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Abstract
Static checking can verify the absence of errors in a program,
but often requires written annotations or specifications. As
a result, static checking can be difficult to use effectively:
it can be difficult to determine a specification and tedious
to annotate programs. Automated tools that aid the anno-
tation process can decrease the cost of static checking and
enable it to be more widely used.

This paper describes an evaluation of the effectiveness of
two techniques to assist the annotation process: inference
via static analysis and inference via dynamic invariant de-
tection. We quantitatively and qualitatively evaluate 33
users in a program verification task over three small pro-
grams, using ESC/Java as the static checker, Houdini for
static inference, and Daikon for dynamic detection. With a
well-constructed test suite, Daikon produces fully-verifiable
annotations; therefore, we supplied Daikon with poor test
suites to study its effectiveness in suboptimal circumstances.

Statistically significant results show that Daikon enables
users to express more correct invariants; Houdini users do
not take full advantage its capabilities; and both tools im-
prove task completion. Interviews suggest that beginning
users found Daikon to be helpful; Houdini to be neutral;
static checking to be of potential practical use; and both
assistance tools to have benefits.

1. Introduction
Static analysis is a useful technique for detecting and

checking properties of programs. A static analysis can re-
veal properties that would otherwise have be detected only
during testing or even deployment. This is valuable be-
cause the earlier in the development process that problems
can be identified, the less costly they are to correct. Sim-
ple static analyses like type-checking are widely applied and
successful; more complicated analyses like theorem-proving
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and correctness-checking are still topics of research. Anno-
tations that are checked by analyses such as type-checkers
and theorem-provers are useful in their own right: they serve
as a machine-verified form of documentation.

Static checking is not used in practice as often as might
be desirable, largely because of cost in human time. Static
checkers require explicit goals for checking, and often also
summaries of unchecked code. These annotations usually
must be supplied by the programmer, a task that users
find tedious, difficult, and unrewarding, and therefore of-
ten refuse to perform [FJL01]. The annotation cost is so
high that it is not offset by the benefits of static checking.
While it might be possible to increase the benefits of static
checking, this paper considers the alternative of lowering
costs.

Automatic annotation of programs is a long-standing re-
search goal, but it does not appear to be close to being
solved. In fact, many researchers consider it harder to de-
termine what property to check than to do the checking it-
self [Weg74, WS76, MW77, Els74, BLS96, BBM97]. Static
tools for computing program properties are often stymied by
constructs such as pointers that are common in real-world
programming languages. The cost of manipulating repre-
sentations of the heap is so great that either runtime and
memory increase unreasonably, or heap approximations in-
troduced to control costs result in overly weak results. Dy-
namic techniques, by contrast, have the fundamental limita-
tion of unsoundness due to reliance on a specific test suite.
Interaction with a user, or possibly another tool, is required
in order to weed out properties that are not universally true
from the proposed annotation set.

In this research, we consider techniques for easing the an-
notation burden by applying two annotation assistant tools,
one static (Houdini) and one dynamic (Daikon), to the prob-
lem of annotating a Java program for the ESC/Java static
checker. We performed an experiment to evaluate the tools’
effectiveness in assisting users in the task of program anno-
tation.

ESC/Java performs modular checking, both verifying and
relying on user-written annotations in order to guarantee
the lack of run-time exceptions in a Java program. Hou-
dini works by inserting annotations in addition to the ones
written by the user, but removing them if they cannot be
verified. The user never sees any of the Houdini-inserted
annotations, but the effect is as if the user had written a
additional verifiable annotations: ESC/Java produces fewer
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warnings. Daikon examines program executions and gener-
alizes from run-time variable values to properties over those
values. Properties that were true over the entire test suite
are inserted into the program as annotations which a user
may retain or delete, at the user’s discretion. We delib-
erately supplied Daikon with small test suites to test its
performance in that situation, because with good test suites
Daikon produces fully verifiable sets, so no user effort is re-
quired whatsoever [NE01b, NE01a].

In our experiment, 33 experienced programmers each an-
notated two programs for ESC/Java; users were randomly
assigned to programs and to annotation assistants.

In brief, results suggest that both tools contribute to suc-
cess, and neither harms users in a measurable way. Ad-
ditionally, Houdini helps users to express more properties
in fewer annotations, and Daikon helps users express more
properties than required with no loss of time. However, users
report concerns with Houdini’s speed and opaqueness, and
Daikon’s verbosity.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on the tools used in this study.
Section 3 presents our methodology. Sections 4 and 5 report
quantitative and qualitative results. Section 6 examines the
results and concludes.

2. Background
This section provides details about the three tools used in

our study: the ESC/Java static checker (Section 2.1), the
annotation assistant Houdini (Section 2.2), and the dynamic
invariant detector Daikon (Section 2.3), which can also act
as an annotation assistant.

2.1 ESC/Java
ESC/Java [Det96, DLNS98, LN98] is an Extended Static

Checker for Java. It statically detects common errors that
are usually not detected until run time, such as null deref-
erence errors, array bounds errors, and type cast errors.

ESC is intermediate in both power and ease of use between
type-checkers and theorem-provers, but it aims to be more
like the former and is lightweight by comparison with the
latter. Rather than proving complete program correctness,
ESC detects only certain types of errors. Programmers must
write program annotations, many of which are similar in
flavor to assert statements, but they need not interact with
the checker as it processes the annotated program. ESC
issues warnings about annotations that cannot be verified
and about potential run-time errors. Its output may also
include suggestions for correcting the problem or stylized
counterexamples showing an execution path that violates
the annotation or raised the exception.

