Motivation

Sparse matrix formats and operations (e.g., SpMV) are hard
to implement and verify in low-level languages like C.

RB-CSR SpMV

for (i =0; 1 <M; i++, y += 2) {

a 0 0 O double y0 = y[0], yl = y[1];
0b ¢ 0 for (k = Ap[i]; k < Ap[i + 1];
k++, Av += 6) {
8 8 2 2 int j = Ai[k];
double x0 = x[j]1, x1 = x[j + 1],
2 = x[j + 2];
[O 9 3] y0 += Av[0] * x0; yl += Av[3] * x0;
y0 += Av[1l] * x1; yl += Av[4] * x1;
01 1] yo += Av[2] * x2; yl += Av[5] * x2;
}
[aOOb 00cO y[0] = yO; y[1] =
00de |

Research question: can sparse formats/operations be. ..

e Formulated as simple dataflow problems? Imple-

mented in a small, high-level language?
e Formally proved correct?

e Compiled into efficient low-level code? Parallelized
easily? Scale well?

Implementing sparse codes in LL

We represent sparse data with nested lists and pairs.

(0,a) [1(0.0)]
L) @A . [{LY) 20
- 1]
(@) (3. [(2.d) (3,¢)]]

Example: CSR SpMYV using dataflow.

A —|— || snd mul sum |-
Rl T io|x|—i }

X

Implemented in LL, concise variant:
A; [[snd x x[fst]]; sum]
Python-style comprehension also possible:
[sum ([v * x[j] for j,v in Ai]) for Ai in A]
What about register-blocking? Need to (a) break the vector

x into blocks, (b) replace scalar by matrix-vector multipli-
cation, and (c) add concatenation of blocked results.

xb = block (2, x):

A; [[(snd, xb[fst]); densemv]; sum]; concat

Productivity Language for
Sparse Matrix Formats
Ali Sinan Koksal, Gilad Arnold, Rastislav Bodik, Mooly Sagiv

Code generation

A naive nested layout is undesirable. Instead, we (a) flatten
nested lists and (b) layout lists of pairs as a pair of lists.

naive flattened unpaired
7 [01335] [01335]

<O,a>]

(1) (2,00] [(0,a) (1,b) (2,¢) (2,d) (3,€)] [01223]

[(2,d) (3,€)] [abcde]

Compilation is syntax-directed: pipelines are implemented
using temporaries and maps/reduces using loops. Opti-
mization is applied to fuse operations in adjacent maps/re-
duces. We use rich type information to specialize loop it-
eration counts and optimize pointer increments, and de-
ploy data dependency analysis to eliminate redundant use
of sublist boundaries indirection (below).

before after
t36.len = 2;
t36.d = (*in).d.d1.d.d;
for (/+ ... %/) { for (/+ ... %/) {
for (/+ ... #/) { for (/+ ... #/) {

.1.’t.)r (/* 0 <= t38 < # rows x/) { .H)r (/* 0 <= t38 < # rows x/) {

GET_LLF (36, t35, t38);
for (/* 0 <= t45 # values /) {
L
1}
Our compiled CSR/RB-CSR SpMV performs close to hand-
written (sequential) C code, and scales well to multiple
cores.

for (/+ 0 <= t45 < 2 /) {

}
t36.d += 2
}

1200
1000 -
800
-y
o 600 7 HLLRB CSR
2 400 | OLLCSR
B Reference RB CSR
200
O Reference CSR
0

53 g L © L0 > oY
(’5»\\(5 \‘,’Q& ¢e<\”e < NI @p\ (\\@\

Matrices
3000
2500
£ 2000 B RB CSR, 4 cores
S 1500 - O CSR, 4 cores
'
s H RB CSR, 2 cores
1000 -
OCSR, 2 cores
500 B RB CSR, 1 core
. O CSR, 1 core
&,’, g; ;,y 2 5 2 IS
s g & g g & &
g £ & & & $
Matrices

Benchmarking environment: 2.3 GHz single socket quad-core
AMD Opteron processor with 8GB of memory.

