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The Web contains more text than any other source in human history, and continues

to expand rapidly. Computer algorithms to process and extract knowledge from Web text

have the potential not only to improve Web search, but also to collect a sizable fraction of

human knowledge and use it to enable smarter artificial intelligence. To scale to the size

and diversity of the Web, many Web text processing algorithms use domain-independent

statistical approaches, rather than limiting their processing to any fixed ontologies or sets

of domains.

While traditional knowledge bases (KBs) had limited coverage of general knowledge,

the last few years have seen the rapid rise of new KBs like Freebase and Wikipedia that

now cover millions of general interest topics. While these KBs still do not cover the full

diversity of the Web, this thesis demonstrates that they are now close enough that there are

ways to effectively leverage them in domain-independent Web text processing. It presents

and empirically verifies how these KBs can be used to filter uninteresting Web extractions,

enhance understanding and usability of both extracted relations and extracted entities,

and even power new functionality for Web search. The effective integration of KBs with

automated Web text processing brings us closer toward realizing the potential of Web text.
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GLOSSARY

ARG1: The subject argument in a (subject, relation, object) binary relational extraction.

ARG2: The object argument in a (subject, relation, object) binary relational extraction.

COLLECTIVE CONTEXT: A technique used by our entity linker which can combine evi-

dence from multiple Web documents when assigning a link.

EM: Expectation Maximization is an iterative method for estimating parameters in

statistical models.

ENTITY: A coherent concept. Wikipedia and Freebase contain information about mil-

lions of entities.

ENTITY LINKING: Associating text strings with their corresponding entries in an entity

store.

FREEBASE: A public entity repository, available at http://www.freebase.com.

FUNCTIONALITY: A relation is functional if it maps each first argument to at most one

second argument.

IE: Information Extraction refers to extracting knowledge from text sources.

INLINK: The inlink count of a Wikipedia entity is the number of articles in Wikipedia

whose text contains hyperlinks to the entity’s Wikipedia page.

INLINK RATIO: A ratio which can detect systematic linking errors by finding entities

that are linked to at a different rate than expected.
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KB: Knowledge Bases are large repositories of information. The primary knowledge

bases we use are Wikipedia and Freebase.

LINK AMBIGUITY: When linking a noun phrase, link ambiguity corresponds to whether

the best candidate is clearly better than all other candidates.

LINK SCORE: Link score corresponds to likely correctness of an entity link.

MUTUAL EXCLUSION: Mutually exclusive items cannot co-exist. For example, color type

and river type are mutually exclusive because no entity is both a color and a river.

NER: Named Entity Recognition is an NLP subtask that locates and classifies named

entities (typically people, organizations and locations) in text.

NLP: Natural Language Processing is the field of computer science studying how com-

puters can interact with information expressed in human languages (e.g., English).

OPEN IE: Open Information Extraction, a relation-independent form of IE.

RELATION WEIGHT: The probability that two random elements in the domain of the

relation will share at least one type.

REVERB: An Open Information Extraction system [37].

TEXTRUNNER: An Open Information Extraction system [4].

TFIDF: Term Frequency-Inverse Document Frequency is a weight that evaluates how

important a word is to a document in a corpus [104].

UNLINKABLE NOUN PHRASE: A noun phrase which cannot be entity linked because it

does not reference any entity present in the KB.
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WIKIPEDIA: An online encyclopedia, currently covering 3-4 million topics.
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Chapter 1

INTRODUCTION

The Web [8] now contains more text than any other source in human history, and

continues to expand rapidly. Vast quantities of information can be found within its many

billions of pages, which cover company and personal homepages, forum and social postings,

encyclopedia and news articles, product and media catalogs, and much more. Computer

algorithms for automatically reading, understanding, and cataloging this knowledge promise

both to enable better knowledge-based tools for users, and also to provide AI programs with

more background knowledge than previously possible [64, 114].

To scale to the size and diversity of the Web, many recent techniques have eschewed

manual resources in favor of domain-independent statistical approaches [6]. One key exam-

ple is Open Information Extraction (Open IE). Open IE systems [4, 34, 111] learn general

models of how relations are expressed in text, in order to extract facts covering all vari-

eties of topics and relations. The state-of-the-art ReVerb Open IE system [37] recently

extracted over one billion binary extractions such as “(Clinton, was born in, 1946)” and

“(tourists, visited, London)” from the Web.

While a vast collection of text extractions can enable automated question answering

at a superficial level (e.g., “list everything born in 1946”), it falls short of understanding

at the level needed to support many applications. For example, does the string “Clinton”

refer to a person, a place, or something else? What does the relation phrase “was born in”

mean? Can one be “born in” multiple years? In some domains, matching against manually

compiled knowledge resources (e.g., SNOMED [93] for medical or Tipster Gazetteer for

geographical) could support this, but the Web covers a vast array of topics, many of which

have no such dedicated resources.

Recent years have seen the emergence and rapid growth of general-coverage knowledge

bases such as Freebase [11] and Wikipedia [126] that offer significant coverage across much of
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general knowledge. While these resources still fall short of covering all concepts mentioned

on the Web [69, 123], they may have wide enough coverage now to start incorporating into

open domain Web text processing. At the same time, a vital concern when integrating fixed

resources into domain-independent methods is that such integration must not limit the

scope of knowledge processed to only the vocabulary of the resource. Otherwise, generality

is lost as the system becomes restricted to only predefined sets of relations (as in Nell [18]

and Prospera [80]), or predefined sets of entities (as in Wikify! [77] and Glow [98]).

In this thesis we investigate the following hypothesis:

Domain-independent Web text processing techniques can leverage large,

general-coverage knowledge bases to better understand and apply the

diverse information expressed in Web text.

We validate this hypothesis by exploring several limitations faced by current domain-

independent Web text processing techniques, and then designing and evaluating techniques

to address these challenges and enable new functionality through the use of knowledge

bases. First, we explore the challenge of improving general extraction usefulness. Then, we

examine in turn how knowledge bases can help to achieve deeper understanding of extracted

relation phrases and extracted arguments. Finally, we demonstrate an extension of this work

to a common Web search scenario. We next describe each of these in further detail.

1.1 Section Overviews

A primary challenge with Open IE from Web text is that in addition to useful extractions

such as “(Clinton, was born in, 1946),” meaningless extractions such as “(Clinton, was born

in, that month)” are also frequently extracted [65, 67]. We found that less than half of top

results from the TextRunner Open IE system [4] were judged to be interesting by people.

In Chapter 2, we examine whether knowledge bases can help address this problem. We

leverage an idea that Wikipedia Infoboxes are likely to contain interesting information to

train a classifier for predicting extraction interestingness. When used as a filter, this classifier

produced a 54% relative increase in the fraction of interesting TextRunner results. The
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classifier outperforms other methods we evaluated including one based on TF-IDF [104],

and it can be applied to all Web extractions without restricting vocabulary because it uses

only unlexicalized features.

To more deeply understand extractions involves learning more about both extracted

relations and extracted arguments. One challenge with relation phrases is determining

properties they can hold [66], such as the functionality property [68]. A relation is func-

tional if it maps each subject argument to at most one object argument. The relation “was

born in (city)” is functional because each person is born in only one city. Meanwhile, the

relation “visited (city)” is not functional because one can visit multiple cities. Accurate

functionality detection benefits numerous tasks such as contradiction detection [100], quan-

tifier scope disambiguation [117] and synonym resolution [130]. In Chapter 3, we show how

data from the Freebase knowledge base can be effectively integrated when learning general

relation properties for relation phrases. On the task of functionality detection for arbitrary

Web relation phrases, our system integrating Freebase data achieves 33.5% increased AUC

compared to a statistical method based on KL divergence [61], and also outperformed the

existing state-of-the-art system [100].

In addition to relation phrases, extractions from Web text also contain arguments. The

next step is to better understand these extraction arguments. When we see “(Clinton, was

born in, 1946),” does “Clinton” refer to a person, a place, or something else? In Chapter 4,

we begin by studying how Web extraction arguments can be efficiently linked to Wikipedia

entries. In this case, linking “Clinton” to Wikipedia’s “Bill Clinton” entry can disambiguate

the reference from other Clintons, and provide the typing information that “Clinton” refers

to a person and a politician. We further observe that many Web extraction arguments

refer to entities not prominent enough to be in Wikipedia. To handle these, we design and

implement techniques to detect and assign types to all of the unlinkable (non-Wikipedia)

entities in our data, by leveraging the large number of entities that we could link. While

studies [81, 133] have observed that the Web contains many such unlinkable entities, this

work is the first that attempts to make them useful rather than just separate them out.

Our system achieves significantly higher performance than baselines in both detecting and

typing the unlinkable entities, and enables greater recall in tasks such as typed question
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answering [16] and inference [107].

Beyond extraction, use of large knowledge bases can also benefit other open domain

Web text scenarios such as Web search. Chapter 5 shows that if leveraging KBs allows

us to detect and type entities within search queries, then this further enables an ability

to infer the actions that users have in mind when issuing those queries. We design and

implement a system where given a search query containing an entity, we automatically infer

relevant actions that the user is likely to be interested in taking. If they query for “Jetbeam

flashlight,” then the system might suggest “read reviews” and “buy online.” While search

engines [12] apply statistical techniques to keywords to handle the size and diversity of the

Web, the addition of KBs is necessary in order to enable experiences such as this one. The

ability to detect entities enables a basic version of our actions, and the further ability to type

the entities increases the nDCG metric by over 20%, and allows the system to recommend

actions that human judges rated highly in an evaluation.

As individual contributions, we introduce new techniques that improve upon the ap-

propriate baselines and enable compelling new functionality in a number of tasks that we

examined. As an overall contribution, the techniques we devise and demonstrate suggest

that large knowledge bases can now be effectively leveraged to benefit open-domain Web

text processing tasks. Chapter 6 describes several promising avenues for continued future

work, and Chapter 7 presents concluding remarks.



5

Chapter 2

IDENTIFYING INTERESTING WEB EXTRACTIONS

Information Extraction (IE) is one approach to building knowledge repositories by ex-

tracting knowledge from text. Open IE systems such as TextRunner [4] are able to extract

hundreds of millions of assertions from Web text. However, because of imperfections in ex-

traction technology and the noisy nature of Web text, Open IE systems return a mix of both

useful, informative facts (e.g., “the FDA banned Ephedra”) and less informative statements

(e.g., “the FDA banned products”).

This chapter begins by introducing Open IE from Web text, how it works, and also two

state-of-the-art Open IE systems. It then proposes several models of what attributes make

extractions useful and interesting, presents our implementation of these models as filters

to filter out uninteresting extractions, and reports on measurements of their efficacy on a

sample of queries. The primary technical contributions of this chapter are to:

1. Develop several practical models of interestingness that are informed by previous

work and theories. When implemented as filters, they offer substantial improvements

over the standard Open IE technique of sorting assertions by frequency. Our highest

precision model leverages general knowledge available from the Wikipedia knowledge

base.

2. Utilize a machine-learning method that combines all the models to filter out uninter-

esting assertions resulting from extraction.

3. Report on the first study of interestingness in extraction. For this study we compare

the efficacy of our models to each other and the TextRunner baseline. Among other

findings, we show that our filtering significantly improves the fraction of interesting

results contained within TextRunner’s top thirty results from 41.6% interesting to

64.1% interesting.
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2.1 Open Information Extraction from the Web

Information extraction (IE) is a subfield of natural language processing that seeks to obtain

structured information from unstructured text. IE can be used to automate the tedious and

error prone process of collecting facts from the Web. While some IE systems [56, 99] can

only operate over small, prespecified sets of relations, Open Information Extraction systems

are designed to capture all relations in text, while staying fast and operating in running time

independent of the number of relations. Open IE systems extract all knowledge from Web

text by first collecting all the English sentences found over millions of Web pages, and then

checking each sentence individually for knowledge to extract. Given the sentence “Diet Coke

contains aspartame instead of sugar” from an online discussion forum, an Open IE system

could extract the assertion (“Diet Coke”, “contains”, “aspartame”). This extraction would

assert that a “Diet Coke” entity holds a “contains” relation with an “aspartame” entity.

Repeating this process for millions of sentences builds together a vast collection of facts

that can be used in later applications.

The most widely-used Open IE systems are TextRunner [4] and ReVerb [37]. Tex-

tRunner was developed in 2007, and has implementations using Naive Bayes [4] and Con-

ditional Random Fields [5]. From each sentence, TextRunner first identifies all the noun

phrases using a noun phrase chunker. It then examines the sequence of words between each

pair of noun phrases, and tries to determine what relationship, if any, holds between them.

The Naive Bayes version does this by first heuristically eliminating any non-essential words

in the sequence, arriving at a relation phrase, and then using a Naive Bayes classifier to

judge whether the resulting (noun phrase, relation phrase, noun phrase) candidate tuple

expresses a good extraction. In the earlier example, TextRunner would first identify that

the sentence contains noun phrases “Diet Coke,” “aspartame,” and “sugar.” It would then

identify “contains” as the relation between “Diet Coke” and “aspartame” to produce the

(“Diet Coke”, “contains”, “aspartame”) extraction.

The ReVerb extractor was developed in 2011, and starts by finding relations rather

than noun phrases. When given a sentence, ReVerb traverses the sentence to identify

any relation phrases that satisfy a number of general syntactic and lexical constraints.
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Figure 2.1: Web Extractions: After extracting millions of facts from the Web, Open IE
systems can organize this information to support user queries.

When a valid relation phrase is identified, it then searches the rest of the sentence for the

corresponding argument noun phrases. Finally, a logistic regression classifier scores the

validity of the overall extraction. In the Diet Coke example, ReVerb would first identify

that the sentence contains a relation phrase “contains.” It would then locate “Diet Coke”

and “aspartame” as the arguments of this relation to produce the final extraction.

TextRunner has been run on 500 million high-quality Web pages from Google to yield

over 800 million extractions, and ReVerb has been run on 500 million Web pages from the

ClueWeb09 corpus to yield over 1 billion extractions. The extractions were then indexed in

Lucene to facilitate easy querying by entity and/or relationship. For example, if a person

is interested in learning more about Diet Coke, they can issue this query to TextRunner

and get back a list of extracted facts, as shown in Figure 2.1. TextRunner and ReVerb

can also interpret and answer simple queries such as “What contains aspartame?” and hone
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in on such answers as “Trident gum” and “Diet Coke” to free people from sifting through

many Web pages to find the desired answers.

The first several chapters of this thesis focus on how the output extraction collections

from Open IE on Web text can be improved and better understood by leveraging knowledge

bases. The research conducted before ReVerb was developed (Chapter 2 and Chapter 3)

uses primarily TextRunner data, while the research conducted after ReVerb was devel-

oped (Chapter 4) uses ReVerb data because ReVerb has generally better performance.

The challenges explored and addressed in this thesis are common to both systems, and more

generally, to many domain-independent Web text processing systems.

As shown in Figure 2.1, TextRunner results are returned ranked by frequency. The

numbers in parenthesis are the numbers of times each extraction was observed. TextRun-

ner ranks results by frequency because, all other things being equal, extractions that appear

more frequently on Web pages are more likely to be correct [27]. However, this technique

also yields many vague or otherwise uninteresting assertions. While extractions such as

(“Diet Coke”, “contains”, “aspartame”) and (“Diet Coke”, “is called”, “Coke Light”) are

useful, some uninformative extractions such as (“Diet Coke”, “is not”, “a good idea”) also

have relatively high frequency. Experiments presented in this chapter show that people find

58.4% of the thirty top-ranked answers returned by TextRunner to be uninformative and

not interesting.

2.2 What’s Interesting?

Extraction engines could be improved by filtering based on models of which extracted asser-

tions are of interest and which are not. Figure 2.2 outlines this idea. Of course, the notion

of interestingness is subjective, personal, and context specific. Nevertheless, any system

that returns ranked results, from Google to TextRunner, either implicitly or explicitly

utilizes a model of what is interesting in its ranking function.

2.2.1 Related Work in Interestingness

The general concept of using interestingness as a metric has value and applicability to a

wide range of domains. For instance, Flickr recently launched a new feature for identifying
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Figure 2.2: Filtering Architecture: Filtering the output of Open IE enables it to better
focus on extracted assertions that are more interesting.

“Interestingness” in photos on its site.1 The Flickr notion is based on social feedback such

as click data and comments, supporting the idea that people care about what’s interesting

and leave indirect clues to where interesting content can be found. We use a similar concept

later on in Section 2.3.4 by learning from how people populate Wikipedia infoboxes.

Similarly, automated mathematical discovery programs require a notion of interesting-

ness in order to identify which potential conjectures and concepts will be of interest to

people. Colton and Bundy’s survey [22] identified several key concepts that these programs

tended to use in deciding what would be interesting, including plausibility, novelty, surpris-

ingness, comprehensibility and complexity. Liu et al. [73] found that unexpected database

association rules are more interesting to users.

From psychology there are several theories of interestingness such as complexity, novelty,

uncertainty, and conflict [113]. There has also been research into what attributes make text

more interesting. It is important that text be the right level of complexity. Sentences with

concrete words were found to be more interesting than abstract sentences [103]. Texts that

are more coherent and easier to comprehend are more interesting [108]. Prior knowledge

in the subject generally increases interest. These ideas help inform some of our classifier

features later.

1http://www.flickr.com/explore/interesting/
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2.3 Modeling Interestingness

2.3.1 Computational Formalizations

This section describes the problem of formalizing interestingness, then introduces three

practical models for identifying interesting assertions. For each model, we first present an

intuition behind characteristics that can make assertions interesting. We then operationalize

those characteristics so that we can express them algorithmically.

We want to capture the interesting assertions, but what exactly does this mean? At

the most general level, we define interesting assertions to be those that a person may find

useful or engaging. For any particular query (e.g., “Einstein”), the extent to which possible

assertions are interesting may vary greatly. A good set of results might, for example, include

a mix of biographical facts like “Einstein was born in Germany” and other interesting

facts like “Einstein’s favorite color was blue”. On the other hand, “Einstein turned 15”

or “Einstein wrote the paper” would be less interesting because they express little useful

information.

In a discussion of what is interesting, personalization is one approach to consider. Dif-

ferent people will find different topics to be interesting. We consider personalized notions

of interesting to be a future direction, but currently focus on what characteristics make an

assertion broadly interesting to a variety of people.

2.3.2 Specific Assertions

One quality of interesting assertions is that they tend to provide more specific information.

For example, “Albert Einstein taught at Princeton University” is more interesting than

“Albert Einstein taught at a university” because identifying Princeton as the university is

informative. We hypothesize this is one characteristic that can make assertions interesting

more broadly in TextRunner.

To operationalize this quality, we define a specific assertion as an assertion that either

relates multiple proper nouns or an assertion that contains a year. If an assertion relates

multiple proper nouns, it is specific because it expresses information about one specific

entity relative to another. Similarly, an assertion that contains a year is specific because it
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contains specific temporal information.

2.3.3 Distinguishing Assertions

Another quality of interesting assertions might be providing distinguishing information

about an object. This is related to novelty and surprisingness. Einstein may be a physicist

who was born in Germany, but what really sets him apart and makes him interesting are his

contributions to relativity theory and that he won the Nobel Prize. Conversely, assertions

that do not set an object apart from other objects are often uninteresting.

We operationalize this notion of distinguishing using a technique similar to TF-IDF

(term frequency - inverse document frequency) weighting [104]. In Information Retrieval,

term frequency refers to the number of times a term occurs in a document. For our term fre-

quency component, we define AssertionFrequency as the number of times an assertion occurs

in the TextRunner set of assertions (e.g., the number of times TextRunner found that

“Einstein won the Nobel Prize”). For our document frequency component, we define Object-

Frequency as the number of times the object (e.g., “the Nobel Prize”) appears in a sample

of ten million random TextRunner assertions. We define an AFOFRatio(Extraction) as

follows:2

AFOFRatio(E) =
AssertionFrequency(E)

ObjectFrequency(object(E)) + 1
(2.1)

For assertions, the AFOFRatio compares how often the assertion appears with how often

we would expect the assertion to appear given its object. If the object has extremely high

ObjectFrequency (e.g., a common word like “food”), the AFOFRatio will be low. If the

object has extremely low ObjectFrequency (e.g., a misspelling or obscure term), then the

AFOFRatio will be high. In the case of average ObjectFrequency, the AFOFRatio will

reflect whether the assertion appears more often than one would normally expect.

Informal experimentation confirmed that extremely low AFOFRatio values often indi-

cate an assertion is too vague to be interesting, while the very highest AFOFRatio values

2We add 1 in the denominator to prevent possible division by 0.
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generally indicated assertions that were not well formed or well expressed. We chose a

middle range (1 < AFOFRatio ≤ 10) that seemed to generally yield interesting assertions

from the distinguishing perspective.

2.3.4 Basic Assertions using Wikipedia

The final quality of interesting assertions that we focus on here are basic facts. These are

definitional assertions that, for example, might be interesting to a person learning about

a subject. A person learning about Einstein might look up such facts as “Einstein was

a physicist” or “Einstein was born in 1879”. Although it would be difficult to define all-

encompassing rules for what makes an assertion basic, we can take advantage of the fact

that knowledge bases such as Wikipedia sometimes provide high quality examples of basic

knowledge. Many Wikipedia articles contain infoboxes, which are tabular summaries of

basic information about objects. Our operationalization of basic assertions, is therefore

based in learning a classifier to identify assertions similar to those that human editors have

decided to include in infoboxes.

Training such a classifier requires examples of TextRunner assertions likely to reflect

infobox knowledge (positive training examples) and assertions unlikely to reflect infobox

knowledge (negative training examples). Starting with the DBPedia Wikipedia infobox

database [2], we applied a series of filters and isolated a set of 872 entities with good

infobox coverage. Text matching on infobox values (allowing for small edit distance) pro-

duced a set of 1,584 TextRunner assertions that reflected knowledge expressed in those

infoboxes. This is comparable to how Kylin matches infobox data to statements [128], but

our matching is stricter and thus achieves higher precision at lower recall. For the negative

examples we then sampled 3,000 TextRunner assertions (about the same entities) that

did not match any infobox values.

We train our basic classifier using around ten domain-independent features, such as

the number of words in the assertion, whether the assertion relates proper nouns, whether

the assertion ends on a stop word, and the estimated frequency of the assertion’s object

argument in TextRunner (refer to [65] for the full feature list). Lexical features (those
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specific to the query terms, such as learning that any assertion with the relation “was

born in” is interesting), are intentionally omitted because we are interested in a generally

applicable classifier that is effective regardless of whether it was trained on assertions similar

to those that it will classify (e.g., “was born in” is useless on assertions about fruits). An

experiment showed that the lexical features enable greater precision at the cost of reduced

recall and generality.

One question to address here is that if we already have Wikipedia and we hypothesize

that the infobox attributes are what is interesting, then why not just use all the Wikipedia

data instead of involving Web extraction? Web extraction adds value beyond Wikipedia

because Wikipedia is incomplete compared to the full Web. Many entities do not have

Wikipedia articles, either because they have not been written yet or because they are not

prominent enough to be in a general encyclopedia. The point is analyzed in further detail

in Chapter 4. Even when an entity does have a Wikipedia article, often the infobox is

incomplete or even missing. Also, while infobox attributes are good starting point for basic

knowledge, there exist many additional similar attributes that also express basic knowledge

but are not drawn out in infoboxes. Web extraction has the potential for much greater

coverage, both in terms of entities covered and attributes per entity.

2.4 Evaluation

In order to evaluate our specific, basic, and distinguishing models, we used them each as

the basis for filters that discard TextRunner results that fail to satisfy each model. To

assess the quality of each filter, we conducted a study to collect human ratings of the

interestingness of assertions.

