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Abstract

We address the general practical problem of deter-
mining correspondences between maps and terrain
images, and focus on a static low altitude airborne
scenario. For this case we consider the approach of
partially matching detected and expected curves
in the image plane. Expected curves are gener-
ated from a map, using an estimate of the sensor
pose in three dimensions, and matched with simu-
lated detected curves in an image. We also outline
a method for sensor pose refinement using point
correspondences derived from curve matches as in-
put to a relative orientation algorithm.

Image/Map Correspondence

We address the problem of determining correspon-
dences between maps and terrain images in low alti-
tude airborne scenarios. In particular, we consider an
aircraft with a wide-angle passive imaging sensor, such
as an infrared or TV camera, flying a few hundred feet
above tree tops.

Other on-board systems are assumed to provide an
estimate of the three-dimensional orientation of the
imaging sensor. We also assume availability of an es-
timate of three-dimensional position, for which there
are several sources of information in varying accuracies
(e.g. altimeters, inertial navigation, and global posi-
tioning systems). The important point is that regard-
less of how accurate the sensor pose estimate is in prin-
ciple, it will be inaccurate in detail in practice. Hence
we seek effective means of determining correspondences
between images and maps, to provide enhanced relative
direction and absolute position information.

Finally, we assume availability of a variety of maps for
use by the system. The maps must be complete enough
to permit prediction of visually prominent aspects of
the environment. For this a terrain elevation map is
critical but not sufficient. Other maps outlining the
locations of areas such as forests, fields, water, roads,

and buildings are also needed.
Solutions to the image/map correspondence problem

are important for visual support of navigation, and crit-
ical in guiding the search for objects in areas anticipated
from map information. Image/map correspondence is
also important in low altitude airborne surveillance and
reconnaissance problems, in which the objective is to re-
fine existing map information on the basis of incoming
imagery.

Examples of other work directly addressing vari-
ous formulations of passive image/map correspondence
problems are: (Bolles et al. 1979), (Medioni & Neva-
tia 1984), (Mokhtarian & Mackworth 1986), (McKeown
1987), (Lawton et al. 1987), and (Andress & Kak 1988).
Our overall approach is conceptually most similar to the
approach of Mokhtarian & Mackworth (1986). In con-
trast to these prior efforts, we emphasize the low alti-
tude formulation of the problem and the roles of partial
curve matching and expected curve generation.

The sensor position considered in this paper, at low
altitudes above tree tops, poses significantly different
problems and considerations than those encountered in
land vehicle vision systems. For example, from view-
points on the ground, forests are significant obstacles
to vision and can easily obscure vast amounts of infor-
mation such as the contour of the horizon. In this case
a more map-like scale of visual information is available
from the air for comparison with maps because only
areas in the immediate vicinity of trees are occluded.

The assumed low altitude sensor position also poses
significantly different problems than encountered in
high altitude aerial and satellite imagery. In the low
altitude case, useful viewing directions tend more to-
ward the horizon than straight down, forcing a three-
dimensional formulation of the solution, as opposed to
the largely two-dimensional approaches that are viable
at high altitudes.

Of course the substantial body of work in model-
based object recognition, e.g. as surveyed by Besl &
Jain (1985), is also relevant in principle. In fact, the
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curve matching algorithms we draw upon (Schwartz &
Sharir 1987; Wolfson 1987) were motivated primarily
by problems with recognizing objects in industrial ap-
plications . However, low altitude image/map corre-
spondence problems remain substantially different in
almost every detail, as terrain environments are typified
by complex irregular geometries, materials, and lighting
conditions, and maps are typically sampled at a lower
resolution than the visually available information. Par-
tial matching of arbitrary curves is particularly relevant
in this context.

Curve Matching Approach

Our curve matching approach is to match curves de-
tected in an image with expected image curves gener-
ated from a map. This requires a plausible balance of
high speed image processing and high speed computer
graphics, while avoiding problems with other match-
ing approaches. For example, matching detected and
expected image intensities directly, begs generation of
realistic image intensities from maps – realism that is
beyond the scope of typical maps. Matching detected
and expected three-dimensional surfaces, has potential
merit for the passive sensors we consider, but places
the heavy burden of solution on robust shape-from-x
techniques.

