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Abstract

We present a technique that improves random test gen-
eration by incorporating feedback obtained from executing
test inputs as they are created. Our technique builds inputs
incrementally by randomly selecting a method call to apply
and finding arguments from among previously-constructed
inputs. As soon as an input is built, it is executed and
checked against a set ofcontractsand filters. The result
of the execution determines whether the input is redundant,
illegal, contract-violating, or useful for generating more in-
puts. The technique outputs a test suite consisting of unit
tests for the classes under test. Passing tests can be used
to ensure that code contracts are preserved across program
changes; failing tests (that violate one or more contract)
point to potential errors that should be corrected.

When applied to 14 widely-used libraries comprising
780KLOC, feedback-directed random test generation finds
many serious, previously-unknown errors. Compared with
both systematic test generation and undirected random test
generation, feedback-directed random test generation finds
more errors, finds more severe errors, and produces fewer
redundant tests.

1 Introduction

There is an ongoing controversy regarding the relative
merits of random testing and systematic testing. Theoret-
ical work suggests that random testing is as effective as
systematic techniques [7, 14]. However, some believe that
in practice, random testing cannot be as effective as sys-
tematic testing because many interesting tests have very lit-
tle chance of being created at random. Previous empiri-
cal studies [8, 17, 26] found that random test input gener-
ation achieves less code coverage than systematic genera-
tion techniques, including chaining [8], exhaustive genera-
tion [17], model checking, and symbolic execution [26].

It is difficult to generalize the results of these studies with
regard to the relative advantages of random and systematic
testing. The evaluations were performed on very small pro-
grams. Because the small programs apparently contained

no errors, the comparison was in terms of coverage or rate
of mutant killing [20], not in terms of true error detection,
which is the best measure to evaluate test input generation
techniques. While the systematic techniques used sophisti-
cated heuristics to make them more effective, the type of
random testing used for comparison is unguided random
testing, with no heuristics to guide its search.

Our work addresses random generation of unit tests for
object-oriented programs. Such a test typically consists
of a sequence of method calls that create and mutate ob-
jects, plus an assertion about the result of a final method
call. A test can be built up iteratively by randomly select-
ing a method or constructor to invoke, using previously-
computed values as inputs. It is only sensible to build upon
a legal sequence of method calls, each of whose interme-
diate objects is sensible and none of whose methods throw
an exception indicating a problem. For example, if the one-
method testa=sqrt(-1) is erroneous (say, the argument is
required to be non-negative), then there is no sense in build-
ing upon it to create the two-method testa=sqrt(-1);

b=log(a) . Our technique uses feedback obtained from ex-
ecuting the sequence as it is being constructed, in order to
guide the search toward sequences that yieldnewandlegal
object states. Inputs that create redundant or illegal states
are never extended; this has the effect of pruning the search
space.

We have implemented the technique in RANDOOP.1

RANDOOP is fully automatic, requires no input from the
user (other than the name of a binary for .NET or a class
directory for Java), and scales to realistic applications with
hundreds of classes. RANDOOP has found serious errors in
widely-deployed commercial and open-source software.

Figure 1 shows a test case generated by RANDOOPwhen
run on Sun’s JDK 1.5. The test case shows a violation of the
equals contract: a sets1 returned byunmodifiable-

Set(Set) returnsfalse for s1.equals(s1) . This vi-
olates the reflexivity ofequals as specified in Sun’s API
documentation. This test case actually reveals two errors:
one in equals , and one in theTreeSet(Collection)

constructor, which failed to throwClassCastException

1RANDOOP stands for “random tester forobject-orientedprograms.”
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Test case forjava.util

public static void test1() {
LinkedList l1 = new LinkedList();
Object o1 = new Object();
l1.addFirst(o1);
TreeSet t1 = new TreeSet(l1);
Set s1 = Collections.unmodifiableSet(t1);
// This assertion fails
Assert.assertTrue(s1.equals(s1));

}

Figure 1.A test case generated by RANDOOP. The test case reveals
an error in Sun’s JDK 1.5.

as required by its specification.
Our experimental results indicate that feedback-directed

random testing can outperform systematic testing in terms
of coverageand error detection. On four container data
structures used previously to evaluate five different sys-
tematic input generation techniques [26], inputs created
with feedback-directed random generation achieve equal or
higher block and predicate coverage [1] than all the system-
atic techniques.

In terms of error detection, feedback-directed random
testing revealed many errors across 14 widely-deployed,
well-tested Java and .NET libraries totaling 780KLOC.
Model checking using JPF [24] was not able to create any
error-revealing test inputs: the state space for these libraries
is enormous, and the model checker ran out of resources
after exploring a tiny, localized portion of the state space.
Our results suggest that for large libraries, the sparse, global
sampling that RANDOOP performs can reveal errors more
efficiently than the dense, local sampling that JPF performs.
And unlike systematic techniques, feedback-directed ran-
dom testing does not require a specialized virtual machine,
code instrumentation, or the use of constraint solvers or the-
orem provers. This makes the technique highly scalable:
we were able to run RANDOOP on the .NET Framework
libraries and three industrial implementations of the JDK,
and found previously-unknown errors.

In summary, our experiments indicate that feedback-
directed random generation retains the benefits of random
testing (scalability, simplicity of implementation), avoids
random testing’s pitfalls (generation of redundant or mean-
ingless inputs), and is competitive with systematic tech-
niques.

The rest of the paper is structured as follows. Section 2
describes feedback-directed random testing. Section 3 de-
scribes experiments that compare the technique with sys-
tematic testing and with undirected random testing. Sec-
tion 4 surveys related work, and Section 5 concludes.

2 Technique

An object-oriented unit test consists of a sequence of
method calls that set up state (such as creating and mu-
tating objects), and an assertion about the result of the fi-

public class A {
public A() {...}
public B m1(A a1) {...}

}

public class B {
public B(int i) {...}
public void m2(B b, A a) {...}

}

sequences1 sequences2 sequences3

B b1 = new B(0); B b2 = new B(0); A a1 = new A();
B b3 = a1.m1(a1);

seqs vals extend(m2, seqs, vals)

〈s1, s3〉
〈 s1.1, s1.1, s3.1 〉

(i.e.: b1, b1, a1)

B b1 = new B(0);
A a1 = new A();
B b3 = a1.m1(a1);
b1.m2(b1,a1);

〈s3, s1〉
〈 s1.1, s1.1, s3.1 〉

(i.e.: b1, b1, a1)

A a1 = new A();
B b3 = a1.m1(a1);
B b1 = new B(0);
b1.m2(b1,a1);

〈s1, s2〉
〈 s1.1, s2.1, null 〉
(i.e.: b1, b2, null )

B b1 = new B(0);
B b2 = new B(0);
b1.m2(b2,null);

Figure 2. Three example applications of theextendoperator.

nal call. This section describes a randomized, feedback-
directed technique for generating such unit tests.

2.1 Method Sequences

A method sequence, or simplysequence, is a sequence of
method calls. Each call in the sequence includes a method
name and input arguments, which can be primitive values
(i.e., constants like0, true or null ) or reference values
returned by previous method calls. (We treat the receiver, if
any, as the first input argument.) We writes.i to mean the
value returned by thei-th method call in sequences. This
notation applies only to non-void methods.

When giving the textual representation of a sequence, we
print it as code and assign identifiers (names) to return val-
ues of method calls. This is only for ease of understanding;
specific identifiers are not part of a sequence and are only
necessary when outputting a sequence as code.

2.2 Extending sequences

This section defines an extension operation that takes
zero or more sequences and produces a new sequence. Ex-
tension is the core operation of the feedback-directed gen-
eration algorithm. The extension operation creates a new
sequence by concatenating its input sequences and append-
ing a method call at the end. More formally, the operator
extend(m, seqs, vals)takes three inputs:

• m is a method with formal parameters (including the
receiver, if any) of typeT1, . . . , Tk.

• seqsis a list of sequences.
• vals is a list of valuesv1 : T1, . . . , vk : Tk. Each value

is a primitive value, or it is the return values.i of the
i-th method call for a sequences appearing inseqs.