In order to verify a program, ESC/Java translates it into
a logical formula called a verification condition such that the
program is correct if the verification condition is true [FS01].
The verification condition is then checked by the Simplify
theorem-prover [Nel80].

ESC/Java checks each method in isolation, assuming that
all other annotations are correct. This permits checking dif-
ferent parts of a program independently and checking partial
programs or modules. ESC/Java took 5–15 seconds to run
on each program in our study.

ESC/Java is not sound; for instance, it does not model
arithmetic overflow, it assumes that all loops are executed
0 or 1 times, and it permits the user to supply (unverified)

assumptions. However, ESC provides a good approximation
to soundness: in practice, it detects many potential prob-
lems and increases confidence in the program being checked.

There are many other tools besides ESC/Java for stati-
cally checking specifications [Pfe92, DC94, EGHT94, Det96,
Eva96, NCOD97, LN98]. These other systems have different
strengths and weaknesses than ESC/Java, but few have the
polish of its integration with a real programming language.

ESC is available from http://research.compaq.com/SRC/esc/.

2.2 Houdini
Houdini is an annotation assistant for ESC/Java [FL01,

FJL01]. (A similar system was previously proposed by Rin-
tanen [Rin00].) It augments user-written annotations with
additional ones that follow from those, permitting users to
write fewer annotations and end up with less cluttered, but
still automatically verifiable, programs.

Houdini takes a candidate annotation set as input and
computes the greatest subset of it that is valid for a partic-
ular program. It repeatedly invokes the ESC/Java checker
as a subroutine and removes unprovable annotations, un-
til no more annotations are refuted. If even one required
invariant is missing, then Houdini eliminates all other in-
variants that depend on it. Correctness of the loop depends
on two properties: the set of true annotations returned by
the checker is a subset of the annotations passed in, and if a
particular annotation is not refuted, then adding additional
annotations to the input set does not cause the annotation
to be refuted.

Houdini’s initial candidate invariants are all possible arith-
metic and (in)equality comparisons among fields (and “in-
teresting constants” such as −1, 0, 1, array lengths, null,
true, and false), and also assertions that array elements
are non-null. Many elements of this initial set are mutually
contradictory.

According to its creators, over 30% of Houdini’s guessed
annotations are verified, and it tends to reduce the num-
ber of ESC/Java warnings by a factor of 2–5. With the
assistance of Houdini, programmers may only need to insert
about one annotation per 100 lines of code.

2.2.1 Emulation
Houdini is not publicly available, so we were forced to re-

implement it from published descriptions. For convenience
in this section only, we will call our emulation “Whodini.”

For each program in our study, we constructed the com-
plete set of true invariants in Houdini’s grammar and used
that as Whodini’s initial candidate invariants. This is a sub-
set of Houdini’s initial candidate set and a superset of verifi-
able Houdini invariants, so Whodini is guaranteed to behave
exactly like Houdini, except that it may run faster. Fewer
iterations of the loop (fewer invocations of ESC/Java) are
required to eliminate unverifiable invariants, because there
are many fewer such invariants in Whodini’s set. Whodini
typically takes 10–60 seconds to run.

2.3 Daikon
Daikon is a system for dynamically detecting likely pro-

gram invariants [ECGN01, Ern00]. Daikon discovers likely
invariants from program executions by running the program,
examining the values that it computes, and detecting pat-
terns and relationships among those values. The system
reports properties that hold over execution of an entire test
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suite (which is provided by the user).
The potential invariants are generated by instantiating,

at each procedure entry and exit, each of a set of three
dozen invariant templates. (Daikon’s candidate invariants
are richer than those of Houdini; additionally, Daikon can
output implications and disjunctions.) The templates are
filled in with each possible subset of variables (plus certain
expressions over those variables) that are in scope at the
program point. Although there are many potential invari-
ants, testing is efficient because most potential invariants
are falsified quickly and need not be tested thereafter.

The output is further improved by suppressing invariants
that are not statistically justified, that are implied by other
invariants in the output, or that involve variables that can
be statically proved to be unrelated [ECGN00].

As with other dynamic approaches such as testing and
profiling, the accuracy of the inferred invariants depends in
part on the quality and completeness of the test cases. When
a reported invariant is not universally true for all possible
executions, then it indicates a property of the program’s con-
text or environment or a deficiency of the test suite, which
can then be corrected. The Daikon invariant detector is
language independent, and currently includes instrumenters
for the C [KR88], IOA [GL00], and Java [AGH00] languages.
Daikon is available from http://sdg.lcs.mit.edu/daikon/.

Daikon can produce output in a variety of formats, in-
cluding ESC/Java’s annotation language (a variant of Java
Modeling Language JML [LBR99, LBR00]). For the pur-
poses of this research, we extended Daikon with a tool that
automatically inserts its output into the program being an-
alyzed as ESC/Java annotations. The resulting program
can be run through ESC/Java (which may report warnings
about unverifiable annotations or potential run-time errors).

3. Methodology
The section presents our experimental methodology and

its rationale. Section 3.1 presents the participants’ task.
Section 3.2 describes participant selection and characteris-
tics. Section 3.3 details our experimental design. Section 3.4
describes how the data was collected and analyzed.

