dead ends reachable from s0. To enable VISSP to

work on SSPADEs0 , we would need to detect divergence of state value sequences generated by the

application of Bellman backup — an unsolved problem, to our knowledge.

Heuristic Search

Although VISSP does not terminate for SSPADEs0 , heuristic search algorithms do. The FIND-

AND-REVISE results for SSPADEs0 are similar to those for SSPs0 (Theorems 2.14 and 2.15), al-

though their proofs are somewhat more complicated:

Theorem 5.14. For a SSPADEs0 MDP and an ε > 0, if FIND-AND-REVISE has a systematic

FIND procedure and is initialized with an admissible monotonic heuristic, it converges to a value

function that is ε-consistent over the states in its greedy graph rooted at s0 after a finite number of

REVISE steps. ♦

Proof. See the Appendix. The result follows from the observation that each update increases the

value function by at least ε at some state but never makes it exceed the optimal value function V ∗.

Since V ∗ is finite over the states in its greedy graph, which does not include any states without a

proper policy, the total number of updates before FIND-AND-REVISE halts must be finite.

Theorem 5.15. For a SSPADEs0 MDP, if FIND-AND-REVISE has a systematic FIND procedure

and is initialized with an admissible monotonic heuristic, as ε goes to 0 the value function and

195

policy computed by FIND-AND-REVISE approaches, respectively, the optimal value function and

an optimal policy over all states reachable from s0 by at least one optimal policy. ♦

Proof. See the Appendix. Continuing the reasoning in the proof of Theorem 5.14, if FIND-AND-

REVISE is run for long enough (i.e., given a very small ε), all the states without a proper policy

drop out of the greedy graph due to their values becoming very high, and the values of the rest

approach their optimal values from below.

Unfortunately, this does not mean that all the heuristic search algorithms developed for SSPs0

MDPs, such as LRTDP (Section 2.3.3), will eventually arrive at an optimal policy on any SSPADEs0

problem. The subtle reason for this is that the FIND procedure of some of these algorithms is not

systematic when dead ends are present. We consider the applicability to SSPADEs0 MDPs of the

most widely used heuristic search algorithms, LAO∗, ILAO∗, RTDP, and LRTDP:

• LAO∗. LAO∗ [41] is a heuristic search algorithm that, in the process of computation, analyzes

candidate partial policies with PI. If dead ends are present, PI, if run on them, never halts, so

neither does LAO∗. To fix LAO∗ for SSPADEs0 MDPs, one can, for instance, artificially limit

the maximum number of iterations in PI’s policy evaluation step.

• ILAO∗. Unlike LAO∗, ILAO∗ [41] converges on SSPADEs0 problems without any modifica-

tion.

• RTDP. Observe that if an RTDP trial enters a dead end whose only action leads deterministi-

cally back to that state, the trial will not be able to escape that state and will continue forever.

Thus, RTDP will never approach the optimal value function no matter how much time passes.

Artificially limiting the trial length (the number of state transitions in a trial) with a finite N

works, but the magnitude of N is very important. Unless N ≥ |S|, convergence of RTDP

to the optimal value functions cannot be a priori guaranteed, because some states may not be

reachable from s0 in less than N steps and hence will never be chosen for updates. On the

other hand, in MDPs with large state spaces setting N = |S|may make trials wastefully long.

196

• LRTDP. LRTDP fails to converge to the optimal solution on SSPADEs0 MDPs for the same

reason as RTDP, and can be amended in the same way.

As illustrated by the examples of the above algorithms, SSPADEs0 MDPs do lend themselves to

heuristic search, but designing FIND-AND-REVISE algorithms for them warrants more care than

for SSPs0 MDPs.

5.4.3 fSSPUDEs0: The Case of a Finite Dead-End Penalty

The ostensibly easiest way to handle unavoidable dead ends is to assign a finite positive penalty D

for visiting one. The semantics of this approach would be that the agent pays D when encountering

a dead end, and the process stops. However, this straightforward modification to the MDP cannot be

directly operationalized, because the set of dead ends is not known a-priori and needs to be inferred

while planning. Moreover, this definition also has a caveat — it may cause non-dead-end states that

lie on potential paths to a dead end to have higher costs than dead ends themselves. For instance,

imagine a state s whose only action leads with probability (1 − ε) to a dead end, with probability

ε > 0 to the goal, and costs ε(D + 1). A simple calculation shows that V ∗(s) = D + ε > D, even

though reaching the goal from s is possible.

Therefore, we change the semantics of the finite-penalty model as follows. Whenever the agent

reaches any state with the expected cost of reaching the goal equalingD or greater, the agent simply

pays the penaltyD and “gives up”, i.e., the process stops. Intuitively, this setting describes scenarios

where the agent can put a price on how desirable reaching the goal is. For instance, in the previously

discussed example involving a concert in another city, paying the penalty corresponds to deciding

not to go to the concert, i.e., foregoing the pleasure the agent would have derived from attending the

performance.

The mathematical benefit of putting a “cap” on any state’s cost as described above is that the

cost of any policy becomes finite under its usual definition in terms of expected utility:

VFπ(hs,t) ≡ min

{
D,E

[∞∑
t′=0

C
πhs,t
t′+t

]}
, (5.11)

197

where C
πhs,t
t′+t is a random variable for the cost paid by the agent starting from time step t and state

s if the execution history by that point was hs,t and the agent followed policy π afterwards. This

policy evaluation criterion lets us find an optimal policy in goal-oriented MDPs with unavoidable

dead ends with finite penalty:

Definition 5.14. fSSPUDEs0 MDP. A stochastic shortest-path MDP with unavoidable dead ends

and a finite penalty (fSSPUDEs0 MDP) is a tuple 〈S,A, T , C,G, D, s0〉, where S,A, T , C,G, and

s0 are as in the SSPs0 MDP definition (2.19) andD ∈ R+∪{∞} is a penalty incurred if a dead-end

state is visited, under the following condition:

• The expected sum of unpenalized costs incurred by any policy π from any state s where π is

improper is infinite, i.e.,

V π(hs,t) = E

[∞∑
t′=0

C
πhs,t
t′+t

]
=∞. (5.12)

♣

An optimal solution to a fSSPUDEs0 MDP is a policy π∗s0 that minimizes Equation 5.11 for all

states it reaches from s0:

π∗s0 = argmin
π

VFπ(s0) (5.13)

The definitions of both SSPs0 and SSPADEs0 have a requirement identical to Equation 5.12. The

main difference is that policies in fSSPUDEs0 are evaluated in terms of penalized cost (Equation

5.11), instead of the criterion mentioned in that requirement.

The fact that, as Equation 5.11 implies, the cost of every policy in an fSSPUDEs0 MDP is finite

suggests that fSSPUDEs0 should be no harder to solve than SSPs0 . This intuition is confirmed by

the following result:

198

Theorem 5.16. fSSPUDEs0 = SSPs0 . ♦

Proof. See the Appendix. The proof’s main idea of converting an fSSPUDEs0 problem to an SSPs0

MDP is to add a special action to the former’s action space. That action deterministically takes an

agent from any state to the goal and costs D. Mathematically, it makes D the price of the worst

choice available to the agent, exactly corresponding to the semantics of fSSPUDEs0 .

Corollary. The Optimality Principle for SSP MDPs (Theorem 2.3) holds for fSSPUDEs0 MDPs as

well. ♦

The conversion of fSSPUDEs0 MDPs to their SSPs0 counterparts immediately enables solving

fSSPUDEs0 with modified versions of standard SSPs0 algorithms, as described next.

Value Iteration

Theorem 5.16 implies that VF∗, the optimal cost function of an fSSPUDEs0 MDP, must satisfy the

following modified Bellman equation:

V (s) = min

{
D,min

a∈A

[
C(s, a) +

∑
s′∈S
T (s, a, s′)V (s′)

]}
(5.14)

It also tells us that a π∗s0 for an fSSPUDEs0 problem must be greedy w.r.t. VF∗. Thus, an

fSSPUDEs0 MDP can be solved with VISSP that uses Equation 5.14 for updates.

Heuristic Search

By the same reasoning as above, all FIND-AND-REVISE algorithms for SSPs0 and their guarantees

apply to fSSPUDEs0 MDPs if they use Equation 5.14 instead of Equation 2.9 as Bellman backup.

Thus, heuristic search for SSPs0 works for fSSPUDEs0 with hardly any modification.

We point out that, although the theoretical result in Theorem 5.16 is new, some existing MDP

solvers use Equation 5.14 implicitly to cope with goal-oriented MDPs that have unavoidable dead

ends. One example is the miniGPT package [10]; it allows a user to specify a value D and then uses

it to implement Equation 5.14 in several algorithms, including VI and LRTDP.

199

5.4.4 iSSPUDEs0: The Case of an Infinite Dead-End Penalty

The second way of dealing with unavoidable dead ends is to view them as truly irrecoverable situ-

ations and assign D = ∞ for getting into them. As a motivation, recall the example of planning a

climb to the top of Mount Everest. Since dead ends here cannot be avoided with certainty and the

penalty of visiting them is∞, comparing policies based on the expected cost of reaching the goal

breaks down — they all have an infinite expected cost. Instead, we would like to find a policy that

maximizes the probability of reaching the goal and whose expected cost over the trajectories that

reach the goal is the smallest.

To formulate this policy evaluation criterion more precisely, we will work with stationary de-

terministic Markovian policies because the notation for them is simpler than for the more general

history-dependent policies and because, as we show later, at least one optimal policy according to

this criterion is stationary deterministic Markovian. For the history-dependent policies, the criterion

and its derivation has an analogous form.

In accordance with the criterion’s informal description above, each policy is assessed by two

characteristics: its probability of reaching the goal and its expected cost given that it reaches the

goal. To crystallize the former, we define a policy’s goal-probability value function as

P π(s) =

∞∑
t=1

P [(Sπst = sg) ∈ (G ∧ Sπst′ = s /∈ G ∀ 1 ≤ t′ < t)], (5.15)

where Sπst is a random variable for the state in which the agent ends up t time steps after starting

to follow policy π from state s. Intuitively, P π(s) is a sum of probabilities that an agent, initially

in state s, will reach the goal for the first time after 1, 2, . . . time steps of executing π. Crucially,

we have already seen a class of MDPs whose objective is finding P ∗(s0), the highest probability

of reaching the goal from s0. This class is MAXPROB (Section 5.3.4), and P π is just a different

notation for its policies’ value functions.

Once a policy’s goal-probability function P π has been computed, we can calculate its expected

cost of reaching the goal. Let Sπs+t be a random variable that gives a distribution over states s′ for

which P π(s′) > 0 and in which an agent can end up after t steps of executing π starting from state

200

s. Sπs+t differs from the variable Sπst in Equation 5.15 by ranging only over states from which π

can reach the goal with a positive probability. In other words, Sπs+t assigns a non-zero probability

to a state s′ only if it can be reached by π from s in t steps and the goal can be reached by π from

s′ afterwards. In terms of these variables, we can define π’s goal-conditioned expected cost as

[V π|P π](s) = E

[∞∑
t=0

C(Sπs+t , Aπst , S
πs+
t+1)

]
(5.16)

The importance of [V π|P π] is in giving us an idea of a policy’s expected cost even if the policy fails

to avoid dead ends entirely. SSP’s standard definition of policy utility breaks down in such situations

because some of the policy’s trajectories never reach the goal and incur an infinite cost. [V π|P π]

avoids this pitfall by taking into account only those trajectories that terminate in a goal state.

Using P π and [V π|P π], we can define a policy’s value under our criterion as an ordered pair

VIπ(s) = (P π(s), [V π|P π](s)) (5.17)

Specifically, we write π(s) ≺ π′(s), meaning π′ is preferable to π at s, whenever VIπ(s) ≺

VIπ
′
(s), i.e., when either P π(s) < P π

′
(s), or P π(s) = P π

′
(s) and [V π|P π](s) > [V π′ |P π′](s).

Notice that the goal-conditioned expected cost criterion is used only if two policies are equal in terms

of the probability of reaching the goal, since maximizing this probability is the foremost priority.

For the case when P π(s) = P π
′
(s) = 0, i.e., when neither π nor π′ can reach the goal from s, we

let [V π|P π](s) = [V π′ |P π′](s) = 0 and hence VIπ(s) = VIπ
′
(s). With this optimization criterion

in mind, we define the following MDP class:

Definition 5.15. iSSPUDEs0 MDP. A stochastic shortest-path MDP with unavoidable dead ends

and an infinite penalty (iSSPUDEs0 MDP) is a tuple 〈S,A, T , C,G,∞, s0〉, where S,A, T , C,G,

and s0 are as in the SSPs0 MDP definition (2.19) and D = ∞ is a penalty incurred if a dead-end

state is visited, under the following condition:

• Under any policy, the cost of any trajectory that never reaches the goal is infinite.

201

♣

An optimal solution to a iSSPUDEs0 MDP is a policy π∗s0 that maximizes Equation 5.17 for all

states it reaches from s0 under the ≺-ordering:

π∗s0 = argmax
≺π

VIπ(s0) (5.18)

In contrast to fSSPUDEs0 MDPs, no existing algorithm can solve iSSPUDEs0 problems, and we

develop completely new techniques to tackle them.

Value Iteration

As for the finite-penalty case, we begin by deriving a VI-like algorithm for solving iSSPUDEs0 .

Finding a policy satisfying Equation 5.18 may seem hard, since we are effectively dealing with a

multicriterion optimization problem. Note, however, that the optimization criteria are, to a certain

degree, independent — we can first find the set of policies whose probability of reaching the goal

from s0 is optimal, and then select from them the policy minimizing the expected cost of goal tra-

jectories. This amounts to calculating the optimal goal-probability function P ∗, then computing

the optimal goal-conditional value function [V ∗|P ∗], and finally deriving an optimal policy from

[V ∗|P ∗]. We consider these subproblems in order.

Finding P ∗. The task of finding, for every state, the highest probability with which the goal can

be reached by any policy in a given goal-oriented MDP M amounts to solving that MDP w.r.t. to

the MAXPROB criterion (Section 5.3.4). Its solution is the optimal goal-probability function P ∗

satisfying

P ∗(s) = 1 ∀s ∈ G of M

P ∗(s) = max
a∈A

∑
s′∈S
T (s, a, s′)P ∗(s′) ∀s ∈ S \ G of M (5.19)

202

In Section 5.3.4, we showed how to construct a MAXPROB version of the given goal-oriented

MDP and tackle it with the heuristic search framework FRET in order to compute P ∗ for all states

reachable from s0 by a P ∗-optimal policy.

P ∗ for the complete state space of an MDP can be found in a similar manner by observing that

eliminating all potential traps in a MAXPROB problem turns it into an SSPs0 MDP. Thus, a flavor of

VI that first applies the ELIMINATE-TRAPS operator to a MAXPROB MDP and then iterates over

the resulting problem with full Bellman backup (Equation 2.9) eventually finds P ∗ for all states.

Formally, we call this algorithm V IMP and summarize its behavior with the following theorem:

Theorem 5.17. On a MAXPROB MDP MMP derived from a goal-oriented MDP M , VIMP con-

verges to the optimal value function P ∗ as its number of iterations tends to infinity. ♦

Proof. See the Appendix. The result follows from the convergence properties of VI for SSP

MDPs.

Finding [V ∗|P ∗]. We could derive optimality equations for calculating [V ∗|P ∗] from first princi-

ples and then develop an algorithm for solving them. However, instead we present a more intuitive

approach. Essentially, given an iSSPUDEs0 MDPM = 〈S,A, T , C,G,∞, s0〉 and its optimal goal-

probability function P ∗, we will build a modification MP ∗ of M , called the MAXPROB-optimal

derivative of M , whose optimal value function is exactly M ’s goal-conditional value function

[V ∗|P ∗]. MP ∗ will have no dead ends, have only actions greedy w.r.t. P ∗, and have a transi-

tion function favoring transitions to states with higher probabilities of successfully reaching the

goal. Crucially, MP ∗ will turn out to be an SSPs0 MDP, so we will be able to find [V ∗|P ∗] with

something as straightforward as VISSP .

