Motivation

Black-box model Approaches

Evaluation

Artificial vs. real faults

Failure modes

Design space New techniques

Summary

Spectrum | Mutant

...Evaluation | Replication

[What matters?

Evaluating and Improving
Fault Localization

Spencer Pearson

b |

Michael Ernst

-\

Motivation

Black-box model

Approaches

Evaluation

Artificial vs. real faults

Failure modes

Design space

New techniques

Summary

Spectrum | Mutant

...Evaluation | Replication

Debugging is expensive

Your program has a bug. What do you do?

Reproduce it
Locate it
Fix it

—

Focus of this talk

[What matters?

Motivation Black-box model

Approaches Evaluation

Artificial vs. real faults

Failure modes

Design space New techniques

Summary

Fault localization as a black box

c = foo;

u = bar();

while (c < u)
c = c.baz();

return c;

Spectrum | Mutant

...Evaluation | Replication

Passing tests

Failing tests

Program

Fault localization
tool

Line
ranking

[What matters?

Motivation

Black-box model Approaches Evaluation Artificial vs. real faults

Failure modes

Design space

New techniques

Summary

Spectrum | Mutant ...Evaluation | Replication

Agenda

Spectrum-based and mutant-based fault localization

Evaluating fault localization techniques

Fault provenance: are artificial faults good proxies for real faults?

>

Y VYV

No!
Why not?
What matters on real faults, then?

Doing better

[What matters?

Motivation Black-box model Approaches

Evaluation Artificial vs. real faults Failure modes Design space New techniques

Summary

Spectrum | Mutant ...Evaluation | Replication [What matters?

Let’'s design a FL technique!

if

00000000008 it
O0ee
e
@)

unflushedValues > 0) {

(index >= 0 && !this.allowDuplicateXValues) {
XYDataltem existing = (XYDataltem) this.data.get (index);
try |

overwritten = (XYDataltem) existing.clone();

}
catch (CloneNotSupportedException e) {

throw new SeriesException("Couldn't clone XYDatalItem!");

}
existing.setY (y)

More @s = more suspicious
More @s = less suspicious

Motivation Black-box model Approaches

Evaluation

Artificial vs. real faults

Failure modes Design space

New techniques

Summary

Spectrum | Mutant

...Evaluation | Replication

Let’'s design a FL technique!

/ For each statement \

weighting
factors

Line# | Susp.
1 0.2

2 05 — | sort

3 0.0

[What matters?

Line#

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques

Summary

Spectrum | Mutant ...Evaluation | Replication [What matters?

There are many variants on spectrum-based FL.:

. 1] Gl failed(s)
Ochiai S(s) \/ totalfailed - (failed(s) + passed(s))

failed(s)/totalfailed

2 (o) —
Tarantula[] blel= failed(s) /totalfailed + passed(s)/totalpassed

B failed(s)™
 passed(s) + (totalfailed — failed(s))

D*[3] S(s)

[1]1 R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An evaluation of similarity coefficients for software fault localization.

[2] J. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault localization.
[3] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The DStar method for effective software fault localization.

Motivation

Black-box model Approaches

Evaluation Artificial vs. real faults

Failure modes

Design space New techniques

Summary

Spectrum | Mutant

...Evaluation | Replication

[What matters?

Another approach to FL: “mutation-based”

def f(arg):
if arg dot cacheache:
return cachelarg]
cachelarg] = (start+stop)/2
cache.sync ()

def f(arg):
if arg in cache:
return cachelarg]
cachel[arg] = (start-stop)/2
cache.sync ()

def

cachelarg] =
cache.sync ()

f(arqg):

if arg in cache:

return cachelarg]

(start+stop) /2

return (start+stop+1)/2 return (start+stop+l)/2 return (start+stopd0)/2
def f(arqg):
if None in cacH L. L\ cache:
return cache More A = more suspicious cache [arg]
- More 4\ = less suspicious
cachel[arg] = (3] = (start+stop)/2
cache.sync () hC ()
return (start+stop+1)/2 return (start+stop+1)/2 return (start/stop+1)/2
def f(arg): def f(arg): def f(arg):
if arg in None: if arg in cache: if arg in cache:
return cachelarg] return cachelarg] return cachelarg]