3.1 User Task
Study participants were posed the goal of writing annota-

tions to enable ESC/Java to verify the absence of runtime
errors. Each participant performed this task on two different
programs in sequence.

Before beginning, participants received a packet contain-
ing 6 pages of written instructions, printouts of the programs
they would annotate, and photocopies of figures and text
explaining the programs, from the book from which we ob-
tained the programs. The written instructions explained the
task, our motivation, ESC/Java and its annotation syntax,
and (briefly) the assistance tools. The instructions also led
participants through an 11-step exercise using ESC/Java on
a sample program. The sample program, an implementation
of fixed-size sets, contained examples of all of the annota-
tions participants would have to write to complete the task
(@invariant, @requires, @modifies, @ensures, @exsures).
Participants could spend up to 30 minutes reading the in-
structions, working through the exercises, and further famil-
iarizing themselves with ESC/Java. Participants received
hyperlinks to an electronic copy of the ESC/Java user’s man-
ual [LNS00] and quick reference [Ser00].

NCNB LOC
Program Methods ADT Client Minimal
DisjSets 4 28 29 17
StackAr 8 49 79 23
QueueAr 7 55 70 32

Figure 1: Characteristics of programs used in the study. “Meth-

ods” is the number of methods in the ADT. “NCNB LOC” is the

non-comment, non-blank lines of code in either the ADT or the

client. “Minimal” is the minimal number of annotations neces-

sary to complete the task.

The instructions explained the programming task as fol-
lows.

Two classes will be presented—an abstract data
type (ADT) and a class which calls it. You will
create and/or edit annotations in the source code
of the ADT. Your goal is to enable ESC/Java to
verify that neither the ADT nor the calling code
may ever terminate with a runtime exception.
That is, when ESC/Java produces no warnings
or errors on both the ADT and the calling code,
your task is complete.

The ADT source code was taken from a data structures
textbook [Wei99]. We wrote the client (the calling code).
Participants were instructed to edit only annotations of the
ADT— neither the ADT implementation code nor any part
of the was to be edited.

We met with each participant to review the packet and
ensure that expectations were clear. Then, participants
worked at their own desks, unsupervised. (Participants log-
ged into our Linux machine and ran ESC/Java there.) Some
participants received assistance from Houdini or Daikon,
while others did not. Participants could ask us questions
during the study. We addressed environment problems (e.g.,
tools crashing) but did not answer questions regarding the
task itself.

After the participant finished the second annotation task,
we conducted a 20-minute exit interview. (Section 5 presents
qualitative results from these interviews.)

3.1.1 Programs
The three programs used for this study were taken from

a data structures textbook [Wei99]. Figure 1 gives some of
their characteristics.

We selected three programs for variety. The DisjSets

class is an implementation of disjoint sets supporting union

and find operations without path compression or weighted
union. The original code provided only an unsafe union op-
eration, so we added a safe union operation as well. The
StackAr class is a fixed-capacity stack represented by an ar-
ray, while the QueueAr class is a fixed-capacity wrap-around
queue represented by an array. We fixed a bug in the make-

Empty method of both to set all storage to null. In QueueAr,
we also inlined a private helper method, since ESC/Java re-
quires that object invariants hold at private method entry
and exit, which was not the case for this helper.

We selected these specifically because they are relatively
straightforward ADTs, and had some test suite included.
The programs are not trivial for the annotation task, but are
not so large as to be unmanageable. Since the annotations
required for verifying absence of runtime errors overwhelm-
ingly focus on class-specific properties, we expect results on
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Mean Dev. Min. Max.
Years of college education 7.1 2.7 3 14
Years programming 11.6 5.2 4 20
Years Java programming 3.6 1.4 1 7

Frequencies
Usual environment Unix 57%; Win 15%; both 28%
Writes asserts in code “often” 31%; less frequently 69%

. . . in comments “often” 25%; less frequently 75%
Gender male 88%; female 12%

Figure 2: Demographics of study participants. “Dev” is standard

deviation.

small programs such as these to imply similar results for
large programs.

3.2 Participants
A total of 39 users participated in the study, but six were

disqualified, leaving data from 33 participants total. Five
participants were disqualified because they did not follow
the written instructions; the sixth was disqualified because
the participant declined to finish the experiment. We also
ran 6 trial participants to refine the instructions, task, and
tools; we do not include data from those participants. All
participants were volunteers.

Figure 2 provides background information on the 39 par-
ticipants. Participants were experienced programmers and
were familiar with Java programming, but none had ever
used ESC/Java before. Participants had at least 3 years
of post-high education, and most were graduate students in
Computer Science at MIT or the University of Washington.

Participants reported their primary development environ-
ment (options: Unix, Windows, or both), whether they
write assert statements in code (options: never, rarely, some-
times, often, usually, always), and whether they write as-
sertions in comments (same options). While the distribu-
tions are similar, participants frequently reported opposite
answers for assertions in code vs. comments— very few par-
ticipants frequently wrote assertions in both code and com-
ments.

3.3 Experimental Design

3.3.1 Treatments
The experiment used four experimental treatments: a con-

trol group, Houdini, and two Daikon groups.
Control. Some participants were given the original pro-

gram without any help from an annotation assistant and
with only a minimal set of ESC/Java annotations already
inserted in the program.