To construct MP ∗ , observe that an optimal policy π∗ for an iSSPUDEs0 MDP, one whose cost

function is [V ∗|P ∗], must necessarily use only actions greedy w.r.t. P ∗, i.e., those maximizing the

right-hand side of Equation 5.19. For each state s, denote the set of such actions as AP ∗s . We

focus on non-dead-end states s, because for dead ends P ∗(s) = 0, and they will not be part of

MP ∗ . By Equation 5.19, for each non-dead-end non-goal s, each a∗ ∈ AP ∗s satisfies P ∗(s) =∑
s′∈S T (s, a∗, s′)P ∗(s′), or, in a slightly rewritten form,

203

∑
s′∈S

T (s, a∗, s′)P ∗(s′)

P ∗(s)
= 1 (5.20)

This equation effectively says: given that the goal is reached from s by executing a∗ in s and

following an optimal policy onwards, with probability T (s,a∗,s1)P ∗(s1)
P ∗(s) action a∗ must have caused a

transition from s to s1, with probability T (s,a∗,s2)P ∗(s2)
P ∗(s) it must have caused a transition to s2, and

so on.

This means that if we want to find the vector [V ∗|P ∗] of expected costs over goal-reaching

trajectories under π∗, then it is enough to find the optimal cost function of MDP MP ∗ = 〈SP ∗ ,

AP ∗ , T P ∗ , CP ∗ ,GP ∗ , sP ∗0 〉, where:

• SP ∗ = S \ {s ∈ S|P ∗(s) = 0}, i.e., SP ∗ is the same as S for M but does not include

M ’s dead ends. The dead ends can be omitted because we are interested only in the costs of

trajectories that reach the goal, and no such trajectory, by definition, goes through a dead end.

• AP ∗ = ∪s∈SAP
∗

s , i.e., the set of actions consists of all P ∗-greedy actions in each state.

• For each s, s′ ∈ SP ∗ and a∗ ∈ AP ∗s , T P ∗(s, a∗, s′) = T (s,a∗,s′)P ∗(s′)
P ∗(s) , as explained in the

discussion of Equation 5.20. For each s, s′ ∈ SP ∗ and a∗ /∈ AP ∗s , T P ∗(s, a∗, s′) = 0, i.e.,

only actions optimal in s under P ∗ can be executed in s in the MDP MP ∗ .

• CP ∗ = C over states in SP ∗ and actions in AP ∗ .

• GP ∗ = G.

• sP ∗0 = s0.

As it turns out, like MMP, MP ∗ also belongs to a familiar class of MDPs:

Theorem 5.18. For an iSSPUDEs0 MDP M with P ∗(s0) > 0, the MAXPROB-optimal derivative

MP ∗ constructed from M as above is an SSPs0 MDP. ♦

204

Proof. See the Appendix. Intuitively, MP ∗ is an SSPs0 MDP because in it, like in M , all improper

policies incur an infinite cost but it, unlike M , does not have any dead ends.

Moreover, optimal solutions of MP ∗ have a crucial property:

Theorem 5.19. For an iSSPUDEs0 MDP M with P ∗(s0) > 0, every optimal s.d.M. policy for

M ’s MAXPROB-optimal derivative MP ∗ is optimal w.r.t. the goal-reaching probability in M , i.e.,

P π
∗
(s) = P ∗(s) for all states s of M s.t. P ∗(s) > 0. ♦

Proof. See the Appendix. The ultimate reason why this is the case is that any π∗ of MP ∗ uses only

M ’s P ∗-greedy actions and is proper, i.e., uses the P ∗-greedy actions in such a way that it does

not get stuck in “loops”. As a result, it reaches the goal in M from any state s with the maximum

possible probability, P ∗(s).

Thus, solving an iSSPUDEs0 problem M boils down to solving an SSPs0 MDP whose optimal

value function, by construction, is [V ∗|P ∗], and whose optimal policy minimizes not only the ex-

pected cost over the goal-reaching trajectories but also the probability of reaching the goal in M .

Therefore, the above theorems as well as the Optimality Principle for SSP MDPs (Theorem 2.3)

give us the following corollary:

Corollary. For an iSSPUDEs0 MDP with the optimal goal-probability function P ∗, the optimal

goal-conditional value function [V ∗|P ∗] satisfies

[V ∗|P ∗](s) = 0 ∀s s.t. P ∗(s) = 0 (5.21)

[V ∗|P ∗](s) = min
a∈AP∗

{∑
s′∈S
C(s, a, s′) +

T (s, a, s′)P ∗(s′)

P ∗(s)
[V ∗|P ∗](s′)

}

An optimal solution to an iSSPUDEs0 MDP is a policy π∗s0 greedy w.r.t. P ∗ and [V ∗|P ∗]. At least

one such policy is s.d.M.. ♦

205

Algorithm 5.3: IVI

1 Input: iSSPUDEs0 MDP M
2 Output: an optimal policy π∗s0 rooted at s0

1. Find P ∗ by running VIMP on MAXPROB MDP MMP derived from M

2. Find [V ∗|P ∗] by running VISSP on SSPs0 MDP MP∗ derived from M and P ∗

return π∗s0 greedy w.r.t. P ∗ and [V ∗|P ∗]

Algorithm 5.4: IHS

1 Input: iSSPUDEs0 MDP M
2 Output: an optimal policy π∗s0 rooted at s0

1. Find P ∗s0 by running FRET initialized with admissible heuristic P0 on MAXPROB MDP MMP
derived from M

2. Find [V ∗s0 |P
∗
s0] by running FIND-AND-REVISE initialized with an admissible heuristic V0

on SSPs0 MDP MP∗s0 derived from M and P ∗s0

return π∗s0 greedy w.r.t. P ∗s0 and [V ∗s0 |P
∗
s0]

Putting It All Together. As just showed, solving an iSSPUDEs0 MDP ultimately reduces to solv-

ing a derived MAXPROB MDP and then, using its optimal value function P ∗, a specially con-

structed SSPs0 MDP. The overall process is captured in a procedure called IVI (Infinite-penalty

Value Iteration), whose high-level pseudocode is presented in Algorithm 5.3.

Heuristic Search for iSSPUDEs0 MDPs

Our heuristic search schema IHS (Infinite-penalty Heuristic Search) for iSSPUDEs0 MDPs, pre-

sented in Algorithm 5.4, follows the same principles as IVI but uses heuristic search instead of

full-fledged VI in each stage. There are two main differences between IHS and IVI. The first one is

that IHS produces functions P ∗s0 and [V ∗s0 |P
∗
s0] that are guaranteed to be optimal only over the states

visited by some optimal policy π∗s0 starting from the initial state s0. Accordingly, the SSPs0 MDP

MP ∗s0 required to solve a given iSSPUDEs0 MDP M is constructed only over states reachable from

s0 by at least one P ∗s0-optimal policy. Second, IHS requires two admissible heuristics, one (P0)

206

being an upper bound on P ∗ and the other (V0) being a lower bound on [V ∗s0 |P
∗
s0].

5.4.5 Equivalence of Optimization Criteria

We have presented three ways of dealing with MDPs having unavoidable dead ends:

• Solving them according to the MAXPROB criterion.

• Solving them according to the fSSPUDEs0 criterion.

• Solving them according to the iSSPUDEs0 criterion.

Although the proposed algorithms for MAXPROB and iSSPUDEs0 MDPs are significantly more

complicated than those for MDPs with a finite dead-end penalty, intuition tells us that solving a

given tuple 〈S,A, T , C,G, s0〉 under all three criteria should yield “similar” policies, provided that

in the finite-penalty case the penalty D is very large. This intuition can be formalized as a theorem:

Theorem 5.20. For a given tuple of MDP components 〈S,A, T , C,G, s0〉 satisfying the conditions

of the SSPs0 MDP definition (2.19), there exists a finite penalty Dthres s.t. every optimal s.d.M.

policy of every fSSPUDEs0 MDP 〈S,A, T , C,G, D, s0〉 for any D > Dthres is optimal for the

MAXPROB MDP derived from this fSSPUDEs0 MDP as well. ♦

Proof. See the Appendix. The proof’s main insight is the fact that a very large penalty, even a finite

one, is such a strong deterrent against visiting dead ends that an optimal policy for an fSSPUDEs0

MDP does everything possible to avoid them, thereby maximizing the probability of reaching the

goal.

Corollary. For an fSSPUDEs0 MDP with a dead-end penalty D exceeding the threshold penalty

Dthres for the tuple 〈S,A, T , C,G, s0〉 of this MDP’s components, for every optimal policy π∗ and

s ∈ S, π∗’s goal-probability value function P π
∗

equals P ∗ for the iSSPUDEs0 MDP 〈S,A, T , C,

G,∞, s0〉. ♦

As a consequence, if we choose D > Dthres, we can be sure that at any given state s, all optimal

207

(VF∗-greedy) policies of the resulting fSSPUDEs0 MDP will have the same probability of reaching

the goal, and this probability is P ∗(s), the optimal one under the MAXPROB and iSSPUDEs0 criteria

as well.

This prompts a question: what can be said about the goal-probability functionP of an fSSPUDEs0

MDP’s optimal policies if D ≤ Dthres? Unfortunately, in this case different VF-optimal policies

may not only be suboptimal in terms of P , but, even for a fixed D, each VF-optimal policy may

have a different, arbitrarily low chance of reaching the goal. For example, consider an MDP with

three states: s0 (the initial state), sd (a dead end), and sg (a goal). Action ad leads from s0 to sd

with probability 0.5 and to sg with probability 0.5 and costs 1 unit. Action ag leads from s0 to sg

also with probability 1, and costs 3 units. Finally, suppose we solve this setting as an fSSPUDEs0

MDP with D = 4. It is easy to see that both policies, π(s0) = ad and π(s0) = ag, have the same

expected cost, 3. However, the former reaches the goal only with probability 0.5, while the latter

always reaches it. The ultimate reason for this discrepancy is that the policy evaluation criterion

of fSSPUDEs0 is oblivious to policies’ probabilities of reaching the goal, and optimizes for this

characteristic only indirectly, via policies’ expected costs.

The equivalence of optimization criteria, as stated in Theorem 5.20, implies two ways of find-

ing a MAXPROB-optimal policy in the unavoidable-dead-end case: either by directly solving the

corresponding MAXPROB instance or by choosing a sufficiently large penalty D and solving the

finite-penalty fSSPUDEs0 MDP. We are not aware of a principled way to choose a finite D that

would make optimal solutions in these two cases coincide, but it is often easy to guess by inspect-

ing the MDP. Thus, although the latter method gives no a-priori guarantees, it frequently yields a

MAXPROB-optimal policy in practice. We glean insights into which of the two methods of com-

puting a MAXPROB-optimal policy is more efficient and under what circumstances by conducting

an empirical study. Before describing it, we introduce one more MDP class, which subsumes all

others proposed in this dissertation as well as several known classical planning problems.

5.4.6 Stochastic Simple Longest Path MDPs: the Ultimate Goal-Oriented Problems

Although some goal-oriented MDP types we have considered are at least as general as SSPs0 MDPs,

every single one of them still imposes some restrictions on either the reward structure or existence

208

Figure 5.4: An example Stochastic Simple Longest-Path MDP.

of proper policies for the scenarios it models. This makes one wonder: can we formulate a well-

defined optimization criterion for a class of goal-oriented MDPs completely free of such restrictions

and find an optimal policy for it?

Figure 5.4 gives an overview of such MDPs’ possible peculiarities:

• The MDP in this figure has a goal but no proper policy w.r.t. the initial state.

• Entering a dead end in it yields a higher reward than going to the goal (note the positive-reward

self-loop of state sd).

• In fact, if measured in terms of expected reward, the values of some policies for it are ill-

defined: even though traversing from s0 to s1 and back yields a net reward of 0, the total

expected reward of a policy that traps an agent in this cycle oscillates between -1 and 0 (if the

agent starts in s0) without settling down on either value.

• Last but not least, loitering in a non-dead-end state in such MDPs may yield a higher reward

than other courses of action; a policy that chooses action a2 in s0 serves as an example.

To a first approximation, defining the notion of a “best” policy for goal-oriented MDPs with

arbitrary reward functions is complicated by the same factor as for iSSPUDEs0 problems. If no

policy leads to the goal with 100% probability, i.e., stops accumulating reward after a finite number

209

of steps in expectation, expected reward alone becomes meaningless for evaluating policies’ utility.

The iSSPUDEs0 MDP definition suggests a way around this difficulty by defining policy utility as

expected reward over only those of the policy’s trajectories that reach the goal. An attempt to equip

unrestricted goal-oriented problems with this optimization criterion has been made before in the

definition of Stochastic Safest- and Shortest-Path MDPs (S3P) [96].

Indeed, iSSPUDEs0’s policy evaluation criterion makes the value of every policy finite, and

hence amenable to meaningful comparisons, even if the reward function is arbitrary. Paradoxically,

however, it does not guarantee the existence of an optimal policy. For instance, for the MDP in

Figure 5.4, consider an infinite family of policies in which the n-th member policy executes a2 in

s0 n times, then picks a1 in s0, and finally chooses a2 in s1. All policies in this family have the

optimal goal-probability value function for this MDP, P ∗(s0) = 0.3. However, the goal-conditional

expected reward VI∗(s0) of the n-th policy member is 7n − 2, a value that grows without bound

with increasing n. Thus, S3P MDPs are undecidable.

The key insight for amending S3P’s optimization criterion is the observation that in the patho-

logical example above, the policies are non-Markovian. Viewed differently, for goal-oriented MDPs

with unconstrained rewards under, s.d.M. policies evaluated with [V π|P π] are generally dominated

by non-Markovian ones. However, if we consider only s.d.M. policies as solution candidates, the

issue goes away, since there are finitely many of them and their value functions are comparable with

each other. WE formalize this intuition in the following definition:

Definition 5.16. SSLPs0 MDP. A stochastic simple longest-path MDP (SSLPs0 MDP) is a tuple

〈S,A, T , C,G, s0〉, where S,A, T , C,G, and s0 are as in the SSPs0 MDP definition (2.19). ♣

An optimal solution to an SSLPs0 MDP is an s.d.M. policy π∗s0 that maximizes Equation 5.17

for all states it reaches from s0 under the ≺-ordering:

π∗s0 = argmax
≺π

VIπ(s0)

210

To emphasize it once again, the only difference between iSSPUDEs0’s and SSLPs0’s optimiza-

tion criteria is SSLPs0’s consideration of exclusively s.d.M. policies.

Solving SSLPs0 MDPs

Our algorithms for solving SSLPs0 problems, SVI (SSLPs0 Value Iteration, Algorithm 5.5) and

SHS (SSLPs0 Heuristic Search, Algorithm 5.6) are only partly based on dynamic programming.

Specifically, dynamic programming in the form of synchronous VI or heuristic search can be used

to find the goal-probability value function P ∗ or its part P ∗s0 over the states reachable from s0 by

at least one P ∗-optimal policy. However, computing [V ∗|P ∗] afterwards cannot be done in the

same way as for iSSPUDEs0 MDPs, because, unlike for these problems, the MAXPROB-optimal

derivative of a SSLPs0 MDP is generally not as SSPs0 MDP, and we are trying to find an s.d.M.

optimal solution it, not a globally optimal one.