The first three steps of the method, elaborated below,
obtain relative image/map correspondence. We have
also incorporated the fourth and fifth steps for absolute
sensor pose refinement experiments.

Step (1): Detect and extract curves from an image.
Step (2): Project expected curves from a map into

the image plane, using the estimated sensor pose (three-
dimensional position and orientation).

Step (3): Match detected and expected curves to ob-
tain correspondences between the image and the map.

Step (4): Extract point correspondences at distinc-
tive points along the matched curves.

Step (5): Correct the estimated sensor pose using
point correspondences from Step (4) as input to a rela-
tive orientation algorithm (Horn 1987) .

Detecting and Extracting Curves

We consider two approaches for the curve detection
step, and explain why an approach that seeks only ‘vi-
sually obvious’ curves could be sufficient. Thus far we
have simulated the detection of curves from images, by
using maps and the expected curve generation tech-
nique described below.

One approach for the required curve detection is to
attempt to estimate curves of the terrain image by
classes such as ‘roads’, ‘water boundaries’, and ‘vege-
tation boundaries’. This approach places the primary

responsibility for success on devising robust ‘map-less’
recognition algorithms. Although this approach is po-
tentially feasible, it requires techniques that are still
largely beyond the state of the art.

An alternative approach is to use a generic
edge/curve extraction algorithm to extract ‘obvious’
curves without attempting recognition. The expected
curve generation component of the system then has a
more interesting responsibility of estimating what the
obvious curves will be considering the imaging condi-
tions. This approach has considerable potential because
graphical generation of curves for expected high con-
trast image boundaries is more feasible than predicting
realistic image intensities per se.

Generating Expected Curves

We accomplished expected curve generation for the
most part using using straightforward techniques from
computer graphics. Map curves were overlaid on a
piecewise planar interpolation of the digital elevation
map, and projected via a perspective transformation
into an image plane using the given estimate of sensor
position and orientation. The algorithm we developed
maintains contiguous curve representations through the
transformation, splitting curves at occluding contours,
and removing hidden curve segments. Thus this step
obtains a set of idealistic two-dimensional curves in
image coordinates, representing the geometrically ex-
pected visual locations of the corresponding map infor-
mation.

Obviously it is not realistic to assume that all of
the expected curves will be visible in the image. Al-
though there are many potential criteria to consider for
improving expected curve generation, we have imple-
mented this simple approach first. Also, it is not yet
clear how much realism is required. As an example,
roads roughly parallel to the line of sight tend to be
much more visible than roads perpendicular to the line
of sight. Expected curve generation criteria could be
devised to model such phenomena if the presence of
expected, yet invisible, curves turns out to be a ma-
jor problem. However, in principle the extra expected
curves should not matter. They will simply be left un-
matched; or only the detected portions will be partially
matched, just as a more realistic set of expected curves
would be matched.

Matching Curves

The two-dimensional curve matching algorithm we im-
plemented for this step draws largely from algorithms
by Schwartz & Sharir (1987) and Wolfson (1987). We
selected these algorithms because they are well-suited
for arbitrary curves, and because the partial matching
component of Wolfson’s algorithm shows promise for



robust matching of curves derived from low altitude ter-
rain images where occlusions and illumination changes
can easily cause fragmented curves, in comparison with
the ideal curves generated from maps.

Beyond the prior algorithms, we added a curve
connection option and a technique for interpolating
matches after the best partial matches have been deter-
mined. We also introduced several parameters for the
algorithms so that knowledge of constraints on match-
ing can be used to control allowable matches. There
are four steps in the curve matching scheme:

Step (3.1) Connecting and Smoothing Curves: We
implemented a curve connection criterion to fill gaps be-
tween detected curves, using typical separation, orien-
tation, and colinearity tolerances. Two curves with ap-
proximately coincident endpoints within the tolerances
are connected. Note that the ordinarily unconserva-
tive option of using only a separation tolerance, bar-
ring intersecting curves, is justified because the partial
curve matching that follows should not match across
incorrectly connected curves, while correct connections
should promote longer matches.

