
Lu Xiao

College of Computing & Informatics Drexel University

Detecting and Preventing the Architectural Roots of Bugs

o Are buggy files architecturally connected?
o Are architecture issues the root causes of bugginess?
o Why buggy files remain buggy?

o History-based defect prediction: If existing bugs are good predictor of future bugs, it means
that old buggy files are never completely fixed.

o Structure-based defect prediction: not all files with structural problems are high-maintenance

o A novel architecture model: Design Rule Space (DRSpace)
 Distinguish design rules and independent modules
 Model structural and evolutionary relation simultaneously.

Polymorphism Space Depend Space

Aggregation
Space

Visitor pattern
Space

 Novel Approaches: o Modeling software architecture as multiple overlapping DRSpaces
 Each dependency type forms a design space
 Each design pattern forms a design space

o Architecture Root Detection
 Calculating the interaction of design spaces and change-prone, error-prone files

o Exploring the nature of Roots
 How do they impact error-proneness, change-proneness over time
 How architecture issues within roots propagate errors

Figure 2: An Architecture root with multiple issues

Figure 3: Cyclic Dependencies and Modularity Violations

Figure 4: How the number of buggy files grow with time

o The impact of architecture roots are significant and persistent
 Hundreds of buggy files can always be captured by just a few architecture

roots, regardless of their domain, age, being open source or not.
o DRSpaces lead by error prone files also tend to be error prone.
o Error prone DRSpaces usually contain multiple architecture issues.

 Research Questions: What is Missing in State-of-the-art:

o Viewing architecture issue as one kind of technical “debts”
 They propagate errors among large-number of files, generating high bug rate and/or high change rate, i.e. the “interests” or “penalty” of the debt
 Files will remain buggy if the roots remain; “interests” will accumulate as long as debts remain.

 Research Objective: Exploring the Architecture Roots of Error-proneness and Change-Proneness

 Results and Contributions: Implications:
o How defects are discovered, examined, and handled should be changed

fundamentally:
• Treat buggy files as architecturally connected groups.
• Examine the architecture issues within each architecture root.
• Reducing maintenance costs by removing architecture debts

 Industrial Impact:
The supporting tool, Titan, has been used to detect architecture debts in multiple major industrial organizations.

Parent Class
Depends on
Children and
they changed
26 times
together

Modularity Violations

Figure 1: Four Design Rule Spaces within the Same Software System

	Slide Number 1