The result ofextend(m, seqs, vals)is a new sequence that
is the concatenation of the input sequencesseqsin the order
that they appear, followed by the method callm(v1, . . . , vk).
Figure 2 shows three examples of applying the operator.
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GenerateSequences(classes, contracts, filters, timeLimit)
1 errorSeqs← {} // Their execution violates a contract.
2 nonErrorSeqs← {} // Their execution violates no contract.
3 while timeLimitnot reacheddo
4 // Create new sequence.
5 m(T1 . . . Tk)← randomPublicMethod(classes)
6 〈seqs, vals〉 ← randomSeqsAndVals(nonErrorSeqs, T1 . . . Tk)
7 newSeq ← extend(m, seqs, vals)
8 // Discard duplicates.
9 if newSeq ∈ nonErrorSeqs∪ errorSeqsthen

10 continue
11 end if
12 // Execute new sequence and check contracts.
13 〈~o, violated〉 ← execute(newSeq , contracts)
14 // Classify new sequence and outputs.
15 if violated= true then
16 errorSeqs← errorSeqs∪ {newSeq}
17 else
18 nonErrorSeqs← nonErrorSeqs∪ {newSeq}
19 setExtensibleFlags(newSeq , filters, ~o) // Apply filters.
20 end if
21 end while
22 return〈nonErrorSeqs, errorSeqs〉
Figure 3. Feedback-directed generation algorithm for sequences.

Both reuse of a value (as illustrated in the first example)
and use of distinct duplicate sequences (as illustrated in the
third example) are possible.

2.3 Feedback-directed generation

Figure 3 shows the feedback-directed random generation
algorithm. It builds sequences incrementally, starting from
an empty set of sequences. As soon as a sequence is built, it
is executed to ensure that it creates non-redundant and legal
objects, as specified byfilters andcontracts. The algorithm
takes four inputs: a list ofclassesfor which to create se-
quences, a list ofcontracts, a list offilters, and a time limit
(timeLimit) after which the generation process stops. RAN-
DOOP provides default contracts, filters, and time limit (2
minutes), so the only required argument is the list of classes.

A sequence has an associated boolean vector: every
value s.i has a boolean flags.i.extensiblethat indicates
whether the given value may be used as an input to a new
method call. The flags are used to prune the search space:
the generator sets a value’sextensibleflag to false if the
value is considered redundant or illegal for the purpose of
creating a new sequence. Section 2.4 explains how these
flags are set.

Sequence creation first selects a methodm(T1 . . . Tk) at
random among the public methods ofclasses(line 5). Next,
it tries to apply the extension operator tom. Recall that
the operator also requires a list of sequences and a list of
values; the helper functionrandomSeqsAndVals(T1 . . . Tk)
(called on line 6 of Figure 3) incrementally builds a list of
sequencesseqsand a list of valuesvals. At each step, it

adds a value tovals, and potentially also a sequence toseqs.
For each input argument of typeTi, it does the following:

• If Ti is a primitive type, select a primitive value from a
fixed pool of values. (In the implementation, the primi-
tive pool contains a small set of primitives like-1 , 0, 1,
’a’ , true , etc., and can be augmented by the user or by
other tools.)

• If Ti is a reference type, there are three possibilities: use
a valuev from a sequence that is already inseqs; select
a (possibly duplicate) sequence fromnonErrorSeqs, add
it to seqs, and use a value from it; or usenull . The al-
gorithm selects among these possibilities at random. (By
default, it usesnull only if no sequence innonErrorSeqs
produces a value of typeTi.) When using a valuev of
typeTi produced by an existing sequence, the value must
be extensible, that is,v.extensible = true.

The sequencenewSeqis the result of applying the extension
operator tom, seqs, andvals(line 7). The algorithm checks
whether anequivalentsequence was already created in a
previous step (lines 9–11). Two sequences are equivalent if
they translate to the same code, modulo variable names. If
newSeqis equivalent to a sequence innonErrorSeqsor er-
rorSeqs, the algorithm tries again to create a new sequence.

Now, the algorithm has created a new (i.e. not
previously-created) sequence. The helper function
execute(newSeq , contracts) executes each method call in
the sequence and checks the contracts aftereachcall. In
other words, the contracts express invariant properties that
hold both at entry and exit from a call. A contract takes
as input the current state of the system (the runtime values
created in the sequence so far, and any exception thrown
by the last call), and returnssatisfiedor violated. (This ter-
minology differs from some other uses of “contract” in the
literature.) Figure 4 shows the default contracts that RAN-
DOOPchecks.

The output ofexecuteis the pair〈~o, violated〉 consisting
of the runtime values created during the execution of the
sequence,2 and a boolean flagviolated. The flag is set to
true if at least one contract was violated during execution.
A sequence that leads to a contract violation is added to
the seterrorSeqs(lines 15 to 16). If the sequence leads to
no contract violations, line 18 adds it tononErrorSeqs, and
line 19 applies filters to it (see Section 2.4).

RANDOOP outputs the two input setsnonErrorSeqsand
errorSeqsas JUnit/NUnit tests, along with assertions rep-
resenting the contracts checked. The first set contains se-
quences that violate no contracts and are considered non-
redundant and legal with respect to the filters given. These
are tests that the tested classes pass; they could be used
for regression testing. The second set contains sequences

2We use a bold sans-serif font for variables that hold runtime values of
the classes under test.
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Method
contract description
Exception method throws noNullPointerException

(Java) if no input parameter was null
method throws noAssertionError

Exception method throws noNullReferenceException

(.NET) if no input parameter was null
method throws noIndexOutOfRangeException

method throws noAssertionError

Object
contract description
equals o.equals(o) returnstrue

o.equals(o) throws no exception
hashCode o.hashCode() throws no exception
toString o.toString() throws no exception

Figure 4. Default contracts checked by RANDOOP. Users can
extend these with additional contracts, including domain-specific
ones. A contract is created programmatically by implementing a
public interface.

that violate one or more contracts. These are tests that the
classes fail; they indicate likely errors in the code under test.

2.4 Filtering

Line 19 of Figure 3 appliesfilters (given as inputs to
the algorithm) that determine which values of a sequence
are extensible and should be used as inputs to new method
calls. A filter takes as input a sequence and the values re-
sulting from its execution. As a result of applying a fil-
ter to a sequences, the filter may set somes.i.extensible
flags to false, with the effect that the value will not be
used as input to new method calls. The helper function
setExtensibleFlags(newSeq , filters,~o) in line 19 iterates
through the list of filters given as input to the algorithm and
applies each filter tonewSeqin turn. Below we describe the
three filters that RANDOOP uses by default.

Equality. This filter uses theequals() method to de-
termine if the resulting object has been created before. The
filter maintains a setallobjs of all extensible objects that
have been created by the algorithm across all sequence ex-
ecutions (the set can include primitive values, which are
boxed). For each valuenewSeq.i in the sequence, it sets
newSeq.i.extensibleto falseif the runtimeo corresponding
to newSeq.i is such that∃o’ ∈ allobjs : o.equals( o’ ) .

This heuristic prunes any object with the same abstract
value as a previously-created value, even if their concrete
representations differ. This might cause RANDOOP to miss
an error, if method calls on them might behave differently.
The heuristic works well in practice but can be disabled or
refined by the user. For instance, it is straightforward to use
reflection to write a method that determines whether two ob-
jects have the same concrete representation (the same values
for all their fields), or a user could specify more sophisti-
cated computations to determine object equality [28].

Null. Null dereference exceptions caused by usingnull

as an argument are often uninteresting, and usually point to
the (possibly intentional) absence of a null check on the ar-
guments. However, when a null dereference exception oc-
curs in the absence of any null value in the input, it often
indicates some internal problem with the method. The null
filter setsnewSeq.i.extensibleto falseiff the corresponding
object isnull .

Null arguments are hard to detect statically because the
arguments to a method in a sequence themselves are outputs
of other sequences. Instead, the null filter checks the values
computed by execution of a specific sequence.