2.4.1 Methods and Procedures

We first selected a set of ten study query terms including famous people (Albert Einstein,

Bill Gates, Thomas Edison), other proper nouns (Beijing, Brazil, Microsoft, Diet Coke),

improper nouns (sea lions), and also relationship queries (invented, destroyed). This query

set is meant to provide a varied sample of the sorts of queries for which TextRunner can

provide interesting results. Our analyses are based on the top thirty assertions resulting
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from each of these queries, because the top results have the greatest impact on utility and

about thirty results can be seen at a glance on a TextRunner results page.

As a baseline for comparison, we first obtain the number of times each assertion for

each query was found by TextRunner. Our AssertionFrequency condition selects the

thirty most frequently occurring assertions for each query. We next obtain assertions for

our specific, distinguishing, and basic conditions by applying each of our filters in order of

assertion frequency, discarding results that fail the filter, until we obtain thirty results that

satisfy the filter. The study therefore focuses on 1200 assertions (10 queries * 4 conditions

* 30 assertions).

We recruited 12 study participants (5 male, 7 female), who had a variety of backgrounds

including math, marketing, finance, music, and nursing. Participants were each asked to

rate 200 assertions on a scale from 1 (labeled “Least Interesting”) to 5 (labeled “Most

Interesting”). Assertions were presented one at a time, drawn randomly without replace-

ment between participants. We gathered two to three ratings for every assertion, helping

to account for individual differences in what people consider interesting.

2.4.2 Results

We analyze participant ratings of interestingness using a mixed model analysis of variance.

We model our variable of interest, condition (values AssertionFrequency, simple, distin-

guishing, and basic), as a fixed effect. To account for learning or fatigue effects, we model

trial number as a fixed effect. Similarly, we account for the possibility that how long a

person viewed an assertion might impact their rating by modeling time to rate as a fixed

effect. Finally, we account for variations in the interestingness of queries and variations in

the ratings given by different people by modeling both query and participant as random

effects.

We found no significant effect of either trial number or time to rate, and so remove

both of them from the remainder of our analysis. The omnibus test reveals a significant

main effect of condition (F(4, 3542) = 15.6, p < .0001), leading us to investigate pairwise

differences. We use Tukey’s Honestly Significant Difference (HSD) procedure to account
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Figure 2.3: Impact of Interestingness Filter: Our trained filters led to significantly
higher mean average precisions for whether top assertions were interesting. Relevance Feed-
back (67.9%) was the best (p ≈ .005). Basic (65.4%) was second best (p < .0001). Specific
(59.5%) and distinguishing (60.3%) were also better (p < .0001) than Assertion Frequency
(the results without any filtering), which had the lowest mean average precision at 41.9%.

for increased Type I error in unplanned comparisons. This shows basic yielded the most

interesting assertions, significantly more interesting than AssertionFrequency (F(1,3545)

= 55.0, p < .0001), specific (F(4,3539) = 7.7, p ≈ .005), and distinguishing (F(1,3547)

= 10.3, p ≈ .001). Our other filters also significantly improved interestingness, as both

specific (F(1,3544) = 21.2, p < .0001) and distinguishing (F(1,3539) = 18.7, p < .0001)

were significantly more interesting than AssertionFrequency.

2.4.3 Relevance Feedback

Although our results showed that basic assertions are the most interesting and that all of our

filters yield results that are significantly more interesting than AssertionFrequency, inspec-
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tion of our data suggested that our filters identify different interesting assertions. We found

that only 21% of the interesting assertions would be identified by all three filters. We there-

fore consider whether a learning based method, using a classifier to combine information

from all three filters, might perform better than any single filter.

In order to simplify this and our remaining analyses, we first reduce our five point scale

to a binary classification. We define ratings of 4 or 5 to be interesting, define ratings of 1

or 2 to be not interesting, and ignore ratings of 3. This discretization creates a nearly even

split of our collected human labels, which we then use as positive and negative training

examples for a relevance feedback classifier.

We make the output of our specific, distinguishing, and basic filters available as features

to this classifier. We also provide the same features that are used by the basic classifier.

Because we are interested in a generally applicable classifier of interesting assertions, we

evaluate trained relevance feedback classifiers using ten-fold cross validation such that we

only test on the assertions from query terms not used to train the filter. This allows us to

estimate performance on queries for which the system has not been trained, as we would

expect improved performance on any queries for which the system has been trained.

Several classifiers from the WEKA toolkit [127] all had comparable precision-at-k val-

ues, averaging over ten-fold cross-validation, from k=1 to k=30. Decision Tree [95] was

slightly better than the rest with an average precision at 67.9%. The precision at k measure

illustrates the percentage of the first k results that are interesting, and is an appropriate

and important measure because it corresponds to the quality of the top results.

2.4.4 Analysis

Figure 2.3 plots the precision-at-k for the relevance feedback decision tree classifier versus

our specific, distinguishing, and basic filters as well as against AssertionFrequency. To test

for difference between these curves, we conduct an analysis of variance for the precision at

each plotted point, treating condition and k as fixed effects. The omnibus test reveals a

significant main effect of condition (F(4, 4) = 285, p < .0001), leading us to investigate

pairwise differences. We use Tukey’s HSD procedure to account for increased Type I error
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in unplanned comparisons. This shows that relevance feedback yields significantly more

interesting assertions than specific (F(1,144) = 95.4, p < .0001), distinguishing (F(1,144) =

78.6, p < .0001), basic (F(1,144) = 8, p ≈ .005) and AssertionFrequency (F(1,144) = 926,

p < .0001).

The largest differences in Figure 2.3 are between our filter-based approaches and Tex-

tRunner’s original use of AssertionFrequency, indicating the advantage of filtering. Ap-

pendix A further provides an example illustrating what the top 30 TextRunner extractions

look like using our relevance feedback filter, compared to only sorting by frequency. The

classifier filters trained with help from the knowledge base performed significantly better

than all other approaches, indicating the utility of knowledge bases for this task. Our rel-

evance feedback classifier achieves a precision at 30 of 64.1% and a mean average precision

of 67.9%. This is comparable to human level performance, as we measured inter-annotator

agreement in our label set to be approximately 70%.

2.4.5 Filtering in Practice

One motivation for this work was to create a filter that could increase the quality of re-

sults in the TextRunner question answering demo. We implemented a rule-based filter

based on the ideas discussed in this chapter, adjusted slightly to run faster and trade some

precision for increased recall. The filter runs when an argument or relation query is about

to return so many results that it could benefit from filtering. The filter allows through

extractions that are specific, while filtering extractions that are not distinguishing or that

are so distinguishing that they are likely to be errors. Extractions could also be filtered

using learned boundaries on what length extractions are most likely to be interesting (e.g.,

extractions 30 to 79 characters in length are often more interesting). This filter worked

well in practice at catching many of the uninteresting results, and filtered result sets were

observably better. Versions of this filter were integrated into the TextRunner demo and

demos for subsequent Open IE systems.
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2.5 Conclusions

Extraction engines such as TextRunner are a promising avenue towards improving au-

tomated question answering and generating large knowledge bases. However, such systems

are hamstrung by the fact that they often return uninformative results that are vague or

uninteresting. Web extraction systems are particularly prone to this problem because of

the general methods they use to extract entities and relationships [5]. This chapter has

developed filters that allow TextRunner to better focus on assertions that are interest-

ing. These filters aim to identify assertions that express specific information, distinguishing

information, and basic information. We also designed an overall system that leverages all

the filters we developed. This overall system is able to raise the average percentage of

interesting results on a sample of queries significantly, from 41.6% to 64.1%.

Our strongest performing systems, the basic and overall systems, both leverage general

knowledge base information in the form of the Wikipedia Infobox data used to help train the

basic filter. By using only unlexicalized features that are not tied to any specific domains, we

are able to learn classifiers for interestingness of general assertions. Domain independence is

an important property to have when working with systems such as Open IE that emphasize

the ability to operate over general Web text. To further validate this, our evaluation was

conducted on a selection of query types across various domains. Identifying interesting Web

extractions is an important problem, and we were able to solve it better by leveraging KBs.

The result of the research presented in this chapter is that we can now identify more in-

teresting textual extractions from the Web. However, a central challenge remains that these

extractions are still comprised only of text strings, and we lack any deeper understanding of

their semantics. Instead of focusing on extractions such as (“Diet Coke”, “is not”, “a good

idea”) we can now focus on more meaningful extractions such as (“Diet Coke”, “contains”,

“aspartame”). But what kind of relation does “contains” refer to? What kind of entity is

“Diet Coke”? In the following chapters we will delve deeper into these types of questions,

and especially into the role that large KBs can play in helping us address them.
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Chapter 3

UNDERSTANDING RELATION PHRASES: THE FUNCTIONALITY
PROPERTY

Web extractions from systems like Open IE contain textual relation phrases such as “was

born in”, “visited” and “is the symbol of”. If two extractions share the same relation phrase

then there is a good chance they express the same type of information. If two relation phrases

tend to appear with the same argument pairs, then they may be synonymous. However we

do not have any deeper understanding of the individual relation phrases beyond that.

One useful direction for further understanding of relation phrases it to identify which

relation properties they each hold [66, 91]. For example, relations like “is smaller than” are

transitive, meaning that rel(a, b) and rel(b, c) implies rel(a, c). Relations like “is married

to” are symmetric, meaning that rel(a, b) implies rel(b, a). Relations like “was born in”

are functional, meaning that rel(a, b) and rel(a, c) implies that b = c. There exist many

such relation properties, and learning which ones hold for which relations can give us deeper

understanding of the nature of the relations and also enable numerous end-task applications.

Web text contains many more relation phrases than people could manually label with

relation properties, so in this chapter we examine how relation properties could be automat-

ically learned from large collections of Web extractions. As a focus, we specifically study the

functionality property because functionality is useful for numerous tasks [68], and also be-

cause the technical challenges involved are shared by many other relation properties as well.

We begin by exploring intuitive and statistical approaches to functionality identification.

Keeping with the theme of this thesis, we then show how leveraging external knowledge

bases can help with this task to enable even stronger performance. This chapter makes the

following technical contributions:

1. We identify and enumerate the linguistic phenomena that make corpus-based identi-

fication of functionality and other relation properties surprisingly difficult.
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2. We design and implement three novel techniques for identifying functionality based on

instance-based counting, distributional differences, and the use of external knowledge

bases.

3. Our final method for functionality detection outperforms the existing state-of-the-art

significantly, increasing area under the precision-recall curve from 0.61 to 0.88.

3.1 The Functionality Property

The paradigm of Open Information Extraction (IE) [4, 5] has scaled extraction technology

to the massive set of relations expressed in Web text. However, additional work is needed to

better understand these relations, and to place them in richer semantic structures. A step

in that direction is identifying the properties of these relations, e.g., transitivity, symmetry,

1-to-1 [91], 1-to-many and our focus in this chapter – functionality. We refer to this problem

as functionality identification.

A binary relation is functional if, for a given arg1, there is exactly one unique value for

arg2. Examples of functional relations are father, death date, birth city, etc. We define a

relation phrase to be functional if all semantic relations commonly expressed by that phrase

are functional. For example, we say that the phrase ‘was born in’ denotes a functional

relation, because the different semantic relations expressed by the phrase (e.g., birth city,

birth year, etc.) are all functional.

Knowing that a relation is functional is helpful for numerous NLP inference tasks. Pre-

vious work has used functionality for the tasks of contradiction detection [100], quantifier

scope disambiguation [117], and synonym resolution [130]. In Section 4.5.5 we describe how

it could help with the important task of identifying ambiguous noun phrases. Functionality

also has applications in other tasks such as ontology generation and information extraction.

As an example application, consider two sentences from a contradiction detection task:

• “George Washington was born in Virginia.”

• “George Washington was born in Texas.”
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As Ritter et al. [100] points out, in examples such as this, we can only determine that

the two sentences are contradictory if we know that the semantic relation referred to by the

phrase ‘was born in’ is functional, and that Virginia and Texas are distinct states.

Automatic functionality identification is essential when dealing with a large number of

relations as in Open IE, or in complex domains where expert help is scarce or expensive

(e.g., biomedical texts). This chapter tackles automatic functionality identification using

Web text. While functionality identification has been utilized as a module in various NLP

systems, previous work has not focused exclusively on functionality identification as a bona

fide NLP inference task.

It is natural to identify functions based on triples extracted from text instead of analyzing

sentences directly. Thus, as our input, we utilize tuples extracted by TextRunner [5] when

run over a corpus of 500 million Web pages. TextRunner maps sentences to tuples of the

form <arg1, relation phrase, arg2> and enables our system to focus on the problem of

deciding whether the relation phrase is a function.

The naive approach, which classifies a relation phrase as non-functional if several arg1s

have multiple arg2s in our extraction set, fails due to several reasons: synonymy – a unique

entity may be referred by multiple strings, polysemy of both entities and relations – a unique

string may refer to multiple entities/relations, metaphorical usage, extraction errors and

more. These phenomena conspire to make the functionality determination task inherently

statistical and surprisingly challenging.

In addition, a functional relation phrase may appear non-functional until we consider

the types of its arguments. In our ‘was born in’ example, <George Washington, was born

in, 1732> does not contradict <George Washington, was born in, Virginia> even though

we see two distinct arg2s for the same arg1. To solve functionality identification, we need

to consider typed relations where the relations analyzed are constrained to have specific

argument types.

We develop several approaches to overcome these challenges. Our first scheme employs

approximate argument merging to overcome the synonymy and anaphora problems. Our

second approach, DistrDiff, takes a statistical view of the problem and learns a separator

for the typical count distributions of functional versus non-functional relations. Our third



22

scheme, CleanLists, identifies and processes a cleaner subset of the data by intersecting

the corpus with entities in a general knowledge-base (in this case, Freebase [74]). Utilizing

typing information, CleanLists first identifies typed functionality for suitable types for

that relation phrase, and then combines them to output a final functionality label. Finally,

we create a hybrid of CleanLists and DistrDiff, named Leibniz, that improves upon

state-of-the-art performance for our task by combining both our statistical and knowledge

base approaches.1

3.2 Related Work

There is a recent surge in large knowledge bases constructed by human collaboration such as

Freebase [74] and VerbNet [57]. VerbNet annotates its verbs with several properties but not

functionality. Freebase does annotate some relations with an ‘is unique’ property, which

is similar to functionality, but the number of relations in Freebase is still much smaller

than the hundreds of thousands of relations existing on the Web, necessitating automatic

approaches to functionality identification.

Discovering functional dependencies has been recognized as an important database anal-

ysis technique [49, 129], but the database community does not address any of the linguistic

phenomena which make this a challenging problem in NLP. Three groups of researchers

have studied functionality identification in the context of natural language.

AuContraire [100]: is a contradiction detection system that also learns relation func-

tionality. Their approach combines a probabilistic model based on [27] with estimates on

whether each arg1 is ambiguous. The estimates are used to weight each arg1’s contri-

bution to an overall functionality score for each relation. Both argument-ambiguity and

relation-functionality are jointly estimated using an EM-like method. While elegant, Au-

Contraire requires substantial hand-engineered knowledge, which limits the scalability of

their approach.

Lexico-syntactic patterns: Srinivasan and Yates [117] disambiguate a quantifier’s scope

by first making judgments about relation functionality. For functionality, they look for

1Leibniz is named after Gottfried Leibniz, the mathematician who coined the term “function”.
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numeric phrases following the relation. For example, the presence of the numeric term ‘four’

in the sentence “the fire destroyed four shops” suggests that destroyed is not functional, since

the same arg1 can destroy multiple things.

The key problem with this approach is that it often assigns different functionality labels

for the present tense and past tense phrases of the same semantic relation. For example, it

will consider ‘lived in’ to be non-functional, but ‘lives in’ to be functional, since we rarely

say “someone lives in many cities”. Since both these phrases refer to the same semantic

relation this approach has low precision. Moreover, it performs poorly for relation phrases

that naturally expect numbers as the target argument (e.g., ‘has an atomic number of’).

While these lexico-syntactic patterns do not perform as well for our task, they are well-

suited for identifying whether a verb phrase can take multiple objects or not. This can be

understood as a functionality property of the verb phrase within a sentence, as opposed to

functionality of the semantic relation the phrase represents.

WIE: In a preliminary study, WIE [91] explored an instance based counting approach

to various relation properties. WIE cannot automatically judge the functionality of thou-

sands or millions of detected relation phrases. Instead, it requires humans to first manually

annotate types on every relation to be judged. The majority of practical challenges for

functionality detection that will be explored in this chapter (e.g., how to judge relations

without requiring type annotations, and how to judge even the relations that do not match

any known types) are beyond the scope of the WIE study.

Finally, functionality is just one property of relations that can be learned from text. A

number of other studies [24, 40, 122] have examined detecting other relation properties from

text and applying them to tasks such as ontology cleaning.

3.3 Challenges for Functionality Identification

A functional binary relation r is formally defined as one such that ∀x, y1, y2 : r(x, y1) ∧

r(x, y2) ⇒ y1 = y2. We define a relation string to be functional if all semantic relations

commonly expressed by the relation string are individually functional. Thus, under our

definition, ‘was born in’ and ‘died in’ are functional, even though they can take different

arg2s for the same arg1, e.g., year, city, state, country, etc.
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George Washington was born in:

Virginia

Westmoreland County

America

a town

a plantation

1732

February

the British colony of Virginia

Rudy Giuliani visited:

Florida

Boca Raton Synagogue

the Florida EvergladesSouth Carolina

Michigan

Republican headquarters

a famous cheesesteak restaurant

Philadelphia

Colonial Beach, Virginia

Figure 3.1: Challenges in Functionality Detection: Sample arg2 values for a non-
functional relation (visited) vs. a functional relation (was born in) illustrate the challenge
in discriminating functionality from Web text.

The definition of a functional relation suggests a naive instance-based counting algorithm

for identifying functionality: “Look for the number of arg2s for each arg1. If all (or most)

arg1s have exactly one arg2, label the relation phrase functional, else, non-functional.”

Unfortunately, this naive algorithm fails for our task exposing several linguistic phenomena

that make our problem hard (see Figure 3.1):

Synonymy: Various arg2s for the same arg1 may refer to the same entity. This makes

many functional relations seem non-functional. For instance, <George Washington, was

born in, Virginia> and <George Washington, was born in, the British colony of Virginia>

are not in conflict. Other examples of synonyms include ‘Windy City’ and ‘Chicago’, ‘3rd

March’ and ’03/03’, etc.

Anaphora: An entity can be referred to by using several phrases. For instance, <George

Washington, was born in, a town> does not conflict with his being born in ‘Colonial Beach,

Virginia’, since ‘town’ is an anaphora for his city of birth. Other examples include ‘The

US President’ for ‘George W. Bush’, and ‘the superpower’ to refer to ‘United States’. The

effect is similar to that of synonyms – many relations incorrectly appear non-functional.

Argument Ambiguity: <George Washington, was born in, ‘Kortrijk, Belgium’> in ad-

dition to his being born in ‘Virginia’ suggests that ‘was born in’ is non-functional. However,

the real cause is that ‘George Washington’ is ambiguous and refers to different people. This
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ambiguity gets more pronounced if the person is referred to just by their first (or last name),

e.g., ‘Clinton’ is commonly used to refer to both Hillary and Bill Clinton (and less frequently

other Clintons, such as George Clinton).

Relation Phrase Ambiguity: A relation phrase can have several senses. For instance

‘weighs 80 kilos’ is a different weighs than ‘weighs his options’.

Type Restrictions: A closely related problem is type-variations in the argument. E.g.,

<George Washington, was born in, America> vs. <George Washington, born in, Virginia>

both use the same sense of ‘was born in’ but refer to different semantic relations – one that

takes a country in arg2, and the other that takes a state. Moreover, different argument

types may result in different functionality labels. For example, ‘published in’ is functional

if the arg2 is a year, but non-functional if it is a language, since a book could be published

in many languages. We refer to this finer notion of functionality as typed functionality.

Data Sparsity: There is often limited data for the more obscure relation phrases, and

non-functional relation phrases may appear functional due to lack of evidence.

Textually Functional Relations: Last but not least, some relations that are not func-

tional may appear functional in text. An example is ‘collects’. We collect many things, but

rarely mention it in text. Usually, someone’s collection is mentioned in text only when it

makes the news. We say such relations are textually functional. Even though we could build

techniques to reduce the impact of other phenomena, no instance based counting scheme

could overcome the challenge posed by textually functional relations.

Finally, we note that our functionality predictor operates over tuples generated by an

Open IE system. The extractors are not perfect and their errors can also complicate our

analysis.

3.4 Algorithms

To overcome these challenges, we design three algorithms. Our first algorithm, IBC, applies

several rules to determine whether two arg2s are equal. Our second algorithm, DistrDiff,

takes a statistical approach, and tries to learn a discriminator between typical count dis-

tributions for functional and non-functional relations. Our final approach, CleanLists,



26

applies counting over a cleaner subset of the corpus, which is generated based on entities

present in a large, general-coverage KB such as Freebase.

From this section onwards, we gloss over the distinction between a semantic relation and

a relation phrase because our algorithms do not have access to relations and operate only

at the phrase level. We use ‘relation’ to refer to the phrases.

3.4.1 Instance Based Counting ( IBC)

For each relation, IBC computes a global functionality score by aggregating local function-

ality scores for each arg1. The local functionality for each arg1 computes the fraction of

arg2 pairs that refer to the same entity. To operationalize this computation we need to

identify which arg2s co-refer. Moreover, we also need to pick an aggregation strategy to

combine local functionality scores.

Data Cleaning: Common nouns in arg1s are often anaphoras for other entities. For

example, <the company, was headquartered in, ...> refers to different companies in different

extractions. To combat this, IBC restricts arg1s to proper nouns. Secondly, to counter

extraction errors and data bias, it retains an extraction only once per unique sentence. This

reduces the disproportionately large frequencies of some assertions that are generated from

a single article published at multiple websites. Similarly, it allows an extraction only once

per website URL. Moreover, it filters out any arg1 that does not appear at least 10 times

with that relation.

Equality Checking: This key component judges if two arg2s refer to the same entity.

It first employs weak typing by disallowing equality checks that cross high-level categories

(common nouns, proper nouns, dates and numbers). This mitigates relation ambiguity

because, for instance, we never compare ‘born in(1732)’ and ‘born in(Virginia)’. Within the

same category it judges two arg2s to co-refer if they share a content word. It also performs

a connected component analysis [47] to take a transitive closure of arg2s judged equal (see

Figure 3.2). For example, for the relation ‘was named after’ and arg1=‘Bluetooth’, our

corpus has three arg2s: ‘Harald Bluetooth’, ‘Harald Bluetooth, the King of Denmark’ and

‘the King of Denmark’. Our equality method judges all three as referring to the same entity.
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George Washington was born in:

Colonial

Beach

Colonial 

Beach,

Virginia

Westmoreland County, Virginia

February
February 1732

1732

Figure 3.2: Connected Components Technique: Connected components analysis al-
lows us to judge that Colonial Beach and Westmoreland County, Virginia are likely to be
consistent arguments if we also see Colonial Beach, Virginia.

Note that this is a heuristic approach which could make mistakes. However, for an error to

occur, there would need to be extractions with the same arg1, same relation, and similar

arg2s. Such cases exist, but are not common. Our equality checking mitigates the problems

of anaphora, synonymy as well as some typing.

Aggregation: We try several methods to aggregate local functionality scores for each

arg1 into a global score for the relation. These include, a simple average, a weighted average

weighted by frequency of each arg1, a weighted average weighted by log of frequency of each

arg1, and a Bayesian approach that estimates the probability that a relation is functional

using statistics over a small development set. Overall, the log-weighting works the best: it

assigns a higher score for popular arguments, but not so high that it drowns out all the

other evidence.