The minimal set of ESC/Java annotations that were pro-
vided to all groups included spec public annotations on all
private fields, permitting them to be mentioned in specifi-
cations, and owner annotations for all private Object fields,
indicating that they are not arbitrarily modified by exter-
nal code. We provided these annotations in order to reduce
both the work done and the background knowledge required
of participants; they confuse many users and are not the in-
teresting part of the task. This boilerplate is easy to add
automatically.

Houdini. This group was provided the same source code
as the control group, but a version of ESC/Java enhanced
with (our re-implementation of) Houdini. Participants did

NCNB Calls
Program Suite LOC Stat. Dyn. Prec. Rec.
DisjSets Tiny 23 5 389 0.65 0.57

Small 28 5 1219 0.71 0.74
StackAr Tiny 14 4 32 0.54 0.52

Small 24 5 141 0.83 0.73
QueueAr Tiny 16 4 32 0.37 0.44

Small 44 10 490 0.47 0.56

Figure 3: Test suites used for Daikon runs. “NBNC LOC” is

the non-comment, non-blank lines of code. “Stat” and “Dyn” are

the static and dynamic number of calls to the ADT. “Prec” is

precision, a measure of correctness, and “Rec” is recall, a measure

of completeness.

not have to do anything special in order to invoke it; for
these users, it was automatically invoked (and a message
printed) when the user ran escjava.

Daikontiny. This group received a program into which
Daikon output had been automatically inserted as ESC/Java
annotations.

The Daikon output was produced using example calling
code that was supplied along with the ADT. The example
code usually involved just a few calls, with many methods
never called and few corner cases exposed (see Figure 3).
We call these the “tiny” test suites, even though the term
“test suites” is charitable.

These suites seem much less exhaustive than would be
used in practice. Our rationale for using them is that users
may not already have a good test suite available to them,
or they may be unwilling to collect operational profiles. If
Daikon produces relatively few desired invariants and rel-
atively many test-suite-specific invariants, it might hinder
rather than help the annotation process; we wished to ex-
amine that circumstance.

These participants ran an unmodified version of ESC/Java.
There was no sense also supplying Houdini to participants
who were given Daikon annotations, since Daikon always
produces all the invariants that Houdini might infer. Par-
ticipants were not provided the test suite and did not run
Daikon themselves. (Daikon took only a few seconds to run
on these programs.)

Daikonsmall. This group received a program into which
a different set of Daikon output had been inserted. The
Daikon output for these participants was produced from an
augmented form of the tiny test suite which varied some
values and added a few more method calls. In order to
construct this suite, one author limited himself to 3 minutes
of wall clock time for each of DisjSets and StackAr, and
5 minutes for QueueAr, in order to simulate low-cost testing
methodology; see Figure 3. As in the case of Daikontiny,
use of these suites measures performance when invariants
are detected from an inadequate test suite. We call these
the “small” suites.

Past research has shown that, given an adequate test suite,
Daikon produces fully-verifiable annotation sets for these
programs [NE01b, NE01a] (except for one missing anno-
tation required by StackAr’s client). Those adequate test
suites take about half an hour to produce.

3.3.2 Assignment of treatments
There are a total of 96 possible experimental configura-

tions: no participant annotated the same program twice so
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Variable Domain
Independent

Annotation assistant none, Houdini, Daikon
Program StackAr, QueueAr, DisjSets
Experience first trial, second trial
Location MIT, Univ. of Wash.
Usual environment Unix, Windows, both
Years of college education
Years programming
Years Java programming
Writes asserts in code never, rarely, sometimes,
Writes asserts in comments often, usually, always

Dependent
Success yes, no
Time spent up to 60 minutes
Final written answer set of annotations (Fig. 5)
Nearest verifiable answer set of annotations (Fig. 5)

Figure 4: Variables studied (Section 3.4.1), and their domain

(set of possible values). We also compute derived variables, such

as precision and recall (Section 3.4.3).

there are six choices of program pairs; there are four possible
treatments for the first program; and there are four possible
treatments for the second program. Participants could be
assigned the same treatment on both trials.

In order to reduce costs, we ran only a subset of the 96
configurations. We assigned the first 32 participants to con-
figurations using a randomized partial factorial design, then
assigned the last participant randomly to one of the remain-
ing configurations. (Participants who were disqualified had
their places taken by subsequent participants, in order to
preserve balance.)

3.4 Analysis
This section explains what quantities we measured, how

we measured them, and what values we derive from the di-
rect measurements.

3.4.1 Quantities Measured
We are interested in studying what factors affect a user’s

performance in a program verification task. Figure 4 lists
the independent and dependent variables we measured to
help answer this question.

We are primarily interested in the effect of the annotation
assistant on performance, or its effect in combination with
other factors. We also measure other independent variables
in order to identify other factors which have an effect, or
to rule out other possibilities and lend confidence to effects
shown by the assistant.

We measure four quantities to evaluate performance. Suc-
cess (whether the user completed the task) and the time
spent are straightforward measures of success. We also com-
pare the set of annotations in a user’s answer to the anno-
tations in the nearest correct answer. When users do not
finish the task, this is their degree of success.

The next section describes (in part) how we measure the
sets of annotations, and the following section describes how
we numerically relate the sets.