Exceptions. Exceptions frequently correspond to pre-
condition violations for a method, and therefore there is lit-
tle point extending them. Furthermore, an extension of the
sequence would lead to an exception before the execution
completes. This filter prevents the addition of a sequence to
thenonErrorSeqsset if its execution leads to an exception,
even if the exception was not a contract violation.

2.5 Repetition

Sometimes, a good test case needs to call a given method
multiple times. For example, repeated calls toadd may be
necessary to reach code that increases the capacity of a con-
tainer object, or repeated calls may be required to create two
equivalent objects that can cause a method likeequals to
go down certain branches. To increase the chances that such
cases are reached, we build repetition directly into the gen-
erator, as follows. When generating a new sequence, with
probabilityN , instead of appending a single call of a chosen
methodm to create a new sequence, the generator appends
M calls, whereM is chosen uniformly at random between
0 and some upper limitmax. (max andN are user-settable;
the default values aremax = 100 andN = 0.1.) There are
other possible ways to add repetition to the generator (e.g.,
we could repeat parameters or entire subsequences).

3 Evaluation

This section presents the results of three experiments
that evaluate the effectiveness of feedback-directed ran-
dom input generation. Section 3.1 evaluates the coverage
that RANDOOP achieves on a collection of container data
structures, and compares it with that achieved by system-
atic input generation techniques implemented in the JPF
model checker [24, 26]. Section 3.2 uses RANDOOP to
generate test inputs that find API contract violations on
14 widely-used libraries, and compares with JPF and with
undirected random testing (as implemented in RANDOOP

and in JCrasher [3]). Section 3.3 uses RANDOOP-generated
regression test cases to find regression errors in three indus-
trial implementations of the Java JDK.
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coverage time (seconds)
JPF RP JPFU RPU JPF RP JPFU RPU

b
lo

ck

co
ve

ra
ge

BinTree .78 .78 .78 .78 0.14 0.21 0.14 0.13

BHeap .95 .95 .95 .86 4.3 0.59 6.2 6.6

FibHeap 1 1 1 .98 23 0.63 1.1 27

TreeMap .72 .72 .72 .68 0.65 0.84 1.5 1.9

p
re

d
ic

a
te

co
ve

ra
ge

BinTree 53.2 54 52.1 53.9 0.41 1.6 2.0 4.2

BHeap 101 101 88.3 58.5 9.8 4.2 12 15

FibHeap 93 96 86 90.3 95 6.0 16 67

TreeMap 106 106 104 55 47 10 10 1.9

JPF : Best-performing of 5 systematic techniques in JPF.
RP : RANDOOP: Feedback-directed random testing.
JPFU : Undirected random testing implemented in JPF.
RPU : Undirected random testing implemented in RANDOOP.

Figure 5.Basic block coverage (ratio) and predicate coverage (ab-
solute) achieved by four input generation techniques.

3.1 Generating test inputs for containers

Container classes have been used to evaluate many input
generation techniques [17, 29, 28, 25, 26]. In a recent paper
[26], Visser et al. compared basic block and a form of predi-
cate coverage [1] achieved by several input generation tech-
niques on four container classes: a binary tree (BinTree ,
154 LOC), a binomial heap (BHeap, 355 LOC), a fibonacci
heap (FibHeap , 286 LOC), and a red-black tree (TreeMap ,
580 LOC). They used a form of predicate coverage that
measures the coverage of all combinations of a set of predi-
cates manually derived from conditions in the source code.
They compared the coverage achieved by six techniques:
(1) model checking, (2) model checking with state match-
ing, (3) model checking with abstract state matching, (4)
symbolic execution, (5) symbolic execution with abstract
state matching, and (6) undirected random generation.

Visser et al. report that the technique that achieved high-
est coverage was model checking with abstract state match-
ing, where the abstract state records the shape of the con-
tainer and discards the data stored in the container. For
brevity, we’ll refer to this technique asshape abstrac-
tion. Shape abstraction dominated all other systematic tech-
niques in the experiment: it achieved higher coverage, or
achieved the same coverage in lesser time, than every other
technique.3 We compared feedback-directed random gen-
eration with shape abstraction. For each data structure, we
performed the following steps.

1. We reproduced Visser et al.’s results for shape abstrac-
tion on our machine (Pentium 4, 3.6GHz, 4G memory,
running Debian Linux). We used the optimal parame-

3Random generation was able to achieve the same predicate coverage
as shape abstraction in less time, but this happened only for 2 (out of 520)
“lucky” runs.

ters reported in [26] (i.e., the parameters for which the
technique achieves highest coverage).

2. We ran RANDOOP on the containers, specifying the
same methods under test as [26]. Random testing has
no obvious stopping criterion; we ran RANDOOP for two
minutes (its default time limit).

3. To compare against unguided random generation, we
also reproduced Visser et al.’s results for random gen-
eration, using the same stopping criterion as [26]: gen-
eration stops after 1000 inputs.

4. To obtain a second data point for unguided random gen-
eration, we ran RANDOOP a second time, turning off all
filters and heuristics.

As each tool ran, we tracked the coverage achieved by the
test inputs generated so far. Every time a new unit of cover-
age (basic block or predicate) was achieved, we recorded
the coverage and time. To record coverage, we reused
Visser et al.’s experimental infrastructure, with small modi-
fications to track time for each new coverage unit. For basic
block coverage, we report the ratio of coverage achieved to
maximum coverage possible. For predicate coverage, we
report (like Visser et al.[26]) only absolute coverage, be-
cause the maximum predicate coverage is not known. We
repeated each run ten times with different seeds, and report
averages.

Figure 5 shows the results. For each〈 technique, con-
tainer 〉 pair, we report the maximum coverage achieved,
and the time at which maximum coverage was reached, as
tracked by the experimental framework. In other words, the
time shown in Figure 5 represents thetime that the tech-
nique required in order to achieve its maximum coverage—
after that time, no more coverage was achieved in the run
of the tool. (But the tool may have continued running un-
til it reached its stopping criterion: on average, each run of
JPF with shape abstraction took a total of 89 seconds; the
longest run was 220 seconds, forTreeMap . Every run of
RANDOOP took 120 seconds, its default time limit.)

For BinTree , BHeap andTreeMap , feedback-directed
random generation achieved the same block and predicate
coverage as shape abstraction. ForFibHeap , feedback-
directed random generation achieved the same block cov-
erage, but higher predicate coverage (96 predicates) than
shape abstraction (93 predicates). Undirected random test-
ing was competitive with the other techniques in achiev-
ing block coverage. For the more challenging predicate
coverage, both implementations of undirected random test-
ing always achieved less predicate coverage than feedback-
directed random generation.

We should note that the container data structures are non-
trivial. For BHeap, to achieve the highest observed block
coverage, a sequence of length 14 is required [26]. This sug-
gests that feedback-directed random generation is effective
in generating complex test inputs—on these data structures,
it is competitive with systematic techniques.
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FibHeap and BHeap have a larger input space than
BinTree andTreeMap (Visser et al. defined more testable
methods for them, which leads to more possible sequences).
It is interesting that forFibHeap and BHeap, feedback-
directed random generation achieved equal or greater pred-
icate coverage as shape abstraction, and did so faster (2.3
times faster forBHeap and 15.8 times faster forFibHeap ),
despite the higher complexity. This suggests that feedback-
directed random generation is competitive with systematic
generation even when the state space is larger. (The obser-
vation holds for much larger programs used in Section 3.2).

Another interesting fact is that repetition of method calls
(Section 2.5) was crucial. When we analyzed the inputs
created by feedback-directed random generation, we saw
that for FibHeap andTreeMap , sequences that consisted
of several element additions in a row, followed by several
removals, reached predicates that were not reached by se-
quences that interleaved additions with removals. This is
why undirected random generation achieved less coverage.

