
Continuous Testing in Eclipse

David Saff, Michael D. Ernst

MIT CSAIL

eTX 2004, Barcelona, Spain

Continuous testing:

inspired by continuous compilation
• Continuous compilation, as in Eclipse, notifies

the developer quickly when a syntactic error is
introduced:

• Continuous testing notifies the developer
quickly when a semantic error is introduced:

Outline

• Continuous testing: defined and motivated

• Eclipse plug-in:

– Design principles

– User interface design: demo

– Software design

• Next steps

Outline

• Continuous testing: defined and motivated

• Eclipse plug-in:

– Design principles

– User interface design: demo

– Software design

• Next steps

Continuous testing

• Continuous testing

uses excess cycles

on a developer's

workstation to

continuously run

regression tests in

the background as

the developer edits

code.

developer

changes

code

daemon

runs

tests

IDE

listens

for

changes

IDE

notifies

about

errors

Goals of continuous testing

Continuous testing:

• No longer forces the developer to decide

whether to test and what tests to run.

• Prevents long-standing regression errors.*

• Makes developer confident, not annoyed.

* Saff, Ernst, ISSRE 2003: Reducing

wasted development time via

continuous testing

Continuous testing made students

more productive

Treatment N Completed

assignment

No tool 11 27%

Continuous compilation 10 50%

Continuous testing &

continuous compilation

18 78%

p < .03

* Saff, Ernst, ISSTA 2004:
An experimental evaluation of continuous testing during development

Students appreciated

continuous testing

I would use continuous

testing…

Yes

…for the rest of the course 94%

…for my own programming 80%

I would recommend the tool

to others

90%

Outline

• Continuous testing: defined and motivated

• Eclipse plug-in:

– Design principles

– User interface design: demo

– Software design

• Next steps

Design principles, 1 of 2

• Reuse

– Whenever possible, plug in and reuse

• Future reuse

– When reuse is impossible, copy and paste to

show where Eclipse could be more flexible

Design principles, 2 of 2

• Consistent experience

– Don’t change expected behavior

– Build on current developer metaphors

• Minimal distraction

– Don’t swamp benefits by sapping attention

• Testability

– Add testing-specific API’s when necessary

Outline

• Continuous testing: defined and motivated

• Eclipse plug-in:

– Design principles

– User interface design: demo

– Software design

• Next steps

Outline

• Continuous testing: defined and motivated

• Eclipse plug-in:

– Design principles

– User interface design: demo

– Software design

• Next steps

Project

Source file

*

* Builder*

Eclipse auto-building:

Static structure

RMI

builder

Java

builder

Project

Source file

*

* Builder

RMI

builder

Java

builder

Delta

notifies

Build

Manager

starts

Auto-build

Thread

runs

Marker

creates

*
changes

*

Eclipse auto-building:

Dynamic behavior

updates

Problems

view

*

Launch

config

Launch

config type

JUnitApplication

Runtime

workbench

Launch

project

has classes

*

Eclipse launching:

Static structure

Launch

config

Launch

config type

JUnit
Launch

project

updates

Eclipse JVMLaunched JVM

Launch

project

Classpath

Remote

test

runner

Test

runner

client

Test

runner

GUI

Socket

Eclipse launching:

Dynamic behavior (JUnit)

Project

Source file

*
*

Builder

Java

builder

Launch

config

Launch

config type

Continuous

testing

Launch

project

when changes

has classes

Testing

metadata

Continuous Testing

Static structure

CT

builder

updates

Project

Source file

*

Marker

creates

Launch

config

Launch

config

type

CT
Launch

project

updates

Eclipse JVM

Launched JVM

Launch

project

Classpath

CT

test

runner

CT

runner

client

CT

runner

GUI

Socket

Testing

meta-

data

Testing

meta-

data

when changes

Continuous Testing

Dynamic behavior

*
Problems view

JUnit runtime

structure copied

Problem icon

selection hacks

internal classes

Places we

had

difficulty

Testing multiple

asynchronous

units is hard

Testing multiple

asynchronous

units is hard

Suggestions for Eclipse

• JUnit integration:

– Display results from multiple simultaneous

test runs

– Allow plug-ins to contribute prioritization

• Problems view:

– More flexibility in icons

• Tools for testing asynchrony

– It’s hard to create deterministic unit tests

Outline

• Continuous testing: defined and motivated

• Eclipse plug-in:

– Design principles

– User interface design: demo

– Software design

• Next steps

Next steps:

split into individual plug-ins

Current plug-in

Prioritize

tests

Associate

launches

with

projects

Create

markers

based on

test

failures

Run tests

when

project

changes

Next steps: feature enhancements

• Extend to Plug-in Development

Environment

• Prioritize based on which methods,

classes, etc. changed

• Use hot-swapping JVM to reduce start-up

time

• Increase resolution: associate suite with

package? class? method?

Next steps: test factoring

Expected Result

• User-supplied test: • Factored tests:

Method Call Expected ResultMethod Call

Mock Object

Expected Result

Method Call

* Saff, Ernst, PASTE 2004:

Automatic mock object creation

for test factoring

Further reading

• Model of developer behavior

– Saff, Ernst, ISSRE 2003: Reducing wasted

development time via continuous testing

• Controlled student experiment

– Saff, Ernst, ISSTA 2004: An experimental evaluation

of continuous testing during development

• Test factoring

– Saff, Ernst, PASTE 2004: Automatic mock object

creation for test factoring

Conclusion

• Plug-in is publicly available at
http://pag.csail.mit.edu/~saff/continuoustesting.html

• Many are using and enjoying continuous

testing: give it a try!

• Eclipse was an excellent platform for

meeting our design goals.

• Research and implementation continues

http://pag.csail.mit.edu/~saff/continuoustesting.html