Algorithm 5.5: SVI

1 Input: SSLPs0 MDP M
2 Output: an optimal s.d.M. policy π∗s0 rooted at s0

1. Find P ∗ by running VIMP on MAXPROB MDP MMP derived from M

2. For each s.d.M. π, compute Pπ and, if Pπ = P ∗, compute [V π|Pπ]

return s.d.M. π∗s0 = argmaxPπ=P∗ [V
π|Pπ](s0)

Algorithm 5.6: SHS

1 Input: SSLPs0 MDP M
2 Output: an optimal s.d.M. policy π∗s0 rooted at s0

1. Find P ∗s0 by running FRET initialized with admissible heuristic P0 on MAXPROB MDP MMP
derived from M

2. For each s.d.M. π, compute Pπs0 and, if Pπs0 = P ∗s0 over states in Gπs0 , compute [V πs0 |P
π
s0]

return s.d.M. π∗s0 = argmaxPπ=P∗ [V
∗
s0 |P

∗
s0](s0)

Instead, both algorithms simply enumerate s.d.M. policies π (there are finitely many of them), eval-

211

uate P π for each of them using policy evaluation (similar to Algorithm 2.1) and, for those whose

P π agrees with the optimal goal-probability function, compute [V π|P π]. A policy with the highest

[V π|P π] is returned as a solution.

It is easy to see that both algorithms are exponential in the MDP size, since they generally iterate

over all s.d.M. policies. While seemingly inefficient, asymptotically it may be the best we can do:

Theorem 5.21. SSLPs0 is NP-hard. ♦

Proof. SSLPs0 trivially contains the class of deterministic simple longest-path problems, known to

be NP-hard [89].

SSLPs0 and Other Classes

Theorem 24 serves as the motivation for SSLPs0’s name. Indeed, this MDP class is a probabilistic

generalization of the simple longest-path problems, which consist in finding the heaviest loop-free

path between two vertices in a graph. Just like simple longest-path problems include shortest-path

problems as a special case, SSLPs0 subsumes SSPs0 MDPs. More than that, SSLPs0 encompasses

all other classes we have introduced in this dissertation and, by transitivity, their subclasses, such

as IHDR, FH, POSB, and NEG. To our knowledge, SSLPs0 is the most general decidable class of

planning problems studied in AI. A Venn diagram of the corresponding MDP class hierarchy is

presented in Figure 1.2.

5.4.7 Experimental Results

The objective of our experiments was to determine which of the two methods for finding a probability-

optimal policy for a goal-oriented problem with unavoidable dead ends is more efficient in practice,

solving this problem as a MAXPROB MDP or as an fSSPUDEs0 MDP with a very large D param-

eter. To do a fair comparison between these approaches, we employed very similar algorithms to

handle them. For fSSPUDEs0 as well as MAXPROB, the most efficient optimal solution methods

are heuristic search techniques, so in the experiments we used only algorithms of this type.

To solve fSSPUDEs0 MDPs, we used the implementation of the LRTDP algorithm from the

miniGPT package [10]. As a source of admissible state value estimates, we chose the maximum

212

of the atom-min-forward heuristic [42] and SIXTHSENSE (Section 3.6) [57, 58]. The sole purpose

of the latter was to quickly and soundly identify many of the dead ends and assign the value of D

to them. For MAXPROB MDPs, we used LRTDP with a SIXTHSENSE-derived heuristic, the same

setup as in the experiments for GSSPs0 MDPs described in Section 5.3.6.

Our benchmarks were problems 1 through 6 of the Exploding Blocks World domain from

IPPC-2008 and problems 1 through 15 of the Drive domain from IPPC-2006. Most problems in

both domains have unavoidable dead ends and thus are appropriately modeled by fSSPUDEs0 and

MAXPROB MDPs. To set the penalty D for the fSSPUDEs0 formulation, we examined each prob-

lem and tried to come up with an intuitive, easily justifiable value for it. For all problems, D = 500

yielded a policy that was optimal under both the VF (Equation 5.11) and MAXPROB criteria.

For all the benchmarks, solving their MAXPROB and fSSPUDEs0 versions, with D = 500 in

the latter case, using the above heuristic search instantiations yielded the same qualitative outcome.

In terms of speed, solving the fSSPUDEs0 versions was at least an order of magnitude faster than

solving the MAXPROB versions. The difference in used memory was occasionally smaller, but

only because the algorithms for both classes visited nearly the entire state space reachable from s0

on some problems. Moreover, in terms of memory as well as speed, the difference between solving

the fSSPUDEs0 and MAXPROB formulations was the largest (that is, solving MAXPROB MDPs

was comparatively the least efficient) when the given problem had P ∗(s0) = 1, i.e., the MDP had

no dead ends at all or had only avoidable ones.

Although surprising at the first glance, these performance patterns have a fundamental rea-

son. Recall that FRET algorithms, those used for solving the MAXPROB versions, rely on the

ELIMINATE-TRAPS operator. For every encountered fixed-point value function of Bellman backup,

it needs to traverse this value function’s transition graph involving all actions greedy w.r.t. it start-

ing from s0 (lines 27-46 of Algorithm 5.1). Also, FRET needs to be initialized with an admissible

heuristic (in our experiments, based on SIXTHSENSE), which assigns the value of 0 to states it

believes to be dead ends and 1 to the rest.

Now, consider how FRET operates on a MAXPROB MDP that does not have any dead ends

— the kind of MAXPROB MDPs that, as our experiments show, is most problematic. For such a

MAXPROB, there exists only one admissible heuristic function, P0(s) = 1 for all s, because for

these problems P ∗(s) = 1 for all s and an admissible heuristic needs to satisfy P0(s) ≥ P ∗(s)

213

everywhere. Thus, the heuristic FRET starts with is actually the optimal goal-probability function,

and, as a consequence, is a fixed point of the local Bellman backup operators for all states in that

value function’s greedy graph rooted at s0. Therefore, before concluding that P0 is optimal, FRET

needs to build its greedy graph. Observe, however, that since P0 is 1 everywhere, this transition

graph includes every state reachable from s0, and uses every action in this part of the state space!

Building and traversing it is very expensive if the MDP is large.The same performance bottleneck,

although to a lesser extent, can also be observed on instances that do have unavoidable dead ends:

building large transition graphs significantly slows down FRET even when P ∗ is far from being 1

everywhere.

This reasoning explains why solving MAXPROB MDPs is slow, but by itself does not clarify

why solving fSSPUDEs0 is fast in comparison. For instance, we might expect the performance

of FIND-AND-REVISE algorithms on fSSPUDEs0 to suffer in the following situations. Suppose

state s is a dead end not avoidable from s0 by any policy. This means that V ∗(s) = D under the

finite-penalty optimization criterion, and that s is reachable from s0 by any optimal policy. Thus,

FIND-AND-REVISE will not halt until the value of s under the current value function reaches

D. Furthermore, suppose that our admissible heuristic V0 initializes the value of s with 0 — this

is one of the possible admissible values for s. Finally, assume that all actions in s lead back to s

with probability 1 and have the cost of 1 unit. In such a situation, a FIND-AND-REVISE algo-

rithm will need to update the value of s D times before convergence. Clearly, this will make the

performance of FIND-AND-REVISE very bad if the chosen value of D is very large. This raises

the question: was solving fSSPUDEs0 MDPs in the above experiments so much more efficient than

solving MAXPROB formulations due to our choice of (a rather small) value for D?

To dispel these concerns, we solved fSSPUDEs0 instances of the aforementioned benchmarks

with D = 5 · 108 instead of 500. On all of the 21 problems, the increase in speed compared to the

case of fSSPUDEs0 with D = 500 was no more than a factor of 1.5. The cause for such a small

discrepancy is the fact that, at least on our benchmarks, FIND-AND-REVISE almost never runs

into the pathological case of having to update the value of a dead many times as described above,

thanks to the atom-min-forward and, most importantly, SIXTHSENSE heuristics. They identify the

majority of dead ends encountered by LRTDP and immediately set their values to D. Thus, instead

of spending many updates on such states, LRTDP gets their optimal values in just one step. To test

214

this explanation, we disabled these heuristics and assigned the value of 0 to all states at initialization.

As predicted, the solution time of the fSSPUDEs0 instances skyrocketed by orders of magnitude.

The presented results appear to imply an unsatisfying fact: on MAXPROB MDPs that are in fact

dead-end-free SSPs0 problems, FRET is not nearly as efficient as the algorithmic schema for SSPs0 ,

FIND-AND-REVISE. The caveat of the SSPs0 algorithms, however, is that they pay for efficiency

by assuming the existence of proper solutions. FRET, on the other hand, implicitly proves the

existence of such solutions, and is therefore theoretically more robust.

5.4.8 Summary

The material in this section has covered the full range of assumptions one can make about the

properties of dead ends in goal-oriented MDPs. The SSPADEs0 class assumes them to be present

but entirely avoidable from the initial state. The theory of SSPADEs0 is not very different from that

of SSPs0 problems. If the dead ends are present and unavoidable but the penalty for vising them can

be quantified by a finite number, as in the fSSPUDEs0 class, the MDPs can also be solved largely

using the existing methods. However, unavoidable dead ends with an infinite penalty, modeled

by iSSPUDEs0 MDPs, require the formulation of a new optimization criterion and invalidate the

previous approaches. Finally, SSLPs0 is a class that does not make any assumptions about the

presence of dead ends, the penalty for entering them, and the action cost structure, but, because of

that, is NP-hard. The optimal solutions of all of these classes are, in some sense equivalent: they

have the same probability of reaching the goal (provided that the dead-end penalty in fSSPUDEs0

is high enough).

5.5 Related Work

Although goal-oriented MDPs with dead ends have been used as benchmarks in several IPPCs (see,

e.g., [17]), there have been rather few attempts to formally define and study them from a theoretical

standpoint. One such attempt is the work on the notion of “probabilistic interestingness” [65], which

observes that the presence of dead ends makes goal-oriented MDPs less amenable to replanning

approaches such as FFReplan [99]. Other existing approaches for MDPs with dead ends have mostly

concentrated on optimizing what we have defined as the MAXPROB criterion [63, 67, 64]. However,

215

these works have not studied the theoretical properties of solving MAXPROB in detail. In particular,

the key realization that arbitrarily initialized VI in general cannot solve it optimally due to the

presence of traps, along with heuristic search algorithms for doing so, has been missing.

In spite of the dearth of theoretical analysis of MDPs with dead ends, implementations of sev-

eral heuristic search algorithms, e.g., LRTDP, for problems in which hitting a dead end incurs a

finite penalty have been publicly available as part of the miniGPT package [10]. Nonetheless, little

has been known so far about the dependence of their speed and solution quality on the dead-end

penalty parameter. The latter, as our experiments show, can affect these algorithms’ performance

dramatically if they are not equipped with a heuristic for identifying dead ends.

The iSSPUDEs0 class can be viewed as a case of multi-objective MDPs, which model problems

with several competing objectives, e.g., total time, monetary cost, etc. [21, 98]. Generally, their so-

lutions are Pareto sets of all non-dominated policies. Unfortunately, such solutions are impractical

due to high computational requirements of algorithms for finding them. Specifically for the case of

goal-probability and expected-cost value functions, one such algorithm, MOLAO∗, has been pro-

posed in [18]. A criterion related to iSSPUDEs0’s has also been studied in robotics [53]. Around the

time when iSSPUDEs0 was introduced [60], a nearly identical class was independently formulated

in [96]. The algorithm in [96] for solving iSSPUDEs0 is similar to our IVI scheme, but that work

describes no analogue for the more efficient heuristic search algorithm IHS proposed here and in

[60].

5.6 Future Research Directions

The theory of goal-oriented MDPs presented in this dissertation has centered around policy utility

measured by expected reward/cost. While it is an intuitive and mathematically convenient criterion,

generally it gives a good idea of a policy’s average performance only if the policy is executed many

times. Indeed, since uncertainty makes it impossible to predict the outcome of an action before

using it, executing a policy may force the agent to use a different sequence of actions every time,

and hence get a different reward. Therefore, if an agent wants to use a policy just once or twice, or is

simply risk-averse, it may be interested in the policy’s variance, i.e., its propensity to yield rewards

far above or below the mean. As a simple example of a situation where policy variance matters,

216

consider selecting between two lotteries. In one, an agent can get a payoff of either $6 or $8 with

equal probability, In another, it can get a payoff of either $30 or -$10 (i.e., incur a loss) with equal

probability. Despite the fact that the expected payoff in the first lottery ($7) is lower than in the

second ($10), many people will prefer the first if given only one chance to play either, because the

variance in its outcomes will never cause them to lose money.

Although there has been a fair amount of work on defining policy utility to account for variance

(e.g., [46], [68], [91], [69], and [74]), all or most of it, to our knowledge, applies only to FH

and IHDR MDPs. In the meantime, these MDP types are merely special cases of goal-oriented

classes, let alone of goal-oriented classes with dead ends. Research on optimizing for variance

in the presence of goals and dead ends would increase the applicability of the MDPs studied in

this chapter to real-world scenarios, where consistent performance of the chosen policies is almost

always an important concern.

5.7 Summary

The work presented in this chapter lifts the restrictions imposed by the sole existing goal-oriented

MDP class known to date, SSP, on the scenarios that can be modeled. In particular, problems with

dead ends, i.e., states with no trajectories to the goal, violate SSP’s requirement of proper policy

existence. Settings where one is interested in the optimal probability, as opposed to expected cost,

of reaching the goal cannot be cast as SSP MDPs either.

Such probability maximization problems can be modeled by the MAXPROB class that we have

introduced, which, in turn, is a subclass of GSSPs0 , also presented in this chapter. The mathematical

properties of these two MDP types are complex and prevent them from being solvable by the existing

value iteration and heuristic search algorithms. To tackle GSSPs0 , we have developed a new heuristic

search framework called FRET.

For scenarios with dead ends, we have considered another three tractable MDP classes, SSPADEs0 ,

fSSPUDEs0 , and iSSPUDEs0 . The first of them assumes that dead ends are avoidable from the initial

state, the second — that entering them incurs a finite penalty, and the third one — that the dead ends

are not only unavoidable but also infinitely costly. While SSPADEs0 and fSSPUDEs0 can be solved

with minor modifications of existing techniques, iSSPUDEs0 requires a completely new approach.

217

The FRET framework for GSSPs0 plays a pivotal role in solving iSSPUDEs0 , but is only of the

components of the full algorithm.

Last but not least, we have proposed SSLPs0 , an MDP class that includes all the known deter-

ministic and probabilistic planning formulations studied in AI. Although general, SSLPs0 is NP-hard

and is thus of mostly theoretical value.

Our mathematical analysis of goal-oriented MDP is valid for policy utility expressed as expected

cost of getting to the goal. However, in many applications policies’ variance is important as well.

Developing variance-aware optimization criteria and algorithms for goal-oriented MDPs is a topic

for future work.

218

Chapter 6

CONCLUSION

Planning under uncertainty, an indispensable area of AI, is facing two major challenges. The

techniques it offers for solving its main set of models, the Markov decision processes (MDPs),

are not sufficiently scalable to handle many realistically-sized problems. The fundamental reason

for this shortcoming is the way existing MDP solvers operate: they analyze every configuration of

the world separately, without generalizing plans across similar situations. The second challenge to

probabilistic planning is the lack of expressiveness of the available MDP formulations. They fail to

properly model many problem aspects that we consider common and natural, such as irrecoverable

catastrophic failures. These two factors significantly limit the adoption of MDPs as a practical

problem-solving tool.

This dissertation advances state of the art in addressing both of these challenges by making two

broad groups of contributions. The first group consists of highly scalable algorithms for solving

various types of MDPs. For goal-oriented MDPs, these algorithms are built on a novel method

for extracting the problem structure and using it to solve planning problems by reasoning about

their high-level regularities, not the low-level world states. RETRASE[55, 58], GOTH[56, 58],

and SIXTHSENSE[57, 58] are approaches based on this underlying idea. RETRASE is a stan-

dalone MDP solver that, thanks to the use of generalization, outperforms the best of its competition.