3.4.2 DistrDiff

Our second algorithm, DistrDiff, takes a purely statistical, discriminative view of the

problem. It recognizes that, due to aforementioned reasons, whether a relation is functional

or not, there are bound to be several arg1s that look locally functional and several that look

locally non-functional. The difference is in the number of such arg1s – a functional relation

will have more of the former type.
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Figure 3.3: Examining Argument Distributions: Arg2 count distributions fall more
sharply for (a) a sample functional relation, than (b) a sample non-functional relation. (c)
The distance of aggregated slope-distributions from average slope-distributions can be used
to predict the functionality.

DistrDiff studies the count distributions for a small development set of functional

relations (and similarly for non-functional) and attempts to build a separator between the

two. As an illustration, Figure 3.3(a) plots the arg2 counts for various arg1s for a functional

relation (‘is headquartered in’ ). Each curve represents a unique arg1. For an arg1, the x-

axis represents the rank (based on frequency) of arg2s and y-axis represents the normalized

frequency of the arg2. For example, if an arg1 is found with just one arg2, then x=1 will

match with y=1 (the first point has all the mass) and x=2 will match with y=0. If, on the

other hand, an arg1 is found with five arg2s, say, appearing ten times each, then the first

five x-points will map to 0.2 and the sixth point will map to 0.

We illustrate the same plot for a non-functional relation (‘visited’ ) in Figure 3.3(b). It

is evident from the two figures that, as one would expect, curves for most arg1s die early in

case of a functional relation, whereas the lower ranked arg2s are more densely populated in

case of a non-functional relation.

We aggregate this information using slope of the best-fit line for each arg1 curve. For

functional relations, the best-fit lines have steep slopes, whereas for non-functional the lines

are flatter. We bucket the slopes in integer bins and count the fraction of arg1s appearing

in each bin. This lets us aggregate the information into a single slope-distribution for each
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relation. Bold lines in Figure 3.3(c) illustrate the average slope-distributions, averaged

over ten sample relations of each kind – dashed for non-functional and solid for functional.

Most non-functional relations have a much higher probability of arg1s with low magnitude

slopes, whereas functional relations are the opposite. Notice that the aggregated curve for

‘visited’ in the figure is closer to the average curve for non-functional than to functional and

vice-versa for ‘was born on’.

We plot the aggregated slope-distributions for each relation and use the distance from

average distributions as a means to predict the functionality. We use KL divergence [61] to

compute the distance between two distributions. We score a relation’s functionality in three

ways using: (1) KLfunc, its distance from average functional slope-distribution Favg, (2)

KLdiff, its distance from average functional minus its distance from average non-functional

Navg, and (3) average of these two scores. For a relation with slope distribution R, the scores

are computed as:

KLfunc =
∑
i

R(i)ln
R(i)

Favg(i)
(3.1)

KLdiff = KLfunc − (
∑
i

R(i)ln
R(i)

Navg(i)
) (3.2)

Section 3.5.2 compares the three scoring functions. A purely statistical approach is

resilient to noisy data, and does not need to explicitly account for the various issues we

detailed earlier. A disadvantage is that it cannot handle relation ambiguity and type re-

strictions. Moreover, we may need to relearn the separator if applying DistrDiff to a

corpus with very different count distributions.

3.4.3 CleanLists

Our third algorithm, CleanLists, is based on the intuition that for identifying functionality

we need not reason over every instance for each relation; instead, a smaller but cleaner subset

of the data may work best. This clean subset should ideally be free of synonyms, ambiguities

and anaphora, and be typed.
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Several knowledge-bases such as Wordnet [78], Wikipedia [126], and Freebase [74], are

readily and freely available and they all provide clean typed lists of entities. In our experi-

ments we chose to use Freebase because of its broad coverage of general entities that appear

in Web text relation phrases. Freebase type lists also have the important property that they

do not contain duplicates. For example, the list of people might include “Hillary Clinton”

or “Hillary Rodham Clinton,” but would not include both.

CleanLists takes the intersection of Freebase entities with our corpus to generate a

clean subset for functionality analysis. Freebase contains over 10 million entities in over

1,000 typed lists. Thus, this intersection retains significant portions of the useful data

while removing most anaphora and synonymy issues. Moreover, by matching against typed

lists, many relation ambiguities are separated as well, since ambiguous relations often take

different types in the arguments (e.g., ‘ran(Distance)’ vs. ‘ran(Company)’). To mitigate

the effect of argument ambiguity, we additionally remove instances in which arg1s match

multiple names in the Freebase list of names.

As an example, consider the ‘was born in’ relation. CleanLists will remove instances

with only ‘Clinton’ in arg1, since it matches multiple people in Freebase. It will treat the

different types, e.g., cities, states, countries, months separately and analyze the functionality

for each of these individually. By intersecting the relation data with argument lists for these

types, we will be left with a smaller, but much cleaner, subset of relation data, one for each

type. CleanLists analyzes each subset using simple, instance based counting and computes

a typed functionality score for each type. Thus, it first computes typed functionality for

each relation.

There are two subtleties in applying this algorithm. First, we need to identify the set

of types to consider for each relation. Our algorithm currently picks the types that occur

most in each relation’s observed data. In the future, we could also incorporate a selectional

preferences system [58, 101]. Note that we remove Freebase types such as Written Work

from consideration for containing many entities whose primary senses are not that type.

For example, both ‘Al Gore’ and ‘William Clinton’ are also names of books, but references

in text to these are rarely a reference to the written work sense.

Secondly, an argument could belong to multiple Freebase lists. For example, ‘California’
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Figure 3.4: Functionality Detection Components: Our functionality system, Leibniz,
uses the Web and Freebase to determine functionality of Web relations.

is both a city and a state. We apply a simple heuristic: if a string appears in multiple lists

under consideration, we assign it to the smallest of the lists (the list of cities is much larger

than states). This simple heuristic usually assigns an argument to its intended type. On a

development set, the error rate of this heuristic is <4%, though it varies a bit depending on

the types involved. This technique also keeps us from potential errors caused by agglom-

erated types that contain multiple other types (e.g., location type contains both city and

country types).

CleanLists determines the overall functionality of a relation string by aggregating the

scores for each type. It outputs functional if a majority of typed senses for the relation

are functional. For example, CleanLists judges ‘was born in’ to be functional, since all

relevant type restrictions are individually typed functional – everyone is born in exactly one

country, city, state, month, etc.

CleanLists has a much higher precision due to the intersection with clean lists, though

at some cost of recall. The reason for lower recall is that the approach has a bias towards

types that are easy to enumerate. It does not have different distances (e.g., 50 kms, 20

miles, etc.) in its lists. Moreover, arguments that do not correspond to a noun cannot be

handled. For example, in the sentence, “He weighed eating a cheeseburger against eating a
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Figure 3.5: Functionality Internal Comparisons: (a) The best scoring method for
DistrDiff averages KLfunc and KLdiff. (b) CleanLists performs significantly better
than DistrDiff, which performs significantly better than IBC.

salad”, the arg2 of ‘weighed’ can’t be matched to a Freebase list. To increase the recall we

back off to DistrDiff in the cases when CleanLists is unable to make a prediction (see

Figure 3.4). This combines the power of knowledge bases and statistical approaches to give

the best balance of precision and recall for our task. We name our final system Leibniz.

One current limitation is that using only those arg2s that exactly match clean lists leaves

out some good data (e.g., a tuple with an arg2 of ‘Univ. of Washington’ will not match

against a list of universities that spells it as ‘University of Washington’). Because we have

access to entity types, using typed equality checkers [92] with the clean lists would allow us

to recapture much of this useful data. Argument matching will also be examined further in

Chapter 4.

3.5 Evaluation

In our evaluation, we wish to answer three questions: (1) How do our three approaches, In-

stance Based Counting (IBC), DistrDiff, and CleanLists, compare on the functionality

identification task? (2) How does our final system, Leibniz, compare against the existing

state of the art techniques? (3) How well is Leibniz able to identify typed functionality for
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different types in the same relation phrase?

3.5.1 Dataset

For our experiments we test on the set of 887 relations used by Ritter et al. [100] in their

experiments. We use the Open IE corpus generated by running TextRunner on 500 million

high quality Web pages [5] as the source of instance data for these relations. Extractor and

corpus differences lead to some relations not occurring (or not occurring with sufficient

frequency to properly analyze, i.e., ≥ 5 arg1 with ≥ 10 evidence), leaving a dataset of 629

relations on which to test.

Two human experts tagged these relations for functionality. Tagging the functionality

of relation phrases can be a bit subjective, as it requires the experts to imagine the various

senses of a phrase and judge functionality over all those senses. The inter-annotator agree-

ment between the experts was 95.5%. We limit ourselves to the subset of the data on which

the two experts agreed (a subset of 601 relation phrases).

3.5.2 Internal Comparisons

First, we compare the three scoring functions for DistrDiff. We vary the score thresholds

to generate the different points on the precision-recall curves for each of the three. Figure

3.5(a) plots these curves. It is evident that the hybrid scoring function, i.e., one which

is an average of KLfunc (distance from average functional) and KLdiff (distance from

average functional minus distance from average non-functional) performs the best. We use

this scoring in the further experiments involving DistrDiff.

Next, we compare our three proposed algorithms on the dataset. Figure 3.5(b) reports

the results. CleanLists outperforms DistrDiff by vast margins, covering a 33.5% ad-

ditional area under the precision-recall curve. Overall, CleanLists finds the very high

precision points, because of its use of clean data. However, it is unable to make 23.1% of

the predictions, primarily because the intersection between the corpus and Freebase entities

results in very little data for those relations. DistrDiff performs better than IBC, due to

its statistical nature, but the challenges described in Section 3.3 plague both these systems
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Figure 3.6: Functionality External Comparisons: (a) Leibniz, which is a hybrid of
CleanLists and DistrDiff, achieves 0.88 AUC and outperforms the 0.61 AUC from
AuContraire [100] and the 0.05 AUC from NumericTerms [117]. (b) Leibniz is able to
tease apart different senses of polysemous relations much better than other systems.

much more than CleanLists.

3.5.3 External Comparisons

We next compare Leibniz against the existing state of the art approaches. Our competitors

are AuContraire [100] and NumericTerms [117]. Because we use the AuContraire dataset,

we report the results from their best performing system. We reimplement a version of

NumericTerms using their list of numeric quantifiers and extraction patterns that best

correspond to our relation format. We run our implementation of NumericTerms on a

dataset of 100 million English sentences from a crawl of high quality Web pages to generate

the functionality labels.

Figure 3.6(a) reports the results of this experiment. We find that Leibniz outperforms

AuContraire by vast margins covering an additional 44% area in the precision-recall curve.

AuContraire’s AUC is 0.61 whereas Leibniz covers 0.88. A Bootstrap Percentile Test [54]

on F1 score found the improvement of our techniques over AuContraire to be statistically

significant at α = 0.05. NumericTerms does not perform well, because it makes decisions

based only on the local evidence in a sentence, and does not integrate the knowledge from



35

different occurrences of the same relation. It returns many false positives, such as ‘lives in’,

which appear functional to the lexico-syntactic pattern, but are clearly non-functional, e.g.,

one could live in many places over a lifetime.

An example of a Leibniz error is the ‘represented’ relation. Leibniz classifies this as

functional, because it finds several strongly functional senses (e.g., when a person represents

a country), but the human experts might have had some non-functional senses in mind while

labeling.

3.5.4 Typed Functionality

Next, we conduct a study of the typed functionality task. We test on ten common poly-

semous relations, each having both a functional and a non-functional sense. An example

is the ‘was published in’ relation. If arg2 is a year it is functional, e.g. <Harry Potter

5, was published in, 2003>. However, ‘was published in(Language)’ is not functional, e.g.

<Harry Potter 5, was published in, [French / Spanish / English]>. Similarly, ‘will be-

come(Company)’ is functional because when a company is renamed, it transitions away

from the old name exactly once, e.g. <Cingular, will become, AT&T Wireless>. However,

‘will become(government title)’ is not functional, because people can hold different offices in

their life, e.g., <Obama, will become, [Senator / President]>.

In this experiment, a simple baseline of predicting the same label for the two types of

each relation achieves a precision of 0.5. Figure 3.6(b) presents the results of this study.

AuContraire achieves a flat 0.5 because it cannot distinguish between types. NumericTerms

can be modified to distinguish between basic types – check the word just after the numeric

term to see whether it matches the type name. For example, the modified NumericTerms

will search the Web for instances of “was published in [numeric term] years” vs. “was

published in [numeric term] languages”. This scheme works better when the type name is

simple (e.g., “languages”) rather than complex (e.g., “government titles”).

Leibniz performs the best and is able to tease apart the functionality of various types

very well. When Leibniz did not work, it was generally because of textual functionality,

which is a larger issue for typed functionality than general functionality. Of course, these re-
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sults are merely suggestive – we perform a larger-scale experiment and generate a repository

of typed functions next.

3.5.5 Creating a Repository of Functional Relations

We now report on a repository of typed functional relations generated automatically by

applying Leibniz to a large collection of relation phrases. Instead of starting with the most

frequent relations from TextRunner, we use ReVerb’s relations [37] because they are

more specific. For instance, where TextRunner outputs an underspecified tuple, <Gold,

has, an atomic number of 79>, ReVerb extracts <Gold, has an atomic number of, 79>.

ReVerb enables Leibniz to identify far more functional relations than TextRunner.

Scaling up to a large collection of typed relations requires us to consider the size of our

data sets. For example, consider which relation is more likely to be functional—a relation

with 10 instances all of which indicate functionality versus a relation with 100 instances

where 95 behave functionally.

To address this problem, we adapt the likelihood ratio approach from Schoenmackers

et al. [107]. For a typed relation with n instances, f of which indicate functionality, the

G-test [29] provides a measure for the likelihood that the relation is not functional:

Gscore = 2 ∗ (f ∗ ln(
f

k
) + (n− f) ∗ ln(

n− f
n− k

)) (3.3)

Here k denotes the evidence indicating functionality for the case where the relation is

not functional. Setting k = 0.25 * n worked well for us. This G-score replaces our previous

metric for scoring functional relations.

Typing increases the number of relations significantly, and the exact set of type lists

affects the quality of the results. Lists that contain ambiguous names can lead to noisy

results for specific typed relations. For example, Freebase’s list of films contains 73,000

entries, many of which (e.g., “Egg”) are not films in their primary senses. Even with

heuristics such as assigning terms to their smallest lists and disqualifying dictionary words

that occur from large type lists, there is still significant noise left. We chose a set of 35 clean

lists that would work better for this task. They are nearly all from Freebase, except a few
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(e.g., years) that we could automatically generate at perfect accuracy. Using these clean

lists on ReVerb’s extraction corpus, we generated a repository of 5,520 typed functional

relations.

To evaluate this resource a human expert tagged a random subset of the top 1,000

relations. Of these relations 22% were either ill-formed or had non-sensical type constraints.

From the well-formed typed relations the precision was estimated to be 0.8. About half the

errors were due to textual functionality and the rest were Leibniz errors. An example

of a textually functional relation found is wasTheFounderOf(company). Some examples of

good functions found include isTheSequelTo(videogame) and areTheBirthstoneFor(month).

Appendix B provides 15 examples of good functional relations identified here.

This is the first public repository of automatically-identified functional relations. Scaling

up our data set forced us to confront new sources of noise including extractor errors, errors

due to mismatched types, and errors due to sparse evidence. Still, our initial results are

encouraging and we hope that our resource will be valuable as a baseline for future work.

3.6 Conclusions

Functionality identification is an important subtask for Web-scale information extraction

and other machine reading tasks. We study the problem of predicting the functionality

of a relation phrase automatically from Web text. We presented three algorithms for this

task: (1) instance-based counting, (2) DistrDiff, which takes a statistical approach and

discriminatively classifies the relations using average arg-distributions, and (3) CleanLists,

which performs instance based counting on a subset of clean data generated by intersection

of the corpus with a large, general knowledge base like Freebase.

Our best approach, Leibniz, is a hybrid of DistrDiff and CleanLists, and out-

performs the existing state-of-the-art approaches by covering 44% more area under the

precision-recall curve. We also observe that an important sub-component of identifying

a functional relation phrase is identifying typed functionality, i.e., functionality when the

arguments of the relation phrase are type-constrained. Because CleanLists is able to use

typed lists, it can successfully identify typed functionality. We run our techniques on a large

set of relations to output a first repository of typed functional relations. We release this
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data for further use by the research community.2

Two areas of future work are to better handle the textually functional relations and the

relations with very few instances. If a non-functional relation appears functional in text,

then this affects all approaches which detect properties via observed instances. One way to

address this would be to carefully integrate evidence from pattern-based approaches that

are more resilient to this problem. For example, if a relation is ever followed in text by

“multiple” or “more than one,” then it is less likely to be functional. While the G-test

approach discussed in Section 3.5.5 helps us interpret results in cases of data sparsity, it

would be even better to acquire more instances per relation by clustering any synonymous

relation phrases.

We would also like to adapt our functionality techniques to detect other important rela-

tion properties. The primary technical challenges in detecting other properties often center

around the same phenomena (e.g., synonymy, anaphora, argument ambiguity, relation am-

biguity). Several properties such as 1-to-1 and temporal functionality are direct extensions

on functionality, so all the work here is directly applicable. Techniques we developed for

IBC can help with properties where argument equality is important (e.g., symmetry). Dis-

trDiff can help with detecting the properties where specific argument distributions are

expected (e.g., 1-to-many). CleanLists can help identify the clean subsets of observed

data to match on for properties such as transitivity, where the presence of any ambiguous

arguments or anaphoric expressions can lead to false positives.

Having examined the problem of improving open-domain Web extractions as a whole

(e.g., “Einstein was born in 1879” is interesting) and then having delved deeper into under-

standing their relation phrases (e.g., “was born in” is functional, so Einstein could not have

been born in any other year), in the next chapter we will explore what additional informa-

tion can be learned about the extraction arguments. For example, does “Einstein” refer to

“Albert Einstein” or another Einstein? Does “Einstein” refer to a person or a movie? How

might we determine this if a priori we knew nothing about Einstein, as is the case for many

entities found on the Web?

2available at http://www.cs.washington.edu/research/leibniz
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Chapter 4

UNDERSTANDING ENTITY PHRASES: LINKING AND TYPING

Web extractions from Open IE capture relationships between entity phrases. For exam-

ple, (“Obama”, “was born in”, “Hawaii”) implies that there exists entities “Obama” and

“Hawaii” taking part in a “was born in” relationship. These entity phrases are extracted

as text strings and have no additional associated semantic information. In this chapter we

explore how these entity phrases can be linked into large knowledge bases, and how they

can be marked up with semantic information such as entity types. Doing this would provide

us with a deeper understanding of the entities within our extractions, facilitate interop-

erability between Web extractions and external projects/resources such as those found in

Linked Data [9], and also enable the usage of Open IE extractions for numerous tasks such

as typed question answering [16], inference [106], and more.

We begin the chapter by proposing scalable techniques for “entity linking” [15, 23] large

corpora of Web extractions into Wikipedia. Successful linking for the earlier example would

identify that “Obama” refers to “Barack Obama” rather than “Michelle Obama” or any

other Obama. All Wikipedia entities have been annotated with Freebase semantic types,

so this linking would further provide the types for all linked entities. In keeping with our

goal of leveraging KBs without restricting the possible vocabulary of extracted knowledge,

we then study how to also incorporate all the Web extraction arguments that do not have

Wikipedia entries. We propose a pipeline of first detecting whether they represent entities

(as opposed to errors), and then further predicting their types by identifying similar entities

that we could link. The primary contributions of this chapter are:

1. We are the first to study how to efficiently entity link collections of millions of extrac-

tions. We introduce new techniques such as collective contexts and inlink ratio that

are designed to operate at this scale. An implementation of these methods was able

to entity link 500 million Web extractions in 3 days.
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2. We present a method for discriminating entities from arbitrary noun phrases by uti-

lizing features derived from temporal corpora [76]. Our system achieves 24% higher

accuracy relative to a Named Entity Recognition baseline for this task.

3. We adapt and scale instance-to-instance class propagation [59] in a novel way in order

to associate types with non-Wikipedia entities. On the task of assigning fine-grained

types, we achieve twice the precision of our best baseline method.

4. After identifying a potential limitation around ambiguous noun phrases, we propose

a method for splitting ambiguous noun phrases into their component senses by using

graph coloring [52].

4.1 Entity Linking at Web Scale

In this section we provide an overview of entity linking and how we entity link millions of

Web extractions.

4.1.1 Introduction

Given text, the task of entity linking [15, 23, 60, 79] is to identify knowledge base entities

within the text, and mark each with its corresponding knowledge base entry. Nearly all

general purpose linking systems use Wikipedia as the knowledge base because of its broad

general coverage and to leverage its article texts and link structure during the linking pro-

cess. In domain-specific contexts however, other entity catalogs can be used instead. An

example of entity linking to Wikipedia is linking “New York” in the assertion (“New York”,

“acquired”, “Pineda”) to the Wikipedia article entry for New York Yankees (rather than,

for example, the entries for New York City or New York State).

Entity linking elevates extraction arguments from text strings into meaningful entities

that are disambiguated and have semantic types and linked resources. For example, linking

to Wikipedia provides Freebase types for all linked entities.1 Freebase contains over 1,000

semantic types and was designed to have good coverage across all entities within Freebase

1Wikipedia to Freebase mappings are available at http://download.freebase.com/wex
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Extraction Linked Entity (Freebase ID) Type sample

(“Obama”, “was born in”, “Hawaii”) Barack Obama (02mjmr) president

(“Obama”, “attended”, “Princeton”) Michelle Obama (025s5v9) celebrity

(“Einstein”, “was born in”, “Ulm”) Albert Einstein (0jcx) academic

(“Kenya”, “is located in”, “eastern Africa”) Kenya (019rg5) country

(“the Kiwi”, “is a symbol of”, “New Zealand”) Kiwi (04f85) organism

(“the FDA”, “approved”, “Sucralose”) Food & Drug Admin (032mx) gov agency

(“Titanic”, “sank in”, “the North Atlantic”) RMS Titanic (06l72) ship

Table 4.1: Entity Linking: Entity Linking involves linking textual arguments to their
disambiguated and typed entries in a large knowledge base.

and Wikipedia, and thus good coverage across the general space of Web entities. Freebase

types are at a more suitable granularity for many end tasks than Wikipedia’s own category

system, which has over 100,000 categories (including many such as 1872 births and 1983

horror films that are too fine-grained to be practically useful for general reasoning tasks).

Table 4.1 provides several examples of Web extractions, the entity they would link to, and

sample types from each entity’s actual list of Freebase types. Note that most entities have

multiple Freebase types. Barack Obama’s full list of types includes president, author, person,

public speaker and many more.

Our goal is to entity link our Web-scale extraction set. The scale of the problem intro-

duces numerous opportunities and challenges. Existing entity linking research has focused

primarily on linking all the entities within individual documents into Wikipedia [28, 60, 79].

To link a million documents they would repeat a million times. However, we can potentially

do better when we know ahead of time that the task is large scale linking. For example,

information on one document might help link an entity on another document. Another

opportunity is that after linking a million documents, we can discover systematic linking

errors when particular entities are linked to many more times than expected.

Speed is a practical concern when linking this many assertions. Instead of designing a

system with sophisticated features that rely on the full Wikipedia graph structure, the core
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of our linker is fast linking features such as string matching, prominence [36], and context

matching [15]. Ratinov et al. [98] found that these features already provide a baseline

that is very difficult to beat with the more sophisticated features that take more time to

compute. We also increase precision by incorporating new corpus-level features available

only when linking large sets of extractions.

This section investigates entity linking over millions of high-precision extractions from a

corpus of 500 million Web documents, toward the goal of creating a useful knowledge base

of general facts. This work is the first to report on entity linking over this many extractions

[69].