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques Summary
Spectrum | Mutant ...Evaluation | Replication [What matters?
. K6 . 7
Another approach to FL: "mutation-based
/ For each mutant \
Mut# | Susp. Line# | Susp. Line#
IR
1 0.1 1 0.2 7
— A 2 06 —{ collect |~ 2 05 —{ sort 6
#A
3 0.1 3 0.0 2

N /

weighting
factors

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques Summary

Spectrum | Mutant ...Evaluation | Replication [What matters?

There are few variants on mutation-based FL:

- B failed(m)
Metallaxis!tl 55/ = mox et (Failed(m) £ passed(n)

total f ail
MUSE P! S(s) avg {fa/iled(m) _ fotaljated passed(m)
meEmut(s) totalpassed
N—

)

[1] M. Papadakis and Y. Le Traon. Metallaxis-FL: Mutation-based fault localization.
[2] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the mutants: Mutating faulty programs for fault localization.

Motivation

Black-box model

Approaches

Evaluation

Artificial vs. real faults

Failure modes

Design space

New techniques

Summary

Spectrum |

Mutant

...Evaluation | Replication

[What matters?

How do you tell whether a FL technique is good?

+

Program Defect
Tests +
Defect knowledge
I

Passing tests Find defect in ranking

> Line (3) u = foo;
Failing tests ranking (1) ¢ = bar();
FL
(4) while (c < u)
Program > (2) c = c.baz();

Score (smaller = better)

.| 4/90

- ava . 504

o005
| oo

Blue technique is the

best FL technique

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques Summary

Spectrum | Mutant ...Evaluation | Replication [What matters?

How do you get defect information for evaluation?

_Fr’gzst;;aer + e Artificial faults (mutants)
Defect knowledge + Easy to make lots of faults Used by previous
+ Easy to reason about research
- Not necessarily realistic
- =Nt necessearily realistic
— iit igrs e Real faults (from issue trackers)
sum = xs[0]; - Hard to collect; fewer faults Provided by the

- Diverse and complicated recent project

+ Reflect real-world@ Defects4J [1]

J

[1] Just et al. "Defects4J: A database of existing faults to enable controlled testing studies for Java programs.” ISSTA 2014 Proceedings. ACM, 2014.

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques Summary
Spectrum | Mutant ...Evaluation | Replication [What matters?
Are artificial faults good substitutes for real faults?
A FL technique that does well on artificial faults may do badly on real ones! We:
e generated many artificial faults
by mutating fixed statements o e
(Winner > loser) Artificial Real
e repeated previous comparisons R S el
Ochiai > Tarantula
H 1A Barinel > Ochiai
o on artificial faults R
o on real faults Op2 > Ochiai

Op2 > Tarantula
DStar > Ochiai - SBFL-SBFL
DStz‘lr‘> Tarantula

Do the same techniques win on both? .
ek |
Metallaxis > Ochiai h

No! e » b MBFL-SBFL

MUSE > Jaccard no

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques Summary

Spectrum | Mutant ...Evaluation | Replication [What matters?

Are artificial faults good substitutes for real faults?

(No!)

Artificial faults Real faults

MUSE
Metallaxis
Op2

D*
Barinel
Tarantula
Ochiai
Jaccard

better

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques Summary

Spectrum | Mutant ...Evaluation | Replication [What matters?