GOTH is an informative heuristic that brings the power of automatic abstract reasoning to the nu-

merous class of heuristic search techniques. SIXTHSENSE can serve as a module in nearly any

existing solver and help it identify dead-end states — those from which reaching the goal is impos-

sible and that can otherwise drain a planner’s computational resources in vain. For reward-oriented

settings, this dissertation proposes two other performant solvers, GLUTTON [54] and GOURMAND

[59], centered around the strategy of reverse iterative deepening. Their theoretical and empirical

evaluation points out the crucial role of convergence criterion in their success — a heretofore under-

appreciated aspect of planning techniques. As a testimony to the merit of their core ideas, GLUTTON

219

was the close runner-up at the 2011 International Probabilistic Planning Competition and GOUR-

MAND topped that contest’s winner.

The second set of this dissertation’s contributions are new problem classes extending the mod-

eling capabilities of the MDP paradigm. In particular, the presented work removes the restrictions

of the sole known goal-oriented MDP class, the stochastic shortest-path (SSP) problems, explor-

ing the mathematical properties of the resulting formulations and proposing optimal algorithms for

them. The extensions begin with the GSSPs0 MDP class [61] and its subclass MAXPROB, which

serve as the theoretical basis for the rest. The main results of this line of research [60] are classes

that explore various assumptions about the existence of dead ends, which are completely disallowed

in SSP MDPs. The proposed SSPADEs0 , fSSPUDEs0 , and iSSPUDEs0 MDPs describe scenarios

where dead ends are, respectively, present but avoidable, unavoidable but carry a finite penalty, and,

finally, unavoidable and infinitely damaging. The SSLPs0 class is the goal-oriented model devoid of

any restrictions but intractable as a result.

The two sets of the dissertation’s contributions complement each other. While the second de-

velops the theory and optimal algorithms for MDPs with dead ends, the first introduces effective

techniques for identifying dead-end states, e.g., SIXTHSENSE, thereby helping make the solvers for

goal-oriented MDPs efficient in practice.

Although the dissertation contributes to several aspects of contemporary MDP knowledge, as

well as summarizes the existing theory of this framework [71], MDPs have fundamental limitations

that it does not address — the assumptions of full world observability and full awareness of the world

dynamics. Partially observable MDPs and reinforcement learning models lift these limitations, and,

as we hope, will greatly benefit from the extension of the ideas presented here.

220

BIBLIOGRAPHY

[1] Douglas Aberdeen, Sylvie Thiébaux, and Lin Zhang. Decision-theoretic military operations
planning. In Proceedings of the Second International Conference on Automated Planning
and Scheduling, pages 402–412, 2004.

[2] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic programming.
Artificial Intelligence, 72:81–138, 1995.

[3] Richard Bellman. Dynamic Programming. Prentice Hall, 1957.

[4] D. Bertsekas and J. Tsitsiklis. Analysis of stochastic shortest path problems. Mathematics of
Operations Research, 16(3):580595, 1991.

[5] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.

[6] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1996.

[7] Venkata Deepti Kiran Bhuma and Judy Goldsmith. Bidirectional LAO* algorithm. In Pro-
ceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pages
980–992, 2003.

[8] Ronald Bjarnason, Alan Fern, and Prasad Tadepalli. Lower bounding Klondike Solitaire with
Monte-Carlo planning. In Proceedings of the Seventh International Conference on Automated
Planning and Scheduling, 2009.

[9] A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial Intelligence,
90:281–300, 1997.

[10] B. Bonet and H. Geffner. mGPT: A probabilistic planner based on heuristic search. Journal
of Artificial Intelligence Research, 24:933–944, 2005.

[11] Blai Bonet. Modeling and solving sequential decision problems with uncertainty and par-
tial information. Technical Report R-315, Department of Computer Science, University of
California, Los Angeles, 2004.

[12] Blai Bonet and Hector Geffner. Faster heuristic search algorithms for planning with uncer-
tainty and full feedback. In Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, pages 1233–1238, 2003.

221

[13] Blai Bonet and Hector Geffner. Labeled RTDP: Improving the convergence of real-time
dynamic programming. In Proceedings of the First International Conference on Automated
Planning and Scheduling, pages 12–21, 2003.

[14] Blai Bonet and Hector Geffner. Learning depth-first search: A unified approach to heuris-
tic search in deterministic and non-deterministic settings, and its application to MDPs. In
Proceedings of the Fourth International Conference on Automated Planning and Scheduling,
pages 3–23, 2006.

[15] Blai Bonet and Hector Geffner. Action selection for mdps: Anytime AO* versus UCT. In
Proceedings of the Twenty-sixth AAAI Conference on Artificial Intelligence, 2012.

[16] Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121(1-2):49–107, 2000.

[17] Daniel Bryce and Olivier Buffet. International planning competition, uncertainty part: Bench-
marks and results. In http://ippc-2008.loria.fr/wiki/images/0/03/Results.pdf, 2008.

[18] Daniel Bryce, William Cushing, and Subbarao Kambhampati. Probabilistic planning is multi-
objective! Technical Report ASU CSE TR-07-006, Department of Computer Science and
Engineering, Arizona State University, 2007.

[19] Olivier Buffet and Douglas Aberdeen. The factored policy-gradient planner. Artificial Intel-
ligence, 173(5-6):722–747, 2009.

[20] Tom Bylander. The computational complexity of propositional STRIPS planning. Artificial
Intelligence, 69:165–204, 1994.

[21] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger. Markov decision pro-
cesses with multiple objectives. In Proceedings of Twenty-third Annual Symposium on Theo-
retical Aspects of Computer Science, pages 325–336, 2006.

[22] Peter Clark and Tim Niblett. The CN2 induction algorithm. In Machine Learning, pages
261–283, 1989.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2001.

[24] Peng Dai and Judy Goldsmith. LAO*, RLAO*, or BLAO*. In Proceedings of AAAI workshop
on heuristic search, pages 59–64, 2006.

[25] Johan de Kleer. An assumption-based tms. Artificial Intelligence, 28:127–162, 1986.

222

[26] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation.
Computational Intelligence, 5(3):142–150, 1989.

[27] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

[28] Zohar Feldman and Carmel Domshlak. Simple regret optimization in online planning for
markov decision processes. arXiv:1206.3382v2, 2012.

[29] Zhengzhu Feng and Eric A. Hansen. Symbolic heuristic search for factored Markov decision
processes. In Proceedings of the Eighteenth National Conference on Artificial Intelligence,
pages 455–460, 2002.

[30] Zhengzhu Feng, Eric A. Hansen, and Shlomo Zilberstein. Symbolic generalization for on-line
planning. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelli-
gence, pages 209–216, 2003.

[31] C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match problem. In
Artificial Intelligence, volume 19, pages 17–37, 1982.

[32] J. Foss, N. Onder, and D. Smith. Preventing unrecoverable failures through precautionary
planning. In ICAPS’07 Workshop on Moving Planning and Scheduling Systems into the Real
World, 2007.

[33] Sylvain Gelly and David Silver. Achieving master level play in 9x9 computer Go. In Pro-
ceedings of the Twenty-third AAAI Conference on Artificial Intelligence, pages 1537–1540,
2008.

[34] A. Gerevini, A. Saetti, and I. Serina. Planning through stochastic local search and temporal
action graphs. Journal of Artificial Intelligence Research, 20:239–290, 2003.

[35] Judy Goldsmith, Michael L. Littman, and Martin Mundhenk. The complexity of plan exis-
tence and evaluation in probabilistic domains. In Proceedings of the Thirteenth Conference
on Uncertainty in Artificial Intelligence, 1997.

[36] Geoffrey J. Gordon. Stable function approximation in dynamic programming. In Proceedings
of the Twelfth International Conference on Machine Learning, pages 261–268, 1995.

[37] Charles Gretton and Sylvie Thiébaux. Exploiting first-order regression in inductive policy se-
lection. In Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence,
pages 217–225, 2004.

[38] Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia. Generalizing plans to
new environments in relational MDPs. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, pages 1003–1010, 2003.

223

[39] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution
algorithms for finite MDPs. Journal of Artificial Intelligence Research, 19:399–468, 2003.

[40] Eric A. Hansen. Suboptimality bounds for stochastic shortest path problems. In Proceedings
of the Twenty-seventh Conference on Uncertainty in Artificial Intelligence, pages 301–310,
2011.

[41] Eric A. Hansen and Shlomo Zilberstein. LAO*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129:35–62, 2001.

[42] P. Haslum and H. Geffner. Admissible heuristic for optimal planning. In AIPS, page 140149,
2000.

[43] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic planning
using decision diagrams. In Proceedings of the Fifteenth Conference on Uncertainty in Arti-
ficial Intelligence, pages 279–288, 1999.

[44] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

[45] Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

[46] Stratton C. Jaquette. Markov decision processes with a new optimality criterion: Discrete
time. The Annals of Statistics, 1(3):496–505, 1973.

[47] S. Kambhampati, S. Katukam, and Q. Yong. Failure driven dynamic search control for partial
order planners: an explanation based approach. Artificial Intelligence, 88:253–315, 1996.

[48] Philipp Keller, Shie Mannor, and Doine Precup. Automatic basis function construction for
approximate dynamic programming and reinforcement learning. In ICML’06, pages 449–
456, 2006.

[49] Thomas Keller and Patrick Eyerich. Probabilistic planning based on UCT. In Proceedings of
the Tenth International Conference on Automated Planning and Scheduling, 2012.

[50] Emil Keyder and Hector Geffner. The HMDP planner for planning with probabilities. In
Sixth International Planning Competition at ICAPS’08, 2008.

[51] C. Knoblock, S. Minton, and O. Etzioni. Integrating abstraction and explanation-based learn-
ing in PRODIGY. In Ninth National Conference on Artificial Intelligence, 1991.

[52] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Proceedings
of the Seventeenth European Conference on Machine Learning, pages 282–293, 2006.

224

[53] S. Koenig and Y. Liu. The interaction of representations and planning objectives for decision-
theoretic planning tasks. In Journal of Experimental and Theoretical Artificial Intelligence,
volume 14, pages 303–326, 2002.

[54] Andrey Kolobov, Peng Dai, Mausam, and Daniel S. Weld. Reverse iterative deepening for
finite-horizon MDPs with large branching factors. In Proceedings of the Tenth International
Conference on Automated Planning and Scheduling, 2012.

[55] Andrey Kolobov, Mausam, and Daniel S. Weld. ReTrASE: Integrating paradigms for approx-
imate probabilistic planning. In Proceedings of the Twenty-first International Joint Confer-
ence on Artificial Intelligence, 2009.

[56] Andrey Kolobov, Mausam, and Daniel S. Weld. Classical planning in MDP heuristics: with
a little help from generalization. In Proceedings of the Eighth International Conference on
Automated Planning and Scheduling, pages 97–104, 2010.

[57] Andrey Kolobov, Mausam, and Daniel S. Weld. SixthSense: Fast and reliable recognition
of dead ends in MDPs. In Proceedings of the Twenty-fourth AAAI Conference on Artificial
Intelligence, 2010.

[58] Andrey Kolobov, Mausam, and Daniel S. Weld. Discovering hidden structure in factored
MDPs. Artificial Intelligence, 189:19–47, 2012.

[59] Andrey Kolobov, Mausam, and Daniel S. Weld. LRTDP vs. UCT for online probabilistic
planning. In Proceedings of the Twenty-sixth AAAI Conference on Artificial Intelligence,
2012.

[60] Andrey Kolobov, Mausam, and Daniel S. Weld. A theory of goal-oriented MDPs with dead
ends. In Proceedings of the Twenty-eighth Conference on Uncertainty in Artificial Intelli-
gence, 2012.

[61] Andrey Kolobov, Mausam, Daniel S. Weld, and Hector Geffner. Heuristic search for gener-
alized stochastic shortest path MDPs. In Proceedings of the Ninth International Conference
on Automated Planning and Scheduling, 2011.

[62] R. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intel-
ligence, 27:97109, 1985.

[63] N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic least-commitment
planning. In Proceedings of the Twelth National Conference on Artificial Intelligence, pages
1073–1078, 1994.

[64] Iain Little, Douglas Aberdeen, and Sylvie Thiébaux. Prottle: A probabilistic temporal plan-
ner. In Proceedings of the Twentieth National Conference on Artificial Intelligence, pages
1181–1186, 2005.

225

[65] Iain Little and Sylvie Thiebaux. Probabilistic planning vs. replanning. In ICAPS Workshop
on IPC: Past, Present and Future, 2007.

[66] Michael L. Littman. Probabilistic propositional planning: representations and complexity. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence, 1997.

[67] S. Majercik and M. Littman. Contingent planning under uncertainty via stochastic satisfia-
bility. Artificial Intelligence, 147(1-2):119162, 2003.

[68] Petr Mandl. On the variance in controlled Markov chains. Kybernetika, 7(1), 1971.

[69] Shie Mannor and John Tsitsiklis. Mean-variance optimization in Markov decision processes.
In ICML, 2011.

[70] Mausam, Piergiorgio Bertoli, and Daniel S. Weld. A hybridized planner for stochastic do-
mains. In Proceedings of the Twentieth International Joint Conference on Artificial Intelli-
gence, pages 1972–1978, 2007.

[71] Mausam and Andrey Kolobov. Planning with Markov Decision Processes: An AI Perspective.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool
Publishers, 2012.

[72] Mausam and Daniel S. Weld. Solving concurrent Markov decision processes. In Proceedings
of the Nineteenth National Conference on Artificial Intelligence, pages 716–722, 2004.

[73] H. Brendan Mcmahan, Maxim Likhachev, and Geoffrey J. Gordon. Bounded real-time dy-
namic programming: RTDP with monotone upper bounds and performance guarantees. In
Proceedings of the Twenty-second International Conference on Machine Learning, pages
569–576, 2005.

[74] Teodor Mihai Modovan and Pieter Abbeel. Risk aversion in Markov decision processes via
near-optimal Chernoff bounds. In NIPS, 2012.

[75] Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing, 1980.

[76] Nils J. Nilsson. Shakey the robot. Technical Report 323, SRI International, 1984.

[77] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision pro-
cesses. Mathematics of Operations Research, 12(3):441–450, 1987.

[78] J. S. Penberthy and D. Weld. UCPOP: A sound, complete, partial-order planner for ADL. In
Third International Conference on Knowledge Representation and Reasoning (KR-92), 1992.

226

[79] Scott Proper and Prasad Tadepalli. Scaling model-based average-reward reinforcement learn-
ing for product delivery. In ECML, pages 735–742, 2006.

[80] Martin L. Puterman. Markov Decision Processes. John Wiley & Sons, 1994.

[81] Martin L. Puterman and M. C. Shin. Modified policy iteration algorithms for discounted
Markov decision problems. Management Science, 24, 1978.

[82] Raghuram Ramanujan and Bart Selman. Trade-offs in sampling-based adversarial planning.
In ICAPS’11, 2011.

[83] Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research, 39:127–177, 2010.

[84] Nicholas Roy and Geoffrey Gordon. Exponential family PCA for belief compression in
POMDPs. In NIPS’02, pages 1043–1049. MIT Press, 2003.

[85] Scott Sanner. Relational dynamic influence diagram language (RDDL): Language descrip-
tion. http://users.cecs.anu.edu.au/s̃sanner/IPPC 2011/RDDL.pdf, 2010.

[86] Scott Sanner. ICAPS 2011 international probabilistic planning competition.
http://users.cecs.anu.edu.au/s̃sanner/IPPC 2011/, 2011.

[87] Scott Sanner and Craig Boutilier. Practical linear value-approximation techniques for first-
order MDPs. In Proceedings of the Twenty-second Conference on Uncertainty in Artificial
Intelligence, 2006.

[88] Scott Sanner, Robby Goetschalckx, Kurt Driessens, and Guy Shani. Bayesian real-time dy-
namic programming. In Proceedings of the Twenty-first International Joint Conference on
Artificial Intelligence, 2009.

[89] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 1 of
Algorithms and Combinatorics. Springer, 2003.