Two other systematic techniques that generate method
sequences for containers are Rostra [28] and Symstra [29].
Rostra generates tests using bounded exhaustive generation
with state matching. Symstra generates method sequences
using symbolic execution and prunes the state space based
on symbolic state comparison. Unfortunately, the tools
were not available to us. The authors of Rostra and Symstra
remarked [27] that for evaluation purposes, their techniques
are comparable with those evaluated by Visser et al.

The best measure to evaluate input generation techniques
is error detection, not coverage. Our results suggest that
further experimentation is required to better understand
how systematic and random techniques compare in detect-
ing errors in data structures. The next section evaluates
feedback-directed random generation’s error-detection abil-
ity on widely-used libraries, and compares it with system-
atic and (unguided) random generation.

3.2 Checking API contracts

In this experiment, we used feedback-directed random
generation, undirected random generation, and systematic
generation to create test suites for 14 widely-used libraries
comprising a total of 780KLOC (Figure 6). Section 3.2.1
describes the results for feedback-directed random testing.
Section 3.2.2 describes the results for systematic testing.
Section 3.2.3 describes the results for undirected random
testing.

To reduce the amount of test cases we had to inspect, we
implemented a test runner called REDUCE, which can re-
place JUnit or NUnit. Like those tools, REDUCEshows only
failing tests, but REDUCEonly shows a subset of the failing
tests. REDUCE partitions the failing tests into equivalence
classes, where two tests fall into the same class if their ex-
ecution leads to a contract violation after the same method
call. For example, two tests that exhibit a contract failure

public public
Java libraries LOC classesmethods description

Java JDK 1.5
java.util 39K 204 1019 Collections, text, formatting, etc.
javax.xml 14K 68 437 XML processing.

Jakarta Commons
chain 8K 59 226 API for process flows.
collections 61K 402 2412 Extensions to the JDK collections.
jelly 14K 99 724 XML scripting and processing.
logging 4K 9 140 Event-logging facility.
math 21K 111 910 Mathematics and statistics.
primitives 6K 294 1908 Type-safe collections of primitives.

public public
.NET libraries LOC classesmethods
ZedGraph 33K 125 3096 Creates plots and charts.
.NET Framework
Mscorlib 185K 1439 17763 .NET Framework SDK class libraries.
System.Data 196K 648 11529 Provide access to system functionality
System.Security 9K 128 1175 and designed as foundation on which
System.Xml 150K 686 9914 .NET applications, components, and
Web.Services 42K 304 2527 controls are built.

Figure 6. Libraries used for evaluation.

after a call to the JDK methodunmodifiableSet(Set)

belong to the same equivalence class. This step retains only
one test per equivalence class (chosen at random); the re-
maining tests are discarded.

3.2.1 Feedback-directed random generation

For each library, we performed the following steps:

1. We ran RANDOOP on a library, specifying all the pub-
lic classes as targets for testing. We used RANDOOP’s
default parameters (contracts from Figure 4, filters from
Section 2.4, and 2 minute time limit). The output of this
step was a test suite.

2. We compiled the test suite and ran it with REDUCE.
3. We manually inspected the failing test cases reported by

REDUCE.

For each iteration, we report the following statistics.

1. Test cases generated.The size of the test suite (number
of unit tests) output by RANDOOP.

2. Violation-inducing test cases.The number of violation-
inducing test cases output by RANDOOP.

3. REDUCE reported test cases.The number of violation-
inducing test cases reported by REDUCE (after reduc-
tion and minimization) when run on the RANDOOP-
generated test suite.

4. Error-revealing test cases. The number of test cases
reported by REDUCE that revealed an error in the library.
We made this determination as follows.

Java libraries.We labeled a test case as error-revealing
only if it violated an explicitly stated property in the doc-
umentation for the code in question.

.NET libraries. The design guidelines for .NETrequire
that public methods respect the contracts in Figure 4 (i.e.
.NET has a stronger specification). We labeled each dis-
tinct method that violated a contract as an error for the
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violation- REDUCE error- errors
test cases inducing reported revealing per

library generated test cases test casestest caseserrors KLOC

Java JDK
java.util 22,474 298 20 19 6 .15
javax.xml 15,311 315 12 10 2 .14

Jakarta Commons
chain 35,766 1226 20 0 0 0
collections 16,740 188 67 25 4 .07
jelly 18,846 1484 78 0 0 0
logging 764 0 0 0 0 0
math 3,049 27 9 4 2 .09
primitives 49,789 119 13 0 0 0

ZedGraph 8,175 15 13 4 4 .12
.NET Framework
Mscorlib 5,685 51 19 19 19 .10
System.Data 8,026 177 92 92 92 .47
System.Security 3,793 135 25 25 25 2.7
System.Xml 12,144 19 15 15 15 .10
Web.Services 7,941 146 41 41 41 .98

Total 208,503 4200 424 254 210

Figure 7.Statistics for test cases generated by RANDOOP. Section
3.2.1 explains the metrics.

.NET programs: a method that leads to the contract vi-
olation either contains an error, fails to do proper argu-
ment checking, or fails to prevent internal errors from
escaping to the user of the library. Because REDUCE re-
ports one test case per such method, REDUCE-reported
test cases coincide with error-revealing test cases for
.NET.

5. Errors. The number of distinct errors uncovered by the
error-revealing test cases. We count two errors as distinct
if fixing them would involve modifying different source
code.

6. Errors per KLOC. The number of distinct errors di-
vided by the KLOC count for the library.

Errors discovered. Figure 7 shows the results. RANDOOP

created a total of 4200 distinct violation-inducing test cases.
Of those, REDUCE reported approximately 10% (and dis-
carded the rest as potentially redundant). Out of the 424
tests that REDUCE reported, 254 were error-revealing. The
other 170 were illegal uses of the libraries or cases where
the contract violations were documented as normal opera-
tion. The 254 error-revealing test cases pointed to 210 dis-
tinct errors. Next we present representative examples of the
errors (for more details, see Appendix A).

JDK libraries. Eight other methods injava.util.-

Collections create collections that returnfalse on
s.equals(s) (like Figure 1). These eight methods shared
some code, and together they revealed four distinct errors.

Jakarta Commons libraries.In math , a matrix class has
a field that holds the matrix data. One of the construc-
tors leaves the field null, which is a legal, distinct state—
a number of the methods implement special cases if the
field is null. The check is omitted fromhashCode . In
collections , an iterator initialized with zero elements
(which is legal, according to the documentation) throws a

NullPointerException when itsnext() method is in-
voked.

.NET framework libraries. RANDOOP generated a total
of 196 error-revealing test cases. Out of these, 155 were
NullReferenceException s in the absence ofnull in-
puts, 21 wereIndexOutOfRangeException s, and 20
were violations ofequals , hashCode or toString con-
tracts. RANDOOP also led us to discover nonterminating
behavior in System.Xml. This error was assigned the high-
est priority ranking (it can render unusable an application)
and was fixed almost immediately.
Reusability of tests. Future work could evaluate the
reusability (or fragility) of RANDOOP’s test suites against
changes in the subject program. However, given that RAN-
DOOP is so fast, reusability may be a minor issue: a devel-
oper could re-run RANDOOP every time the code changes,
rather than re-running the test suite that the tool outputs.

3.2.2 Systematic Testing

To compare feedback-directed random testing with system-
atic testing, we used JPF to test the Java libraries. JPF
does not actually create method sequences—to make it ex-
plore method sequences, the user has to manually write a
driver program that nondeterministically calls methods of
the classes under test, and JPF explores method sequences
by exploring the driver (for instance, Visser et al. wrote
driver programs for the container experiments [26]). We
wrote auniversal drivergenerator which, given a set of
classes, creates a driver that explores all possible method
sequences up to some sequence length, using only public
methods and constructors. For this experiment, we aug-
mented the drivers with the code that checked the same
contracts as RANDOOP (Figure 4). We performed the ex-
periments on a Pentium 4, 3.6GHz, 4G memory, running
Debian Linux.

