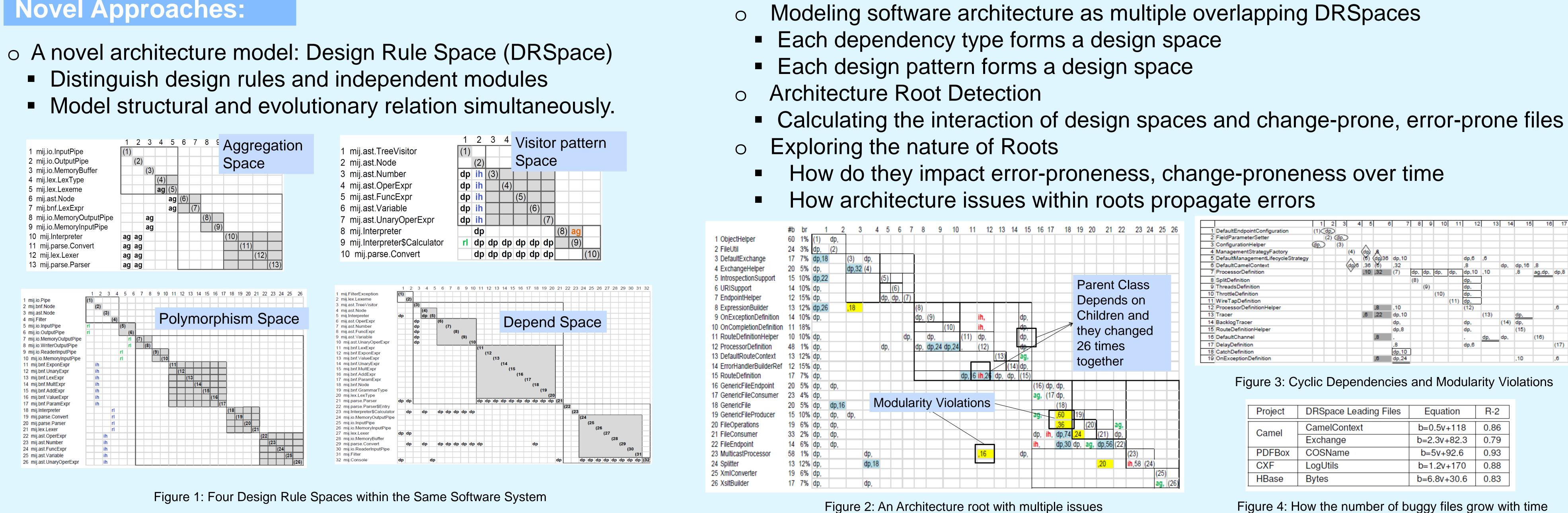
Detecting and Preventing the Architectural Roots of Bugs


Research Questions:

- Are buggy files architecturally connected? 0
- Are architecture issues the root causes of bugginess? Ο
- Why buggy files remain buggy? Ο

Research Objective: Exploring the Architecture Roots of Error-proneness and Change-Proneness

- Viewing architecture issue as one kind of technical "debts" 0

Novel Approaches:

Results and Contributions:

- The impact of architecture roots are significant and persistent Ο DRSpaces lead by error prone files also tend to be error prone. Ο
- Ο

Industrial Impact:

The supporting tool, Titan, has been used to detect architecture debts in multiple major industrial organizations.

Lu Xiao

College of Computing & Informatics Drexel University

What is Missing in State-of-the-art:

• History-based defect prediction: If existing bugs are good predictor of future bugs, it means that old buggy files are never completely fixed. Structure-based defect prediction: not all files with structural problems are high-maintenance

They propagate errors among large-number of files, generating high bug rate and/or high change rate, i.e. the "interests" or "penalty" of the debt Files will remain buggy if the roots remain; "interests" will accumulate as long as debts remain.

Hundreds of buggy files can <u>always</u> be captured by just a few architecture roots, regardless of their domain, age, being open source or not. Error prone DRSpaces usually contain multiple architecture issues.

Implications:

- How defects are discovered, examined, and handled should be changed fundamentally:
- Treat buggy files as architecturally connected groups.
- Examine the architecture issues within each architecture root.
- Reducing maintenance costs by removing architecture debts

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
DĊ	dp)						<u> </u>											
1	(2)	dp.	>															
0.0		(3)		~														
1			(4)	(dp)	<u>A</u>													
-			A	Ŷ	dp)36	dp,10					dp,6	.6						
Т			dp/8	,36	6)	,32					.8		dp,	dp,16	.8			.6
Т			V	,10	,32	(7)	dp,	dp,	dp,	dp,	dp.10	.10		.8	ag,dp,	dp,8	,10	,24
Т							(8)	1		<u> </u>	dp,	1						
1							-	(9)			dp,	i						
Т								-	(10)		dp,	i						
Т										(11)	dp,	i						
					,8	.10					(12)					,6	dp,	
Т				,6	,22	dp,10						(13)		dp.				
Т						dp,					dp,		(14)	dp,				
Т						dp,8					dp,			(15)				dp,10
					.8							dp,	dp,		(16)			
-						.8					dp,6		1			(17)		,6
\uparrow						dp,10	1										(18)	,16
$^{+}$,6	dp,24	1							,10		,6	,16	(19)

Figure 3: Cyclic Dependencies and Modularity Violations

Space Leading Files	Equation	R-2
melContext	b=0.5v+118	0.86
change	b=2.3v+82.3	0.79
)SName	b=5v+92.6	0.93
gUtils	b=1.2v+170	0.88
tes	b=6.8v+30.6	0.83

Figure 4: How the number of buggy files grow with time