[90] Trey Smith and Reid G. Simmons. Focused real-time dynamic programming for MDPs:
Squeezing more out of a heuristic. In Proceedings of the Twenty-first National Conference
on Artificial Intelligence, 2006.

[91] Matthew J. Sobel. The variance of discounted Markov decision processes. Journal of Applied
Probability, 19(4):794–802, 1982.

[92] Robert St-Aubin, Jesse Hoey, and Craig Boutilier. APRICODD: Approximate policy con-
struction using decision diagrams. In Advances in Neural Information Processing Systems,
pages 1089–1095, 2000.

227

[93] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[94] R. Tarjan. Depth-first search and linear graph algorithms. In SIAM Journal on Computing,
pages 1(2):146–160, 1972.

[95] Florent Teichteil-Königsbuch, Ugur Kuter, and Guillaume Infantes. Incremental plan aggre-
gation for generating policies in MDPs. In Proceedings of the Ninth International Conference
on Autonomous Agents and Multiagent Systems, pages 1231–1238, 2010.

[96] Florent Teichteil-Königsbuch. Stochastic safest and shortest path problems. In Proceedings
of the Twenty-sixth AAAI Conference on Artificial Intelligence, 2012.

[97] J. A. E. E. van Nunen. A set of successive approximation methods for discounted Markovian
decision problems. Mathematical Methods of Operations Research, 20(5):203–208, 1976.

[98] K. Wakuta. Vector-valued Markov decisionprocesses and the systems of linear inequalities.
Stochastic Processes and their Applications, 56:159–169, 1995.

[99] Sungwook Yoon, Alan Fern, and Robert Givan. FF-Replan: A baseline for probabilistic
planning. In Proceedings of the Fifth International Conference on Automated Planning and
Scheduling, 2007.

[100] Sungwook Yoon, Alan Fern, Subbarao Kambhampati, and Robert Givan. Probabilistic plan-
ning via determinization in hindsight. In Proceedings of the Twenty-third AAAI Conference
on Artificial Intelligence, pages 1010–1016, 2008.

[101] Håkan L. S. Younes and Michael Littman. PPDDL1.0: The language for the probabilistic
part of IPC-4. In Fourth International Planning Competition at ICAPS’04, 2004.

[102] Håkan L. S. Younes and Reid G. Simmons. Policy generation for continuous-time stochastic
domains with concurrency. In ICAPS, pages 325–334, 2004.

228

Appendix A

THEOREM PROOFS

Theorem 3.2. NOGOOD-DECISION is PSPACE-complete. ♦

Proof. First, we show that NOGOOD-DECISION ∈ PSPACE. To verify that a conjunction is a

nogood, we can verify that each state this conjunction represents is a dead end. For each state, such

verification is equivalent to establishing plan existence in the all-outcomes determinization of the

MDP. This problem is PSPACE-complete [20], i.e., is in PSPACE. Thus, nogood verification

can be broken down into a set of problems in PSPACE, and is in PSPACE itself.

To complete the proof, we point out that the aforementioned problem of establishing deter-

ministic plan existence is an instance of NOGOOD-DECISION, providing a trivial reduction to

NOGOOD-DECISION from a PSPACE-complete problem.

Theorem 5.1. The Optimality Principle for Generalized SSP MDPs. For a GSSPs0 MDP, define

V π(hs,t) = E[
∑∞

t′=0R
πhs,t
t′+t] for any state s, time step t, execution history hs,t, and policy π proper

w.r.t. hs,t. Let V π(hs,t) = −∞ if π is improper w.r.t. hs,t. The optimal value function V ∗ for this

MDP exists, is stationary Markovian, and satisfies, for all s ∈ S,

V ∗(s) = max
a∈A

[∑
s′∈S
T (s, a, s′)[R(s, a, s′) + V ∗(s′)]

]
(5.6)

and, for all sg ∈ G, V ∗(sg) = 0. Moreover, at least one optimal policy π∗s0 proper w.r.t. s0 and

greedy w.r.t. the optimal value function is stationary deterministic Markovian and satisfies, for all

s ∈ S,

229

π∗s0(s) = argmax
a∈A

[∑
s′∈S
T (s, a, s′)[R(s, a, s′) + V ∗(s′)]

]
.

♦

Proof. The proof’s main insight is that a GSSPs0 MDP can be converted to an equivalent SSPs0

MDP problem in which each of the GSSPs0 MDP’s potential transient traps has been collapsed

into a single state. Although the asymptotic complexity of the conversion procedure is polynomial

and thus comparable to the cost of solving the GSSPs0 MDP, the procedure demonstrates that the

optimal value function and policy for a GSSPs0 problem have some of the same properties as for

the corresponding SSPs0 instance.

Given a GSSPs0 MDP M = 〈S,A, T ,R,G, s0〉, construct another MDP M̂ =

〈Ŝ, Â, T̂ , R̂, Ĝ, ŝ0〉 using the following procedure, implemented with minor modifications by the

Transform-MDP method in Algorithm 5.2 if this method is provided with the set of all potential

traps of M :

• Let Ŝ be the same as S , but for each potential transient trap in S replace the set S ⊆ S of all

states in this trap by a single state ŝ in Ŝ. Also, let Ŝ contain no states of M that do not have

a proper policy, i.e., states from which reaching the goal with probability 1 is impossible.

• Let Â, T̂ , and R̂ be constructed as in lines 6 and 19-51 of Algorithm 5.2, but for any state

s ∈ S and action a ∈ A, if a with a positive probability leads from s to a state without a

proper policy in M , then skip a during the conversion procedure when iterating over actions

for s.

• Let Ĝ = G.

• Let ŝ0 = s0 (or, if s0 is in a potential transient trap in M , let ŝ0 be the state that replaces that

trap in M̂).

230

The above transformation of M into M̂ throws away all states without a proper policy, along

with actions that lead to them from the other states, and turns every potential transient trap into a

single state without deterministic self-loops. As a result, M̂ has a complete proper policy. Moreover,

other than the goal, its transition graph contains no strongly connected components (SCCs) all of

whose internal transitions have zero reward, because every such SCC would be part of a potential

transient trap, and such traps have been eliminated during the conversion.

Last but not least, every policy improper w.r.t. a state has an infinitely negative reward from

that state in M̂ . To see why this is so, note that in the original MDP M , for every policy π and

every state s, V π
+ (s) < ∞, according to the second requirement of the GSSPs0 MDP definition

(5.1), and the above transformation from M to M̂ preserves this property. Now, suppose that π is

improper w.r.t. a state s in M̂ . For this policy, the expected number of state transitions to reach

the goal from s is infinite. Therefore, with a positive probability a given trajectory of π starting

at s makes an infinite number of transitions without reaching the goal. Consider such an infinite

trajectory of π. Since V π
+ (s) < ∞ and the reward for all transitions is bounded from above, this

trajectory almost surely makes only a finite number of positive-reward transitions. This implies that

the number of its negative-reward transitions is infinite with a positive probability. If the number

of negative-reward transitions was almost surely finite, after a finite number of steps the trajectory

would, with a positive probability, take only zero-reward transitions. This is possible only if the

trajectory entered a goal state, a potential transient trap, or a potential permanent trap. However, by

our assumption, this trajectory never reaches the goal, and M̂ has no potential traps by construction.

Thus, the number of zero-reward transitions in the trajectory has to be almost surely finite, and

the number of negative-reward ones must be infinite with a positive probability. Since all negative

rewards are bounded away from zero, this implies that with a positive probability the reward of a

trajectory of π starting at s is infinitely negative, and hence V π(s) = −∞.

Thus, by construction, M̂ meets all the conditions of the SSPs0 definition (2.19). Furthermore,

note that for any policy π proper w.r.t s0 for the GSSPs0 MDP M there is a corresponding policy

proper π̂ in M̂ . In the states that M and M̂ have in common, π̂ selects an action in the same way

that π does. In the states of M that are in a potential transient trap S whose corresponding state in

M̂ is ŝ, π̂ selects the same action in ŝ as π does in M when π exits S. Thus, π behaves differently

from π̂ only within potential transient traps. However, the reward of all transitions within these traps

231

is strictly zero; therefore, π and π̂ have the same expected reward from corresponding states. In fact,

the correspondence between policies goes the other way as well; for every policy π̂ for M̂ , there is

a policy π for M that behaves like π̂ in the states that M and M̂ have in common and in the states

from which π exits potential transient traps. Within potential transient traps, π chooses actions so

that an agent that follows π and enters such a trap reaches, with probability 1, a state from which

the trap can be exited. In the rest of the proof, we will refer to such states as exit states. Selecting

actions in this way is always possible, because a potential transient trap is an SCC in M ’s transition

graph.

This two-way correspondence between the policies of M and M̂ , along with the corresponding

policies having equivalent value functions, implies that the optimal value function V ∗ of M is

equivalent to the optimal value function V̂ ∗ of M̂ , a SSPs0 MDP. Namely,

• For the states s that M and M̂ have in common, V ∗(s) = V̂ ∗(s).

• For the states s ∈ S where S is a potential transient trap ofM and ŝ is the trap’s corresponding

state in M̂ , V ∗(s) = V̂ ∗(ŝ).

• For all other states s ofM (i.e., states without a proper policy, including states inM ’s potential

permanent traps), V ∗(s) = −∞.

According to the Optimality Principle for SSP MDPs (Theorem 2.3), V̂ ∗ of M̂ satisfies Equation

5.6. Therefore, so does V ∗. For the states of M outside of potential traps, this result is trivial

because of the correspondence between M and M̂ . For the states of M without a proper policy,

V ∗(s) = −∞, and hence also satisfies Equation 5.6. For the states of M in a potential transient trap

S, there are two cases to consider:

1. States s all of whose successors s′ under any V ∗-greedy action a are in the same trap as

s itself. The result for such states s follows because for all their V ∗-greedy successors s′,

V ∗(s′) = V ∗(s) andR(s, a, s′) = 0.

2. States s some of whose successors are inside S and some are outside. The result for them

follows immediately from the correspondence between M and M̂ .

232

Thus, the first part of the theorem, claiming the validity of Equation 5.6 for V ∗, has been established.

We now prove the second part of the theorem, claiming the existence of at least one optimal

s.d.M. policy for a GSSPs0 MDP. Since, according to the Optimality Principle for SSP MDPs, such

a policy exists for the constructed MDP M̂ , for all states outside of M ’s traps and the exit states

of M ’s potential transient traps, there exists a V ∗-greedy s.d.M. policy that reaches either the goal

or a state in a potential transient trap. A V ∗-optimal s.d.M. policy also exists for states without a

proper policy (including those in potential permanent traps), since all policies for these states are

V ∗-optimal. Therefore, it remains to show that for any non-exit state s and any exit state s′′ in

any potential transient trap S, there exists an s.d.M. policy that eventually reaches s′′ from s with

probability 1. To see why this is true, consider an MDP MS that has S as the state space, any non-

exit s ∈ S as the initial state, any exit s′′ ∈ S as the goal state, the same transition function as M

over the states in S, and a cost function that assigns a cost of 1 to every transition. Note that since a

potential transient trap is an SCC inM ’s transition graph,MS must have a proper policy w.r.t. s, i.e.,

a policy that reaches s′′ with probability 1. This, along with MS’s cost function, implies that MS is

an SSPs0 MDP. Therefore, MS has an s.d.M. policy greedy w.r.t. MS’s optimal value function that

is guaranteed to reach s′′ from s. However, since this policy uses only actions that transition within

S and all such actions are greedy w.r.t. M ’s optimal value function V ∗ over S, this policy must be

greedy also w.r.t. M ’s V ∗. To summarize, M has a V ∗-greedy s.d.M. policy that reaches from any

state outside of potential traps either to the goal or to a potential transient trap, and, for every such

trap, has a policy that reaches from any state in the trap to any exit from the trap with probability 1.

Combining these policies yields an optimal s.d.M. policy for M .

Lemma A.1. Any contraction M̂ of a GSSPs0 MDP M is also a GSSPs0 MDP. ♦

Proof. LikeM , M̂ satisfies both conditions of the GSSPs0 MDP definition (5.1). M̂ has a policy π̂

proper w.r.t. its initial state because such a policy π exists forM . If a trap ofM that is visited by π is

233

represented (Definition 5.8) by a state ŝ of M̂ , then, by the construction of M̂ , the goal is reachable

from ŝ with probability 1; thus, replacing some of M ’s traps by single states does not prevent the

existence of proper policies for M̂ . Also, every policy for M̂ satisfies the second condition of the

GSSPs0 MDP definition: if some policy π for M̂ did not satisfy it, then there would be a policy for

M that does not satisfy it, contradicting the assumption that M is a GSSPs0 MDP.

Lemma A.2. For a GSSPs0 MDP, an admissible value function monotonic w.r.t. BGSSPs0 (s) for all

states s must assign the same value to all states in a given potential transient or permanent trap. ♦

Proof. Suppose for a contradiction that an admissible (Definition 2.36) monotonic (Definition

2.29) value function V assigns different values to states in some potential trap. Note that such a

trap must necessarily have at least two states. Consider states s of this trap s.t. V (s) = Vmin, where

Vmin is the smallest value of V over this trap’s states. At least one such state s× must have an action

a s.t. QV (s×, a) > V (s×). This is because in each state s of this potential trap there is at least

one action that leads only to states in the same trap and has a positive probability of transitioning

from s to s′ 6= s; moreover, if V (s) = Vmin then at least one of the other states in the trap has

V (s′) > V (s), while the value of the rest is at least V (s). Consider applying BGSSPs0 (s×) to V .

Since s× has an action a s.t. QV (s×, a) > V (s×), BGSSPs0 (s×)V (s×) > V (s×). This implies that

V is not monotonic w.r.t. BGSSPs0 (s×), contradicting the assumption of the theorem.

Lemma A.3. For a GSSPs0 MDP, an admissible value function monotonic w.r.t. BGSSPs0 (s) for all

states s is a fixed point for all BGSSPs0 (s′) s.t. s′ is in a potential transient or permanent trap. ♦

234

Proof. The lemma essentially says that local Bellman backup cannot modify an admissible mono-

tonic value function V at states in potential traps. By the definition of a potential trap, in every state

s′ of a potential traps at least one action leads only to the states of the same trap and has a reward

of zero. As a consequence of Lemma A.2 and the definition of local Bellman backup (Equation

5.8), the Q-value of any such action under V must be V (s′). Moreover, at least one such action

must necessarily be V -greedy in s′: if no such action was V -greedy in s′, then the Q-value of a

V -greedy action in s′ would have to be greater than V (s′), implying that V would not monotonic

w.r.t. BGSSPs0 (s′). Therefore, applying BGSSPs0 (s′) to V would not change V .

Lemma A.4. For a GSSPs0 MDP and any state s of that MDP, the local Bellman backup operator

BGSSPs0 (s) for any state s preserves the admissibility and monotonicity of value functions that are

monotonic w.r.t. BGSSPs0 (s′) for all states s′. ♦

Proof. Restated mathematically, the theorem claims that if V ≥ V ∗ and, for all s ∈ S ,

BGSSPs0 (s)V ≤ V , then, for any s, s′ ∈ S, BGSSPs0 (s)V ≥ V ∗ and BGSSPs0 (s′)BGSSPs0 (s)V ≤

BGSSPs0 (s)V .