3.4.2 Measurement Techniques
This section explains how the variables in Figure 4 were

measured. The annotation assistant, program, and experi-
ence are derived from the configuration. The other indepen-
dent variables were reported by the participant. For depen-

dent variables, success was measured by running ESC/Java
on the solution. Time spent was reported by the user. If
the user was unsuccessful and gave up early, we rounded the
time up to 60 minutes.

The most complex measurements were finding the near-
est correct answer, and determining the set of invariants the
user had written. To find the nearest correct answer, we re-
peatedly ran ESC/Java and made small edits to the user’s
answer until there were no warnings, taking care to make
as few changes as possible. A potential source of error is
that we missed a nearer answer. However, many edits were
straightforward, such as adding an annotation which must
be present in all answers. Removing annotations was also
straightforward: incorrect statements cause warnings from
ESC/Java, so the statements may be easily identified and
removed. The most significant risk is declining to add an
annotation which would prevent removal of others that de-
pend on it. We were aware of this risk and were careful to
avoid it.

Determining the set of invariants present in source code re-
quires great care. First, we distinguish annotations based on
whether they are class annotations (@invariant) or method
annotations (@requires, @modifies, @ensures, or @exsures).
Then, we count invariants lexically and semantically.

Lexical annotation measurements count the textual lines
of annotations in the source file. Essentially, it is the number
of stylized comments in the file.

Semantic annotation measurements count how many dis-
tinct properties are expressed. The size of the semantic set
is related to the lexical count. However, an annotation may
express multiple properties, for instance if it contains a con-
junction. Additionally, an annotation may not express any
properties, if a user writes essentially the same annotation
twice.

We measure the semantic set of annotations (in addition
to the lexical count) because it is truer to the actual content
of the annotations: it removes ambiguities due to syntactic
choices of users, and it accounts for unexpressed but logically
derivable properties.

To measure the semantic set, we created specially-formed
calling code for the ADT. For each semantic property to
be checked, we wrote one method in the calling code. The
method instructs ESC/Java to assume certain conditions
and check others; the specific conditions depend on the prop-
erty being checked. For instance, to check a class invari-
ant, the grading method takes a non-null instance of the
type as an argument and asserts that the invariant holds
for the argument. For preconditions, the grading method
attempts one call which meets the condition, and one call
which breaks it. If the first passes but the second fails, the
precondition is present. Similar techniques exist for modifies
clauses and postconditions.

This automatic grading system ensures that our measure-
ments are reliable and unbiased, and enables reproducibility.
The grading system may break down if users write bizarre or
unexpected annotations. These mistakes are not common,
and we corrected them by hand.

3.4.3 Computed Values
From the quantities directly measured (Figure 4) we com-

puted additional variables to to focus on more specifically
useful values, and to compare results across differing pro-
grams.
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Figure 5: Visualization of written and verifiable sets of annota-

tions. The left circle represents the set of invariants written by

the user; the right circle represents the nearest verifiable set. The

overlap is correct invariants, while the fringes are additions or

deletions. In general, the nearest verifiable set is not necessarily

the smallest verifiable set. See Section 3.4.2 for details.

Figure 5 presents a visualization of measured and derived
quantities. The measured quantities are the user’s final an-
notations (“Written”) and the nearest verifiable set (“Ver-
ifiable”). Both are sets of annotations as measured by the
semantic counting technique described in the preceding sec-
tion. If the user was not successful, then the written and
verifiable sets differ. Unverifiable annotations were removed
(“Removed”), while other annotations may have been added
(“Added”). Verifiable annotations written by the user fall
into the middle section (“Correct”). Finally, compared with
the minimal possible verifiable answer (“Minimal”), the user
may have expressed additional annotations (“Extra”). The
minimal set does not depend on the user’s written annota-
tions.

From these measurements, we compute several values, all
of which were computed automatically.

Precision, a measure of correctness, is defined as the
fraction of the written annotations that are correct ( correct

written
).

Precision is always between 0 and 1. The fewer “−” symbols
in Figure 5, the higher the precision. We measure precision
to determine the correctness of a user’s statements

Recall, a measure of completeness, is defined as the frac-
tion of the verifiable annotations that are written ( correct

verifiable
).

Recall is always between 0 and 1. The fewer “+” symbols
in Figure 5, the higher the recall. We measure recall to de-
termine how many necessary statements a user wrote. Ad-
ditionally, in this study, recall is a good measure of a user’s
progress in the allotted time, since recall varied more than
precision.

Density measures the average amount of semantic infor-
mation per lexical statement. We measure density by di-
viding the size of the user’s semantic annotation set by the
lexical annotation count. We measure density to determine
the textual efficiency of a user’s annotations. If a user writes
many redundant properties, density is low. Additionally,
when Houdini is present, programs may have higher invari-
ant densities, since some properties are inferred and need
not be present as explicit annotations.

Redundancy measures unnecessary effort expended by
Houdini users. For the Houdini trials, we computed the
semantic set of properties written explicitly by the user and
then restricted this set to properties that Houdini could have
inferred, producing a set of redundantly-written properties.

Dependent variable Independent variable
Success Program to be verified

Without QueueAr: Any tool (+109%)
Time Program to be verified

If successful: Second trial (+26%)
Precision Program to be verified
Recall Program to be verified

Without QueueAr: Any tool (+25%)
Density Houdini (+57%)
Bonus Daikon (+17%)

Figure 6: For each dependent variable, the independent variables

that predict performance, and their numerical improvement, if

appropriate. Variables are explained in Section 3.4, and effects

are discussed in Section 4. All major statistically justified results

are shown above.