4.1.2 Entity Linking

We define our problem of corpus-level linking of Web extractions as: Given an entity catalog

W containing n entities e1, e2, ..., en, and a corpus R of m unique textual assertions a1, a2,

..., am, for each assertion a ∈ R find entity e ∈ W that corresponds to each entity argument

of a. The sizes n and m are very large. We focus initially on linking the subject argument

for each a, but the techniques used are also applicable to linking object arguments.

For W we use Wikipedia, which covers over 3 million entities e. Each Wikipedia entity

comes associated with a Freebase entity and we use Freebase types later, so in many of

our examples we will refer to Wikipedia entities via their unique Freebase IDs. For R we

initially use 15 million ReVerb extractions publicly released by Fader et al. [37].2

Our general algorithm has 3 components:

1. Candidate generation: Every Wikipedia entity e ∈ W contains a Wikipedia page.

The number of hyperlinks in all of Wikipedia that point to the page for e is the inlink count

inlinks(e). This serves as a prominence prior because prominent entities have more pages

linking to them in Wikipedia [36]. At a high level, our candidate generation algorithm is:

List Wsorted = sort W by inlinks, from most to fewest

for each entity e ∈Wsorted

for each word w ∈ e

2available at http://reverb.cs.washington.edu
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add e to the end of words to candidates(w)

for each assertion a ∈ R

add the subject argument of a to a list L

for each subject argument s ∈ L

candidatess = first k entities e where for every word w ∈ s, e ∈ words to candidates(w)

return candidates

Setting k = 5, this quickly gives us the top 5 most prominent candidates e ∈ W that

contain at least every word present in each textual argument. For example, for the argument

“Clinton,” this returns: Bill Clinton, Hillary Clinton, George Clinton, Clinton County, and

Presidency of Bill Clinton. The most prominent exact string match in the candidates list is

also included if it did not otherwise qualify. We use simple heuristics to handle differences

in capitalization, pluralization, punctuation, and presence of stopwords. We found that

broadly incorporating looser string matching, acronym matching and large alias lists often

presented tradeoffs between precision and recall [83]. While we continue to explore their

use, our initial candidate generation uses only the described matching.

2. Candidate ranking: For each assertion a ∈ R, we create a context document contexta

that contains all source sentences from which a was extracted. articlee refers to the text of

the Wikipedia article for entity e. We then compute a link score as follows:

for each assertion a ∈ R with subject argument s

for each candidate entity match e in candidatess

sim(a, e) = cosine similarity(contexta, articlee)

sml(a, e) = string match level(s, e)

link score(a, e) = ln(inlinks(e)) * sim(a, e) * sml(a, e)

Given weighted query vectors V(contexta) and V(articlee):

cosine similarity(contexta, articlee) =
V (contexta) · V (articlee)

||V (contexta)|| ||V (articlee)||
(4.1)
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Figure 4.1: Collective Contexts: Context matching using more source sentences can
increase entity linking accuracy, especially in cases where link ambiguity is high.

We refer to this usage of context documents as collective contexts, and it is a corpus-level

feature that is only available when linking many assertions at once. The idea behind it is that

in an extraction corpus, the same assertion is often extracted from multiple source sentences

across different documents. If we collect together the various source sentences, this can often

provide a stronger context signal for entity linking. While “New York acquired Pineda on

January 23” may not provide strong signal by itself, adding another source sentence such

as “New York acquired Pineda to strengthen their pitching staff,” could be enough for the

linker to choose the New York Yankees over the others. Figure 4.1 shows the gain in linking

accuracy we observed when using 6 randomly sampled source sentences per assertion instead

of 1. At each link ambiguity level (Equation 4.3), we took 200 random samples.

String match level is an integer from 1 to 5 that corresponds to how closely the strings

match (5 = exact, 1 = e has many more words than s). We take the logarithm of the inlink

count to keep this value from dominating the others. The best entity link ê for assertion a

with subject argument s maximizes the link score:

ê(a) = {e|link score(a, e) = max
e∈candidatess

link score(a, e)} (4.2)



45

entity assertions wiki inlinks ratio

“Barack Obama” 16,094 16,415 0.98

“Larry Page” 13,871 588 23.6

“Bill Clinton” 5,710 11,176 0.51

“Microsoft” 5,681 12,880 0.44

“Same” 6,975 36 193

Table 4.2: Inlink Ratio: The ratio between an entity’s linked assertion count and its inlink
prominence can help to detect systematic errors to correct or filter out.

When there are multiple candidates, we use the score é(a) of the next best match to

calculate a link ambiguity score:

link ambiguity(ê(a)) =
link score(é(a))

link score(ê(a))
(4.3)

Link ambiguity corresponds to whether the best candidate is clearly better than all other

candidates. Links with high link score and low link ambiguity are more likely to be correct.

3. Filtering: A second corpus-level feature we found to be useful is link count expectation.

When linking millions of general assertions, we do not expect strong relative deviation

between the number of assertions linking to each entity and the known prominence of the

entities. For example, we would expect many more Web assertions to link to “Lady Gaga”

than “Michael Pineda.” We formalize this notion by calculating an inlink ratio for each

entity as the number of assertions linking to it divided by its inlink prominence.

inlink ratio(e) =

∑
a∈R(1 if e = ê(a), 0 otherwise)

inlinks(e)
(4.4)

When linking 15 million assertions, we found that ratios significantly greater than 1 were

often signs of systematic errors. Table 4.2 shows ratios for several entities that had many
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assertions linked to them. It turns out that many assertions of the form “(Page, loaded in,

0.23 seconds)” were being incorrectly linked to “Larry Page,” and assertions like “(Same,

goes for, women)” were being linked to a city in East Timor named “Same.” We filtered

systematic errors detected in this way, but these errors could also serve as valuable negative

labels in training a better linker.

4.1.3 Speed

Some existing linking systems we looked at (such as [44, 98]) can take up to several seconds

to link each document, which makes them difficult to run at Web scale without massive

distributed computing. By focusing on the fastest local features and then improving preci-

sion using corpus-level features, our initial implementation was able to link at an average

speed of 60 assertions per second on a standard machine without using multithreading. This

translated to 3 days to link the set of 15 million textual assertions that ReVerb identified as

having high precision. A distributed implementation of this linker running on 9 multi-core

machines was able to link 500 million ReVerb assertions in 3 days.

4.1.4 Accuracy

Of the 15 million assertions we tried to link, approximately 5 million could not be linked

at all (generally because they had no string match). These 5 million were primarily non-

Wikipedia entities and errors, although about 10% were also aliases that we would need to

engineer in good alias lists [116] to link. We revisit these 5 million in Section 4.3. Of the 10

million that could be linked, we filter out 3 million for bad inlink ratios (≥1). Bad inlink

ratios generally indicated errors, such as “(Turn, left on, Erwin Road)” being linked to an

Irish band named “Turn.” From the 7 million assertions that we linked and which had good

inlink ratios, we randomly sampled 100 and hand-labeled each as having a correct link, an

incorrect link, not being an entity, or being an entity missing from our KB. We then used

these labels to extrapolate the linking accuracy over the full set of 7 million assertions.

We found that our links were generally correct when link score was high and link ambi-

guity was low, and generally incorrect when link score was low and link ambiguity was high.
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Figure 4.2: Entity Linking Accuracy: There are 2 million extractions where we correctly
link nearly all the linkable entities, and 4 million extractions where we correctly link nearly
90% of the linkable entities.

After sorting the links by link score x (1 - link ambiguity), we created Figure 4.2 showing

the linking accuracy at different numbers of assertions. Among the first 2 million assertions

(based on our sort), we correctly linked nearly all of the entities that had correct links to

find. Among the first 4 million assertions, we correctly linked around 90% of the linkable

entities. Over the full set of 7 million assertions, we correctly linked just over 70% of the

linkable entities. This evaluation confirms that we are able to accurately link millions of

assertions for use in downstream applications.

Incorrect links were due to a variety of different issues. Around 1/3 of incorrect links oc-

curred when the argument was a very common name (e.g., “Max” or “Lacy”) that matched

a large number of potential entities. Another 1/3 of incorrect links were due to our cur-

rent string matching logic. For example, when linking “HOL,” our string matching logic



48

favors entities such as “HOL theorem prover” instead of catching that “HOL” can be an

abbreviation of “Higher-order logic.” Other sources of error included strongly correlated

entities (e.g., linking “The Aptera” to “Aptera Motors” instead of the “Aptera 2 Series” of

cars made by Aptera Motors) and cases where the source sentences did not provide enough

distinguishing context to overcome the prominence priors.

The accuracy metric for Figure 4.2 does not consider extractions that had no correct

link to find. In our labeled test set, around one third of the extractions had no correct link

to find (mostly because they referred to entities outside of our KB). The traditional way

to handle these cases would be to assign them to a separate NIL label [28, 89]. The large

majority of these cases occurred when link score was low and link ambiguity was high. If

we assign the bottom half of our links to be NIL based on link score x (1 - link ambiguity),

then accuracy (redefined as “% Correct, including NIL cases”) becomes 65% over the full

set of 7 million. This value could be further improved by learning the optimal link score

and link ambiguity thresholds for triggering a NIL prediction.

Another question is how much precision and recall we lose in order to develop a system

fast enough to link at Web scale. As computing power continues to increase in the future,

will it eventually become a better option to preprocess Web pages with traditional entity

linking? To test this we sampled 100 random extractions where the subject argument links

into Wikipedia, and compared our linking ability against that of a strong off-the-shelf entity

linker [98] which is given source Web pages to link. On our test set, the off-the-shelf linker

assigned 78 links and got 72 correct, to achieve 92% precision at 72% recall (0.808 F1). In

comparison, our system was faster but had lower F1. At a link score threshold of 5, we

assigned 71 links and got 61 correct, to achieve 86% precision at 61% recall (0.714 F1). At a

link score threshold of 11, we assigned 51 links and got 50 correct, to achieve 98% precision

at 50% recall. The off-the-shelf linker excels at linking individual extractions, but at Web

scale our linker can produce a larger set of correctly linked extractions by setting a high

link score threshold and processing many more Web pages in the same amount of time.

Appendix C contains the most-linked-to entities from our run on 15m Web extractions.

The top entities (e.g., Obama, Jesus, Internet, USA) are consistent with what entities we

would expect to be mentioned most in Web text.
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4.1.5 Conclusions

While numerous entity-linking systems have been developed in recent years, we believe that

going forward, researchers will increasingly be considering the opportunities and challenges

that arise when assigning millions of links at once, instead of linking document by document.

This work is the first to run and report on entity linking over millions of textual extractions,

and we proposed novel ideas in areas such as corpus-level features.

There are potentially many other corpus-level features and characteristics to explore, as

well as additional challenges such as how to best evaluate recall at this scale and how to

incorporate the many entities in Web text are not present in large knowledge bases. Of the

15m extractions we started with, around 5m extractions had no matches (mostly due to

no close string matches). There were 1.4m distinct noun phrase subject arguments among

these 5 million extractions. Noun phrases referring to entities not in the KB are unlinkable

because there is no correct entry to link them to, and we study them next.

4.2 The Unlinkable Noun Phrase Problem

A problem we observed is that despite containing 3 to 4 million entities, Wikipedia does not

cover a significant number of entities found in Web extractions. This occurs with entities

that are not prominent enough to have their own dedicated article and with entities that

are very new. Consider the sentence “Some people think that pineapple juice is good for

vitamin C.” To analyze this sentence, a machine should know that “pineapple juice” refers

to a beverage, while “vitamin C” refers to a nutrient. Because it links into a fixed knowledge

base, entity linking has a limited and somewhat arbitrary range. In our example, linkers

(including those by [38] and [98]) generally link “vitamin C” correctly, but link “pineapple

juice” to “pineapple.” “Pineapple juice” is not entity linked as a beverage because it is not

prominent enough to have its own Wikipedia entry. As Table 4.3 shows, Wikipedia often

has prominent entities, while missing tail and new entities of the same types.3 Wang et

al. [123] notes that there are more than 900 different active shoe brands, but only 82 exist

in Wikipedia. Facebook has over 800 million users, and each of them could be considered

3The same problem occurs with Freebase, which is also missing the same Table 4.3 entities.
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example noun phrases Wikipedia status

“apple juice” “orange juice” present

“prune juice” “wheatgrass juice” absent

“radiation exposure” “workplace stress” present

“asbestos exposure” “financial stress” absent

“IJCAI” “OOPSLA” present

“EMNLP” “ICAPS” absent

Table 4.3: Unlinkable Entities: Wikipedia contains entries for prominent entities, while
missing tail and new entities of the same types.

an entity. In scenarios such as intelligence analysis and local Web search, non-Wikipedia

entities are often the most important.

Hence, we extend previous work in entity linking by introducing the unlinkable noun

phrase problem: Given a noun phrase that does not link into Wikipedia, return whether

it is an entity, as well its fine-grained semantic types. Deciding if a non-Wikipedia noun

phrase is an entity is challenging because many of them are not entities (e.g., “Some people,”

“an addition” and “nearly half”). Predicting semantic types is a challenge because of the

diversity of entity types in general text. We use the Freebase type system, which contains

over 1,000 semantic types. Detection and typing of unlinkable entities can increase yield for

NLP applications such as typed question answering.

Our goal is: given (1) a large set of linked assertions L and (2) a large set of unlinked

assertions U , for each unlinkable noun phrase subject n ∈ U , predict: (1) whether n is an

entity, and if so, then (2) the set of Freebase semantic types for n. For L we use the 9.7

million assertions whose subject argument we were able to link in Section 4.1.2, and for U

we use the 5 million assertions that we could not link.

We divide the system into two components. The first component (described in Sec-

tion 4.3) takes any unlinkable noun phrase and outputs whether it is an entity. All n ∈ U

classified as entities are placed in a set E. The second component (described in Section 4.4)

uses L and U to predict the semantic types for each entity e ∈ E.
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4.2.1 Related Work

Three topics related to the unlinkable noun phrase problem include: NIL features, Named

Entity Recognition and Entity Set Expansion.

Previous studies have examined using NIL features to determine whether entity linkers

are being asked to link a noun phrase that is not present in Wikipedia [28, 89]. However,

there has been no research on whether given noun phrases that are unlinkable (for not being

in Wikipedia) are entities, and how to make them usable if they are.

Named Entity Recognition (NER) systems can identify named entities within text. For

example, given a sentence “Mary Sue woke up,” an NER system might identify that “Mary

Sue” is an entity and is a person. However, a key difference between our final goals and

NER is that in the context of entity linking and Wikipedia, we are interested in many

more entities than just the named entities. For example, “apple juice” and “television” are

Wikipedia entities (with Wikipedia articles), but are not traditional named entities. Still,

as named entities do comprise a sizable portion of our unlinkable noun phrases, we compare

against an NER baseline in our entity detection step.

While many NER systems classify entities into 3 types (person, organization or location),

there also exist fine-grained NER systems [63, 72, 110] that have examined the accuracy loss

when scaling NER to more types. On our task, fine-grained NER would suffer similar recall

problems as NER because it still does not cover entities that are not named entities. Also,

despite including more types, fine-grained NER systems still use an order of magnitude

fewer types than we used to cover all entities.

Finally, there is a line of research in using entity set expansion [86] and Web extraction

[32] to extract lists of typed entities from the Web (e.g., a list of every city). Our problem

instead focuses on determining whether any individual noun phrase is an entity, and what

semantic types it holds. Given a noun phrase representing a person name, we return that

this is a person entity even if it is not in a list of people names harvested from the Web.
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4.3 Detecting the Unlinkable Entities

4.3.1 Introduction

The detection task takes in any unlinkable noun phrase and outputs whether it is an entity.

There is a long history of discussion in analytic philosophy literature on the question of

what exists (e.g., [94]). We adopt a more pragmatic view, defining an “entity” for this task

as a noun phrase that could have a Wikipedia-style article if there were no notability or

newness considerations, and which would have semantic types. We are interested in entities

that could help populate an entity store. “EMNLP 2012” is an example of an entity, while

“The method” and “12 cats” are examples of noun phrases that are not entities. This is

challenging because at a surface level, many entities and non-entities look similar: “Sex and

the City” is an entity, while “John and David” is not. “Eminem” is an entity, while “Youd”

(a typo from “You’d”) is not.

We address this task by training a classifier with features primarily derived from a

timestamped corpus. An intuition here is that when considering only unlinkable noun

phrases, usage patterns across time often differ for entities and non-entities. Noun phrase

entities that are observed in text going back hundreds of years (e.g., “Europe”) almost all

have their own Wikipedia entries, so in unlinkable noun phrase space, the remaining noun

phrases that are observed in text going back hundreds of years tend to be all the textual

references and expressions that are not entities. We plan to use this signal to help separate

the entities from the non-entities.

4.3.2 Classifier Features

We use the Google Books ngram corpus [76], which contains timestamped usage of 1-grams

through 5-grams in millions of digitized books for each year from 1500 to 2007.4 We use

ngram match count values from case-insensitive matching. To avoid sparsity anomalies we

observed in years before 1740, we use the data from 1740 onward. While it has not been used

for our task before, this corpus is a rich resource that enables reasoning about knowledge

4available at http://books.google.com/ngrams/datasets



53

Figure 4.3: Entity Usage over Time: Usage over time for the non-entity phrase “Prices
quoted” (left) increases at lower slope than usage over time for the entity phrase “Soluble
fibre” (right).

[35] and understanding semantic changes of words over time [125]. Talukdar et al. [121]

recently used it to effectively temporally scope relational facts.

Our first feature is the slope of the least-squares best fit line for usage over time. For

example, if a term appears 25 times in books in 1950, 30 times in 1951, ..., 100 times in

2007, then we compute the straight line that best fits {(1950, 25), (1951, 30), ..., (2007,

100)}, and examine the slope. We have observed cases of non-entity noun phrases having

lower slopes than entity noun phrases (e.g., Figure 4.3). Note that we do not normalize

match counts by yearly total frequency, but we do normalize counts for each term to range

from 0 to 1 (setting the max count for each term to 1) to avoid bias from entity prominence.

To capture the current usage, in cases where there exists a ≥ 5 year gap in usage of a term

we only use the data after the gap.

Another feature is the R2 fit of the best fit line. Higher R2 indicates that the data is

closer to a straight line. Figure 4.4 plots R2 vs Slope values for some sample noun phrases.

We observed that along with their lower Slope, the non-entities often also had higher R2,

indicating that their usage does not vary wildly from year to year. This contrasts with

certain entities (e.g., “FY 99” for “Fiscal Year 1999”) whose usage sometimes varied sharply

from year to year based on their prominence in those specific years.

A third feature is UsageSinceYear, which finds the year from when a term last started
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Figure 4.4: Detecting Entities with Best-Fit Line Data: Plot of R2 vs Slope for the
usage over time of a collection of noun phrases selected for illustrative purposes. Many of
the non-entities occur at lower Slope and higher R2, while the entities often have higher
slope and/or lower R2. “Bluetooth technology” actually has even higher slope, but was
adjusted left to fit in this figure.

continually being used. For example, a UsageSinceYear value of 1920 would indicate that

the term was used in books every year from 1920 through 2007. Figure 4.5 shows where

various examples terms fall along this dimension.

From the books ngram corpus, we also calculate features for: PercentProperCaps - the

percentage of case-insensitive matches for the term where all words began with a capital

letter, PercentExactMatch - the percentage of case-insensitive matches for the term that

matched the capitalization in the assertion exactly, and Frequency - the total number of

case-insensitive occurrences of the term in the book ngrams data, summed across all years,

which reflects prominence. Last, we also include a simple numeric feature to detect the

presence of leading numeric words (e.g., “5” in “5 days” or “Three” in “Three choices”).
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Figure 4.5: UsageSinceYear of Example Unlinked Terms: Having appeared in text
for a long time but still not having a Wikipedia entry is one potential sign of a non-entity
noun phrase.

4.3.3 Evaluation

From the corpus of 15 million ReVerb assertions, there were 1.4 million unlinked noun

phrases including 17% unigrams, 51% bigrams, 21% trigrams, and 11% 4-grams or longer.5

Bigrams comprise over half the noun phrases and the books bigram data is a self-contained

download that is easier to obtain and store than the full books ngram corpus, so we focus

on bigrams in our evaluation. In a random sample of unlinked bigrams, we found that 73%

were present in the books ngram data (65% exact match, 8% case-insensitive match only),

while 27% were not (these were mostly entities or errors with non-alphabetic characters).

Coverage is a greater issue with longer ngrams (e.g., there are many more possible 5-grams

than bigrams, so any individual 5-gram is less likely to reach the minimum threshold to be

included in the books data), but as mentioned earlier, only 11% of unlinkable noun phrases

were 4-grams or longer.

We randomly sampled 250 unlinked bigrams that had books ngram data, and asked 2

annotators to label each as “entity,” “non-entity,” or “unclear.” Our goal is to separate noun

phrases that are clearly entities (e.g., “prune juice”) from those that are clearly not entities

(e.g., “prices quoted”), rather than to debate phrases that may be in some entity store

5Note that ReVerb already filters out relative pronouns, WHO-adverbs, and existential “there” noun
phrases that do not make meaningful arguments.
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system correctly classified

Majority class baseline 50.4%

Named Entity Recognition 63.3%

Slope feature only 61.1%

PUF feature combination 69.1%

ALL features 78.4%

Table 4.4: Entity Detection Performance: Our classifier using all features (ALL) out-
performs majority class and NER baselines.

definitions but not others, so we asked the annotators to choose “unclear” when there was

any doubt. There were 151 bigrams that both annotators believed to be very clear labels,

including 69 that both annotators labeled as entities, 70 that both annotators labeled as

non-entities, and 12 with label disagreement. Cohen’s kappa was 0.84, indicating excellent

agreement. Our experiment is now to separate the 69 clear entities from the 70 clear non-

entities.

For experiment baselines we use the majority class baseline MAJ, as well as a Named

Entity Recognition baseline NER. For NER we used the Illinois Named Entity Tagger [97]

on the highest setting (that achieved 90.5 F1 score on the CoNLL03 shared task). NER

expects a sentence, so we take the longest assertion having the noun phrase. We evaluate

several combinations of our features to test different aspects of our system: Slope uses

only Slope, PUF uses PercentProperCaps + UsageSinceYear + Frequency, and ALL uses

all features. We evaluate using the WEKA J48 Decision Tree on default settings, with

leave-one-out cross validation.

Table 4.4 shows the results. MAJ correctly classifies 50.4% of instances, NER correctly

classifies 63.3% and ALL correctly classifies 78.4%.
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4.3.4 Analysis

Overall, 78.4% correctly classified instances is fairly strong performance on this task. By

using the described features, our classifier was able to detect and filter many of the non-

entity noun phrases in this scenario. Compared to the 63.3% of NER, it is an absolute gain

of 15.1%, a relative gain of 24%, and a reduction in error of 41.1% (from 36.7% to 21.6%).

Student’s t-test at 95% confidence verified that the difference was significant.

We found that while low Slope (especially with higher R2) often indicated non-entity,

there were numerous cases where higher Slope did not necessarily indicate entity. For

example, the noun phrase “several websites” has fairly sharp slope, but still does not denote

a clear entity. In these cases, the addition of other features can serve as additional useful

signal. One error from ALL is the noun phrase “Analyst estimates,” which the annotators

labeled as a non-entity, but which occasionally appears in text (especially titles) as “Analyst

Estimates,” and is a relatively recent phrase. NER misses entities such as “synthetic cubism”

and “hunter orange” that occur in our data but are not traditional named entities. We

observed that while none of our features achieves over 70% accuracy by themselves, they

perform well in conjunction with each other.