Recall from the proof of the Optimality Principle for GSSPs0 MDPs (Theorem 5.1) that a

GSSPs0 MDP M with an optimal value function V ∗ can be converted to an SSPs0 MDP M̂ with

an optimal value function V̂ ∗ that is “equivalent” to V ∗. Similarly, any admissible (Definition 2.36)

value function V forM monotonic (Definition 2.29) w.r.t. BGSSPs0 (s) for all states ofM can be con-

verted to an admissible value function V̂ for M̂ monotonic w.r.t. the local Bellman backup operator

BSSP (s) for all states of M̂ . When discussing the admissibility of SSPs0 MDPs’ value functions

in this proof, for convenience we will take the reward-oriented, not cost-oriented view and call an

SSPs0 MDP’s value function V̂ admissible if V̂ ≥ V̂ ∗. To convert V to V̂ , for any state s′′ that

M and M̂ have in common, let V̂ (s′′) = V (s′′). For all states s′′ in a potential transient trap of

235

M that are represented (Definition 5.8) by a state ŝ in M̂ , let V̂ (ŝ) = V (s′′). This conversion is

well-defined because, according to Lemma A.2, all states in a given potential transient trap of M

have the same value under V . Since V is admissible and monotonic w.r.t. BGSSPs0 (s) in M , the

equivalence of M and M̂ and their optimal value functions V ∗ and V̂ ∗ (see the proof of Theorem

5.1) implies that V̂ is admissible and monotonic w.r.t. BSSP (s) in M̂ . We will use the equivalence

of V and V̂ to show that the claim in the theorem holds for BGSSPs0 (s) and GSSPs0 MDPs because

it holds for BSSP (s) and SSPs0 MDPs.

In particular, to see that BGSSPs0 (s) preserves value function admissibility, observe that for SSPs0

MDPs, the local Bellman backup operator BSSP (s) for any state s preserves admissibility, because

the full Bellman backup operator for SSP MDPs does [5]. Therefore, for any state s of M that

is outside of any potential traps, BGSSPs0 (s)V (s) = BSSP (s)V̂ (s) ≥ V̂ ∗(s) = V ∗(s). If s is in

a potential transient or permanent trap of M , then BGSSPs0 (s)V (s) = V (s), because at least one

V -greedy action in s has zero reward and leads only to the states of the same trap, all of which have

the same value as s under V . Recalling that BGSSPs0 (s) changes any value function only at s, these

facts let us conclude that for any state s of M , BGSSPs0 (s)V is admissible.

Similarly, BSSP (s) for any state s in M̂ is known to preserve value function monotonicity [5].

Therefore, for any state s, V̂ ′ = BSSP (s)V̂ is monotonic in M̂ . Now, let V ′ = BGSSPs0 (s)V for

M . We will now show that for any s, s′, BGSSPs0 (s′)BGSSPs0 (s)V = BGSSPs0 (s′)V
′ ≤ V ′. First,

suppose s is outside of potential traps in M . In this case, V ′(s′) = V̂ ′(s′) for all s′ outside of M ’s

potential traps and V ′(s′) = V̂ ′(ŝ′) = V (s′) for all s′ in M ’s potential transient traps, where ŝ′ is

M̂ ’s state representing (Definition 5.8) each s′ in a potential trap. For s′ outside of potential traps,

BGSSPs0 (s′)V
′ = BSSP (s′)V̂

′, and since, due to V̂ ′’s monotonicity, BSSP (s′)V̂
′ ≤ V̂ ′ for M̂ , it

must be that BGSSPs0 (s′)V
′ ≤ V ′ for M , i.e., V ′ is monotonic w.r.t. BGSSPs0 (s′) for such states s′.

If s′ is in a potential trap of M then BGSSPs0 (s′)V
′ = V ′, so V ′ is monotonic w.r.t. BGSSPs0 (s′) for

such states s′ too. Thus, BGSSPs0 (s) preserves monotonicity of an admissible monotonic V if s is

outside of potential traps. The case when s is in a potential trap is much easier: for these states,

BGSSPs0 (s)V = V . Therefore, BGSSPs0 (s) preserves monotonicity of an admissible monotonic V

for all states s.

236

Lemma A.5. Let E denote the ELIMINATE-TRAPS operator implemented in lines 27-46 of Algo-

rithm 5.1. Let M be a GSSPs0 MDP, let V be a value function for M , and let 〈M̂, V̂ 〉 = E 〈M,V 〉.

If V is admissible and monotonic w.r.t. the local Bellman backup operator BGSSPs0 (s) for all states

s of M , then V̂ is admissible and monotonic w.r.t. the local Bellman backup operator BGSSPs0 (s)

for all states s of M̂ . ♦

Proof. ELIMINATE-TRAPS constructs M̂ by eliminating all traps in the greedy graph GVs0 of M

and produces a value function V̂ for M̂ defined as in the proof of Lemma A.4 and of the Optimality

Principle for GSSPs0 MDPs (Theorem 5.1). Namely, for each state ŝ of M̂ that represents an

eliminated trap of M all of whose states s have value V (s), V̂ (ŝ) = V (s); for each state s that M

and M̂ have in common, V̂ (s) = V (s). By the same reasoning as at the beginning of the proof

of Lemma A.4 and of the Optimality Principle for GSSPs0 MDPs (Theorem 5.1), admissibility and

monotonicity of V for M implies admissibility and monotonicity of V̂ for M̂ .

Lemma A.6. For a GSSPs0 MDP M , suppose FRET is run until ε-consistency and halts at a con-

traction M̂ of M and a value function V̂ for M̂ . Then the greedy graph GV̂ŝ0 of M̂ does not contain

any transient or permanent traps. ♦

Proof. The claim follows directly from the fact that FRET halts only when its ELIMINATE-

TRAPS step cannot find (and hence eliminate) any more traps in the greedy graphGV̂ŝ0 of the current

value function V̂ and MDP M̂ (line 13 of Algorithm 5.1).

Theorem 5.6. For a GSSPs0 MDP and any ε > 0, if FRET has a systematic FIND procedure and

is initialized with an admissible heuristic that is finite and monotonic w.r.t. BGSSPs0 (s) for all states

237

s, then FRET converges to a value function that is ε-consistent over the states in its greedy graph

rooted at s0 after a finite number of REVISE and ELIMINATE-TRAPS steps. ♦

Proof. The theorem statement consists of two parts. First, we show that for any ε > 0, FRET con-

verges after a finite number of REVISE and ELIMINATE-TRAPS steps, and then demonstrate that

the resulting value function is ε-consistent over its greedy graphGVs0 . By Lemmas A.4, A.5, and A.1,

for a GSSPs0 MDPM , operators BGSSPs0 (s) for all states s and E preserve admissibility (Definition

2.36) and monotonicity (Definition 2.29) of value functions. Therefore, for M , the sequence of ex-

pansions (Definition 5.9) of the value functions generated by the REVISE and ELIMINATE-TRAPS

steps is monotonically decreasing (due to the monotonicity of the initializing value function V0) and

bounded from below by V ∗ at every state (due to the admissibility of V0). Since REVISE updates

only states at which the current value function V̂ of the current contraction M̂ ofM (Definition 5.7)

is ε-inconsistent, each REVISE step translates to a decrease of the expanded value function V by

at least ε at some state of M . Therefore, in light of the expansion sequence being monotonically

decreasing and bounded from below by V ∗, FRET can apply at most V0(s)−V ∗(s)
ε REVISE steps to

any single state s of M and to its representatives in contractions of M . The quantity V0(s)−V ∗(s)
ε is

finite for some states but not others. Divide the set S ofM ’s states into the set S ′I of states inside po-

tential permanent traps, the set SI of states outside of potential permanent traps for which there is no

proper policy, and the set SP of states for which such a policy exists (these sets are clearly disjoint).

For all states s ∈ S ′I , every monotonic value function is ε-consisent by Lemma A.3, so the REVISE

step is never applied to them by FRET — their values change only due to the ELIMINATE-TRAPS

updates. For any s ∈ SP , V ∗(s) is finite, so V0(s)−V ∗(s)
ε , the number of REVISE operations applied

to s and its representatives in contractions of M is finite as well. However, for any s ∈ SI , V ∗(s)

is infinitely negative, so the expression V0(s)−V ∗(s)
ε cannot be used to bound the number of REVISE

updates applied to such states and their represetatives by a finite value.

Nonetheless, the total number of REVISE operations FRET can perform on any state in SI and

its representatives before reaching ε-consistency must be finite. For contradiction, suppose it was

infinite for some s ∈ SI . Since every REVISE step decreases the expansion value of s by at least

ε, the expansion value of s would have to drop without bound. Moreover, since FRET only updates

238

states in GV̂ŝ0 , if FRET applied REVISE to s and its representatives an infinite number of times then

s or its representatives would have to either stay in GV̂ŝ0 forever or reenter GV̂ŝ0 at some point after

any finite number of REVISE steps. Due to the systematicity of the FIND procedure, s’s or its

representatives’ presence in GV̂ŝ0 after any finite number of REVISE steps would mean that V (s),

the value of s under the expanded value function, would eventually influence V (s0). Also, since

FRET updates only states reachable from s0 via an s.d.M. policy and there is a finite number of these

policies, there must exist a minimum positive probability with which s or its representatives can be

reached from ŝ0 in GV̂ŝ0 for any contraction M̂ and value function V̂ for it. This, in turn, implies that

if s or its representatives were present in GV̂ŝ0 indefinitely and V (s) dropped without bound, then

V (s0) would have to drop without bound as well. However, this contradicts the fact that for any

expansion V that FRET generates starting from an admissible heuristic, V (s0) ≥ V ∗(s0) > −∞,

because s0 has a proper policy, by condition 1 of the GSSPs0 MDP definition (5.1). To summarize,

before it halts, FRET can apply only finitely many REVISE operations.

Now, consider the number of ELIMINATE-TRAPS steps that FRET executes. Observe that

every ELIMINATE-TRAPS operation yields a contraction ofM that has at least one trap fewer than

M . Any GSSPs0 MDP M has a finite number of traps, so FRET can apply only a finite number of

ELIMINATE-TRAPS steps toM and its contractions before it yields a contraction that has no traps.

As proved above, the total number of REVISE steps before FRET halts is finite as well, concluding

the proof of the first part of the theorem.

The second part of the theorem claims that when FRET converges, its value function is ε-

consistent over the states in its greedy graph rooted at s0. For contradiction, suppose that FRET

halted at a value function V whose GVs0 contains a state s s.t. ResV (s) > ε. Since FRET halted

at V , FRET’s last ELIMINATE-TRAPS must have failed to find any traps in GVs0 , so the last FIND

operation before the last ELIMINATE-TRAPS step must have acted on the same value function V

at which FRET halted. Since the FIND procedure is systematic, it would have found s and caused a

REVISE step to be applied to V at s, decreasing V (s) by at least ε. This contradicts our assumption

that FRET halted at V .

239

Theorem 5.7. For a GSSPs0 MDP, if FRET has a systematic FIND procedure and is initialized

with an admissible heuristic that is finite and monotonic w.r.t. BGSSPs0 (s) for all states s, as ε goes

to 0 the value function and policy computed by FRET approaches, respectively, the optimal value

function and an optimal policy over all states reachable from s0 by at least one optimal s.d.M.

policy. ♦

Proof. The main insight of the proof is that running FRET on a GSSPs0 MDP amounts to gradually

eliminating transient and permanent traps, which, if FRET is executed for long enough, turns the

MDP into an SSPs0 problem. More concretely, the high-level approach will be to show that as ε

gets smaller, the contraction of the original MDP M at which FRET halts “stabilizes”, i.e., becomes

equal to some MDP M̂∗. M̂∗ turns out to be an SSPs0 MDP, meaning that running FRET for a

sufficiently small ε eventually reduces to executing FIND-AND-REVISE. Existing results about

the behavior of FIND-AND-REVISE on SSPs0 MDPs imply that as ε → 0, the value functions

produced by FIND-AND-REVISE approach the optimal value function V̂ ∗ of M̂∗. Moreover, V̂ ∗

can be easily transformed to the optimal value function V ∗ for the original MDP M over S∗, the set

of states in the greedy graph of V ∗ rooted at s0, completing the proof.

More specifically, pick a sequence {εk}∞k=0 s.t. εk > 0 for all k ≥ 0 and limk→∞ εk = 0. For

a given GSSPs0 MDP M and an admissible monotonic heuristic V0, let {M̂k}∞k=0 and {V̂k}∞k=0 be

sequences of MDPs and their value functions s.t., for each εk, if FRET is initialized with V0, given

M as input, and run until εk-consistency, FRET exits its main loop (lines 9-13 of Algorithm 5.1)

with MDP M̂k and this MDP’s value function V̂k. (The fact that from any εk > 0, FRET does exit

its main loop after a finite number of steps is implied by Theorem 5.6.) Let {Ŝk}∞k=0 be the sequence

of subsets of M̂ks’ state spaces s.t. Ŝk is the set of states in the greedy graph GV̂kŝ0 (Definition 2.34)

of V̂k rooted at M̂k’s initial state.

Finally, let Ŝ∗ be the set of all states that appear in infinitely many sets Ŝk. Note that the sets in

{Ŝk}∞k=0 are generally not subsets of the state space S of the original MDP M . Rather, they contain

states of S as well as representatives (Definition 5.8) of sets of states of S, the representatives

themselves not being members of S. We say that two different sets Ŝk′ and Ŝk′′ from our sequence

have a state in common if there is s′ ∈ Ŝk′ and s′′ ∈ Ŝk′′ s.t. either s′ = s and s′′ = s, where s ∈ S,

240

or both s′ and s′′ are representatives of the same subset of states of S (i.e., representatives of the

same trap of S). Thus, Ŝ∗ is the set of states each of which is in the intersection of infinitely many

sets in {Ŝk}∞k=0.

We now show that Ŝ∗ can be viewed as the state space of an SSPs0 MDP, and executing FRET

for a sufficiently small εk starting from M eventually reduces to running state value updates on this

MDP. To start with, observe that S∗ is nonempty, because it contains ŝ0 — either the initial state of

M or a representative of a trap of M in which s0 is located. Define an MDP M̂∗ whose state space

is Ŝ∗ and whose action space Â∗, transition function T̂ ∗, and reward function R̂∗ are constructed

as follows:

• Â∗ contains, for every state s ∈ Ŝ∗, only those actions that, in at least one MDP M̂k in the

MDP sequence {M̂k}∞k=0, are applicable in s and lead with a positive probability only to other

states of Ŝ∗. That is, Â∗ does not include any actions that lead from a state in Ŝ∗ to a state in

(
⋃∞
k=0 Ŝk) \ Ŝ∗. Note that these excluded actions are “unnecessary” in the following sense.

By the definition of Ŝ∗, each state in (
⋃∞
k=0 Ŝk) \ Ŝ∗ appears in only finitely many Ŝks. Also,

|
⋃∞
k=0 Ŝk| is finite, because is consists only of states of S and representatives of subsets of

S, and there are finitely many of each of these kinds of states. Therefore, there must exist the

smallest finite K s.t. for all k ≥ K, each Ŝk contains no states from outside of Ŝ∗, i.e., Ŝ∗

contains all of the states in GV̂kŝ0 . Moreover, for each k ≥ K, there must exist some nk s.t.

in all REVISE steps after the nk-th and until FRET halts, FRET uses only actions that cause

transitions only from states in Ŝ∗ to states in Ŝ∗. That it, for each εk s.t. k ≥ K, the last few

value function updates made by FRET over states in Ŝ∗ before halting at V̂k do not depend

on the values of states outside of Ŝ∗. If this was not the case for some k ≥ K, then GV̂kŝ0
would necessarily contain a state outside Ŝ∗, contradicting the fact that K − 1 was the largest

number for which this happens. To sum up, for a sufficiently small εk, actions outside of Â∗

do not play a role in the convergence of FRET.

• For every s ∈ Ŝ∗ and a ∈ Â∗ s.t. a is applicable in s, the transition probabilities and rewards

for using a in s are defined in the same way as in any MDP M̂k where a executed in s can

cause transitions only to states of Ŝ∗. By construction (see Algorithm 5.2), any two MDPs

241

M̂k′ and M̂k′′ that agree on the set of positive-probability successors of state s under action

a also agree on the the transition and reward functions for a at s, so the above definition of

these functions uniquely determines T̂ ∗ and R̂∗.