The curve smoothing algorithm we implemented is
an algorithm suggested by Schwartz & Sharir (1987).
This finds the shortest path within an epsilon neigh-
borhood of the curve. Our use of curve smoothing
here is heuristic because the different three-dimensional
transformations underlying the detected and expected
two-dimensional curve sets do not necessarily satisfy
the conditions of a lemma (Schwartz & Sharir 1987)
justifying the smoothing operation for other matching
problems.

Step (3.2) Finding Plausible Partial Matches: In
this step a pool of plausible matches, including partial
matches, is constructed. We use an adaptation of the
“shape signature string” matching algorithm (Wolfson
1987) which accomplishes partial matching by compar-
ing approximations of curvature as a function of curve
length. The resulting match pool contains a large num-
ber of pairs of partially matching curves and subcurves.
The point is to quickly create a relatively large number
of promising matches, discarding those which are ob-
viously wrong, rather than to closely discriminate be-
tween correct and incorrect matches.

Step (3.3) Selecting Best Matches: The purpose of
this step is to select the best matches from the pool of
candidate partial matches. We use a process of elimi-
nation, rejecting matches that do not satisfy criteria as
follows.

A match is excluded if its translation (the amount by
which one curve must be shifted to match the other),
rotation, or length (the length of either of the matched
curves) are not within specified ranges. These values
are computed using the fast curve matching technique
of Schwartz & Sharir (1987). The allowed ranges are

parameters to allow enforcement of any available knowl-
edge of constraints on the matching.

Another criterion for reducing the population of the
match pool requires various measures of global coher-
ence among the matches in two dimensions. For exam-
ple, it may be known that there is a lateral error in the
generated expected curves, although the magnitude of
the error is unknown. For this we use histogram pruning
on the translation magnitudes, retaining matches near
the peak; rotational coherence is also handled this way.
However, these particular measures are only reasonable
when the underlying three-dimensional transformations
differ by a translation perpendicular to the line of sight,
and/or by a rotation about the line of sight.

Finally a uniqueness criterion is applied. For this
we use a greedy algorithm which adds the best match
to the output and removes from the match pool all
matches that overlap it. This process is repeated until
no matches remain in the pool.

Step (3.4) Interpolating Matches: To complete the
curve matching scheme, the set of final partial matches
is examined to find pairs of curves between which two
or more curve segments have been partially matched. A
new partial match is then ‘interpolated’ between con-
nected partial matches.

This postprocessing of the partial curve matches is
intended to help bridge gaps that are natural conse-
quences of map and image resolution, map inaccuracies,
and simplifying assumptions made in curve detection.
There are many additional strongly model-based ways
of proceeding from this point that we have not pursued.

Observations

Image/map correspondence problems and applications
are enormous tasks in general, especially considering
the processing requirements if correspondences are to be
computed in flight. Although our purpose here has been
to discuss the basic viability of partial curve matching
as a component of such systems, we also believe the ap-
proach satisfies real-time implementation requirements
because it balances existing and near future capabili-
ties in image processing and computer graphics. The
operations posited for curve detection from images are
within the capabilities of image processing systems, and
there are many computer graphics systems to support
the kinds of high-speed expected curve generation op-
erations required in this approach.

We have informally tested the curve matching
method for image/map correspondence using digital
map data including elevation, vegetation, and roads for
a 1920 square meter area. Our initial experiments have
focussed on the performance of the curve matching algo-
rithms in the presence of differences between simulated
actual and expected views. We believe the curve match-



ing approach has considerable merit, but it is too early
commit to particular approaches. Considering require-
ments for robust operation in the presence of low res-
olution images and maps, it seems likely that ultimate
solutions will draw upon several diverse approaches in
concert. We note a basic conflict between the problem
of partial matching and the problem of matching curves
of different sizes and distortions due to range differences
between detected and expected views. Perhaps a com-
bination of partial matching (Wolfson 1987) and scale
space matching (Mokhtarian & Mackworth 1986) is vi-
able. Affine invariant partial curve matching (Lamdan,
Schwartz, & Wolfson 1988) is also relevant.

The primary challenge for low altitude image/map
correspondence is to prove methods that will work us-
ing maps and terrain images with ground truth sensor
pose information. A next step for the curve matching
approach is to devise curve detection criteria coordi-
nated with map-based expected curve generation, and
to evaluate using databases of low altitude images of
terrain in mapped regions.
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