4.4 Typing the Unlinkable Entities

If the detection step output that “Sun Microsystems” is likely to be an entity, then the next

step is to further predict that it has the Freebase types such as organization and software

developer. Our typing will use a set of linked assertions L and set of unlinked assertions U

to predict the semantic types for each unlinked entity e ∈ E from U.

Each linked entity in L occurs with a set of relation phrases. For example, L might

contain that the entity Microsoft links to a particular Wikipedia article, and also that it

occurs with relation phrases such as “has already announced” and “has released updates

for.” For each Wikipedia-linked entity in L, we further look up its exact set of Freebase types.

Each unlinked entity e ∈ E also occurs with a set of relation phrases (from U). We now have

a large set of class-labeled instances (all entities in L), a large set of unlabeled instances (E),

and a method to connect the unlabeled instances with the class-labeled instances (via any
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Figure 4.6: Predicting Entity Types: This example illustrates the set of Freebase type
predictions for the noun phrase “Sun Microsystems.” We predict the semantic type of a
noun phrase by: (1) identifying the relation phrases that occur with this noun phrase as the
first argument, (2) identifying the linked entities that also appear in the domains of those
relation phrases, and (3) observing their semantic types.

shared relation phrases), so we cast this task as an instance-to-instance class propagation

problem [59] for propagating class labels from labeled to unlabeled instances.

We build on the recent work of Kozareva et al. [59], and adapt their approach to

leverage the scale and resources of our scenario. While they use only one type of edge

between instances, namely shared presence in the high precision DAP pattern [48], our final

system uses 1.3 million relation phrases from our extractions, corresponding to 1.3 million

potential edge types. Their evaluation involved only 20 semantic classes, while we use all

1,339 Freebase types covered by our entities in L.

There is a rich history of other approaches for predicting semantic types. One approach

is to model relationships between instances and classes [119, 120], but the unlinked entities

do not come with any class information. Pattern-based approaches [84, 88] are popular, but

[59] notes that they are “constraint to the information matched by the pattern and often

suffer from recall,” meaning that there are many instances they miss. Classifiers have been

trained for fine-grained semantic typing, but only with far fewer types. Rahman and Ng [96]

studied hierarchical and collective classification using 92 types, and Ling and Weld’s Figer

system [72] recently used an adapted perceptron for multi-class multi-label classification

into 112 types.
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4.4.1 Algorithm

Given an entity e, our algorithm involves: (1) finding the relation phrases that have e

in their domain, (2) finding linked entities that are also in the domain of those relation

phrases, and then (3) predicting types by observing the types of those linked entities. The

same technique can also be run with relation range instead of relation domain. Figure 4.6

illustrates how we would predict the semantic types of the noun phrase “Sun Microsystems.”

Find Relations: Obtain the set R of all relation phrases in U that have e in their domain.

For example, if U contains the assertion “(Sun Microsystems, has released a minor update

to, Java 1.4.2),” then the relation phrase “has released a minor update to” should be added

to R when typing “Sun Microsystems.”

Find Similar Entities: Find the linked entities in L that are in the domain of the

most relations in R. In our example, entities such as “Microsoft” and “Apple Inc.” have

the greatest overlap in relation phrases because they are most often in the domain of the

same relation phrases, e.g., (“Microsoft, has released a minor update to, Windows Live

Essentials”). Create a set S of the entities that share the most relation phrases. We found

keeping 10 similar entities (|S| = 10) is generally enough to predict the original entity’s

types in the final step.

Predict Types: Return the most frequent Freebase types of the entities in S as the pre-

diction. To avoid penalizing types containing very few entities (e.g., if a type has only 7

entities total then it cannot make up all 10 similar entity spots), if there are n instances of

semantic class C in S, then we rank C using a type score T (n,C, S) = max(n/|S|, n/|C|).

We found this to perform better than T (n,C, S) = avg(n/|S|, n/|C|). For “Sun Microsys-

tems,” business operation was the top predicted type because all entities in S were observed

to include business operation type.
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Figure 4.7: Effect of Shared Relation Phrases: Entities that share more relation phrases
are more likely to have semantic types in common.

4.4.2 Edge Validity

This algorithm will only be effective if entities that share relation phrases are more likely

to be of the same semantic types. To verify this, we sampled 30,000 linked entities from L

that had at least 30 relation phrases each, and associated each with their 30 most frequent

relations. From the 900 million possible entity pairs, we then randomly sample 500 entity

pairs that shared exactly k out of 30 relations, for each k from 0 to 15. At each k we then

use our sampled pairs to estimate the probability that any two entities sharing exactly k

relations (out of their 30 possible) will share at least one type.

The results are shown in Figure 4.7. We found that entities sharing more relation phrases

were in fact more likely to have semantic types in common. Two entities that shared exactly

0 of 30 relation phrases were only 11% likely to share a semantic type, while two entities that

shared exactly 10 of 30 relations were 80% likely to share a semantic type. This validates our

use of relation phrases as a signal-bearing edge in instance-to-instance class propagation.

4.4.3 Weighting Relation Phrases

The algorithm as currently described treats all relation phrases equally, when in practice

some are stronger signal to entity type than others. For example, two entities in the domain
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of the “came with” relation often will not share semantic types, but two entities in the

domain of the “autographed” relation will almost always share a type.

One way to capture this intuition could be to use frequency ratios (analogous to TFIDF

weighting) over relations phrases to determine which relation phrases are more meaningful

when observed. Across a large entity-linked corpus, we can count the total number of

different entities or types that appear with each relation phrase. A relation phrase such as

“autographed” will only have people types in its domain, while a relation phrase such as

“came with” will appear with people, vehicles, toys, food items, and many other types. A

metric such as (total # of types in corpus) divided by (# of types observed with a relation

phrase) would correspond to how useful a relation phrase is for finding entities of the same

type. At 1,339 total types, if “autographed” appeared with 7 types then it would have a

weight of 191.3. If “came with” appeared with 32 types, then it would have a lower weight

of 41.8.

While this metric is useful, it does not account for real world distributions of types in

the domains of relation phrases. For example, consider a relation R1 whose domain is 99%

people and 1% locations, and another relation R2 whose domain is 50% people and 50%

locations. R1 and R2 both appear with exactly 2 types and would have the same weight

based on our described metric. However, if we are trying to find known entities that share

a type with a new entity which occurs with both R1 and R2, then sharing R1 turns out to

be a much more informative signal than sharing R2. This is because two random entities

from the domain of R1 are more likely to share a type than two random entities from the

domain of R2.

The more precise way to account for how useful a relation will be for finding entities that

share a type is to directly define relation weight w(r) as the observed probability (among

the linked entities) that two entities will share a Freebase type if they both occur in the

domain of r. This version of relation weight would calculate from our observed data that

two random entities in the domain of R1 will share a type 98.02% of the time and assign

it a weight of 0.9802, and that two random entities in the domain of R2 will share a type

50% of the time and assign it a weight of 0.5. Formally, if D(r) = all entities observed in

the domain of relation r and T (e) = all Freebase types listed for entity e, then weight w(r)
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“is a highway in”

“is a university located in”

“became the president of”

“turned down the role of”

“has an embassy in”

Table 4.5: High-Weight Relations: High-weight relations provide a strong signal when
finding entities likely to share a type.

“comes with”

“is a generic term for”

“works best on”

“can be made from”

“is almost identical to”

Table 4.6: Low-Weight Relations: Low-weight relations do not help much in finding
entities that share types.

of a relation phrase r is:

w(r) =
∑

e1,e2∈D(r), e1 6=e2

I(e1, e2)

|D(r)| · (|D(r)| − 1)
(4.5)

I(e1, e2) =

1, if |T (e1) ∩ T (e2)| > 0

0, otherwise.

(4.6)

We use this technique to calculate weights for all relation phrases in L. Table 4.5 shows

examples of high weight relations, and Table 4.6 shows low weight relations. We now modify

the Find Similar Entities step such that if a linked entity shares a set of relations Q with

the entity being typed, then it receives a score which considers all shared relations q ∈ Q

but uses the high weight relations more. On a development set we found that a score of∑
q∈Q 104·w(q) was effective, as higher weight signifies much stronger signal. This score then

determines which entities to place in S.
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HEAD TAIL

Prec@1 F1 Prec@1 F1

BRandom 0.008 0.028 0.004 0.023

BFrequency 0.244 0.302 0.298 0.322

SNoWeight 0.542† 0.465† 0.510† 0.456†

SWeighted 0.610‡ 0.521‡ 0.598‡ 0.522‡

Table 4.7: Evaluation of Type Predictions: The top type predicted by our SWeighted

method is correct about 60% of the time, while the top type predicted by the BFrequency

baseline is correct under 30% of the time. † indicates statistical significance over BFrequency,
and ‡ over both BFrequency and SNoWeight.

4.4.4 Evaluation

The goal of the evaluation is to judge how well our method can predict the Freebase semantic

types of entities in our scenario. Our linked entities covered 1,339 Freebase types, includ-

ing many diverse types ranging from computer operating systems to airlines, from baseball

teams to religious texts. Human judges would have difficulty internalizing the specific char-

acteristics of so many types and keeping them all in mind while manually annotating new

entities. Instead, we automatically generate testing data by sampling entities from L, and

then test on ability to recover the actual Freebase types (which we know).

We sample a HEAD set of distinct 500 Freebase entities (drawn randomly from our set

of linked extractions), and a TAIL set of 500 entities (drawn randomly from our set of linked

entities). An entity that occurs in many extractions is more likely to be in HEAD than

TAIL. Our sampling also picks only entities that occur with at least 10 relations, which is

appropriate for the Web scenario where we can just query to obtain more instances.

For baselines we use a random baseline BRandom and a frequency baseline BFrequency

which always returns types in order of their frequency among all linked entities (e.g., always

person, then location, etc). We evaluate our system without relation weighting (SNoWeight)

and also with relation weighting (SWeighted). For SWeighted we leave all the test set entities

out when calculating global relation weights. Our metrics are Precision at 1 and F1 score.

Precision at 1 measures how often the top returned type is a correct type, and is useful for
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applications that want one type per entity. F1 measures how well the method recovers the

full set of Freebase types (for each test case we graph precision/recall and take the max F1),

and is useful for applications such as typed question answering.

Table 4.7 shows the results. BRandom performs poorly because there are so many seman-

tic types, and very few of them are correct for each test case. BFrequency performs slightly

better on TAIL than HEAD because TAIL contains more entities of the most frequent types.

SNoWeight performance is statistically significant above all baselines, and SWeighted is sta-

tistically significant over SNoWeight on both test sets and metrics. Significance is measured

using the Student’s t-test at 95% confidence.

4.4.5 Analysis

SWeighted was successful at recovering the correct Freebase types of many entities. For

example, it finds that “Atherosclerosis” is a medical risk factor by connecting it to “obesity”

and “diabetes,” that “Supernatural” is a TV program and a Netflix title by connecting it

to “House” and “30 Rock,” and that “America West” is an aircraft owner and an airline

by connecting it to “Etihad Airways” and “China Eastern Airlines.”

One example where SWeighted predicted top types that did not match with Freebase is

fictional characters. Many fictional characters participate in a relation phrases that make

them look like people (e.g., “was born on”), but predicting that they belong to people class

is incorrect because Freebase does not consider them to be people. Some performance hit

was also due to entity linking errors. From an assertion like “The Four Seasons is located in

Hamamatsu,” our entity linker (and other entity linkers we tried) prefer linking “The Four

Seasons” to Vivaldi’s music composition rather than the hotel chain. This can then lead our

type prediction algorithm to sometimes choose “The Four Seasons” (music composition) as

a similar entity to new entities that occur with “is located in.”

As a general reference for performance of state-of-the-art fine-grained entity classifica-

tion, the Figer system [72] for classifying into 112 types reported F1 scores ranging from

0.471 to 0.693 in their experiments. It is important to note that these numbers are not

directly comparable to us because they used different data, different (and fewer) types, and
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Figure 4.8: Type Prediction Tiers: Predictions where most of the similarEntities share a
type are more likely to be correct. While overall precision at 1 is around 60%, the predictions
where ≥ 7 similarEntities share a type have over 90% precision.

different evaluation methodology.

While precision at 1 around 60% may not be high enough yet for certain applications,

it is significantly better than our baselines approaches, which are under 30%, and we hope

that our values can serve as a useful reference point on this task for future systems. For

applications that need higher typing precision and do not need 100% recall, we can order

the type predictions by how likely they are to be correct. One way to do this is to sort

the type predictions by the number of similar entities with that type. If we are predicting

types for “diet Cherry coke” and 9 out of 10 similar entities are beverages while 4 out of

10 similar entities are business brands, we are more confident that “diet Cherry coke” is a

beverage than a business brand. This intuition could also be applied across entities. If 6 out

of 10 similar entities for “America West” are aircraft owners, then we are more confident
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that “diet Cherry coke” is a beverage than we are that “America West” is an aircraft owner,

but less confident that “diet Cherry coke” is a business brand than we are that “America

West” is an aircraft owner.

If we take only the type predictions where most of the similar entities share some type,

then precision is significantly higher. We obtained 150,000 unlinkable noun phrases which

each had at least 5 relations and did not begin with words often associated with references

or multiple entities (e.g., “a”, “the”, “two”).6 We randomly sampled 200 of these, and

manually labeled the top type predictions for each: there were 98 good predictions, 76

bad, and 26 which we discarded for being non-entity or for only having trivially true type

predictions such as book subject. While Precision @1 of the remaining 174 entities is only

around 60%, it becomes much higher when restricting to just the predictions where many

similar entities shared the top type. Figure 4.8 shows that when at least 4 similar entities all

shared the top type, 75/97 (77%) of the top predictions were correct. With 6 similar entities

this increased to 47/54 (87%), and at 8 similar entities this increased to 28/29 (97%). For

applications that benefit from any accurate typing of unlinkable entities and do not require

100% recall, setting these thresholds can provide high-precision subsets of the data.

Splitting the data by number of entities sharing a top type reveals not only when the

type predictions are more likely to be correct, but also reveals when the type predictions

are more likely to be incorrect. 3/4 of incorrect type predictions occurred when ≤ 3 similar

entities shared a top type. Incorrect type predictions here were primarily due to entities

not occurring in the data with enough useful relations to get a clear signal on the type.

For example, if an unlinked entity occurs only with relation phrases such as “could be”,

“are no longer in”, or “seem to be like”, then no clear types will emerge from the similar

entities. 1/4 of incorrect type predictions occurred when ≥ 4 similar entities shared a top

type. Of these cases, 33% were due to the presence of misleading relations. For example,

if we see “RailsConf will be heading to Las Vegas” then we might incorrectly predict that

“RailsConf” is a person because “will be heading to” usually occurs with people (e.g., Serena

Williams). 27% were due to entity types beyond our types inventory (e.g., “$400m” does

6Full entity detection is not used in this evaluation because that had only been set up with bigrams, and
adding in the larger ngram sets required more resources than were available at the time.
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not match any of our types), 20% were due to extraction errors, 13% were due to relation

sparsity, and 7% were due to error propagated from the linking component.

Because the majority of error involved cases where an entity did not occur with enough

useful relation phrases to make a good type prediction, one future work direction here is to

incorporate type propagation signals beyond shared relation phrases. For example, shared

term heads can also help with certain entity types. If we observe a new entity “Endolyne

Park” and it only occurs with a few low-weight relations, we can still type it accurately if

we observe that it ends on the word “Park” and select a set of similar entities that also end

on the word “Park.” Beyond this, our error analysis also indicates that performance might

improve if we refine our types set and further improve extraction and linking accuracy.

4.4.6 Discussion

Together, sections 4.3 and 4.4 presented an approach for working with non-Wikipedia enti-

ties in text. Consider the following possibilities for a noun phrase in a text corpus:

Wikipedia Entity: (e.g., “Computer Science,” “South America,” “apple juice”) - Entity

linking techniques can identify and type these.

Non-Wikipedia, Non-Entity: (e.g., “strange things,” “Early studies,” “A link”) - Our

classifier from Section 4.3 is able to filter these.

Non-Wikipedia, Entity: (e.g., “Safflower oil,” “prune juice,” “Amazon UK”) - We iden-

tify these as entities, then propagate semantic types to them. Our technique finds that

“Safflower oil” occurs with high weight relations such as “is sometimes used to treat” and

“can be substituted for,” making it similar to linked entities such as “Phentermine” and

“Dandelion,” and then correctly predicts semantic types including food ingredient and med-

ical treatment. Appendix D contains a number of additional examples of non-Wikipedia

entities in our Web extraction data that we automatically typed.



68

4.4.7 Conclusions

We showed that while entity linking cannot link to entities outside of Wikipedia, once a

large text corpus has been entity linked, the presence and content of the existing links can

be leveraged to help detect and semantically type the non-Wikipedia entities as well. We

designed techniques for detecting whether unlinkable noun phrases are entities. We further

propagate semantic types from our linked entities to any unlinkable noun phrase entities. In

our evaluations, we showed that our techniques achieve statistically significant improvement

over appropriate baselines.

4.5 The Challenge of Splitting Ambiguous Surface Strings

4.5.1 Motivation

The previous section implicitly assumed that if a noun phrase did not link into our knowledge

base, then it represented at most one entity. For example, if the string “Mausam” was not

in our knowledge base, then we might identify that (1) it was an entity, and then (2)

predict that it referred to a person. But in reality there exists a separate “Mausam” person,

“Mausam” film and “Mausam” journal. Instead of outputting that “Mausam” is a single

noun phrase which holds all of those types concurrently, a stronger output would be to

realize the ambiguity, determine how many senses there are, and determine which sense is

being referred to in each instance. In a random sample of 100 unlinked entities (that each

occurred with at least 5 relations), when going through them manually we found that 34 of

them had names shared by different entities on the Web.

In this section we present how using the idea of mutual exclusion [17] can help us detect

this type of surface string ambiguity, assuming that the type prediction step was accurate.

For example, if we predict that a noun phrase has person and film types, but we also observe

in our linked instances that these types never coexist within a single entity, then this is good

evidence that the noun phrase refers to multiple entities.
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4.5.2 Mutual Exclusion Constraints

The set of 15 million extractions that we linked into Wikipedia covered 353,170 distinct

entities and 1,339 Freebase types. Looking up the types of each of the entities, we can

observe that there are 125,660 people (35.6% of the entities), 78,674 locations (22.3%), 39,445

organizations (11.2%), 36,319 employers (10.3%), etc. We can then calculate the number of

entities that we would expect to share each pair of types if all types were independent. For

example, if the person and location types were independent, then we would expect 353,170

* 35.6% * 22.3% = 27,992 of our linked entities to be both person type and location type.

However, it turns out that only 30 of our linked entities are labeled in Freebase as being

both a person and a location. This is significantly fewer than we expect, so it tells us that

person and location types are not independent. Instead, they are likely mutually exclusive,

meaning that they tend not to occur with each other within single entities.

This same method can also identify type affinity, meaning types that tend to occur

together more often than random. For example, if the organization and employer types

were independent then we would expect 353,170 * 11.2% * 10.3% = 4,056 of our entities

to be both organization and employer type. However, 30,778 of our entities have both

organization and employer types, which is significantly more than expected. We can then

say that organization and employer types have type affinity.

Given a type pair (t1, t2), we can now identify mutual exclusion and type affinity re-

lationships between t1 and t2 if the types are prominent enough. Note that this does not

work if both t1 and t2 are sparse types. For example, if only 0.2% of our entities have type

t1 and 0.1% of our entities have type t2, then we would expect 353,170 * 0.2% * 0.1% =

0.7 entities in our set to be of both type t1 and t2. This number is so small that even if

we observe no entities sharing (t1, t2), this is within the margin of error and is not strong

enough evidence to say that t1 and t2 are mutually exclusive. Thus, we set a minimum

threshold on the number of elements that we would expect to have both types, if they were

independent.

Setting a threshold of 10 elements, we find that there are 11,052 pairs of types where

we would expect at least 10 elements to be of both types, if the types were independent.
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Of these pairs, 6,284 (57%) have <1% as many actual elements of both types, compared to

if they were independent. 5,984 (54%) have no actual elements of both types. This means

that just over half of our type pairs are quite likely to be mutually exclusive. For example,

we find that person type is mutually exclusive with types such as architectural structure,

building, body of water, disease, river and airport. We can also easily read off the types that

have the most affinity with any given type. person type has the most affinity with types

such as baseball player, congressperson, basketball player, theater actor, cricket player and

athlete.

4.5.3 Graph Coloring

Once we have the set of mutual exclusion constraints, the problem of splitting apart the

senses can be formulated as a graph coloring [52] problem. Given a set of predicted types

and a set of mutual exclusion constraints between these types, we set up a graph G where

each type is a vertex and each mutual exclusion constraint is an edge. For example, if we

predict that “Mausam” is a person, film, journal and a professor and we know that (1) no

people are films, (2) no people are journals, and (3) no films are journals, then we would set

up a graph with 4 vertices (1 per type) and 3 edges (1 per constraint).

Now, the problem of splitting apart the ambiguous senses of the string becomes the

problem of assigning a color to each vertex of the graph such that no adjacent vertices

share the same color. For example, if we color the person node red, then the film and

journal nodes must be a different color because they share an edge with the person node.

One coloring that satisfies these constraints would be to color person and professor with

red, color film with blue, and color journal with green. This coloring would then correspond

to saying that the string “Mausam” has 3 different senses including a “red” sense that is

a person and a professor, a separate blue sense that is a film, and a separate green sense

that is a journal. This method of dividing a string into senses can determine when a string

is ambiguous (when it contains mutually exclusive types), and then split the string into

internally consistent senses that do not violate any mutual exclusion constraints.

To avoid having multiple senses that are actually the same, it is desirable to color the
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graph using as few colors as possible. If we did not use the minimal number of colors then

we might color the person and professor senses differently, and then predict that there are

4 senses of “Mausam” in our data when there are actually only 3. The minimum number of

colors needed to color a graph is referred to as the chromatic number [31]. For our problem,

the chromatic number corresponds to the minimum number of separate senses that need to

be set up to satisfy all the mutual exclusion constraints.

For nodes that can take multiple potential colors without violating any constraints, we

use the type affinity values to determine node color. For example, professor will have more

affinity with person than the other types, so we assign it to person type. If a node can take

color c1 or c2 and has affinity to existing vertices in both colors, then we can assign it to

both colors. This corresponds to cases such as having a book subject type that all distinct

senses can share.

While graph coloring is a computationally hard problem and finding chromatic number is

NP-complete, it has been studied extensively for use in problems such as register allocation

[20], and there are numerous practically efficient implementations available, especially for

solving smaller problems. When there are many potential types available, we can bound

the problem by limiting the number of vertices that we admit to the graph to only the most

probable types.

4.5.4 Evaluation

As an initial evaluation of this technique, we selected 10 common ambiguous surface strings

from Freebase that each had 2 distinct senses, including “Titanic” (film vs ship), “Paris”

(city vs person), “Amazon” (company vs rainforest), “Seattle” (city vs football team),

“Apple” (fruit vs company), “Georgia” (country vs state), “Nirvana” (band vs belief ),

“Minesweeper” (ship vs game), “Firefly” (tv series vs insect) and “Phoenix” (city vs bird).

These 20 senses covered 169 types because an individual sense can have multiple types

(e.g., “Paris” the city is also a location, employer, olympic host city, etc). For each surface

string we then combined all possible types from the 2 senses, and evaluated on whether our

technique could accurately split apart the 2 senses. We set a mutual exclusion threshold at
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10%, meaning that we deemed a pair of types to be mutually exclusive if we observed fewer

than 10% the number of entities we would expect if the types were independent.