We created a fraction from this set by dividing its size by the
number of properties inferable by Houdini. This fraction lies
between 0 and 1 and measures the redundancy level of users’
annotations in relation to the annotations that Houdini may
infer.

Bonus, a measure of additional information, is defined
as the ratio of verifiable annotations to the minimal set
( verifiable

minimal
). The larger the unshaded arc in Figure 5, the

larger the bonus. We measured bonus to judge the total
amount of annotations the user expressed in a program-
independent way.

3.4.4 Miscellaneous Values
We studied the statistical significance of other computed

variables, such as the effect of the first trial’s treatment
on the second trial, the first trial’s program on the second
trial, the distinction between object or method annotations,
whether the user used Windows at all, etc. None of these
factors were statistically significant.

4. Quantitative Results
This section presents quantitative results of the experi-

ment, which are summarized in Figure 6. Each subsection
discusses one dependent variable and the factors that predict
it.

We analyzed all of the sensible combinations of variables
listed in Section 3.4. All comparisons discussed below are
statistically significant at the p = .10 level. Comparisons
that are not discussed below are not statistically significant
at the p = .10 level. To control experimentwise error rate
(EER), we always used a multiple range test [Rya59] rather
than direct pairwise comparisons, and all of our tests took
account of experimental imbalance. As a result of these
safeguards, some large absolute differences in means are not
reported here, even though in the absence of a statistical
analysis, the effects might appear to be clear. The lack
of statistical significance was typically due to small sample
sizes and variations in individual performance.

4.1 Success
We measured user success to determine what factors may

generally help or hurt a user; we were particularly inter-
ested in the effect of the assistant. Perhaps Daikon’s an-
notations are too imprecise or burdensome to be useful, or
perhaps Houdini’s longer runtime prevents users from mak-
ing progress.
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The only factor that unconditionally predicted success was
the identity of the program under test (p < 0.01). Success
rates were 70% for DisjSets, 48% for StackAr, and 0% for
QueueAr. This variety was expected, since the programs
were selected to be of varying difficulty. However, we did
not expect QueueAr to have no successful users.

If the data from QueueAr trials are removed, then whether
a tool was used predicts success (p = 0.07). Users with
no tool succeed 33% of the time, while users with either
Daikon or Houdini succeed 69% of the time (the effects of
the assistants were statistically indistinguishable).

These results suggest that programs such as QueueAr that
require complicated object invariants are difficult to anno-
tate, whether or not either Daikon or Houdini is assisting.
Furthermore, for less complex programs, tool assistance im-
proves success by more than a factor of two.

4.2 Time
We measured time to determine what factors may speed or

slow a user. Perhaps evaluating Daikon’s suggested annota-
tions takes extra time, or perhaps Houdini’s longer runtime
adds to total time spent.

As with success, a major predictor for time spent was the
program under test (p < 0.01). Mean times (in minutes)
were 44 for DisjSets, 52 for StackAr, and 60 for QueueAr.
Furthermore, if the user was successful, then experience also
predicted time (p = 0.02). Successful first-time users aver-
aged 43 minutes, while successful second-time users aver-
aged 34.

Since no other factors predict time, even within successful
users, these results suggest that the presence of the assis-
tance tools neither slow down nor speed up the annotation
process, at least for these programs. This is a positive re-
sult for both tools since the time spent was not affected, yet
other measures were improved.

4.3 Precision
We measured precision, the fraction of a user’s annota-

tions that are verifiable, to determine what factors influence
the correctness of a user’s statements. Successful users have
a precision of 100% by definition. Perhaps the annotations
supplied by Daikon cause unsuccessful users to have incor-
rect annotations remaining when time is up.

As expected, precision was predicted by the program un-
der test (p = 0.01). Together, StackAr and DisjSets were
indistinguishable, and had a mean precision of 98%, while
QueueAr had a mean of 87%.

These results suggest that high precision is relatively easy
to achieve in the time allotted. Notably, Daikon users did
not have significantly different precision than other users.
Since ESC/Java reports which annotations are unverifiable,
perhaps users find it relatively straightforward to correct
them.

Related qualitative results are presented in Section 5.3.3.

4.4 Recall
We measured recall, the fraction of the necessary annota-

tions that are written by the user, to determine what factors
influence the progress a user makes. Successful users have a
recall of 100% by definition. Perhaps the assistants enabled
the users to achieve more progress in the time allotted.

As expected, recall was predicted by the program under
test (p < 0.01). Mean recall was 95% for DisjSets, 84% for

StackAr, and 63% for QueueAr.
Recall was not universally affected by treatment. How-

ever, if the QueueAr trials are removed, recall is helped by
any tool (p < 0.01). Users with no tool had a mean recall
of 76%, while users with any tool had a mean recall of 95%.

For unsuccessful users, only data for StackAr trials showed
an effect (p < 0.01). Daikon users had a mean recall of
83%, while users with no tool had mean recall of 48%. (No
Houdini users failed, so the Houdini treatment cannot be
judged for unsuccessful users. Overall, Houdini users had
success rates indistinguishable from those of Daikon users;
see Section 4.1.)