For each library, we generated a universal driver and had
JPF explore the driver until it ran out of memory. We spec-
ified sequence length 10 (this was greater than the length
required to find all the Java errors from Figure 7). We used
JPF’s breadth-first search strategy, as done for all system-
atic techniques in [26]. In that paper, Visser et al. suggest
that BFS is preferable than DFS for this kind of exploration
scenario. We used JPF’s default state matching (shape ab-
straction is not currently implemented in JPF, other than for
the four containers from Section 3.1).

For all the libraries, JPF ran out of memory (after 32 sec-
onds on average) without reporting any errors. Considering
the size of the libraries, this is not surprising, as JPF was
barely able to explore the libraries before state space explo-
sion became a problem.

RANDOOP was able to explore the space more effec-
tively not because it explored a larger portion of the state
space—it only explored a tiny fraction of an enormous state
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space. For example, java.util declares about 1000 pub-
lic methods; consider how many sequences of length 10
are possible. While JPF thoroughly sampled a tiny, local-
ized portion of the space, RANDOOP sparsely sampled a
larger portion. Our results suggest that for large libraries,
sparse, global sampling can reveal errors more efficiently
than dense, local sampling.

jCUTE [23] performsconcolic testing, a systematic tech-
nique that performs symbolic execution but uses randomly-
generated test inputs to initialize the search and to allow
the tool to make progress when symbolic execution fails
due to limitations of the symbolic approach (e.g. native
calls). Comparing feedback-directed random generation
with concolic testing would be interesting. Unfortunately,
jCUTE crashed when compiling the drivers generated for
the classes because it could not handle drivers of the size
generated for our subject programs.

3.2.3 Undirected Random Testing

To measure the benefits of feedback-directed random test-
ing versus undirected random testing, we reran RANDOOP

as described in Section 3.2.1 a second time, using the same
parameters, but disabling the user of filters or contracts to
guide generation. Across all libraries, unguided generation
created 1,326 violation-inducing test cases. Out of these,
REDUCE reported 60 test cases, all of which pointed to dis-
tinct errors (58 in the .NET libraries, and 2 in the Java li-
braries). Undirected generation did not find any errors in
java.util or javax.xml, and was unable to create the sequence
that uncovered the infinite loop in System.Xml (to confirm
that this was not due simply to an unlucky random seed, we
ran RANDOOP multiple times using different seeds; undi-
rected generation never found the bug).

JCrasher [3] is an independent implementation of undi-
rected random test generation whose goal is to uncover ex-
ceptional behavior that points to an error. JCrasher ran-
domly generates tests, then removes tests that throw ex-
ceptions not considered by JCrasher to be potentially fault-
revealing. We used JCrasher to generate test cases for the
Java libraries. JCrasher takes as input a list of classes to test
and a “depth” parameter that limits the number of method
calls it chains together. We ran JCrasher with maximum
possible depth.

JCrasher ran for 639 seconds, created a total of 598 fail-
ing test cases, of which 3 were error-revealing and revealed
one distinct error (using the same counting methodology as
in Section 3.2.1). Jcrasher created many redundant and il-
legal inputs that could be detected using feedback-directed
heuristics. See Appendix A for a detailed description of the
test cases.

Recent work has introduced a new tool, Check ’n’ Crash
[4], that improves JCrasher by replacing its random gener-
ation by constraint solving. It would be interesting to com-

pare this technique to ours, or to combine their strengths.

3.3 Regression and compliance testing

This section describes a case study in which we used
feedback-directed random testing to find inconsistencies be-
tween different implementations of the same API. As our
subject program, we used the Java JDK. We tested three
commercial implementations: Sun 1.5, Sun 1.6 beta 2, and
IBM 1.5 The goal was to discover inconsistencies between
the libraries which could point to regression errors in Sun
1.6 beta 2 or compliance errors in either of the libraries.
RANDOOP can optionally create aregression oraclefor
each input, which records the runtime behavior of the pro-
gram under test on the input by invoking observer methods
on the objects created by the input. RANDOOP guesses ob-
server methods using a simple strategy: a method is an ob-
server if all of the following hold: (i) it has no parameters,
(ii) it is public and non-static, (iii) it returns values of prim-
itive type (orString ), and (iv) its name issize , count ,
length , toString , or begins withget or is .

We ran RANDOOP on Sun 1.5, using the option that cre-
ates regression oracles and the default time limit. RAN-
DOOP generated 41,046 regression test cases. We ran the
resulting test suite using Sun 1.6 beta and a second time us-
ing IBM 1.5. A total of 25 test cases failed on Sun 1.6, and
73 test cases failed on IBM 1.5. On inspection, 44 out of
the 98 test cases revealed inconsistencies that uncovered 12
distinct errors in the implementations (other inconsistencies
reflected different implementations of a permissive specifi-
cation). See Appendix A for the specific inconsistencies.

All distributed JDKs must pass an extensive compli-
ance test suite (https://jck.dev.java.net/ , regret-
tably not available to the public nor to us). Nevertheless,
RANDOOP was able to find errors undiscovered by that
suite. Internally, IBM extensively uses comparisons against
the Sun JDK during testing, but they estimate that it will
take 100 person-years to complete that comparative test-
ing [15]. A tool like RANDOOP could provide some au-
tomated support in that process.

We have not yet compared the effectiveness of feedback-
directed generation against more systematic techniques for
regression testing. Such a comparison is worthwhile and is
part of our future work.

4 Related Work

Automatic test input generation is an active research area
with a rich literature. We focus on input generation tech-
niques that create method sequences.

Input space representation. Techniques that generate
method sequences must first describe what a method se-
quence is. Despite the apparent simplicity of such a task,
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previous representations are not expressive enough to de-
scribe all method sequences that can be created for a set of
classes.

Rostra [28] and Symstra [29] internally use Henkel and
Diwan’s term-basedrepresentation [16, 27]. For exam-
ple, the termpop(push(s,i).state) is equivalent to
the sequences.push(i); s.pop() . This representation
cannot express reuse of an object (aliasing): the sequence
Foo f = new Foo(); f.equals(f) is not expressible
as a term. The representation also cannot express muta-
tion of an object via a method that mutates its parame-
ter: the sequenceList l = new ArrayList(); ...;

Collections.shuffle(l); l.add(2) is not express-
ible as a term. While not explicitly stated, JCrasher [3] and
Eclat [22] follow an equivalent representation and thus suf-
fer from the same lack of expressiveness.

Random testing. Random testing [13] has been used to
find errors in many applications; a partial list includes Unix
utilities [18], Windows GUI applications [9], Haskell pro-
grams [2], and Java programs [3, 22, 21].

JCrasher [3] creates test inputs by using a “parameter
graph” to find method calls whose return values can serve
as input parameters. RANDOOP does not explicitly cre-
ate a parameter graph; instead it uses a component set
of previously-created sequences to find input parameters.
RANDOOP creates fewer redundant and illegal inputs be-
cause it discards component sequences that create redun-
dant objects or throw exceptions. JCrasher creates every
input from scratch and does not use execution feedback.

Another feedback-directed test generation tool is
Eclat [22] (developed by two authors of this paper). Like
RANDOOP, Eclat creates tests that are likely to expose er-
rors by performing random generation augmented by auto-
matic pruning based on execution results. Eclat prunes se-
quences that appear to be illegal because they make the pro-
gram behave differently than a set of correct training runs.
The previous work focused on automatic classification of
tests in the absence of an oracle.

The present work presents an orthogonal set of tech-
niques that focus on generating a set of behaviorally-diverse
test inputs, including state matching to prune redundant ob-
jects, repetition to generate low-likelihood sequences, or-
acles based on API contracts that can be extended by the
user, and regression oracles that capture the behavior of a
program when run on the generated input. RANDOOP does
not require a correct execution in order to generate new tests
(Eclat does). The present work compares random testing
with systematic techniques implemented in JPF.