On 7 of the 10 strings, our method was able to detect that there were 2 necessary

senses, and divide all the possible types into 2 separate clusters using graph coloring. It

worked best for cases like “Paris” where both senses have very prominent types (e.g., city vs

person), and was able to identify that one sense had types such as location, employer, dated

location, statistical region, etc., while the other sense had types such as person, celebrity, tv

personality, social network user, etc. Our method did not work for cases like “Minesweeper”

where the senses (ship and game) were all sparse enough that no mutual exclusion constraint

could be detected between them, as described earlier. We also noticed some error due to

the mutual exclusion threshold value. Setting it too low would cause the technique to not

separate many pairs of types that should not occur together, but setting it too high causes

pairs of non-mutually exclusive types to be identified as mutually exclusive.

4.5.5 Discussion

In cases where an unlinkable noun phrase is actually ambiguous and contains multiple

mutually exclusive senses, the technique described in this section is able to detect that

multiple senses are needed and identify which of the potential types correspond to each

of the necessary senses. However, some challenges remain. First, the technique described

relies on higher accuracy type predictions than are currently available. This should work

out over time as we improve entity typing accuracy. Second, there will also exist cases

where a noun phrase is ambiguous even within types (e.g., the string “John Smith” can

refer to many different people). In those cases we would occasionally be able to detect

ambiguity due to violation of functionality constraints (as described in Section 3). For

example, if we see (“John Smith”, “was born in”, “Seattle”) and also (“John Smith”, “was

born in”, “Boston”), then this would be strong evidence that the string was ambiguous.

There will also be many cases on the Web where there is insufficient knowledge present

(even for humans) to detect the ambiguity. Correct handling of ambiguity in unlinkable

noun phrases on the Web is an area where much future work remains to be done.
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top assertions

rank by “(teachers, teach at, school)”

freq “(friend, teaches at, school)”

“(Mike, teaches at, school)”

“(biologist, teaches at, Harvard)”

“(Jorie Graham, teaches at, Harvard)”

rank by “(Pauline Oliveros, teaches at, RPI)”

link “(Azar Nafisi, teaches at, Johns Hopkins)”

score “(Steven Plaut, teaches at, Univ of Haifa)”

“(Niall Ferguson, teaches at, NYU)”

“(Ha Jin, teaches at, Boston University)”

Table 4.8: Improved Extraction Ranking: Ranking based on link score gives higher
quality results than ranking based on frequency.

4.6 Applications

While we began with the motivation of exploring what additional information could be

learned for extraction arguments, the steps covered in this chapter also make Open IE Web

extractions usable for many more tasks than previously possible. Entity linking (Section 4.1)

has applications such as improving question answering ranking functions and generating

selectional preferences knowledge for relation phrases. Combining linking with typing for

unlinkable entities further improves upon the experience for typed question answering tasks

and inference tasks.

4.6.1 Improved Instance Ranking Function

We observed our link score to be a better ranking function than assertion frequency for

presenting query results. For example, Table 4.8 shows the top results when searching the

extractions for instances of the “teaches at” relation phrase. When results are sorted by

frequency in the corpus, assertions like “(friend, teaches at, school)” and “(Mike, teaches at,

school)” are returned first. When results are sorted by link score, the top hundred results
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are all specific instances of professors and the schools they teach at, and are noticeably more

specific and generally correct than the top frequency-sorted instances. This also suggests

that link score could serve as additional signal for our specific filter in Section 2.3.2.

4.6.2 Freebase Selectional Preferences

Over 15 million extractions, the entities that we linked to covered over 1,300 Freebase types.

Knowing these entity types then allows us to compute the Freebase selectional preferences

for each of our 1 million+ relation phrases. For example, we can observe from our linked

entities that the “originated in” relation most often has types such as food, sport, and animal

breed in the domain. Selectional preferences have been calculated for WordNet [1], but have

not been calculated at scale for Freebase, which is something that we get for free in our

scenario. This selectional preference information can potentially be used to improve our

entity linking process. For example, if we see “Maize” as a first argument to “originated

in” then the selectional preferences tell us that it is more likely to be referring to the food

sense of “Maize” than the color sense. It could also have applications in other systems that

use Freebase types.

4.6.3 Typed Question Answering

From our set of 15 million assertions, we found and typed many non-Wikipedia entities. In

food while Wikipedia has “crab meat,” we find it is missing others such as “rabbit meat”

and “goat milk.” In job titles it has “scientist” and “lawyer,” but we find it is missing “PhD

student,” “fashion designer,” and others. We find many of the people and employers not

prominent enough for Wikipedia.

One application of this research is to increase the yield of applications such as Typed

Question Answering [16]. For example, consider the query “What computer game is a lot

of fun?” A search for assertions matching “* is a lot of fun” in the data yields around

1,000 results such as “camping,” “David Sedaris” and “Hawaii.” Entity linking allows us to

identify just the computer games in Wikipedia that match the query, such as “Civilization.”

However, around 400 query matches could not be entity linked. Our noun-phrase classifier
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Figure 4.9: Typed Question Answering: After linking, we can answer typed queries such
as “Where did different sports originate?” Linked Freebase information allow us to set up
a richer experience with images and blurbs. Unlinkable entities such as “Dragon Boating”
have their types predicted.

filters out non-entities such as “actual play,” “Just this” and “Two kids.” After predicting

types for the matches that did not get filtered, we find additional non-Wikipedia computer

games that match the query, including “Cooking Dash,” “Delicious Deluxe” and “Slingo

Supreme.”

Figure 4.9 further displays the type of interface we have set up now after all the linking

steps.7 We can answer typed queries such as “Which sports originated in which countries?”,

7Screenshot from the demo at http://openie.cs.washington.edu/
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and understand which of our extractions involve sports and countries. The links into Free-

base also enable us to draw in additional data such as images and blurbs to enable a richer

user experience than the original interface shown in Figure 2.1. “Dragon Boating” (middle

left in Figure 4.9) is not its own entity within Wikipedia and Freebase because it is dis-

cussed within the “Dragon Boat” (ship) article. However, our unlinkable entity detecting

and typing steps allow us to detect that it is a separate entity, and furthermore that it is a

sport and should be included in queries for sports.

4.6.4 Inference

Typed and disambiguated entities are especially valuable for inference applications over

extracted data. For example, if we observe enough instances like “Orange Juice is rich in

Vitamin C,” “Vitamin C helps prevent scurvy,” and “Orange Juice helps prevent scurvy,”

then we can learn the inference rule that if a beverage is rich in a nutrient and that nutrient

helps prevent a particular disease, then the beverage also helps prevent the disease. Schoen-

mackers et al. [107] explored this, but without entity linking they had to rely on heavy

filtering against hypernym data, losing most of their extraction instances in the process.

Other tasks that involve reasoning over extractions, such as learning relation properties

(Chapter 3) and generalizing instances to conceptual knowledge [21], would also all benefit

from using linked instances rather than the noisy plain Web extractions.

4.6.5 Notes on Scalability

Bart [7] recently applied the linking and typing techniques discussed in this chapter to a

set of 1 billion ReVerb extractions. A distributed implementation of the linking code was

able to link 500 million extractions in 3 days time. The 15 million extractions we reported

results on are a high quality subset of the 1 billion, so the 1 billion contains a large number

of noisier and lower quality extractions as well. Both the linking and typing components

include parameters that can be tuned to trade off precision with yield to help address

problems with lower extraction quality. For the linking component, Bart found that setting

a link score threshold of 5 gave accurate enough results in practice to include in a user-facing
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interface. For the typing component, requiring at least 6 similarEntities share any predicted

type and only using relations with weights of at least 0.33 gave good precision, but these

settings could be modified to increase yield. Current yield for the typing was 1 million arg1

strings and 1 million arg2 strings typed (out of 40 million / 90 million respectively).

The high-quality typed question answering capability shown in Figure 4.9 is currently

powered by data from this effort. To evaluate the quality of linking and typing in this demo,

we randomly sampled 20 of the queries that Web users issued to this demo between June and

October 2012 which had at least 100 answers each. We then manually reviewed the top 10

answers the demo returned for each query. Of the 41 argument strings that had entity links,

95% were linked correctly. Of the 37 argument strings that had type predictions, 74% had

a correct top predicted type. For the most part, errors were understandable (e.g., linking

“respiratory depression” to “clinical depression” or predicting that “allergic reactions” is a

disease). Some of the links were fairly good, e.g., knowing that “Super Bowl” in an assertion

about the Seahawks had to mean “Super Bowl XL,” and that “radiation” when used with

“Gamma Rays” means “Electromagnetic radiation.” Some extraction arguments that are

not unique entities could still be correctly typed. For example, the typing recognizes that

the string “his father” is referring to a person.

Two further areas of future work suggested by the work on 1 billion extractions are the

use of Web-scale alias lists in entity linking and further refinement of the types used. This

larger data set includes many more uncommon aliases of known entities than the set of

15 million extractions, so a Web-scale alias list such as the 300 million string-to-concept

mappings from [116] could help increase yield and allow more arguments to be linked. Also,

while the Freebase type system has many advantages over other type systems, further work

remains on how the exact types inventory could be best adjusted given specific scenarios.

In user-facing settings such as question answering, we found that Freebase contains some

types (e.g., dated location) that are rarely useful to users, while missing some other types

(e.g., high school) that are more often of interest to users.
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4.7 Conclusions

This chapter explored what additional information can be learned to better understand and

make use of the entity phrases that we find as Web extraction arguments. We began by

designing an efficient mechanism to link millions of extraction arguments to their Wikipedia

articles, as doing so can disambiguate them and provide their Freebase types. After finding

that a significant fraction of Web noun phrases do not link to any entities in Wikipedia, we

proposed the unlinkable noun phrase problem of detecting and typing unlinkable entities. We

then designed initial solutions for this problem that significantly outperformed appropriate

baselines. Last, we proposed a technique for splitting noun phrases that not only are not in

Wikipedia, but are also ambiguous. We evaluated and verified the efficacy of our techniques

using a set of 15 million ReVerb Open IE extractions. Our proposed techniques enable

deeper understanding of the entity phrases and also enable numerous applications. The

linking and typing components have also been run on 1 billion extractions, enabling demos

such as the one shown in Figure 4.9.

Several avenues of improving this work include exploring additional features, incorporat-

ing additional resources, and jointly executing system components. For entity linking, there

may exist additional useful corpus-level features that remain to be discovered. For detecting

new entities, new features could be designed around detecting keywords that tend to occur

more often with non-entities (e.g., “different”), as well as around analyzing behavior over

time of substrings of the full noun phrases. For predicting semantic types, we can incorpo-

rate additional signals such as shared term heads. As an example, if two terms both take

the form “* river” or “* national park” then they are likely to share types. For many entity

types this kind of signal is not available. However, in cases where it is available, it could aid

in finding good similar entities. We can also explore the use of additional resources such as

comprehensive alias lists [116] to help linking or timestamped Twitter data to help entity

detection. Feeding back system output to different components might also improve system

performance. For example, non-entity noun phrases that make it to the typing step might

lead to particular predicted type distributions that indicate an error occurred earlier in the

process.
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Another future extension would be adapting the techniques presented in this chapter to

link relation phrases. While there do not currently exist relation repositories with coverage

comparable to Freebase and Wikipedia’s coverage over entities [82], such a resource could

exist in the future (e.g., if Freebase expands its coverage of relations). As with entity

linkers, we could structure a relation linker to also have a candidate generation step and

then a candidate ranking step. Candidate generation could generate a list of candidates

using any known textual forms of the relations (from systems such as [46]), string matches

against the relation names, and compatibility of relations in terms of domain and range

types. Candidate ranking could then score candidate relations based on features such as how

closely the instances match known instances of the candidate relations (incorporating entity

set expansion [86] as needed), string match level on relation names, the known prominence

of the candidate relations, and context matching with known instances of the candidate

relations. As with entity linking, we can also calculate a link score and an ambiguity score,

and the combination of the two will help us judge whether a relation phrase is unlinkable.

Over the first several chapters, we have presented how “open” information extraction

over Web text can extract large amounts of general textual information, and then how this

extracted information can be cleaned and associated with semantic data for increased under-

standing and usability. We first analyze the full extractions, then the relation phrases, and

then the entity phrases. For each, we show how incorporating large, general-coverage knowl-

edge bases such as Freebase and Wikipedia can lead to better performance. At the same

time, we are careful to ensure that incorporating the KBs does not restrict the vocabulary

that can be processed, as that is a key advantage of open-domain Web text processing.

A driving promise of Web text processing is that it can enable compelling new capabili-

ties. The techniques proposed thus far for leveraging KBs in Web text processing apply not

just to Information Extraction, but also to other open-domain Web text processing tasks

that may be even more directly user-facing, such as Web search. In the next chapter, we will

introduce a novel and useful user-centric experience that we can enable when the techniques

described in this chapter are applied to a Web search scenario.
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Chapter 5

BEYOND EXTRACTION: ACTIONS FOR WEB SEARCH

The techniques presented in this thesis have applicability in areas beyond information

extraction. Another popular area for open Web text processing is Web search. Web search

must handle any terms and entities a user queries for, so many domain-independent tech-

niques are used. Can knowledge bases also be effectively leveraged here?

Just as in entity linking of extractions, entity linking of search queries could match

using factors such as string match, prominence and context match. With unlinkable entities

in extractions if we could not link the noun phrase “Sushi Girl”, then we would observe

relations it occurs with (e.g., “will be released in”) and find linkable entities also appearing

with those relations (e.g., “The Dark Knight”) to determine that it is a film. Similarly, if a

user issues a Web search query for “Sushi Girl” and we cannot link it, then we can observe

the context words that users have issued alongside it in queries (e.g., “trailer”, “director”,

“plot”) as well as its top search result hosts (e.g., “imdb.com” and “moviefone.com”) and

find linkable entities which also appear with those query context words and search results

(e.g., “Avatar”) to propagate the film type.

In extraction, linking and typing entities enables new experiences such as typed question

answering. We propose that in search, linking and typing entities can also enable compelling

new experiences. This chapter introduces a Web search experience called Actions for Web

search that we developed on top of the linking and typing capability. The idea is that

when users issue search queries (e.g., “The Dark Knight”) there are often specific actions

they wish to accomplish (e.g., “Read Reviews” or “Watch Trailer”). If search engines can

identify and type the entities within queries, then they can also automatically predict and

broker these actions. In the context of Web search data, actions are implicit information

that need to be inferred. KBs can help us better understand and apply not only the

diverse information expressed explicitly in Web text (e.g., relations and arguments), but
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also information expressed implicitly in Web text (e.g., actions). Contributions of this

chapter include:

1. Conceptual: We introduce the Actions for Web search paradigm. We establish that

there are specific Web actions for users to perform on entities. We conduct an anno-

tation study on search query logs which empirically verifies that a large proportion of

sampled query-click pairs reflect actions on entities.

2. Modeling: We propose probabilistic models to generate entity bearing queries from

actions, incorporating information from context words, clicked hosts, and entity types.

3. Implementation: We train our models on three months of query data from a commer-

cial search engine, and address the necessary end-to-end system issues for producing

a system to recommend suitable actions for new queries.

4. Experimental: We conduct a user-study to evaluate our different models, showing

which model components are most important for generating actions.

5.1 Actions for Web Search

Entities are central to a large fraction of Web search queries. Whether users seek to find

information about an entity or transact on the entity (e.g., “[buy] toy story 3,” “[watch

or listen to] obama weekly address”), understanding the underlying query intent is key to

providing a rich search experience.

Web search today has already taken great strides away from simple query word matching.

For example, head entities in large query segments (e.g., local, entertainment, shopping)

are routinely recognized in queries and rich direct displays are presented to users by filling

editorially-defined templates with associated structured data. For example, a query for

“lion king” on Bing yields such a direct display consisting of an image of the movie cover,

showtimes at local theaters, the running time, genre, and ratings of the movie. However,

since the focus is on the dominant actions, the search engine underserves, for instance, a

Netflix user seeking other actions such as adding the movie to her streaming queue, or a
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Figure 5.1: Search as an Action Broker: In the future, search engines could directly
broker the actions that users want to take.

child trying to find a toy figurine. In addition, a different movie such as Michael Moore’s

most recent documentary would certainly have a different underlying intent distribution.

Also, actions associated with queries for tail entities such as flashlights or small vineyards

are completely ignored.

Search as an action broker: A promising future search scenario involves modeling the

user intents underlying the queries and brokering the Web pages that accomplish the in-

tended actions. In this vision, the broker is aware of the entities and actions of interest to

its users, understands the intent of the user, ranks all providers of actions, and provides

direct actionable results through APIs with the providers. For example, consider a user

who queries for “jetbeam rrt-0,” a flashlight. The broker would recognize the particular

entity mentioned in the query, and would return a personalized ranked list of actions to

the user. Figure 5.1 provides a simplistic illustration of how this user experience could look

on a search results page. With actions present, users could save clicks and save time, and

sometimes even discover new actions to help them toward their goals. New revenue streams

open up from paid action placement, lead generation, and on-site commercial transactions.

This chapter addresses several key questions that arise within this proposed paradigm.

Do most Web queries lend themselves to actions on entities? What does the space of actions

look like? And most importantly, given a query with an entity (e.g., identified via techniques

analogous to those in Chapter 4), how can a search engine determine actions to recommend?

We begin with an annotation study conducted over query-click logs from Bing to deter-
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mine what fraction of queries contain entities, and whether these queries tend to map to

particular actions that can be performed on entities. We then motivate and design genera-

tive models, the most complex of which accounts for queries, entities, actions, textual query

contexts, entity types, and historical click data.

An automated approach to learning relevant actions for queries is necessary because

there are too many possible distinct Web queries for editors to manually pair with actions.

Manually preparing top actions for each entity type would also be insufficient because it

would not account for context words in queries (e.g., the queries “Microsoft jobs” and “Mi-

crosoft software” should lead to different actions despite sharing the same entity), entities

of the same type can have different top actions (e.g., queries for a 2012 Ferrari may his-

torically lead to clicks on topcarwallpapers.com while queries for a 1995 Ford historically

lead to clicks on a used car value site), and top actions for an entity may change over time.

For example, a query for the next iPhone would have different desired actions a year before

launch, a week before launch, at launch, and a month after launch. The use of automated

methods enables frequent re-training through a more recent data set of query-click logs.

In addition to presenting the models, we also explore a number of issues that need to be

addressed in going from a theoretical generative model of actions to an actual end-to-end

search engine component that is able to recommend appropriate actions when given a new

query. Finally, we conclude with a user study evaluating the performance of our models.

5.2 Related Work

Beyond the ideas of identifying and typing entities, related work that we build upon includes

entity-centric search and intents. Work that we differentiate ourselves from includes previous

work on actions and topic modeling using query logs.

5.2.1 Entity-Centric Search

As proposed in Dalvi et al. [26], Entity-Centric search focuses on creating a “semantically

rich aggregate view of all the information available on the Web for each concept instance.”

Researchers have typically focused on techniques for automatic generation of topic pages

based on entities (e.g., [3, 105]), or on tailored information for particular entity classes (e.g.,
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Figure 5.2: Actions Differ from Intents: Actions must be performed on Entities, and
are often more specific and grounded.

popular search engines displaying sports scores when given a sports team query). To the

best of our knowledge we are the first to propose learning and presenting specific sets of

actions for each entity.

5.2.2 Intents

Queries can be associated with higher-level Intents such as “planning a vacation” or “get-

ting in shape” (see Figure 5.2). Broder [13] outlined three main intents: Informational,

Navigational, and Transactional. Rose and Levinson [102] further divided informational

and navigational intents into subcategories resulting in 11 finer-grained intents. Yin and

Shah [131] used search logs to organize taxonomies of intent phrases, and Jansen et al. [51]

studied how to classify queries into intents.

Our notion of actions is at an even finer level. Actions are very specific versions of

intents that are performed on entities. Some actions overlap with finer-grained intents
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(e.g., “download”), but the majority of intents (e.g., “interact”) are not concrete enough to

be suggested to users. While some queries map easily into both intents and actions (e.g.,

“sea world location” in Figure 5.2), there are also queries that have a clear intent but do

not contain any entity and hence cannot be associated with an action (e.g., “how to lose

weight”). Task intents covering multiple actions (e.g., “book trip”) are also out of scope.

5.2.3 Actions

Actions and action ontologies have been previously explored in robotics, intelligent agents,

and philosophy (e.g., [55, 75]), but the primary focus in those areas was to develop a

standardized set of actions (with pre-conditions and post-conditions) that could guide the

planning processes of intelligent agents. In contrast, when we refer to an action for Web

search, we refer to actions for human users to perform over the Web. Most of these actions

(e.g., “read reviews” or “download”) have no important prerequisites, while for those that do

(e.g., “add to Netflix queue” requires a Netflix account), we assume that the preconditions

can be addressed based on information known about the users.

5.2.4 Use of Probability Models

There has been prior work in using probability models for modeling user queries. For

example, Carman et al. [19] extended Latent Dirichlet Allocation (LDA) [10] to rank

documents by likelihood of the model given a particular query and user pair. Their model

accounted for users, clicked documents, and query terms. Gao et al. [39] adapted statistical

machine translation techniques to learn how document titles are semantic translations of

queries. Guo et al. [41] used probability models to identify named entities and entity classes

from query logs. Our work differs in that the primary focus of our models is on learning

actions, a variable which other studies have not modeled.

5.3 Annotation Study

To confirm the potential utility of providing actions, we begin with a manual study of

entities and actions in Web searches. We collect a frequency-weighted query sample of 200
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Figure 5.3: Distribution of Entity Types in Web Search: Left : At 200 labels, 43% of
the queries contained entities, and 14% contained entity categories. Right : Distribution of
entities into Schema.org types.

query-click pairs. We examine each query to determine whether it contains an entity and

whether we can infer an action that the user intends to accomplish given the query and the

clicked host. Although one can only observe trends on such a small sample set, these results

will serve as a guide for our automatic action induction models described in Section 5.4.

Throughout this chapter, we define an action as follows:

Action: An empirically observable, direct manipulation or information request on an entity.

We target actions that are useful in the context of Web search. For example, “interact”

is too coarse and “drink” is not an action that can be accomplished on the Web. Examples

of useful actions are: “buy,” “add to movie queue,” and “read reviews.”

5.3.1 Entities in Queries

We divided queries into four groups with respect to the presence of an entity in the query:

(i) contains an entity; (ii) contains an entity category (e.g., “car battery”); (iii) contains a

website entity (URL or website name); and (iv) all other queries. Figure 5.3 summarizes

the frequency of each group, further separating out whether a query contains refiner words

(e.g., “download GoldenEye” with the refiner “download”) in addition to the entity or entity
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category.

43% of the queries contain an entity (29% by itself, 14% with a refiner), 14% contain an

entity category (4% by itself, 10% with a refiner), 28% contain a reference to a website, and

15% do not contain any entity. Website references often occur in navigational queries where

the user intends to visit a particular site, which leaves 57% of queries (43% + 14%) that

have entities or entity categories. None of our annotated queries contain multiple entities.

Guo et al. [41] found that 71% of search queries contained named entities, although they

neither specify whether they consider frequency of individual queries, nor how they classify

entity categories and website entities. Summing our entity, entity + refiner, and website

entity categories, we end up with a proportion of entities in queries matching their results.

Next, we examined the types (or taxonomy categories) of the entities that we found.

For entity types, we refer to the top level of the Schema.org entity taxonomy, which is a

collection of schemas developed jointly by Bing, Google and Yahoo, designed explicitly with

the intent of facilitating Web search over entities on the Web.

Within our sample of entities, we found that the most popular Schema.org top-level

category was CreativeWork at 40%. This is a fairly broad category that covers all books,

movies, songs, software, etc. The category Organization covered 37% of our entity sample.

The Organization type covers hotels, restaurants, government organizations, local busi-

nesses, etc. There was also the occasional Product at 9%, and Person type at 8%. Event

type covered 3% and the last 3% fell into other various types.