M̂∗ has no potential transient or permanent traps of the original MDP M , because, by Lemma

A.6, no GV̂kŝ0 contains them. This implies that M̂∗’s transition graph rooted at the initial state, Gŝ0 ,

has no strongly connected components with exclusively zero-reward internal transitions, other than

those involving goal states. At the same time, M̂∗’s state space Ŝ∗ contains at least one goal state

of M . For contradiction, suppose it did not. Then, since M̂∗ has no strongly connected compo-

nents with exclusively zero-reward internal transitions, every policy would have to accumulate an

infinitely negative reward (infinite cost) starting from ŝ0. Hence, there would have to exist some

ε′ > 0 s.t. no V̂ for M̂∗ is ε-consistent at ŝ0 and its descendants in GV̂ŝ0 for any ε < ε′ (i.e., Bellman

backups would never converge). This contradicts the fact that, by the construction of Ŝ∗, there exist

infinitely many value functions that are ε-consistent over all states in Ŝ∗ for an arbitrarily small ε.

Thus, we can define M̂∗ to have the goal set Ĝ = Ŝ∗ ∩ G, where G is the goal set of M .

Last but not least, M̂∗ contains no states without a proper policy. In particular, as already men-

tioned, it has no strongly connected components with exclusively zero-reward internal transitions,

and hence no states in potential permanent traps. It also does not contain states without a proper

policy that do not belong to any potential permanent trap, for the following reason. For any such

state s, any s.d.M. policy π̂ rooted at s must have at least one of three properties:

• It must with a positive probability lead to a potential permanent trap and stay there forever, or

• It must with a positive probability lead to a potential transient trap and stay there forever, or

• It must cause state transitions with a strictly negative reward an infinite number of times in

expectation, and transitions with a positive reward only a finite number of times in expectata-

tion. This is because such a policy involves an infinite number of steps, only a finite number

of which can involve transitions with positive rewards, since otherwise an equivalent policy

π in the original MDP M we would have V π
+ (s) = ∞, violating the second requirement

of the GSSPs0 MDP definition (5.1). Also, only a finite number of these steps can involve

242

zero-reward actions, since an infinite number of zero-reward steps would imply that the policy

leads to a potential trap and stays there forever. Thus, an infinite expected number of steps

must cause negative-reward transitions.

Now, suppose a state s without a proper policy was in Ŝ∗. Since M̂∗ has no traps, no policy rooted

as s can have either of the first two properties, so every such policy must satisfy the last property

and hence accumulate an infinite cost starting at s. By the same reasoning that proved the existence

of goal states in Ŝ∗, this would mean that no value function could be ε-consistent at s and all its

descendants simultaneously for a sufficiently small ε, contradicting the fact that, by the construction

of Ŝ∗, a value function ε-consistent at s and its descendants in M̂ ’s transition graph (all of which

would have to be in Ŝ∗) exists for an arbitrarily small ε > 0. Therefore, Ŝ∗ has a complete proper

policy. Moreover, this reasoning also implies that any policy that is improper w.r.t. some s ∈ Ŝ∗

has an infinitely negative expected reward at s.

To recapture the proof up to this point, we have established that for any εk s.t. k ≥ K, FRET

that starts to run on a GSSPs0 MDP M with an admissible monotonic heuristic ends up performing

updates on an MDP M̂∗ = 〈Ŝ∗, Â∗, T̂ ∗, R̂∗, Ĝ∗, ŝ0〉. M̂∗ has a complete proper policy, and every

policy for M̂∗ that is improper w.r.t. some state s accumulates an infinitely negative expected reward

starting at s. Thus, M̂∗ satisfies the definition of an SSPs0 MDP (2.19). Note that running FRET

on an SSPs0 MDP reduces to executing FIND-AND-REVISE — the ELIMINATE-TRAPS step is

executed on such MDPs only once, at the end, and has no effect because SSPs0 MDPs have no traps.

In addition, for any εk s.t. k ≥ K, at the moment when FRET reduces to FIND-AND-REVISE

running on M̂∗, it uses a monotonic admissible value function for M̂∗, as a consequence of Lemmas

A.4, A.5, and A.1. Running FIND-AND-REVISE on an SSPs0 MDP starting from an admissible

monotonic value function until ε-convergence is known to yield the optimal value function (and an

policy) over all states reachable by at least one optimal s.d.M. policy from the initial state as ε→ 0

(Theorem 32 in [11], Theorem 3 in [12]). Thus, as {εk}∞k=K converges to 0, the sequence {V̂k}∞k=K ,

which consists entirely of value functions for M̂∗, converges to V̂ ∗, the optimal value function for

M̂∗, over all states of Ŝ∗ reachable from ŝ0 by an optimal s.d.M. policy — we denote this set as Ŝ∗∗

Observing that the expansion of V̂ ∗, as defined in Equation 5.9, over the states in Ŝ∗∗ exactly

equals V ∗, the optimal value function for the original MDP M , over all states reachable in S from

243

s0 by at least one optimal s.d.M. policy for M completes the proof.

Theorem 5.8. For a GSSPs0 MDP, any policy πs0 derived by FRET from the optimal value function

is optimal and proper w.r.t. s0. ♦

Proof. The fact that πs0 is proper w.r.t. s0 follows directly from the observation that, by the con-

struction of πs0 , for every s in GV
∗

s0 , there exists a positive-probability trajectory from s to some

sg ∈ G under πs0 . Thus, by following πs0 from s0, an agent is guaranteed to eventually reach a goal

state.

To see why πs0 is optimal, recall from the proof of Theorem 5.1 that a GSSPs0 MDP M can

be converted to an equivalent SSPs0 MDP M̂ where each of M ’s potential transient traps has been

replaced by a single state. Consider converting πs0 to a policy π̂s0 for M̂ : for states outside of

M ’s potential transient traps, πs0 and π̂s0 coincide, and at any state ŝ of M̂ that replaces a poten-

tial transient trap S of M , π̂s0 chooses an action that πs0 uses in some state of S to exit S. By

construction, π̂s0 is greedy w.r.t. V̂ ∗, the optimal value function for M̂ . Hence, by the Optimality

Principle for SSP MDPs (Theorem 2.3), π̂s0 is optimal for M̂ and V̂ π̂ = V̂ ∗ for all states reach-

able by π̂s0 from s0. This, in turn, means that V π = V ∗ for all states reachable by πs0 from s0 in

M , i.e., that πs0 is optimal for M . This is the case because for all states s that are reachable via

πs0 from s0 and are outside of M ’s potential transient traps, V π(s) = V̂ π̂(s) = V̂ ∗(s) = V ∗(s);

similarly, for any s in a given potential transient trap S of M and the state ŝ that replaces S in M̂ ,

V π(s) = V̂ π̂(ŝ) = V̂ ∗(ŝ) = V ∗(s).

Theorem 5.10. POSB ⊂ GSSPs0 . ♦

Proof. By stating that POSB is contained in GSSPs0 we mean that for every MDP MPOSB ∈

POSB there exists an MDP MGSSPs0 ∈ GSSPs0 whose state space contains that of MPOSB and

244

whose every policy coincides with some policy for MPOSB over MPOSB’s state space and has the

same expected reward at each of these states. Therefore, we prove the theorem by showing how to

construct such an MGSSPs0 for any given MPOSB ∈ POSB.

Suppose we are given a POSB MDP MPOSB = 〈SPOSB,APOSB, TPOSB,RPOSB〉. Construct an

MDP MGSSPs0 = 〈SGSSPs0 ,AGSSPs0 , TGSSPs0 ,RGSSPs0 ,GGSSPs0 , s0〉, where:

• The initial state s0 is a new state, not present in SPOSB.

• SGSSPs0 = SPOSB ∪ {s0}.

• AGSSPs0 = APOSB.

• TGSSPs0 is s.t. TGSSPs0 (s, a, s′) = TPOSB(s, a, s′) for all s, s′ ∈ SPOSB, a ∈ APOSB. For

the initial state s0, any action a ∈ AGSSPs0 , and any state s′ ∈ SPOSB, TGSSPs0 (s0, a, s
′) =

1/|SPOSB|. That is, the only possible transitions from s0 are to the states of SPOSB, and all of

these transitions are equally likely no matter what action the agent chooses.

• RGSSPs0 is s.t. RGSSPs0 (s, a, s′) = RPOSB(s, a, s′) for all s, s′ ∈ SPOSB, a ∈ APOSB. For the

initial state s0, any action a ∈ AGSSPs0 , and any state s′ ∈ SPOSB,RGSSPs0 (s0, a, s
′) = 0, i.e.,

all transitions from s0 bring no reward.

• GGSSPs0 ⊂ SGSSPs0 is constructed as follows. LetGs0 be the full reachability graph ofMGSSPs0

rooted at s0. Build a DAG of SCCs of Gs0 and identify SCCs with no outgoing edges (i.e.,

leaves in the DAG) whose internal edges correspond to zero-reward actions inMPOSB. At least

one such SCC must exist, because in a POSB MDP every state has an action with nonnegative

reward but at the same time the expected sum of positive rewards of every policy in this MDP

is finite at every state, as the POSB MDP definition (5.10) requires. This means that every

policy from every state must eventually reach a region of the state space where it accumulates

no reward, which is exactly an SCC we are looking for. The goal set GGSSPs0 of our MDP

MGSSPs0 is the set of all states in all such SCCs.

Thus,MGSSPs0 equalsMPOSB except for adding an initial state and designating some ofMPOSB’s

existing states as goals. By construction, every policy for MGSSPs0 is identical to some policy for

245

MPOSB over the states in SPOSB and reaches one of these states in a single step if executed from the

initial state s0. Moreover, the expected reward of each MGSSPs0 ’s policy is the same in MGSSPs0 and

MPOSB over the states of SPOSB, because the reward functions of these MDPs coincide.

Crucially, thanks to the addition of the initial and goal states, MGSSPs0 is a GSSPs0 MDP. The

first requirement of the GSSPs0 definition (5.1) is satisfied by MGSSPs0 because, as explained during

the construction of GGSSPs0 , every policy for MGSSPs0 must eventually reach a zero-reward region

from every state (including s0), and each such region is a goal. The second requirement of the

GSSPs0 definition is satisfied as well, for the following reason. Over the states in SPOSB, every policy

for MGSSPs0 is identical to some policy for MPOSB, and each of the latter satisfies this requirement

by the definition of POSB MDPs (5.10). Moreover all ofMGSSPs0 ’s policies, when executed starting

at s0, reach a state in SPOSB in one step that brings the reward of 0. Therefore, the requirement is

satisfied for every policy for the state s0 as well. To summarize, MGSSPs0 meets all the criteria

outlined at the beginning of the proof.

Note that the containment of POSB in GSSPs0 is strict: GSSPs0 contains MDPs some of whose

states have only negative-reward actions, while POSB does not.

Theorem 5.11. NEG ⊂ GSSPs0 . ♦

Proof. Similar to the proof of Theorem 5.10, we show that for every MDP MNEG ∈ NEG there

exists an MDP MGSSPs0 ∈ GSSPs0 whose state space contains that of MNEG and whose policies,

along with their values, coincide with those for MNEG.

For a given MNEG, construct an MGSSPs0 as described in Theorem 5.10’s proof. Note that, as

for POSB, the reachability graph of a NEG MDP such as MNEG must contain strongly connected

components whose internal edges correspond to zero-reward actions. This is the case because the

NEG MDP definition (5.11) requires the existence of a policy whose expected reward is well-defined

and finite for every state. From any state, this policy must eventually lead the agent to a region where

no reward is accumulated, i.e., one of such zero-reward SCCs. All states in these SCCs are goals in

the newly constructed MGSSPs0 .

246

Each policy of MGSSPs0 coincides with exactly one policy of MNEG over MNEG’s state space,

and therefore has the same expected reward for each each of these states. It is also easy to see that

MGSSPs0 is in fact a GSSPs0 MDP: by constuction, MGSSPs0 has a policy proper w.r.t. the initial

state, as explained in Theorem 5.10’s proof, thereby satisfying the first requirement of the GSSPs0

MDP definition (5.1). The GSSPs0 MDP definition’s second requirement is satisfied by MGSSPs0 as

well, because the reward of every action in MGSSPs0 is nonpositive, being inherited from MNEG, so

the expected sum of nonnegative rewards of any policy for MGSSPs0 is at most 0.

The reason GSSPs0 is a strict superclass of NEG is that GSSPs0 admits MDPs some of whose

policies have values higher than 0 for some states. In NEG MDPs, this is impossible, because the

reward of every action in every state is at most 0.

Theorem 5.13. MAXPROB ⊂ POSB ⊂ GSSPs0 . ♦

Proof. Any MAXPROB MDP satisfies both conditions of the POSB MDP definition (5.10): the

rewards of all of its action are nonnegative in all states, and the expected sum of long-term nonneg-

ative rewards of every policy is in the [0, 1] interval for every state. The containment of POSB in

GSSPs0 has been shown in Theorem 5.10.

MAXPROB is properly contained in POSB, because POSB MDPs can have policies whose value

at some states is higher than 1, which is impossible for MAXPROB MDPs.

Theorem 5.14. For a SSPADEs0 MDP and an ε > 0, if FIND-AND-REVISE has a systematic

FIND procedure and is initialized with an admissible monotonic heuristic, it converges to a value

function that is ε-consistent over the states in its greedy graph rooted at s0 after a finite number of

REVISE steps. ♦

247

Proof. 1As in the proof of Theorem 5.6, we first show that for any ε > 0, FIND-AND-REVISE

converges after a finite number of REVISE steps, and then demonstrate that the resulting value

function is ε-consistent over its greedy graph GVs0 . For SSPADEs0 MDPs, as for SSP ones, it is

easy to verify that Bellman backup (both full and local) preserves admissibility (Definition 2.36)

and monotonicity (Definition 2.29) of value functions. Therefore, we know that the value function

after every REVISE step is bounded from above by V ∗ at every state (due to the admissibility of the

initializing value function V0) and is at least as large as the value function after the previous REVISE

step at every state (due to the monotonicity of V0). In addition, since REVISE updates only states

at which the current value function is ε-inconsistent, each REVISE step increases the value function

by at least ε at some state. Therefore, since each state’s value starts at V0(s) and never exceeds

V ∗(s), FIND-AND-REVISE can apply at most V
∗(s)−V0(s)

ε REVISE steps to any single state.

The quantity V ∗(s)−V0(s)
ε is finite for some states but not others. Divide the set S of states of a

given SSPADEs0 MDP into the set SI of states for which there is no proper policy and the set SP of

states for which such a policy exists. For any s ∈ SP , V ∗(s) is finite, so V ∗(s)−V0(s)
ε , the number of

REVISE operations applied to any such state, is finite as well. However, for any s ∈ SI , V ∗(s) is

infinite.

Nonetheless, the total number of REVISE operations FIND-AND-REVISE can perform before

reaching an ε-consistent value function must still be finite. Suppose it was infinite. We have already

established that on all s ∈ SP , the number of updates must be finite. Therefore, it would have to be

infinite on some s ∈ SI . Since every update increases the value of such s by at least ε, the value of

s would have to grow without bound. Moreover, since FIND-AND-REVISE only updates states in

GVs0 , after any finite number of updates s would have to stay in GVs0 or reenter it as some point. Due

to the systematicity of the FIND procedure, s’s presence in GVs0 after any finite number of REVISE

steps means that V (s) would eventually influence V (s0). Also, since FIND-AND-REVISE updates

only states reachable from s0 via a stationary deterministic Markovian policy and there is a finite

number of these policies, there must exist a minimum positive probability with which s can be

reached from s0 in GVs0 for all V . This, in turn, implies that if s were present in GVs0 an infinite

number of times and V (s) grew without bound, V (s0) would have to grow without bound as well.

1This proof resembles that of Theorem 2 in [12]. Although the proof of that theorem has not been published, it has been
obtained by the author of this dissertation from Blai Bonet of Universidad Simón Bolı́var via personal communication.