Systematic testing.Many techniques have been proposed
to systematically explore method sequences [28, 4, 29, 11,
23, 5, 26]. Bounded exhaustive generation has been im-
plemented in tools like Rostra [28] and JPF [26]. JPF and
Rostra share the use of state matching on objects that are

receivers of a method call, and prune sequences that create
a redundant receiver. RANDOOP performs state matching
on values other than the receiver and introduces the finer-
grained concept of a sequence that creates some redundant
and some nonredundant objects (using a boolean flag for
each object in the sequence). Only sequences that create
nothing but redundant objects are discarded. Rostra and
JPF do not favor repetition or use contracts during gener-
ation to prune illegal sequences or create oracles. Rostra is
evaluated on a set of 11 small programs (34–1000 LOC),
and JPF’s sequence generation techniques were evaluated
on 4 data structures; neither tool found errors in the tested
programs.

An alternative to the bounded exhaustive exploration
is symbolic execution; this technique has been imple-
mented in tools like Symstra [29], XRT [11], JPF[24],
and jCUTE [23]. Symbolic execution executes method se-
quences with symbolic input parameters, builds path con-
straints on the parameters, and solves the constraints to cre-
ate actual test inputs with concrete parameters.

Check-n-Crash [4] uses creates abstract constraints over
inputs that cause exceptional behavior, and uses a constraint
solver to derive concrete test inputs that exhibit the behav-
ior. DSD [5] augments Check-n-Crash with a dynamic anal-
ysis to filter out illegal input parameters.

Combining random and systematic. Ferguson and Ko-
rel [8] proposed an input generation technique that begins
by executing the program under test with a random input,
and systematically modifies the input so that it follows a
different path. Recent work by Godefroid et al [10, 23] ex-
plores concolic testing, a symbolic execution approach that
integrates random input generation. RANDOOP is closer to
the other side of the random-systematic spectrum: it is pri-
marily a random input generator, but uses techniques that
impose some systematization in the search to make it more
effective. Our approach and more systematic approaches
represent different tradeoffs of completeness and scalabil-
ity, and thus complement each other.

Comparing random and systematic. Theoretical studies
have shown that random testing is as effective as more sys-
tematic techniques such as partition testing [14, 19]. How-
ever, the literature contains relatively few empirical com-
parisons of random testing and systematic testing. Fer-
guson and Korel compared basic block coverage achieved
by inputs generated using their chaining technique versus
randomly generated inputs [8]. Marinov et al. [17] com-
pared mutant killing rate achieved by a set of exhaustively-
generated test inputs with a randomly-selected subset of in-
puts. Visser et al. [26] compared basic block and a form
of predicate coverage achieved by model checking, sym-
bolic execution, and random testing. In all three studies,
undirected random testing achieved less coverage or killed
fewer mutants than the systematic techniques.
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In previous work [6], we compared Eclat’s random gen-
eration and classification techniques [22] with Symclat, a
symbolic version of Eclat. We conjectured that random gen-
eration may benefit from using repetition; this was the mo-
tivation for implementing repetition in RANDOOP.

5 Conclusion

Feedback-directed random testing scales to large sys-
tems, quickly finds errors in heavily-tested, widely-
deployed applications, and achieves behavioral coverage on
par with systematic techniques.

The exchange of ideas between the random and system-
atic approaches could benefit both communities. Groce
et al. propose structural heuristics [12] to guide a model
checker; the heuristics might also help a random test gen-
erator. Going the other way, our notion of exploration us-
ing a component set, or state matching when the universe
contains more than one object, could be translated into the
exhaustive testing domain. Combining random and system-
atic approaches can result in techniques that retain the best
of each approach.

Acknowledgments. We thank Willem Visser for sharing
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A Experiment Details

This appendix contains more detailed descriptions of the ex-
periments from Section 3 and examples of the errors that we dis-
covered when using RANDOOP.

A.1 Contract Violations: RANDOOP

Below are examples of the errors that we found when running
RANDOOP on the 14 libraries from Section 3.2.1.

A.1.1 JDK libraries

Eight methods inCollections (synchronizedMap , syn-

chronizedSortedMap , unmodifiableMap , unmodifiable-

SortedMap , synchronizedSet , synchronizedSortedSet ,
unmodifiableSet , andunmodifiableSortedSet ) create col-
lections that returnfalse on s.equals(s) . These eight classes
shared some code, and together they revealed four distinct errors.

The methodsXMLGregorianCalendar .toString() and
XMLGregorianCalendar .hashCode() crash because they do
not handle cases where some fields hold legal corner-case values.

A.1.2 Jakarta Commons libraries

In math (2 errors), a matrix class has a field that holds the matrix
data. One of the constructors leaves the field null, which is a legal,
distinct state—a number of the methods implement special cases
if the field is null. The check is omitted fromhashCode . The
second error inmath is similar. Incollections (1 error), an it-
erator initialized with zero elements (which is legal, according to
the documentation) throws aNullPointerException when its
next() method is invoked. The other 3 errors actually exposed
errors injava.util , which was tested indirectly because the col-
lections classes use functionality from that library.

The Jakarta Commons libraries are not as extensively docu-
mented as the JDK and .NET framework. We did not count as
error-revealing test cases that appeared to us as indicative of prob-
lems in the library (or its design) but where the code in question
lacked documentation.

Most of the test cases that RANDOOP generated for the Com-
mons libraries were not error-revealing. The main reason was that
many classes in the libraries require specific sequences of method
calls to operate properly, and random generation created many in-
valid sequences. For example, most of the iterators implemented
in collections declare a parameterless constructor, but an iter-
ator thus constructed must be followed by a call tosetCollect-

ion(Collection) that specifies the collection to iterate over.
Until this call is made, the iterator will not function, and it will
throw an exception of typeNullPointerException if next()

or hasNext() is invoked. RANDOOP reported many contract vi-
olations due to incorrect use of these constructors.

A.1.3 .NET framework libraries

For the .NET libraries, we used the .NET design guidelines for
class library developers, which state that public library methods
should never throw null-reference or index-out-of-range excep-
tions. For System.Xml, we confirmed with the test team that this
guideline is followed and that such exceptional behavior is tested,

considered erroneous operation, and corrected if found. Given
that null was never passed as an argument, such exceptions, if
present, represent more serious errors.

As mentioned in Section 3.2.1, RANDOOP led us to discover
nonterminating behavior in System.Xml: when executing a se-
quence representing a legal use of the library, the last method call
went into an infinite loop. When we reported this error, it was
assigned the highest priority ranking (it can render unusable an
application that uses the library in a legal manner) and was fixed
almost immediately.

A.2 Contract Violations: RANDOOP with no
feedback heuristics

Below are examples of the errors that RANDOOP was able or
unable to reveal when running with feedback heuristics turned off.

• Undirected generation did not find any errors in java.util and
javax.xml: it did not create an input complex enough to ex-
pose the violation ofequals by eight methods inCollec-

tions , and did not create a test input that causedhashCode

or toString to throw an exception forXMLGregorianCa-

lendar .

• Unguided generationwasable to generate the test cases that
reveal the two errors inmath . This is not surprising, because
the errors manifest themselves immediately after a call to a
public constructor. On the other hand, it was not able to dis-
cover thejava.util errors that feedback-directed genera-
tion discovered when testing thecollections library.

• With undirected generation, RANDOOP was unable to create
the sequence that uncovered the infinite loop in System.Xml.
To confirm that this was not due simply to an unlucky ran-
dom seed, we ran RANDOOP multiple times using different
seeds, both for feedback-directed generation and for undi-
rected generation. Feedback-directed RANDOOP always ex-
posed the error, and undirected RANDOOP never did.

A.3 JCrasher

In Section 3.2.3, we describe our use of JCrasher to generate
test cases for the Java libraries. JCrasher takes as input a list of
classes to test and a “depth” parameter that limits the number of
method calls it chains together. We ran JCrasher with depth 3
(for the libraries of Figure 6, depths greater than 3 produced re-
sults identical to depth 3). JCrasher ran for 639 seconds; it spent
the majority of its time (577 seconds) generating test cases for
java.util. JCrasher created a total of 598 failing test cases. We
used the same methodology to label error-revealing JCrasher test
cases as for our tools. Out of the 598 failing test cases generated
by JCrasher, 3 were error-revealing, and they revealed one distinct
error. The error is one that RANDOOP did not find, not because a
limitation in its grammar of tests (the test case is easily expressible
as a sequence) but because the random generation process did not
happen to construct the specific input.