5.3.2 Actions in Queries

Next, we examined how often the queries in our sample can be associated with specific

actions on entities. We also estimate whether the actions in Web search are enumerable.

We manually inferred the actions that are associated with each sample query by examin-

ing the raw query strings (consisting of entities and possible refiner words), and the clicked

URLs. In the majority of cases, this information clearly indicated a particular action (e.g.,

“yahoo messenger download” clearly indicates the action “download”). In the absence of re-

finers in the query, the clicked URL generally gives a good signal to identify the action. For
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example, a query for “Hobart corporation” with a click on “http://hobartcorp.com/Contact-

Us/” indicates the intended action “get contact information.” 19 of the query/URL pairs in

our sample were ambiguous with respect to the intended action, e.g. “GEICO insurance”-

“www.geico.com”, where the specific intended action is not clear. In some of these cases

we took likely potential actions from inspecting the clicked sites (e.g., “see menu” on a

restaurant URL) and added them to our inventory of actions.

From our 200 queries, we compiled a list of 47 actions. Some of the most popular actions

included “login,” “play game,” “read news about,” and “shop for.” Some of the less common

actions included “find recipe for,” “find lyrics,” and “get hours of.” Working through the

200 queries, our discovery rate of new actions dropped from over 20 distinct actions for the

first 50 labels to fewer than 5 new actions for the last 50 queries. This suggests that there

is an enumerable primary set of actions that users perform in the context of Web search.

5.4 Action Induction

We turn our attention now to the tasks of automatically learning the underlying actions

intended in Web search as well as to recommending actions given new queries. Our approach

is to probabilistically describe how actionable queries, i.e., queries containing an entity and

underlying action intent, are generated by Web search users. The models we develop theorize

that user query sessions are governed by latent actions and entity types, which influence

the choice of query terms and clicks. Inference procedures are then used to infer actions

after learning these models by maximizing the probability of observing a large collection of

real-world queries and their clicked hosts.

In this section we initially present two graphical models (summarized in Figure 5.4). To

generate queries from actions, our Model 1 models query context and clicked URLs. Model

2 builds on Model 1 by also modeling entity types, and explicitly observing entities. Then,

we propose an extension to each model that adds a switch variable to better handle queries

with empty contexts.

Each query q is represented by a triple {n1, e, n2}, where e represents the entity men-

tioned in the query, n1 and n2 are respectively the pre- and post-entity contexts (possibly

empty), referred to as refiners. As a running example, we consider a user who is interested in
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Figure 5.4: Generative Models for Actionable Queries: Model 1 includes query con-
text words n and host clicks c, and Model 2 adds the entity type t and the entity e. Shaded
circles are observed variables.

reading a review about the movie “Inception,” and who issues the query “inception review”

to a search engine. Here n1 = ∅, e = “inception,” and n2 = “review.” Details on how we

obtain our corpus are presented in Section 5.5.

5.4.1 Model 1 (context+click)

The choice of refiner words in a query is clearly influenced by the intended action. For

example, words such as “review,” “ebert,” and “opinion” are more likely to be used in

a query if the intent is to read a review. Host clicks are also correlated with action in-

tents. For example, clicks on “rottentomatoes.com,” “epinions.com,” and “dpreview.com”

are more likely if the user has the intent to read reviews, whereas clicks on “bestbuy.com”

and “ebay.com” are more likely for a buying intent. Broder et al. [13] also found hosts

associated with queries to be useful in classifying queries.

Our first probabilistic graphical model, Model 1, leverages these signals. It generates

actionable queries by first picking an action from a distribution over a set of latent actions,

then choosing query context words n1 and n2, and then clicking on a host c. This model

does not explicitly capture the entity in the query, and hence a query is represented by the

pair {n1, n2}. The generative process below summarizes the model illustrated on the left
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in Figure 5.4:

Model 1: Generative model of actionable queries.

For each query q

action a ∼ Multinomial(θ)

l-context n1 ∼ Multinomial(φa)

r-context n2 ∼ Multinomial(φa)

click c ∼ Multinomial(ωa)

In our running example for the query “inception review,” our model first generates the

action “read reviews,” then given this action chooses the refiner words ∅ and “review,” and

then generates a click on a site such as “rottentomatoes.com.”

The joint probability of the model is the product of the conditional distributions, as

given by:

P (a, q={n1, n2}, c | θ,Φ,Ω) = P (a | θ)P (n1 | a,Φ)P (n2 | a,Φ)P (c | a,Ω) (5.1)

Next, we define each of the terms in the joint distribution. Let K be the number of

latent actions that govern our query log, where K is fixed in advance. Then, the probability

of action a is defined as a multinomial distribution with probability vector θ, such that the

probability of a particular action is given by:

P (a=â) =

K∏
k=1

θ
I[k=â]
k , s.t.

∑
k

θk = 1 (5.2)

where I is an indicator function set to 1 if its condition holds, and 0 otherwise.

Let V be the shared vocabulary size of all query refiner words n1 and n2. Given an

action a, the probability of generating a refiner n is given by a multinomial distribution

with probability vector φa such that Φ = [ φ1, ..., φK ] represents parameters across actions:

P (n=n̂ | a=â) =
V∏

v=1

Φ
I[v=n̂]
â,v , s.t. ∀a

V∑
v=1

Φa,v = 1 (5.3)
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Finally, we assume there are H possible click values, corresponding to H Web hosts. A

click on a host is determined by an action. Given an action a, we assume the probability of

generating a click on host c is a multinomial with a probability vector ωa such that Ω = [

ω1, ..., ωK ] captures the matrix of parameters across all K actions. In particular:

P (c=ĉ | a=â) =
H∏

h=1

Ω
I[h=ĉ]
â,h , s.t. ∀a

H∑
h=1

Ωa,h = 1 (5.4)

Inference: Given a query, we apply Bayes’ rule to find the posterior distribution over

the actions. In particular, the posterior distribution, P (a|q, c), is directly proportional to

the joint distribution. We can exactly compute this distribution by evaluating the joint for

every value of a and the observed configuration of q and c.

Learning: Given a query corpus Q consisting of N independently and identically dis-

tributed queries (each qj = {n1j , n2j}) and their corresponding clicked hosts, we estimate

the parameters Θ, Φ and Ω that maximize the (log) probability of observing Q. The log

P (Q) can be written as:

logP (Q) =

N∑
j=1

∑
a

P j(a | q, c) logP j(q, c, a) (5.5)

In the above equation, P j(a|q, c) is the posterior distribution over actions for the jth

query. We use the Expectation-Maximization (EM) algorithm to set the parameters. Start-

ing with a random initialization of the parameters, EM iterates between the E-step in which

P j(a|q, c) is computed for each query (assuming parameters are fixed as computed in the

previous M-step) and the M-step in which the parameters are updated by fixing P j(a|q, c)

to the values computed in the E-step.

The parameter updates are obtained by computing the derivative of log P (Q) with

respect to each parameter, and setting the resultant to 0. The update for θ is given by the

average of the posterior distributions over the actions:
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θâ =

∑N
j=1 P

j(a=â | q, c)∑N
j=1

∑
a P

j(a | q, c)
(5.6)

For a fixed a, the update for φa is given by the weighted average of the context words,

where the weights are the posterior distributions over the actions, for each query. In par-

ticular:

Φâ,n̂ =

∑N
j=1 P

j(a=â | q, c)
[
I[nj1=n̂] + I[nj2=n̂]

]
2
∑N

j=1 P
j(a=â | q, c)

(5.7)

Similarly, we can update Ω, the parameters that govern the distribution over clicked

hosts for each action. For a fixed a, it is updated by taking the weighted average of the

clicked hosts, with weights provided by the posterior distribution over the actions:

Ωâ,ĉ =

∑N
j=1 P

j(a=â | q, c)I[cj=ĉ]∑N
j=1 P

j(a=â | q, c)
(5.8)

5.4.2 Model 2 (context + click + type + entity)

The semantic type of the entity mentioned in the query is often strongly correlated with the

intended action. For example, if the queried entity is a movie, the user is likely to be looking

to buy it, rent it, view local showtimes, or buy theater tickets. It is unlikely however that

the user is interested in hacking it, getting its address, or connecting to it. Similarly, a “read

biography” action is more likely for a person entity and a “view stock price” action is more

likely for a corporation entity. By accounting for types, the model can avoid recommending

incorrect typed actions, such as “view stock price” on a person entity.

In addition, entities themselves are usually instances of very few types and hence we

expect them to be helpful in disambiguating the types. Therefore, in this model, we explic-

itly model the entities and their types. The right side diagram of Figure 5.4 illustrates the

graphical model. The generative process for Model 2 is as follows:
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Model 2: Generative model of actionable queries.

For each query q

type t ∼ Multinomial(τ)

action a ∼ Multinomial(θt)

entity e ∼ Multinomial(ψt)

l-context n1 ∼ Multinomial(φa)

r-context n2 ∼ Multinomial(φa)

click c ∼ Multinomial(ωa)

Note that in our generative model, we are assuming that the action is generated inde-

pendently of the entity itself. However, the choice of the entity also influences the subset of

actions that are possible for a particular choice of the type. The independence assumption

between actions and entities is a matter of mathematical convenience. Otherwise, we require

learning a parameter for each action-type-entity configuration, giving rise to a huge number

of parameters. Instead, we choose to include these dependencies at the time of inference,

as described later.

For our running example, Model 2 first generates the type “film,” then given the type, it

generates the entity “inception,” and then generates the action “read reviews.” The action

is used to generate the pre- and post- context words ∅ and “review,” and then the click on

a site such as “rottentomatoes.com.”

The joint probability over the model variables is:

P (t, a, q={n1, e, n2}, c | Θ,Φ,Ω, τ,Ψ) =P (t | τ)P (a | t,Θ)P (e | t,Ψ)

P (c | a,Ω)P (n1 | a,Φ)P (n2 | a,Φ)
(5.9)

Next, we describe each term in the joint probability. Let T be the number of entity

types. The probability of generating a type t is governed by a multinomial with probability

vector τ . In particular:

P (t=t̂) =
T∏
i=1

τ
I[i=t̂]
i , s.t.

T∑
i=1

τi = 1 (5.10)
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Let E be the number of known entities. The probability of generating an entity e given

type t is a multinomial with a probability vector ψt such that Ψ = [ ψ1, ..., ψT ] captures

the matrix of parameters across all T types. In particular:

P (e=ê | t=t̂) =
E∏
i=1

Ψ
I[i=ê]

t̂,i
, s.t. ∀t

E∑
i=1

Ψt,i = 1 (5.11)

Since actions are now conditioned on types, for every value of type, it is a multinomial

distribution with probability vector θt such that Θ = [ θ1, ..., θT ] represents parameters

across types:

P (a=â | t=t̂) =
K∏
k=1

Θ
I[k=â]

t̂,k
, s.t. ∀t

K∑
k=1

Θt,k = 1 (5.12)

Prior distributions over the context words and clicked host remain unchanged as in

Model 1.

Inference: Given a query, and the learned model, we can apply Bayes’ rule to find the

posterior distribution, P (a, t|q, c), over the actions, as it is proportional to P (a, t, q, c). We

compute this quantity exactly by evaluating the joint for each combination of a and t, and

the observed values of q and c.

During inference, we also enforce that for an entity, there are only certain admissible

types. As an example, if the entity is Inception, valid types include film and book. We set

the posterior probability of invalid types (and hence the relevant type-action configurations)

to zero. We obtain the set of admissible types for every entity using an external knowledge

base. In this chapter, we use Freebase (see Section 5.5.1). A desirable side effect of this

strategy is that only valid ambiguities are captured in the posterior distribution. Thus the

model can focus on capturing the actions for multiple of its valid possible senses (types).

Learning: As in the previous model, we perform maximum likelihood estimation of the

parameters using the EM algorithm. Below, we present M-step update equations for some

of the parameters that are unique to this model. Other parameter updates are similar in

spirit to Model 1.
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Figure 5.5: Generative Model with Empty Context Switch: Model 2+ adds an empty
context switch s. Shaded circles are observed variables.

τt̂ =

∑N
j=1

∑
a P

j(a, t=t̂ | q, c)∑N
j=1

∑
a,t P

j(a, t | q, c)
(5.13)

Ψt̂,ê =

∑N
j=1

∑
a P

j(a, t=t̂ | q, c)I[ej=ê]∑N
j=1

∑
a P

j(a, t=t̂ | q, c)
(5.14)

5.4.3 Empty Contexts

Generally in Web search, most query contexts are left empty. For example, users tend to

issue the query “obama” far more frequently than queries with refiners such as “support

obama” or “obama schedule.” In fact, upon inspection of the Φ table for Models 1-2, we

noticed that over 90% of the probability mass is covered by the empty context. In order to

spread that mass to useful context words, we explicitly represent the empty context using a

switch variable that determines whether a context will be empty. Figure 5.5 illustrates how

we model the switch in Model 2, creating Model 2+. The generative story for both Models

1 and 2 can be augmented as follows:
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Model X + Switch:

For each query q

...

l-context n1 ∼ Multinomial(φa)

r-context n2 ∼ Multinomial(φa)

switch s1 ∼ Multinomial(σa)

switch s2 ∼ Multinomial(σa)

if (s1) l-context n1 ∼ Multinomial(φa)

if (s2) r-context n2 ∼ Multinomial(φa)

...

Incorporating the switch into the joint probability of each model is straightforward.

Below we show it for Model 2:

P (t, a, q={n1, e, n2}, c, s={s1, s2} | Θ,Φ,Ω, τ,Ψ, σ) =

P (t | τ)P (a | t,Θ)P (e | t,Ψ)P (c | a,Ω)

2∏
i=1

P (ni | a,Φ)I[si=1]P (si|a, σ)

(5.15)

The probability of generating an empty or non-empty context s given action a is given

by a Bernoulli with parameter σa:

P (s | a=â) = σ
I[s=1]
â (1− σâ)I[s=0] (5.16)

The M-step update function for the switch parameter σ is:

σâ =

∑N
j=1

∑
t P

j(a=â, t | q, c, s)
[
I[s1=1] + I[s2=1]

]
2
∑N

j=1

∑
t P

j(a=â, t | q, c, s)
(5.17)

In the above models, we learned point estimates for the parameters (Φ, Θ, Ω, τ , Ψ, σ),

that govern the variables of interest, including type, actions, context, entities and clicks. One
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can take a Bayesian approach and treat these parameters as variables (for instance, with

Dirichlet and Beta prior distributions), and perform Bayesian inference. However, exact

inference will become intractable and we would need to resort to methods such as variational

inference or sampling. We found this extension unnecessary, as we had a sufficient amount

of training data to estimate all the parameters well. In addition, our approach enabled us

to learn (and perform inference in) the model with large amounts of data with reasonable

computing time.

5.4.4 Enforcing Action Diversity in Learning

In training Model 2 using the EM algorithm, we found that the local optimal solutions often

amounted to action clusters that were tied very strongly to specific types. For instance, the

athlete entity type had a P (Action|Type) of 95% into an action cluster that focuses on

sports statistics. While it is desirable that the model learns a good top-ranked action (e.g.,

“Retrieve Sports Statistics”), we also want to be able to recommend a full range of actions

for queries (e.g., for the athlete type we would also want to see the next top actions, such

as “Follow on Social Networks,” “Read Biography,” “View Pictures” and “Buy Tickets to

see”). If one top action absorbs too much probability mass, we often observe empirically

that the lower-ranked actions do not gain sufficient probability mass. This is clearly an

artifact of the EM algorithm-based learning paradigm.

We resolve this through a two-step procedure for learning. In the first step, we run

EM iterations to learn only the parameters that do not involve the entity type (i.e., by

freezing the Θ parameter). This allows Model 2 to learn action clusters tied more closely

to query contexts and clicked hosts. In a second step, we continue learning with additional

EM iterations, now also letting the algorithm learn the Θ parameter. We found that this

strategy reduces the average amount of mass for the top-ranking action clusters, which in

turn leads to probability mass being more evenly distributed across actions and ultimately

to better ranking of the action clusters. In one experiment, we found that this two-step

learning reduced the average top P (Action|Type) value from 48% to 28%, distributing the

mass more evenly across other actions.
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5.4.5 Decoding

Consider a runtime scenario where a new search query q = “new york city hotels” is received.

Decoding is accomplished as follows. First, we identify the entity e = “new york city”. This

leaves the query contexts as n1 = ∅ and n2 = “hotels” (and switch values s1 = true and

s2 = false). We use historical search query data to identify a distribution P (c|q) over all

hosts c ∈ H that received a click for this query in the past. The recommendation score

(probability) of an action a is then:

P (a | q={n1, e, n2}, c, s) =
∑
t

∑
c∈H

P (a, t | q, c, s)P (c | q) (5.18)

The parameter Ω can be directly looked up to rank hosts given each action a. Note

that if no click history is available, for instance if observing a query with a never before

seen entity, the model can still recommend actions using its other parameters. Also, if the

candidate types of an ambiguous entity are known, then we can return an action distribution

given each type. If the types are unknown, then we can return an action distribution over

each latent type. In both cases, we can marginalize the types to get an action distribution

for the query.

5.4.6 Cluster Labeling: Web Action Phrases

The action clusters discovered by our models are clusters of words defined by the Φ param-

eter. We need to “translate” each action into action recommendation phrases that can be

presented to the user (e.g., “read reviews” or “download”).

We begin by examining the most probable context words for each action. The leftmost

word cloud in Figure 5.6 illustrates this for one of our discovered actions (Appendix E shows

more examples). Clearly the Figure 5.6 cluster relates to downloading free software.1 We

then tease out the “actions” by obtaining a list of verbs/action words, and then intersecting

this list against the context words in the clusters.

1Note that ’@’ is a wildcard for any digit. Thus “@.@” is a placeholder for software versions such as “3.1”
or “2.0.”
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Figure 5.6: Web Action Words: To obtain Action Phrases we first identify top Web
Action words from the action’s most likely context words.

Using a generic verb list is not ideal here because we are restricted to actions that users

can perform on the Web, many verbs do not take people in the agent role (e.g., “merge”),

and generic verb lists often do not contain words that can be used as Web-based actions

such as “blog,” “podcast,” or “torrent.” To obtain a list of appropriate actions, we defined

a few key lexical patterns (similar to Hearst [43]) that generally contain action words, such

as “want to (x)”, “have to (x)”, “you can (x)” and “I can (x)”.

We then obtain the most frequent instances of (x) by applying these patterns against

a large Web body-text trigram corpus. After filtering out adverbs (using 21 additional

patterns, designed to catch adverbs in this corpus) and filtering out noise (the 25% of

actions with the lowest frequency / unigram count, e.g., “a” and “boy”), this leaves us with

a list of 13,417 action words. This list still contains a number of actions (e.g., “shock” or

“kill”) that users cannot perform over the Web, so we filtered it down to the 1,279 Web

actions that also occurred with the pattern “(x) at (y)” in our trigrams, where (y) takes the

form of a website URL (e.g., “Amazon.com”). Examples of the most popular Web actions

include: “buy,” “review,” “shop” and “unsubscribe.”

The second word cloud in Figure 5.6 illustrates P (n|a) for those contexts n that passed

our filter. The third word cloud shows the remaining words when Web action words are

removed. The resulting three word cloud types, illustrated in Figure 5.6, are used as a

tool for a human-annotation task to specify the appropriate action phrases for each cluster.

From our automatically generated word clouds of action words, non-action words, and the
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website product line digital camera

consumer product software film

computer/video game person athlete

politician actor artist

employer business operation restaurant

location travel destination tourist attraction

sports facility university road

Table 5.1: Actions Study Entity Types: The actions study uses 21 initial Freebase
types, which were chosen based on the earlier annotation study.

popular hosts for each action cluster, we found it easy for annotators to specify these action

phrases. In future work we will explore techniques for fully automating this process of

learning action phrases from action words.

5.5 Experimental Results

5.5.1 Data

We collected several months of queries issued to Bing and filtered them to retain only those

that contain a signal for learning actions, by (i) removing any query that did not lead to a

click and (ii) removing any query that did not contain an entity.

We cover a large number of oft-queried entities by focusing on the most important

entity types discovered in our query analysis from Section 5.3 (see Figure 5.3). Note that

Schema.org does not provide actual instances for their entity taxonomy, so we rely instead

on Freebase for instances. For our initial experiments we chose types from Freebase that

correspond to the most often queried types in Schema.org such as films, business operations,

product lines, and people. Since Freebase is a fine-grained knowledge base, we also included

subtypes such as athletes, actors and politicians, for a total of 21 total types (Table 5.1). The

resulting sets account for approximately 3.4 million entity instances after de-duplication. In

later work [87] we expand to more types, with an eventual goal of all types (as in Chapter 4).
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As covered in Chapter 4, entity recognition across all data is a challenging problem and

not always accurate. At model application time we need high quality entity recognition

and entity to type mappings. For our model training however, given the large amount

of available queries, we require only high precision entity recognition, so we turn to the

following simple but effective method. We start by matching our query log with all our

Freebase entity instances. To avoid problems like a query for “nice pants” getting matched

to the city “Nice” in France, we apply an ambiguity filter on the capitalization ratio of our

instances and allow matches on only the entities that appear capitalized at least 50% of the

time in Wikipedia. To ensure that we do not match on substrings within entities (e.g., if

“Harry Potter” is the correct entity but not in our database of entities, we do not want to

match on “Harry” or “Potter” separately), we also apply a standalone score filter [50] at

0.9, which calculates how often a string occurs as an exact match in queries relative to how

often it occurs as a partial match.

For query contexts n1 and n2 defined in Section 5.4, although one could potentially use

arbitrary ngram context sizes, we keep only queries where the contexts are empty or consist

of single words (accounting for a very large fraction of the queries).

We define a navigational query as one where the user only wants to navigate to a specific

site and is unlikely to be interested in any other action presented to her. We automatically

eliminate such queries from the training set, where a query is considered navigational if in

our logs it is associated with >1,000 clicks where >98% of clicks were to the same host

(∼2% of our data points). Finally, we eliminate entries with clicked hosts that have been

clicked fewer than 100 times over our entire query log.

After applying the filters described above, this yielded several million data points for

training our models. Our data covers 235K distinct Freebase entities, 129K distinct context

words, and 58K distinct click hosts. We refer to the resulting queries as actionable queries

and denote the query set as Q according to Section 5.4.
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5.5.2 Model Settings

We trained our models with 50 action clusters, set according to our earlier annotation study

in Section 5.3.2, which found that this would give us good coverage over the main actions

in Web search. Alternatively, the constraint could be alleviated by analyzing the semantic

similarity between context words in the resulting clusters, or by using techniques similar to

those for finding the optimal k in k-means [42], or by other methods such as those discussed

by Blei et al. [10]. We conducted our two-step learning over 100 total EM iterations,

running 2 folds per model.

5.5.3 Experimental Configurations

We used three test sets for our study:

• HEAD: 100 queries from a frequency-weighted random query sample of Q.

• TAIL: 100 queries from a uniform random sample of Q.

• Type-Balanced: 16 queries obtained as follows: Sampling starts from a frequency-

weighted sample of Q, but during sampling, we only admit new queries to the test set

if they cover a type that has not been covered yet.

The HEAD sample was used to test expected user impact in a Web search scenario

whereas the TAIL sample tests how our method applies to rare entities. Whereas manually

curated models could potentially address a large portion of head queries, only an automated

method can model the tail. In our TAIL sample, we noticed that the entities were skewed

towards the person type. We introduced the Type-Balanced set to test our model perfor-

mance over a broad set of entity types, including less common types such as university and

tourist attraction.

Finally, we report our results against the following models:

• Baseline: Simpler version of Model 1 that uses only query context words as observed

variables, illustrated in Figure 5.7.
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Figure 5.7: Baseline Action Model: A simple baseline using only context words.

• Models 1, 2: As described in Section 5.4.