248

However, this contradicts the fact that for any V that FIND-AND-REVISE encounters starting from

an admissible heuristic, V (s0) ≤ V ∗(s0) <∞, because s0 ∈ SP .

Now, consider the number of REVISE steps that FIND-AND-REVISE executes. For contradic-

tion, suppose that FIND-AND-REVISE halted at a value function V whose GVs0 contained states

s s.t. ResV (s) > ε. Since FIND-AND-REVISE’s FIND procedure is systematic, it will cause a

REVISE step to be applied to V at such a state s, increasing V (s) by at least ε. This contradicts our

assumption that FIND-AND-REVISE halts at V .

Theorem 5.15. For a SSPADEs0 MDP, if FIND-AND-REVISE has a systematic FIND procedure

and is initialized with an admissible monotonic heuristic, as ε goes to 0 the value function and

policy computed by FIND-AND-REVISE approaches, repsctively, the optimal value function and

an optimal policy over all states reachable from s0 by at least one optimal s.d.M. policy. ♦

Proof. The high-level idea of the proof is to show that as ε gets smaller, the set of states in the

greedy graph of the ε-consistent value function at which FIND-AND-REVISE halts “stabilizes”,

i.e., becomes equal to some set S∗. Running FIND-AND-REVISE over S∗ turns out to be equiva-

lent to running it on an SSPs0 MDP whose optimal value function equals that of the original MDP

over S∗. Existing results about the behavior of FIND-AND-REVISE on SSPs0 MDPs imply that

as ε→ 0, the value functions and policies produced by FIND-AND-REVISE approach the optimal

value function and an optimal policy over S∗. This, in turn, indicates that S∗ contains the set of all

states reachable by at least one optimal policy from s0, completing the proof. We now prove each

of these propositions in detail.

Pick a sequence {εk}∞k=0 s.t. εk > 0 for all k ≥ 0 and limk→∞ εk = 0. For a given SSPADEs0

MDP and an admissible monotonic heuristic V0, let {Vk}∞k=0 be a sequence of value functions s.t.,

for each εk, if FIND-AND-REVISE is initialized with V0 and run on the given SSPADEs0 MDP

until εk-consistency, FIND-AND-REVISE halts at Vk. Finally, let {Sk}∞k=0 be the sequence of

subsets of the MDP’s state space S s.t. Sk is the set of states in the greedy graph GVks0 of Vk rooted

at s0 (Definition 2.34).

249

Let S∗ be the set of states each of which appears in infinitely many sets Sk. S∗ is nonempty,

because it contains s0. Since each state in S \S∗ appears in only finitely many Sk’s and the number

of subsets of S is finite, there must exist the smallest finiteK s.t. for all k ≥ K, each Sk contains no

states from S \ S∗, i.e., S∗ contains the set of states in GVks0 . Moreover, for each k ≥ K, there must

exist some nk s.t. in all REVISE steps after the nk-th and until FIND-AND-REVISE halts, FIND-

AND-REVISE uses only actions that cause transitions only from a state in S∗ to a state in S∗. That

it, for each εk s.t. k ≥ K, the last few value function updates made by FIND-AND-REVISE over

states in S∗ before halting at Vk do not depend on the values of states outside of S∗. If this was not

the case for some k ≥ K then GVks0 would necessarily contain a state outside S∗, contradicting the

fact that K − 1 was the largest number for which this happens.

Crucially, S∗ contains no states without a proper policy. Suppose for contradiction that S∗

contains such a state sI . Every policy would accumulate an infinite expected cost from sI . This

would imply that for a sufficiently small ε, no value function can be ε-consistent at sI and all of its

descendants in the MDP’s transition graph, all of which must be in S∗ if sI is. This is contrary to

the fact that for any state in S∗, including sI and its descendents, and an arbitrarily small εk, there

is a value function Vk that is εk-consistent at all of them. Thus, sI cannot be in S∗.

Moreover, S∗ must contain the goal. As shown above, there is a K s.t. for all k ≥ K, FIND-

AND-REVISE’s last few Bellman backups before FIND-AND-REVISE halts at Vk use only ac-

tions that cause transitions within S∗. That is, for all k ≥ K, any Vk-greedy policy from s0 reaches

only the states of S∗. This means that, simlar to the hypothetical case of S∗ containing a state with

no proper policy, if S∗ did not contain a goal then the value of every state in S∗ would grow without

bound under Bellman backup updates, and hence no value function could be ε-consistent over S∗

for a sufficiently small ε. However, by the construction of S∗, a monotonic Vk εk-consistent over S∗

exists for an arbitrarily small εk, implying that at least one goal state must be in S∗.

To sum up, so far we have established that S∗ contains the initial state, the goal, and no states

without a proper policy. In light of these facts, note that the restriction of the original SSPADEs0

problem to S∗ is an SSPs0 problem. For each k ≥ K, computing an εk-consistent Vk effectively

involves running FIND-AND-REVISE’s last few iterations on this SSPs0 MDP. At the time when

FIND-AND-REVISE starts running on this SSPs0 MDP, the value function is admissible and mono-

tonic. Running FIND-AND-REVISE on a SSPs0 MDP starting from an admissible monotonic

250

value function (heuristic) until ε-convergence is known to yield the optimal value function (and pol-

icy) as ε→ 0 (Theorem 32 in [11], Theorem 3 in [12]). Thus, we know that the sequence {Vk}∞k=K

converges to V ∗ over the states in S∗.

It remains to prove that S∗ contains all states reachable from s0 by at least one optimal policy

for the original SSPADEs0 MDP. As already established, for all k ≥ K, all actions greedy w.r.t. Vk

in any state of S∗ can only cause transitions to states of S∗. Since {Vk}∞k=K converges to V ∗ over

S∗, there must exist a finiteK ′ ≥ K s.t. for all k ≥ K ′ all actions greedy w.r.t. Vk in any state of S∗

are optimal (i.e., greedy w.r.t. V ∗ as well). Since s0 is also in S∗ and all such actions can only cause

transitions within S∗, all states reachable by an optimal s.d.M. policy from s0 must be in S∗.

Theorem 5.16. fSSPUDEs0 = SSPs0 . ♦

Proof. To show that every fSSPUDEs0 MDP MfSSPUDEs0 can be converted to an SSPs0 MDP,

we augment the action set A of fSSPUDEs0 with a special action a′ that causes a transition to a

goal state from any non-goal state with probability 1 and that costs D. If applied in a goal state, it

leads back to the same state and costs 0. The resulting MDP is an in stance of SSPs0 , since reaching

the goal with certainty is possible from every state. At the same time, the optimization criteria of

fSSPUDEs0 and SSP clearly yield the same set of optimal policies for it.

To demonstrate that every SSPs0 MDP MSSPs0
is also an fSSPUDEs0 MDP, for every MSSPs0

we can construct an equivalent fSSPUDEs0 MDP by settingD = maxs∈S V
∗(s). The set of optimal

policies of both MDPs will be the same. (Note that although the conversion procedure is impractical,

since it assumes that we know V ∗ before solving MSSPs0
, solving MSSPs0

by itself will yield an

optimal policy for its fSSPUDEs0 counterpart.)

Theorem 5.17. On a MAXPROB MDP MMP derived from a goal-oriented MDP M , VIMP con-

verges to the optimal value function P ∗ as its number of iterations tends to infinity. ♦

251

Proof. Consider the MDP M̂MP that results from eliminating all potential traps from MMP using

Algorithm 5.2. MMP is also a GSSPs0 MDP, by Theorem 5.13, so M̂MP is an SSPs0 MDP, as

explained in the proof of the Optimality Principle for GSSPs0 MDPs (Theorem 5.1). Moreover, as

explained in that proof, the expansion (Definition 5.9) of the optimal value function V̂ ∗ of M̂MP

is the optimal value function of MMP. The result now follows from Theorem 2.13, since to solve

MMP, VIMP runs VI on M̂MP.

Theorem 5.18. For an iSSPUDEs0 MDP M with P ∗(s0) > 0, the MAXPROB-optimal derivative

MP ∗ of M is an SSPs0 MDP. ♦

Proof. To prove the claim, we verify that MP ∗ meets the SSPs0 MDP definition (2.19). By con-

truction, MP ∗ has no dead ends, since such states of M have P ∗(s) = 0 and are not included into

MP ∗’s state space. Hence, MP ∗ has a complete proper policy. Moreover, since the cost function

of MP ∗ agrees with the cost function of M over transitions within MP ∗’s state space, every tra-

jectory possible in MP ∗ is also possible in M and has the same cost as in M . By the iSSPUDEs0

MDP definition (5.15), each trajectory possible in M that never reaches the goal has an infinite

cost. Therefore, each trajectory possible in MP ∗ that never reaches the goal has an infinite cost too.

This, in turn, implies that in MP ∗ , every policy improper w.r.t. a state s must have incur an infinite

expected cost starting from s, since executing such a policy results in an infinite goal-free trajectory

with a positive probability. Thus, MP ∗ satisfies both of Definition 2.19’s requirements (inherited

from Definition 2.16).

Theorem 5.19. For an iSSPUDEs0 MDP M with P ∗(s0) > 0, every optimal s.d.M. policy for

M ’s MAXPROB-optimal derivative MP ∗ is optimal w.r.t. the goal-reaching probability in M , i.e.,

P π
∗
(s) = P ∗(s) for all states s of M s.t. P ∗(s) > 0. ♦

252

Proof. By Theorem 5.18, MP ∗ is an SSPs0 MDP, and by Theorem 2.4 all of its optimal policies

are proper. Consider an optimal policy π∗ for MP ∗ . Since its proper, from every state of MP ∗ all

of π∗’s trajectories whose probability under π∗ is positive eventually reach the goal. Therefore, in

M , all of π∗’s positive-probability trajectories that visit only states with P ∗(s) > 0 must reach the

goal too. Therefore, since π∗, by the construction of MP ∗ , uses only P ∗-greedy actions of M , in

M it must reach the goal with the maximum possible probability, P ∗(s), from every state s.

Theorem 5.20. For a given tuple of MDP components 〈S,A, T , C,G, s0, 〉 satisfying the conditions

of the SSPs0 MDP definition (2.19), there exists a finite penalty Dthres s.t. every optimal s.d.M.

policy of every fSSPUDEs0 MDP 〈S,A, T , C,G, D, s0〉 for any D > Dthres is optimal for the

MAXPROB MDP derived from this fSSPUDEs0 MDP as well. ♦

Proof. The intuition behind the proof is as follows. For an fSSPUDEs0 MDP, one may theoretically

prefer a policy with a lower goal-reaching probability P π (Equation 5.15) to a policy with a higher

one, because, despite the increased probability of hitting a state with penalty D, the expected cost

of the former policy’s trajectories may be significantly lower, which makes the policy less costly

overall. However, for a sufficiently large penalty D, the increase in a policy’s expected cost due to

a higher chance of hitting a dead end cannot be offset by a lower expected cost of its trajectories.

Under such a penalty, to be optimal in terms of expected cost, a policy needs to have the highest

possible probability of reaching the goal, i.e., needs to be optimal under the MAXPROB criterion.

For an s.d.M. policy π for an fSSPUDEs0 MDP, let V π(s) be the expected cost that π’s trajecto-

ries originating at s incur before they reach a terminal state. Here, by a terminal state we mean either

the goal or a state from which π cannot reach the goal (a “dead end under π”). Note that visiting

any dead end under π makes π incur the penalty ofD — this penalty is not part of a trajectory’s cost

as we defined it above, and does not affect V π(s). For any s.d.M. policy and state, the length of all

trajectories up to the point of entering a terminal state is almost surely bounded; therefore, since all

actions costs are bounded as well, V π(s) is finite.

Further, define two quantities, V π
+(s) = E [

∑∞
t=0 max{0, Cπst |nonterminal}] and V π

−(s) =

253

E [
∑∞

t=0 min{0, Cπst |nonterminal}]. In these formulas, Cπst |nonterminal are random variables for

the costs incurred at the t-th step of π’s trajectories provided that the trajectories have not reached a

terminal state yet. Thus, V π
+(s) is the expected sum of nonnegative costs incurred by π’s trajectories

before they reach a terminal state, and V π
−(s) is the expected sum of nonpositive such costs. Both

V π
+(s) and V π

−(s) are finite, for the same reason as V π(s). Crucially, for each s.d.M. π and s ∈

S , V π
−(s) ≤ V π(s) ≤ V π

+ (s), i.e., V π
−(s) and V π

+(s) bound the expected cost of each policy’s

trajectories from above and below. Therefore, the quantities V min = mins∈S,π is s.d.M. V
π
−(s) and

V max = maxs∈S,π is s.d.M. V
π
+(s) are, respectively, a lower and an upper bound on the expected cost

of trajectories of any s.d.M. policy from any state, and both are finite because the number of s.d.M.

policies is finite and each V π
−(s) and V π

+(s) is finite.

Using the trajectory cost bounds we just derived, we can bound the value of any s.d.M. policy for

an fSSPUDEs0 MDP under the total expected cost criterion. Recall from Equation 5.15 that every

s.d.M. policy can be characterized in terms of its goal-probability value function P π. The goal-

probability value function gives rise to the following bounds on the expected-cost value function:

V π(s) ≥ V min + (1− P π(s))D

V π(s) ≤ V max + (1− P π(s))D

These bounds hold because the value of any policy for an fSSPUDEs0 MDP consists of the

expected cost of its trajectories and the penalty for hitting a state with a high cost of reaching the

goal, weighted by the probability of visiting such a state.

We are now ready to show that for any fSSPUDEs0 MDP, for any penalty D above a certain

finite threshold, no MAXPROB-suboptimal s.d.M. policy can be as good in terms of expected cost

as a MAXPROB-optimal one. This implies that every cost-optimal s.d.M. policy must necessarily

be MAXPROB-optimal. Consider a MAXPROB-optimal s.d.M. policy π′ (at least one such policy

must exist, according to Theorem 5.1, since every MAXPROB MDP is also a GSSPs0 MDP) and

a MAXPROB-suboptimal s.d.M. policy π for the same fSSPUDEs0 MDP. Since π is MAXPROB-

suboptimal, there exists a state s′ for which P π
′
(s′) = P ∗(s′) > P π(s). Suppose π was at least

as good as π′ in terms of expected cost. Then at s′ (and possibly some other states), we would

254

have V π′(s′) − V π(s′) ≥ 0. In light of the above bounds, V π(s′) ≥ V min + (1 − P π(s′))D and

V π′(s′) ≤ V max + (1− P ∗(s′))D, so we would have

0 ≤ V π′(s′)− V π(s′)

≤ (V max + (1− P π(s′))D)− (V min + (1− P ∗(s′))D)

= (V max − V min) + (P π(s′)− P ∗(s′))D

In the last line, V max−V min ≥ 0 by the definition of V max and V min, and P π(s′)−P ∗(s′) < 0

because, by our assumption, π is MAXPROB-suboptimal at s′. Now, consider a penalty threshold

Dthres =
Vmax−Vmin

∆minP
, where ∆minP = mins∈S,π′′is s.d.M.{P ∗(s)− P π

′′
(s) | P ∗(s)− P π′′(s) > 0}.

Unless all s.d.M. policies in the MDP are MAXPROB-optimal (in which case the theorem holds

vacuously), ∆minP > 0, because the number of s.d.M. policies for an fSSPUDEs0 MDP is finite.

Therefore, Dthres <∞. For a D > Dthres,

V π′(s′)− V π(s′) ≤ (V max − V min) + (P π(s′)− P ∗(s′))D

= (V max − V min)(1− P ∗(s′)− P π(s′)

∆minP
)

< 0,

contradicting our assumption that π is at least as good as π′ in terms of expected cost. Thus, for

D > Dthres, every cost-optimal policy must be MAXPROB-optimal.