JCrasher generated 595 non-error-revealing test cases. Fig-
ure 8 shows the types of exceptions that it reported. About
half (332) were test cases that threw anIllegalArgument-

Exception when given an illegal argument. 166 test cases
threw aNullPointerException but the exception was caused
because the valuenull was explicitly given as an input to a
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IllegalArgumentException 332
NullPointerException 166
NumberFormatException 2
NegativeArraySizeException 3
ClassCastException 6
MissingResourceException 8
ArrayIndexOutOfBoundsException 77
RuntimeException 1
IllegalAccessError 1
IndexOutOfBoundsException 2

Figure 8. Exception types that JCrasher reported. The num-
bers reported is the number of test cases that JCrasher reported
as potentially error-revealing due to an exception of the given
type. All exceptions are from packagejava.lang except for
MissingResourceException which is in java.util .

method that expected a non-null parameter. The rest of the
test cases were illegal uses of the libraries. For example, 2
NumberFormatException s were thrown because JCrasher at-
tempted to parse a number from a string that does not represent
a number; 3NegativeArraySizeException s were thrown be-
cause JCrasher passed a negative argument that is used to set
an array’s size; 6ClassCastException s were thrown because
the wrong type of argument was passed; 2ArrayIndexOutOf-

BoundsException s were thrown because a negative index was
passed as a parameter that indexed into an array; etc. (Note that
in the .NET libraries, the specification says that a public method
that throws an exception of typeIndexOutOfRangeException

is erroneous operation. The .NET guidelines requireIllegal-

ArgumentException instead. This is not the case for the Java
libraries, and RANDOOPdoes not report out-of-bounds exceptions
as violations.) The test cases reported by JCrasher that threw
out-of-bounds exceptions were cases of illegal parameters being
passed.

A.4 RANDOOP with Regression Oracles

This section provides more details about the experiments from
Section 3.3 that use RANDOOP to generate regression test cases
for the Java JDK.

We generated tests for 309 classes in thejava.sql ,
java.util , java.text , java.beans , java.math ,
java.security , java.lang , and javax.xml packages.
We selected these packages because execution of large amounts
of randomly generated code works best for classes which do not
perform many GUI and I/O operations.

The three implementations of the JDK that we used were Sun
1.5 (J2SE build 1.5.0-b64), Sun 1.6 beta 2 (J2SE build 1.6.0-
beta2-b74), and IBM 1.5 (J2SE build pxi32devifx-20060124, JCL
20060120a).

We ran RANDOOP on Sun 1.5 with the option that creates re-
gression oracles. The outcome of this was a test suite containing
41,046 regression test cases. To factor out test cases that captured
non-deterministic behavior of the library, we ran the test resulting
suite 10 times, and used a script to remove test cases that did not
consistently fail or pass—these test inputs typically included non-
deterministic method calls, e.g. calls whose result depended on

the current time (re-running to remove nondeterministic behavior
could be easily automated). After running the test suite ten times,
a total of 7098 test cases were discarded due to nondeterministic
behavior.

We found errors not only in Sun 1.6 and IBM 1.5, but also in
Sun 1.5. For example, one inconsistency between IBM 1.5 and
Sun 1.5 revealed an error in Sun 1.5, despite the fact that the test
case failed on IBM 1.5.

Below we show some of the test cases that reveal inconsisten-
cies between the JDK implementations. These are test cases that,
when executed on Sun 1.6 or IBM 1.5, result in an assertion viola-
tion or error.

A.4.1 Example inconsistencies: Sun 1.6

The following test cases fail when executed on Sun 1.6 (note that
the failures can point to errors in either implementation, not nec-
essarily Sun 1.6). We have formatted the test cases (and in some
cases, changed variables names) for readability. We have anno-
tated some of the test cases with comments describing the failing
behavior.

import junit.framework.*;

public class MustangFailsThis extends TestCase {

public static void test1() throws Exception {
java.util.Scanner sc = new java.util.Scanner("xxx");
String s = sc.findInLine(Pattern.compile(""));
// Sun JDK 1.5 fails this assertion; findInLine
// returns null, not "", when a pattern matches
// a zero-length string at the end of the input.
assertEquals("", s);

}

public static void test2() throws Exception {
java.util.GregorianCalendar c1

= new java.util.GregorianCalendar(1000, 1, 1);
java.util.Date d1 = c1.getTime();
d1.setSeconds(1);
// Sun JDK 1.6 throws a ClassCastException;
// this is a regression from Sun JDK 1.5.
d1.after(d1);

}

public void test3() throws Throwable {
java.util.BitSet var0 = new java.util.BitSet();
int var14 = var0.size();
assertEquals(64, var14);
java.lang.Object var13 = var0.clone();
int var15 = var0.size();
assertEquals(64, var15);

}

public void test4() throws Throwable {
java.util.GregorianCalendar var19 = new java.util

.GregorianCalendar(2006, 3, 6);
java.util.Date var20 = var19.getGregorianChange();
int var21 = var20.getDate();
assertEquals(14, var21);

}

public void test5() throws Throwable {
double var5 = java.lang.StrictMath.acos(0.0);
float var6 = ((java.lang.Double)var5).floatValue();
int var10 = ((java.lang.Float)var6)

.compareTo((java.lang.Float)(float) 10.0);
java.util.Date var18 = new java.util.Date(1, 1, -1);
int var19 = var18.getYear();
java.util.GregorianCalendar var20 =

new java.util.GregorianCalendar(100,
(int)var10,
(int)var19);
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java.lang.String var21 = var20.toString();
assertEquals("java.util.GregorianCalendar[time"

+ "=?,areFieldsSet=false,areAllFiel"
+ "dsSet=false,lenient=true,zone=su"
+ "n.util.calendar.ZoneInfo[id=\"Am"
+ "erica/New_York\",offset=-1800000"
+ "0,dstSavings=3600000,useDaylight"
+ "=true,transitions=235,lastRule=j"
+ "ava.util.SimpleTimeZone[id=Ameri"
+ "ca/New_York,offset=-18000000,dst"
+ "Savings=3600000,useDaylight=true"
+ ",startYear=0,startMode=3,startMo"
+ "nth=3,startDay=1,startDayOfWeek="
+ "1,startTime=7200000,startTimeMod"
+ "e=0,endMode=2,endMonth=9,endDay="
+ "-1,endDayOfWeek=1,endTime=720000"
+ "0,endTimeMode=0]],firstDayOfWeek"
+ "=1,minimalDaysInFirstWeek=1,ERA="
+ "?,YEAR=100,MONTH=-1,WEEK_OF_YEAR"
+ "=?,WEEK_OF_MONTH=?,DAY_OF_MONTH="
+ "1,DAY_OF_YEAR=?,DAY_OF_WEEK=?,DA"
+ "Y_OF_WEEK_IN_MONTH=?,AM_PM=?,HOU"
+ "R=?,HOUR_OF_DAY=0,MINUTE=0,SECON"
+ "D=0,MILLISECOND=?,ZONE_OFFSET=?,"
+ "DST_OFFSET=?]", var21);

}

public void test6() throws Throwable {
java.util.TreeSet var0 = new java.util.TreeSet();
java.text.ParsePosition var11 =

new java.text.ParsePosition(100);
// Sun 1.6 throws ClassCastException
// when executing next method.
// Reveals error in Sun 1.5 and IBM 1.5:
// they should also throw
// an exception, but do not.
boolean var15 = var0.contains(var11);

}

public void test7() throws Throwable {
javax.xml.datatype.DatatypeFactory var1 =

javax.xml.datatype.DatatypeFactory.newInstance();
javax.xml.datatype.Duration var17 =

var1.newDurationYearMonth(100L);
java.util.Date var23 = new java.util.Date(100L);
long var24 = var17.getTimeInMillis(var23);
assertEquals(100L, var24);