• Model 2+: Model 2 with the Empty Switch as described in Section 5.4.3 and illus-

trated in Figure 5.5.

There are 12 resulting experimental configurations.

5.5.4 User Study

We conducted a user study for each experimental configuration to determine relative ef-

fectiveness at discovering and suggesting actions. The goals of the study are to assess the

following:

• End-to-end application results: Given a new query, the model should be able to

recommend actions that are of interest to users.

• Diversity: The model should learn a comprehensive set of user intended actions, not

just a few common actions.

We examine diversity because it can deepen our understanding of the actions that Web

search users most commonly perform, and a diverse set of actions internally could also be
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indicative of the ability to perform well on less common queries and on queries whose entities

belong to less popular types.

Annotation Guidelines: To measure whether the recommended actions are of interest

to users, we adopt a PEGFB graded relevance scale similar to the one used to grade Web

search results [30]. In our case, we define the grades as:

• Perfect action: Exactly the explicit intent of the user as stated in the query. (only

used for queries with context)

• Excellent action: The presumed likely intent of the user as stated in the query.

• Good action: Likely to be interesting to the user, although not the stated intent.

• Fair action: Possibly of interest to some users who issue the query.

• Bad action: Unlikely to be of interest to any user who issues this query.

We employed a total of seven paid independent annotators for grading the actions sug-

gested in each configuration. For each action, two annotations were obtained. Inter-rater

agreement using Fleiss’ κ was 0.28 (fair agreement) when the P, E, G relevance judgments

were collapsed. Note that there is some amount of subjectivity in ratings, especially for

queries with no context. For example, on a query for “Obama,” some annotators felt that

the “Watch videos about” action is Good, while others felt it is Fair. When exact ratings dif-

fered, they still tended to be close in rank. Annotators were also allowed to specify and skip

labeling any test query that was judged navigational or that contained entity recognition

errors. This occurred in 16.5% of the test cases.

For each query set, each model configuration was set to return up to seven actions to be

judged according to our PEGFB scale.

5.5.5 Experimental Results

The results (using P=5, E=4, G=3, F=2, B=1) from our model configurations are sum-

marized in Figure 5.8. The evaluation measure is Normalized Discounted Cumulative Gain
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Figure 5.8: Comparison of Action Models: Normalized Discounted Cumulative Gain
(nDCG) for each experimental configuration from Section 5.5.3, with 95% confidence
bounds. The addition of types and entities (Model 2) had the largest effect, followed by
clicked hosts (Model 1) and then empty switch (Model 2+).

(nDCG) on the top-7 suggested actions per model.

For all query sets, addition of the click host (Model 1) improves over the baseline because

it provides an additional useful signal for learning accurate clusters. Adding entity type

and the entities (Model 2) proves to be the most important signal in terms of significant

relevance improvement across evaluation sets. Adding the empty switch (Model 2+) does not

significantly impact overall relevance, however in the Type-Balanced set we see a tendency

for this model to perform better. Later in this section, we show that Model 2+ learns a

more diverse set of clusters than other models.

Figure 5.9 shows Mean Relevance as a function of the rank of an action for head queries

for Model 2 and Model 2+. At the top ranks, Model 2+ is suggesting actions that annotators

are generally rating between Good and Excellent.

Error Analysis

Table 5.2 illustrates action recommendations from our models for the random query “Web-

ster University,” which has empty contexts. The Baseline model (which only models action

and context) has no information to use for recommending an action other than its ac-
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Figure 5.9: Mean Relevance at Action Rank: Model 2+ recommended top actions that
had an average annotator rating between Good and Excellent.

tion priors, and therefore recommends the most popular general actions it learned from its

training set.2 These tend to fit the more common types, so baseline scores are lower on

the type-balanced set, which contains fewer common types. Model 1 does a little better by

incorporating prior click information, but still recommends actions that do not apply to the

entity’s type (e.g., “read biography”) because the model does not account for type. Models

2 and 2+ recommend reasonable sets of actions.

One source of error we noticed arose from how the 21 types that we used did not include

the primary types of a number of the entities in the data. For example, for the query

“Jefferson High School,” some of the best actions would be those associated with a high

school type. However, because high school is not among our 21 modeled types, our models

recognize “Jefferson High School” only as an employer and a location. As a result, the

recommended actions are more general. It should be possible to alleviate this problem by

expanding the number of modeled types.

Note also that among the 21 Freebase entity types we use, some of the types have higher

2For the query with context “download Skype,” the baseline model is able to recommend actions “down-
load” and “login to.”
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Baseline (context) Model 1 (+click) Model 2 (+type, +entity) Model 2+ (+switch)

1. Torrent 1. Torrent 1. Read reviews of 1. Find address

2. Read biography 2. Read biography 2. See map of 2. See pictures of

3. Find adult pics of 3. Read news about 3. Follow sports teams of 3. Find map of

4. Watch videos 4. See pictures of 4. Get weather in 4. Read news about

5. See pictures of 5. Apply for jobs at 5. Apply for jobs at 5. Apply for jobs at

6. Get quotes from 6. Get quotes from 6. Find address of 6. See cost of

7. Apply for jobs at 7. See videos with 7. See tuition of 7. See ranking of

Table 5.2: Action Recommendation Examples: Actions recommended by the various
models for the query “Webster University”. Entity: “Webster University”, Context: (∅,∅),
Types: employer, university and location.

query log frequency than others. For example, the person type has many more entries in

the data than the tourist destination type. This leads to our models learning action clusters

optimized more toward the popular types than the sparser types. We did explore balancing

the training data by only keeping elements of the people subtype (artist, politician, actor

and athlete) with the types fairly equally represented, and found that this led to each of

those types having more action diversity. This suggests that to address sparser types, we

may want to discover actions based on type-balanced subsets of the data first, and then

either use those actions to initialize clusters in the full training, or devise a hierarchical

setup that incorporates type-subtype information.

Action Cluster Quality

In addition to the end-to-end application goal, it is also desirable for a model to learn a

good, diverse set of actions. One metric for visualizing this is to graph “Total P(Action |

Type)” as a function of “Cluster Rank,” as in Figure 5.10. This illustrates the distribution of

probability mass across the cluster ranks. Here we only compare Models 2 and 2+, because

Model 1 does not model entity type. Given that we used 21 total types, the maximum value

would be 2100% (if all 21 types mapped 100% to one cluster). Model 2 appears to have six
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Figure 5.10: Action Cluster Quality: Model 2+ distributes probability of action given
type more evenly across actions than Model 2.

primary action clusters that receive the majority of the probability from types, while Model

2+ learns a much more diverse set of actions clusters, which we also observed by inspecting

the word clouds in the Φ parameter.

Note that only learning 6 primary action clusters does not mean that Model 2 can only

recommend up to 6 distinct action phrases. First, the remaining clusters do have nonzero

weight and can contribute action phrases. Second, individual action clusters may contain

a mixture of action phrases. For example, one of the Model 2 clusters contains actions

for “read biography,” “find lyrics,” and “download file” all within the same cluster. This

does not cause type mismatches at decoding time because action phrases are typed (e.g.,

“download file” will only be recommended when the entity is of a type it applies to, such as

software type), but it does limit the ability of the models to discover and refine good action

clusters specifically around the less common actions. The lower ranked clusters within

Model 2+ do look very coherent around specific actions, for example, “read biography”

is in a cluster only with related terms such as “facts,” “childhood” and “timeline,” while

“download” is in a cluster with related terms like “software,” “install” and “free.”
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5.6 Conclusions

In this chapter we proposed the notion of Actions for Web search. We conducted an anno-

tation study on query log data to gauge the prevalence of entities and associated actions

in search. We developed generative models to learn latent actions from queries, and we

implemented them over large real-world query logs. We experimentally showed that mod-

eling click hosts and entity types, along with query context words, yields high relevance on

the task of action recommendation, and that explicitly representing empty contexts greatly

improves action diversity. Finally, we addressed various issues for developing an end-to-end

system for actions, and we are now able to automatically recommend good sets of actions

for users issuing new queries.

Future directions for this line of work include expanding the number of entity types and

modeling actions for “entity category” queries (e.g., “shoes”). Additionally, we believe that

our current random initialization of action clusters can be improved upon by seeding the

clusters with some small amount of prior knowledge. We are also considering adding a user

model to our approach in order to better target user-specific actions. For the “Webster

University” query in Table 5.2, for example, actions such as “read reviews of” and “see

ranking of” are more suited for prospective students, while “see map of” and “follow sports

teams of” are a better fit for current students.

This chapter takes first steps towards a larger vision of search as an action broker. We

envision a world where publishers can tag (automatically or manually) their Web pages and

native applications with the actions that they can accomplish; a world where users’ intended

actions can be inferred and executed seamlessly via connections to these providers.

The overall hypothesis of this thesis is that domain-independent Web text processing

techniques can leverage large knowledge bases such as Freebase and Wikipedia to better

understand and apply the diverse information expressed in Web text. In previous chapters

we demonstrated this multiple times in the context of domain-independent information

extraction, and in this chapter we further applied our techniques to a Web search scenario.

Whereas domain-independent Web text processing without knowledge bases paved the way

for generally capturing and interacting with information in Web text, our research promises
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that the careful addition of large knowledge bases can enable a much richer future, featuring

a deeper understanding of information on the Web, stronger performance on end-tasks

applying this information, and exciting new experiences enabled for both AI and human

users.
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Chapter 6

FUTURE WORK

Four areas of future work that would be valuable to explore include:

The Full Universe of Structured Data: It would be difficult for domain-specific KBs

to benefit open-domain Web text processing in any general way by themselves, but what if

they were used in large numbers to augment (rather than replace) the large, general KBs

that we use? One very compelling direction of future work is to see how our work scales when

many additional KBs are integrated into our large, general KBs. An immediate example

would be all the other Wikis that people have created online for their favorite television

shows, games, and other interests. While Wikipedia contains only 4 million entities, the

Wikia family of sites contains an additional 20 million entities that could be incorporated.1

Incorporating sources such as Wikia, Linked Open Data [9] or commercial knowledge bases

[112] would present many exciting challenges and opportunities.

Stronger Handling of Ambiguous Strings: While Chapter 4 presented initial meth-

ods for disambiguating surface strings in a number of cases, there do remain some extremely

challenging cases that we cannot fully handle at present time. One prime example is com-

mon people names. A name such as “John Smith” refers to over a hundred people in

Wikipedia and also many thousands of people that are not prominent enough to be in

Wikipedia. When we see text like “John Smith scored 92 on the exam” on the Web, in

many cases there would not even be enough context for human experts to correctly pick

which “John Smith.” There are numerous ways to start approaching this problem, such as

borrowing ideas from cross-document coreference [115], exploring how resources the style

and scale of Facebook and LinkedIn can be integrated, or even commonsense reasoning

using background knowledge.

Dynamic Integration of Types: Throughout this thesis we use the Freebase type

1The Wikia sites include thousands of Wikis hosted at www.wikia.com
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system which contains 1,000 to 2,000 types. Freebase types offer good coverage over all the

entities within Wikipedia and Freebase and generally served us well for our tasks. However,

we did encounter scenarios where it would have helped to have more types. For example, in

Chapter 5 when we see an entity like “Jefferson High School”, our techniques would be able

to provide the best experience if we could identify it as a high school. While Freebase has

types for school and organization, it does not recognize high school as a separate type. Using

all the Wikipedia categories instead is not the solution because most Wikipedia categories

(e.g., “Educational institutions established in 1985”) are too fine-grained to be useful here.

What would help is if we could dynamically integrate useful types into the system. These

additional useful types might be identified from query logs, hypernym patterns [43], or by

methods to identify the most useful subsets of Wikipedia categories. An ability to dynami-

cally integrate types would also help to maintain overall system domain-independence when

new types arise in the future.

Further Application: Open-domain Web text processing, especially with the advances

leveraging KBs described in this thesis, is at a stage where it can provide practical benefit

for applications. In this work we demonstrated multiple applications such as typed question

answering and actions for Web search. Our last item for future directions is to push these

benefits of Web text processing with KBs to increasingly more applications and system

components, with the goal of empowering better user applications and smarter artificial

intelligence programs for the future.
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Chapter 7

CONCLUSIONS

The Web is the largest collection of text in human history, and a growing line of research

is to extract and process as much of its information as possible by using relation and domain

independent techniques such as Open IE. To handle the full diversity of knowledge on the

Web, these techniques have typically avoided fixed knowledge bases that would limit the

vocabulary that they can process. In this thesis, we presented that certain KBs like Freebase

and Wikipedia now have enough coverage of general knowledge that they can be effectively

leveraged in open-domain Web text processing, both to improve task results and enable new

functionality. We demonstrated this over a number of tasks including identifying interesting

assertions, identifying functional relations, open entity linking, and actions for Web search.

Contributions of this work include:

Interesting Assertions: After noticing that the TextRunner Open IE system ex-

tracts many uninteresting extractions, we formulated the new problem of automatically clas-

sifying extraction interestingness. We developed several practical models of interestingness

that, when implemented as filters, offer substantial improvements over the prior technique

of sorting assertions by frequency. Our most effective model leveraged information from

Wikipedia Infoboxes, demonstrating a way to use KBs in this task. We reported on the

first study of interestingness in extraction. Among other findings, we show that our filtering

significantly improves the fraction of interesting results contained within TextRunner’s

top thirty results from 41.6% interesting to 64.1% interesting.

Relation Functionality: To study what deeper understanding can be gained about re-

lation phrases appearing in Web text, we analyzed the problem of relation functionality. We

identify several linguistic phenomena that make the problem of corpus-based functionality

identification surprisingly difficult. We designed and implemented three novel techniques for

identifying functionality based on instance-based counting, distributional differences, and
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use of external knowledge bases. Our best method outperforms the existing approaches by

wide margins, increasing area under the precision-recall curve from 0.61 to 0.88.

Entity Linking: We proposed novel techniques around collective contexts and inlink

ratio that allow a large corpus of Web extractions to be entity linked both quickly and accu-

rately. Using these techniques, we linked entities from millions of extractions into Wikipedia.

We then motivated and introduced the unlinkable noun phrase problem. We proposed a

novel method for discriminating entities from arbitrary noun phrases, utilizing features de-

rived from Google Books ngrams, and also adapted and scaled instance-to-instance class

propagation in order to associate types with non-Wikipedia entities. We implemented and

evaluated our proposed methods for unlinkable noun phrases, empirically verifying signifi-

cant improvement over appropriate baselines. Last, we offered initial solutions for how to

handle the challenge of ambiguous surface strings.

Actions for Web Search: To demonstrate how KBs can offer benefit to Web text

processing even beyond extraction, we introduced the new paradigm of Actions for Web

search. We conducted an annotation study to established that there are specific Web actions

that users aim to perform on entities. We proposed probabilistic models to generate entity

bearing queries from actions, incorporating information from signals such as context words,

clicked hosts, and entity types. We trained our models on three months of query data from a

commercial search engine, and address the necessary end-to-end system issues for producing

a system to recommend suitable actions for new queries. We conducted a user-study to

evaluate our different models, showing which model components are most important for

generating actions.

Overall: Through our series of studies, we observed numerous times that while open-

domain Web text processing can extract vast amounts of general information from noisy

Web text, these processes can benefit greatly by leveraging knowledge bases like Freebase

and Wikipedia. This applies even to Web text involving relationships and entities of which

the KBs had no prior knowledge. Our work advances the levels of performance and under-

standing that are possible with open-domain Web text processing, and brings us a few steps

closer to the compelling vision promised by machine reading of Web text.
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Appendix A

DEMONSTRATION OF INTERESTINGNESS FILTER

As an example, Table A.1 shows the top 30 TextRunner Web extractions (by fre-

quency) before and after applying our interestingness filter. We see that the original set of

Web extractions contains many uninteresting or uninformative extractions such as:

• “Brazil is the only country”

• “Brazil can find basic info”

• “Brazil is the team”

• “Brazil is the heavy favorite”

• “Brazil has more time”

• “Brazil is one country”

• “BRAZIL comes to POCONOS.Post”

By filtering out the uninteresting extractions, many of the more interesting extractions

are able to come to the top. After filtering, we observe numerous extractions that will be

more interesting to people, such as:

• “Brazil is the size of the United States”

• “Brazil is the best soccer team”

• “Brazil has the world s largest Catholic population”

• “Brazil has won the World Cup four times”

• “Brazil produces approximately 4 billion gallons of ethanol”

• “Brazil is the largest producer of sugarcane”
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“Brazil” Web extractions (unfiltered) “Brazil” Web extractions (with interestingness filter)

1. Brazil is the only country 1. Brazil creates buffer zone

2. Brazil can find basic info 2. Brazil is the size of the United States

3. Brazil is the team 3. Brazil is the best soccer team

4. Brazil is not the only country 4. Brazil is the largest investor

5. Brazil has the largest economy 5. Brazil has the world ’s largest Catholic population

6. Brazil has the best players 6. Brazil has won the World Cup four times

7. Brazil played a key role 7. Brazil produces approximately 4 billion gallons of ethanol

8. Brazil is the heavy favorite 8. Brazil offers great profit opportunities

9. Brazil has great potential 9. Brazil to open ethanol embassy

10. Brazil has a problem 10. Brazil is the second largest producer of soy

11. Brazil is the largest producer 11. Brazil seeks Lat Am ’s first nuke sub

12. Brazil lost to France 12. Brazil to make 2014 World Cup bid

13. Brazil won the match 13. Brazil hosted the 1950 World Cup

14. Brazil is the world 14. Brazil is the largest producer of sugarcane

15. Brazil has won the World Cup 15. Brazil won $ 200 million order

16. Brazil has laws 16. Brazil won the Beach Soccer World Cup

17. Brazil to influence US design 17. Brazil creates new protected areas

18. Brazil has made great strides 18. Brazil is the world ’s top sugar producer and exporter

19. Brazil is a Portuguese colony 19. Brazil has the largest Black population

20. Brazil has a comparative advantage 20. Brazil has the largest population of Japanese outside of Japan

21. Brazil to win the World Cup 21. Brazil has a very complex society

22. Brazil beat Italy 22. Brazil has won the World Cup more times

23. Brazil has more time 23. Brazil produces the same amount of ethanol

24. Brazil will win this World Cup 24. Brazil needs outside aviation help

25. Brazil speaks Portuguese 25. Brazil has discovered huge new petroleum reserves

26. Brazil is one country 26. Brazil recognized China ’s market economy status

27. Brazil has more chances 27. Brazil attracted over 5 million European and Asian immigrants

28. Brazil has played an important role 28. Brazil to mull forex steps

29. BRAZIL comes to the POCONOS.Post 29. Brazil is the world ’s largest beef producer

30. Brazil is time 30. Brazil is the second largest exporter of soybeans

Table A.1: Interestingness Filter: The top 30 Web extractions for “Brazil” after filtering
(right) are more interesting than the top 30 Web extractions before filtering (left).
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Appendix B

FUNCTIONAL RELATION PHRASES

Table B.1 shows 15 examples of relation phrases from a Web text corpus that our system

determined to be functional. If a relation is functional then it maps each first argument

to at most one second argument. For example, if Brazil “is the largest country in” South

America, then it cannot also be the largest country in any other continent.

Relation Phrase Example Instances from Web Text

(*, is a trademark of, <company>) (Teflon → DuPont)

(*, is the largest country in, <continent>) (Brazil → South America)

(*, is the highest mountain in, <continent>) (Mt Kilimanjaro → Africa)

(*, is the capital city of, <country>) (Amsterdam → Netherlands)

(*, is the national airline of, <country>) (Aer Lingus → Ireland)

(*, is the brand name for, <drug>) (Elavil → Amitriptyline)

(*, is a registered trademark of, <film distributor>) (Shrek → Dreamworks)

(*, was a powerful, <gender>) (Medea → female)

(*, is the birthstone for, <month>) (Alexandrite → June)

(*, is the largest moon of, <planet>) (Ganymede → Jupiter)

(*, is an extension of, <programming language>) (AdabasTcl → Tcl)

(*, is the governing body of, <sport>) (Motocyclisme → motorcycle racing)

(*, is the second largest lake in, <state>) (Lake Livingston → Texas)

(*, is the sequel to, <videogame>) (Raystorm → Rayforce)

(*, is an organization established in, <year>) (Unity Enterprise → 1989)

Table B.1: Functions Examples: Examples of relation phrases that our system identified
to be functional.
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Appendix C

MOST COMMON LINKED ENTITIES

To provide a better sense of the entities and extractions we work with, Table C.1 shows

the Wikipedia/Freebase entities that were linked to from the greatest number of Web ex-

tractions. This data is from our entity linking of 15 million high quality extractions from

the ReVerb Open Information Extraction system.

Entity Freebase ID Extractions Example Web Extraction

Barack Obama 02mjmr 16,094 (Obama, was born in, Hawaii)

Jesus 045m1 12,051 (Jesus, was born in, Bethlehem)

Internet 03rlt 8,194 (The Internet, offers a wealth of, information)

United States 09c7w0 8,002 (the United States, is a nation of, immigrants)

China 0d05w3 7,790 (China, has a population of, 1.3 billion)

Washington DC 0rh6k 7,727 (D.C., is not, a state)

Apple Inc 0k8z 7,686 (Apple, has sold, 100 million iPods)

George W Bush 09b6zr 7,682 (Bush, was born in, New Haven)

Company 03bxgrp 7,039 (Companies, are not, charities)

Water 0838f 6,993 (Water, is essential for, life)

Google 045c7b 6,629 (Google, bought YouTube for, $1.65 billion)

Israel 03spz 6,561 (Israel, is the size of, New Jersey)

Music 04rlf 6,345 (Music, is the rhythm of, Life)

India 03rk0 6,237 (India, is predominantly, Hindu)

Bill Clinton 0157m 5,710 (Clinton, was elected governor of, Arkansas)

Table C.1: Top Linked Entities: Prominent knowledge base entities such as Barack
Obama are the most common among our linked extractions.
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Appendix D

EXAMPLES OF IDENTIFIED UNLINKABLE ENTITIES

A central emphasis of our work is the ability to work with all entities on the Web,

not just the prominent entities that can be found in KBs such as Wikipedia and Freebase.

Chapter 4 presents a method for predicting semantic types of general non-KB entities by

leveraging the KB entities. Table D.1 below shows type predictions that our system made

for some example non-Wikipedia noun phrases that it found in Web extraction data.

Predicted Type Unlinkable Noun Phrases from the Web

Band “Ctrl-Alt-Del,” “White Rhino,” “Boxhead,”

“Descarga,” “Lightswitch,” “Madmartigan”

Food “prune juice,” “wheatgrass juice,” “rabbit meat,”

“goat milk,” “dried plums,” “pastry cream”

Company “Bamboo Solutions,” “Telephia,” “Zurvita,”

“Advanstar,” “FatCow,” “SFI Electronics”

Computer/Video Game “Superstar Chefs,” “Slingo Supreme,” “Docker Sokoban,”

“Colin McRae Rally 2005,” “Neverland Card Battles”

Quotation Subject “hard times,” “good attitude,” “humbleness,”

“inaction,” “true beauty,” “having kids”

Person “David Enders,” “Elizabeth Martin,” “Alex Carr,”

“Aileen Gallagher,” “Ellen Kanner,” “Ted Poulos”

etc. “asbestos exposure” (medical risk), “fashion designer”

(job title), “Bradley Hospital” (hospital)

Table D.1: Example Unlinkable Entities: Examples of unlinkable (non-Wikipedia) en-
tities that our system detected in Web extraction data and correctly typed.
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Appendix E

EXAMPLES OF ACTION CLUSTERS

Figure E.1: Action Clusters: Key user actions (e.g., “read biography,” “find coupons”)
can be identified from the P(query context words | latent action cluster) parameter.
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