4.5 Density
We measured the semantic information per lexical state-

ment to determine what factors influence the textual effi-
ciency of a user’s annotations. Perhaps the annotations pro-
vided by Daikon cause users to be inefficiently verbose, or
perhaps Houdini enables users to state more properties with
fewer written annotations.

The only factor that predicted the density was treatment
(p < 0.01). Houdini users had a mean density of 1.63 se-
mantic properties per written statement, while non-Houdini
users had a mean of 1.04. Daikon was indistinguishable from
the null treatment.

4.6 Redundancy
For Houdini trials, we measured the redundancy level of

users’ annotations in relation to the annotations that Hou-
dini may infer (the redundancy computation is explained
in Section 3.4). Perhaps users understand Houdini’s abili-
ties and do not repeat its efforts, or perhaps users repeat
annotations that Houdini could have inferred.

The only factor that predicted redundancy was experience
(p = 0.10). Users on the first trial had a mean redundancy of
18%, while users on the second trial had a mean redundancy
of 55%. Surprisingly, second-time users were more likely to
write annotations that would have been inferred by Houdini.

Overall, users redundantly wrote half 51%of the available
method annotations. For object invariants, though, users
wrote more redundant annotations as program difficulty in-
creased (17% for DisjSets, 31% for StackAr, and 60% for
QueueAr).

These results suggest that users with little Houdini ex-
perience do not understand what annotations Houdini may
infer, and frequently write out inferable invariants. This ef-
fect is more prevalent if users are more familiar with what
invariants are necessary, or if the program under study is
difficult. Related qualitative results are presented in Sec-
tion 5.2.3

4.7 Bonus
We measured the relative size of a user’s verifiable set of

annotations compared to the minimal set of annotations for
the same program. The ratio describes the total semantic
amount of information the user expressed in annotations.

The only factor that predicted the bonus information was
the tool used (p < 0.01). Daikon users had a mean ratio of
1.47, while users with Houdini or no tool had a mean of 1.26.

Since the verifiable set for unsuccessful users includes an-
notations that they did not write, examining the same mea-
surements for successful users is informative. For success-
ful users, the treatment also predicted bonus information
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(p < 0.01). Daikon users had a mean ratio of 1.50, while
others had a mean of 1.22.

These results suggest that Daikon users express a broader
range of verifiable properties, with no harm to time or suc-
cess at the given task. The extra properties were not needed
for the task studied in this experiment, but may be helpful
for other, similar tasks.

5. Qualitative Results
This section presents qualitative results gathered from

exit interviews conducted after each user finished all tasks.
Section 5.1 briefly covers general feedback. Section 5.2 de-
scribes experiences with Houdini and Section 5.3 describes
experiences with Daikon.

5.1 General
While the main goal of this paper is to study the utility

of invariant inference tools, exploring users’ overall experi-
ence provides background to help evaluate the more specific
results of tool assistance.

5.1.1 Incremental approach
Users reported that annotating the program incrementally

was not efficient. That is, running ESC/Java and using the
warnings to figure out what to add was less efficient than
spending a few minutes studying the problem and then writ-
ing all seemingly relevant annotations in one go. Four users
switched to the latter approach for the second half of the ex-
periment and improved their relative time and success (al-
though there are not enough values to statistically justify
a conclusion). Additionally, a few users who worked incre-
mentally for the whole experiment reported that an initial
attempt at writing relevant annotations at the start would
have helped. Notably, all users who were given Daikon an-
notations for program decided to work incrementally.

5.1.2 Confusing warnings
Users reported difficulty in figuring out how to eliminate

ESC/Java warnings. Users said that ESC/Java’s suggested
fixes were obvious and unhelpful, and that they wanted
more useful help. The exsures annotations were partic-
ularly troublesome, since many users did not realize that
the exceptional post-conditions referred to post-state val-
ues of the variables. Instead, users interpreted them like
Javadoc throws clauses, which refer to pre-state conditions
that cause the exception. Additionally, users wanted to
call pure methods in annotations, define helper macros for
frequently-used predicates, or form closures, but none of
these are possible in ESC/Java’s annotation language.

Users reported that ESC/Java’s execution trace informa-
tion— the specific execution path leading to a potential er-
ror— was helpful in diagnosing problems. Many users found
the trace to be sufficient, while other users wanted more spe-
cific information. A common suggestion was to display con-
crete variable values that would have caused the exception.

5.2 Houdini
Users’ descriptions of experiences with Houdini help ex-

amine its strengths and weaknesses. A total of 14 partici-
pants used Houdini for at least one program. Three users
had positive opinions, five were neutral, and six were nega-
tive.

5.2.1 Easier with less clutter
The positive opinions were of two types. In the first,

users expressed that Houdini “enabled me to be faster over-
all.” Houdini appeared to ease the annotation burden, but
users could not identify specific reasons short of “I didn’t
have to write as much down.” In the second, users reported
that Houdini was “easier than Daikon,” often because they
“didn’t have to see everything.” In short, the potential
benefits of Houdini —easing annotation burden and leaving
source code cleaner— were realized for some users.

5.2.2 No noticeable effect
The five users with neutral opinions did not notice any

benefit from Houdini, nor did they feel that Houdini hurt
them in any way. As it operated in the background, no
effect was manifest.

5.2.3 Slow and confusing
The six negative opinions provide the insight into Hou-

dini’s weaknesses. The main complaint was that Houdini
was too slow. Some users who had previously worked incre-
mentally began making more edits between ESC/Java runs,
potentially making erroneous edits harder to track down.