}

public void test8() throws Throwable {
javax.xml.datatype.DatatypeFactory var1 =

javax.xml.datatype.DatatypeFactory.newInstance();
javax.xml.datatype.Duration var17 =

var1.newDurationYearMonth(100L);
int var20 = var17.getSign();
assertEquals((int) 1, var20);

}

public void test9() throws Throwable {
javax.xml.datatype.DatatypeFactory var1 =

javax.xml.datatype.DatatypeFactory.newInstance();
javax.xml.datatype.Duration var17 =

var1.newDurationYearMonth(100L);
java.lang.String var19 = var17.toString();
assertEquals("PT0.100S", var19);

}
public void test10() throws Throwable {

java.util.GregorianCalendar var0 =
new java.util.GregorianCalendar();

java.util.TimeZone var1 = var0.getTimeZone();
java.util.Date var2 = var0.getGregorianChange();
int var3 = var2.getSeconds();
int var4 = var2.getHours();
java.lang.String var5 = var2.toString();
assertEquals((int) 0, var3);
assertEquals((int) 19, var4);
assertEquals("Sun Oct 24 19:00:00 EST 1582", var5);

}

public void test11() throws Throwable {
javax.xml.datatype.DatatypeFactory var1 =

javax.xml.datatype.DatatypeFactory.newInstance();
long var19 = java.util.Date.UTC(100, 100,

100, 10, 100, 0);
javax.xml.datatype.Duration var20 =

var1.newDurationYearMonth((long)var19);
java.lang.String var22 = var20.toString();
assertEquals("P14099DT11H40M0.000S",

(java.lang.String)var22);

}
public void test12() throws Throwable {

javax.xml.datatype.DatatypeFactory var1 =
javax.xml.datatype.DatatypeFactory.newInstance();

long var6 = java.lang.Double.doubleToLongBits(10.0);
javax.xml.datatype.Duration var7 =

var1.newDurationDayTime((long)var6);
int var8 = var7.getMonths();
assertEquals((int) 0, (int)(java.lang.Integer)var8);

}
public void test13() throws Throwable {

javax.xml.datatype.DatatypeFactory var1 =
javax.xml.datatype.DatatypeFactory.newInstance();

long var19 = java.util.Date.UTC(100, 100,
100, 10, 100, 0);

javax.xml.datatype.Duration var20 =
var1.newDurationYearMonth((long)var19);

int var22 = var20.getYears();
assertEquals((int) 0, (int)(java.lang.Integer)var22);

}

}

A.4.2 Example inconsistencies: IBM 1.5

The following test cases fail when executed on IBM 1.5 (note that
the failures can point to errors in either implementation, not nec-
essarily IBM 1.5). As before, we have formatted the test cases for
readability and annotated some of them with comments.

import junit.framework.*;

public class IBMFailsThis extends TestCase {

public static void test14() throws Exception {
javax.xml.datatype.DatatypeFactory df

= javax.xml.datatype
.DatatypeFactory.newInstance();

javax.xml.datatype.XMLGregorianCalendar xgc
= df.newXMLGregorianCalendarTime(0, 0, 12, 0);

xgc.setFractionalSecond(new java.math.BigDecimal(0.8));
// IBM JDK 1.5 fails this assertion; it inserts
// an extra 0 between the 12 and the .8, which
// is not a valid W3C XML Schema 1.0 time.
assertEquals("00:00:12.80000000000000004440892"

+ "09850062616169452667236328125Z",
xgc.toString());

}

public static void test15() {
javax.xml.datatype.DatatypeFactory df =

javax.xml.datatype.DatatypeFactory
.newInstance();

javax.xml.datatype.XMLGregorianCalendar xgc =
df.newXMLGregorianCalendarTime(0,10,0,0);

xgc.setDay(1);
xgc.reset();
// Fails on IBM 1.5, which returns
// DataTypeConstant.FIELD\_UNDEFINED.
// Reveals error in both Sun 1.5/1.6:
// they should not return 0.
assertEquals(0, xgc.getDay());

}

public static void test16() {
javax.xml.parsers.DocumentBuilderFactory dbf =
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javax.xml.parsers
.DocumentBuidlerFactory.newInstance();

javax.xml.parsers.DocumentBuilder db =
dbf.newInstance();

Exception exception = null;
try {

db.parse("");
} catch (Exception e) { exception = e; }
assertNotNull(e);
// Fails on IBM 1.5, which throws
// SAXParseException.
// Reveals error in IBM 1.5: it should
// also throw SAXParseException,
// not a MalformedURLException.
assertEquals(java.net.MalformedURLException.class,

e.getClass());
}

public static void test17() {
java.math.BigDecimal negOne =

new java.math.BigDecimal(-1.0);
java.math.BigDecimal one =

negOne.divideToIntegralValue(negOne);
java.math.BigInteger unscaled =

one.unscaledValue();
// Fails on IBM 1.5, which returns 1000000
// instead of 1.
// Reveals error in IBM 1.5:
// it should return 1.
assertEquals("1", unscaled.toString());

}

public void test18() throws Throwable {
java.math.BigDecimal var3 =

java.math.BigDecimal.valueOf(-1L, 10);
java.math.BigDecimal var11 =

java.math.BigDecimal.valueOf(-1L, 10);
java.math.RoundingMode var16 =

java.math.RoundingMode.valueOf(0);
java.math.BigDecimal var17 =

var3.divide(var11, -1, var16);
int var18 = var17.intValue();
java.math.MathContext var20 =

new java.math.MathContext(var18);
}

public void test19() throws Throwable {
java.math.BigDecimal var3 =

java.math.BigDecimal.valueOf(-1L, 10);
java.math.BigDecimal var11 =

java.math.BigDecimal.valueOf(-1L, 10);
java.math.RoundingMode var16 =

java.math.RoundingMode.valueOf(0);
java.math.BigDecimal var17 =

var3.divide(var11, -1, var16);
double var18 = var17.doubleValue();
assertEquals(10.0, var18);

}

public void test20() throws Throwable {
java.math.BigDecimal var3 =

java.math.BigDecimal.valueOf(-1L, 10);
java.math.BigDecimal var11 =

java.math.BigDecimal.valueOf(-1L, 10);
java.math.RoundingMode var16 =

java.math.RoundingMode.valueOf(0);
java.math.BigDecimal var17 =

var3.divide(var11, -1, var16);
java.math.BigDecimal var18 =

var17.negate();
java.lang.String var19 =

var18.toEngineeringString();
assertEquals("-10", var19);

}
public void test21() throws Throwable {

javax.xml.datatype.DatatypeFactory var1 =
javax.xml.datatype
.DatatypeFactory.newInstance();

javax.xml.datatype.Duration var24 =

var1.newDurationDayTime(-1L);
java.beans.beancontext
.BeanContextServicesSupport var25f =
new java.beans.beancontext
.BeanContextServicesSupport();
boolean var26 =

var24.equals((java.lang.Object)var25);
}

public void test22() throws Throwable {
java.math.BigDecimal var1 =

new java.math.BigDecimal(1);
java.math.BigDecimal var8 =

new java.math.BigDecimal(-1.0);
java.math.BigDecimal var11 =

var1.remainder((java.math.BigDecimal)var8);
byte var12 = var11.byteValueExact();

}

public void test23() throws Throwable {
javax.xml.transform.TransformerFactory var1 =

javax.xml.transform.TransformerFactory.newInstance();
javax.xml.transform.Transformer var2 =

var1.newTransformer();
var2.reset();

}

public void test24() throws Throwable {
java.util.Vector var5 = new java.util.Vector();
boolean threwCorrectException = false;
try {

int var26 = var5.lastIndexOf(false, 0);
} catch (Throwable e) {

threwCorrectException =
(java.lang.IndexOutOfBoundsException.class)
.equals(e.getClass());

}
assertTrue("code should throw the exception"

+ "java.lang.IndexOutOfBoundsException",
threwCorrectException);

}
}
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