Why the difference?

e Real faults often involve unmutatable lines
(e.g. break, return)

e MBFL does very well on “reversible” artificial faults

create fault mutate
sum = sum + X sum = sum - X sum = sum + X

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques Summary
Spectrum | Mutant ...Evaluation | Replication [What matters?
/ For each mutant \
Line# | Susp. Line#
S
#@® 1 0.2 7
-/
PR /’L 2 0.5 sort 6
#@
K - / 3 0.0 2

weighting
factors

Motivation Black-box model Approaches

Evaluation

Artificial vs. real faults

Failure modes

Design space New techniques

Summary

Spectrum | Mutant

...Evaluation | Replication

Common structure

/ For each mutant \

weighting
factors

Mut# Susp.
1 0.1
3 0.1

[What matters?

Line# | Susp.
1 0.2
2 0.5 sort
3 0.0

Line#

Motivation

Black-box model

Approaches

Evaluation

Artificial vs. real faults

Failure modes

Design space

New techniques

Summary

Spectrum |

Mutant

...Evaluation | Replication

Common structure

_

/ For each element \

weighting
factors

[What matters?

Elem# | Susp.
1
2 collect
: /
(identity
for SBFL)

Line# | Susp.
1 0.2
2 0.5 sort
3 0.0

Line#

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques Summary

Spectrum | Mutant ...Evaluation | Replication [What matters?

Common structure

Technique L
Space

\ } \ }
|
Important Unimportant

e SBFL
e MBFL: what counts as a failing test
“detecting” a mutant?

@)

AnError(1)—AnError(2)

o ...
o AnError—OtherError
o AnError—pass

Motivation

Black-box model Approaches

Evaluation

Artificial vs. real faults

Failure modes

Design space

New techniques

Summary

New techniques

Spectrum | Mutant

...Evaluation | Replication

[What matters?

SBFL and MBFL both have outliers... but in different cases!

Average them together!

Other (smaller) improvements:
Make MBFL incorporate mutant coverage information

(@)

@)

Increase resolution of SBFL by using mutants

—— Hybrid

- - -

— 4

Metallaxis

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques Summary

Spectrum | Mutant ...Evaluation | Replication [What matters?

Summary

if (unflushed| wmm== MUSE
if (index > def ftargy: b SN A~ iy e Metallaxis
XYDatalIte if arg not in cache:
return cachelarg] Op2
try { El
“ overwri t — D
} cachelarg] = ——— Barinel
(start+stop) /2
cateh (Cl cache.s —— Tarantula
throw n| -sync ()
} return (start+stop+l)/2 —— Ochiai
(&] existing. AdLLA —— Jaccard
}
Artificial Real
Replicated? | Replicated?
For each element
Elem# | Susp. Line# | Susp. Line#
1 [== 1 0.2 7 Hybrid
> 2 > 2 05 | sot > 6 —, 1]
3 3 0.0 > 4 XA\ eeees Metallaxis
(identity
for SBFL)
weighting
factors .
no
no
no

Motivation Black-box model Approaches Evaluation Artificial vs. real faults Failure modes Design space New techniques Summary

Spectrum | Mutant ...Evaluation | Replication [What matters?

Future work

e Are artificial faults still bad proxies for real faults
with other families of FL techniques?

e Could generated test suites make artificial faults
Better proxies?

e Do some mutation operators produce better
artificial faults than others?

Motivation

Black-box model

Approaches

Evaluation

Artificial vs. real faults

Failure modes

Design space

New techniques

Summary

Spectrum | Mutant

...Evaluation | Replication

Alternative metric: top-n

“Average percent through the program

until first faulty statement” might not be

the best metric.

e Alternative: “probability a faulty
statement is in the n most suspicious.”
e n=5 for debugging,
n=200 for program repair tools!"

[What matters?

Technique

Top-5 Top-10 Top-200

MCBFL-hybrid-avg 36%
MRSBFL-hybrid-avg 31%

DStar 30%
Ochiai 30%
Jaccard 29%
Metallaxis 29%
Barinel 27%
Tarantula 27%
Op2 27%
MUSE 19%

45%
41%
39%
39%
39%
39%
38%
37%
37%
23%

85%
86%
82%
82%
81%
77%
80%
80%
80%
45%

[1] F. Long and M. Rinard. An analysis of the search spaces for generate and validate patch generation systems.