Additionally, users reported that it was difficult to figure
out what Houdini was doing (or could be doing); this result
was supported by the numerical results above having to do
with redundancy. Some users wished that the annotations
inferred by Houdini could have been shown to them upon
request, to aid in understanding what properties already
present.

5.3 Daikon

5.3.1 Benefits
Of the users who received Daikon’s invariants, about half

commented that they were certainly helpful. Users frequently
suggested that the provided annotations were useful as a way
to become familiar with the annotation syntax. Addition-
ally, the annotations provided an intuition of what invariants
should be considered, even if what was provided was not ac-
curate. Finally, provided object invariants were appreciated
because some users found object invariants more difficult to
discover than method annotations.

5.3.2 Overload
About a third of the Daikon users suggested that they

were frustrated with the textual size of the provided annota-
tions. Users reported that the annotations had an obscuring
effect on the code, or were overwhelming. Some users said
they were able to learn to cope with the size, while other
said the size was a persistent problem.

5.3.3 Incorrect suggestions
A significant question is how incorrect suggestions from

an unsound tool affect users. A majority of users reported
that removing incorrect annotations provided by Daikon was
easy. Others reported that many removals were easy, but
some particularly complex statements took a while to eval-
uate for correctness. Users commented that, for ensures

annotations, ESC/Java warning messages quickly pointed
out conditions that did not hold, so it was likely that the
annotation was in error.

8



This suggests that when a user sees a warning about an
invalid provided annotation and is able to understand the
meaning of the annotation, deciding its correctness is rela-
tively easy. The difficulty only arises when ESC/Java is not
able to verify the truthfulness of a correct annotation (or
the absence of runtime error), and the user has to deduce
what else to add.

The one exception to this characterization occurred for
users who were annotating the DisjSets class. In the test
suites used with Daikon to generate the annotations, the
parent of every element happened to have a lower index than
the child. The diagrams provided to users from the data
structures textbook also displayed this property, so some
users initially believed it to be true and spent time trying to
verify annotations derived from this property. Nevertheless,
the property indicated a major deficiency in the test suite,
which a programmer would wish to correct if his or her task
was broader than the simple one used for this experiment.

5.4 Uses in Practice
A number of participants believed that using a tool like

ESC/Java in their own programming efforts would be useful
and worthwhile. Specifically, users suggested that it would
be especially beneficial if they were more experienced with
the tool, if it was integrated in a GUI environment, if syn-
tax hurdles could be overcome, or if a large system already
existed and needed to be checked.

A small number of participants believed that ESC/Java
would not be useful in practice. Some users cared more
about global correctness properties, while others would rather
build a larger test suite rather than annotate programs. One
user suggested that ESC/Java would only be useful if testing
was not applicable.

However, the majority of participants were conditionally
positive. Users reported that they might use ESC/Java oc-
casionally, or that the idea was useful but annotating pro-
grams was too cumbersome. Others suggested that writing
and checking only a few properties (not the absence of excep-
tions) would be useful. Some users felt that the system was
useful, but annotations as comments were distracting, while
others felt that the annotations improved documentation.

In short, many users saw promise in the technique, but
few were satisfied with the existing application.

6. Discussion
Static checking is a useful software engineering practice.

It can reveal errors that would otherwise have be detected
only during testing or even deployment. Participants in this
study recognized its advantage, but for some, the costs out-
weigh the benefits.

We have evaluated two assistance tools both quantita-
tively and qualitatively. Both tools aided success by a factor
of two. Furthermore, neither tool hurt users in any quanti-
tative measure.

Houdini had both benefits and drawbacks. Participants
appreciated some aspects of its behind-the-scenes invariant
inference. For instance, removing the need to write certain
properties was helpful, as was less annotation clutter in the
source code. However, Houdini’s process can be misunder-
stood, and can be too slow at times. (The un-emulated
version may be even slower.) Additionally, new users may
not be helped as much as experienced users, since they do
not view the inferred invariants.

Daikon, too, had both benefits and drawbacks. New users
appreciated the inserted annotations as training wheels, and
all users ended up writing bonus properties. Users appreci-
ated the suggestions, but were sometimes unhappy with the
volume of suggestions produced by the deficient test suites.
These results were obtained by using Daikon on (intention-
ally) very poor test suites. With better test suites (which
Daikon may help produce), it should be even more effective
at helping users.

These results suggest a few important characteristics of
an annotation assistant:

• Assistants should provide helpful and realistic exam-
ples for new users—users enjoy learning by example.
Even an assistant which reduces total workload still
needs to ease the leaning curve for the remainder.

• Reducing total workload is valuable. When users do
not have to think of as many annotations on their own,
they are more successful.

• When users are shown a starting set of annotations,
the set should not be too large or verbose. In the
study, picking through the set is not difficult, but was
not enjoyable for users.

• A permanent (final) set of annotations should not clut-
ter the code; inferring properties is helpful. However,
always hiding annotations is confusing. This suggests
a user interface that allows toggling of annotations at
the direction of the user.

• Assistants must be fast. During the annotation pro-
cess, users are not willing to wait for a minute or two
while one source file is processed.

• Assistants need not be perfect. Daikon’s output con-
tained numerous incorrect invariants (see Figure 3),
but Daikon did not slow down users and helped them
write more correct annotations.
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