
GRAPHS INDUCED BY GRAY CODES

ELIZABETH L. WILMER AND MICHAEL D. ERNST

Abstract. We disprove a conjecture of Bultena and Ruskey [1], that all trees
which are cyclic graphs of cyclic Gray codes have diameter 2 or 4, by producing
codes whose cyclic graphs are trees of arbitrarily large diameter. We answer

affirmatively two other questions from [1], showing that strongly Pn × Pn-
compatible codes exist and that it is possible for a cyclic code to induce a

cyclic digraph with no bidirectional edge.
A major tool in these proofs is our introduction of supercomposite Gray

codes; these generalize the standard reflected Gray code by allowing shifts.

We find supercomposite Gray codes which induce large diameter trees, but
also show that many trees are not induced by supercomposite Gray codes.

We also find the first infinite family of connected graphs known not to be
induced by any Gray code — trees of diameter 3 with no vertices of degree 2.

1. Introduction

An n-bit Gray code B = (b1,b2, . . . ,bN), N = 2n, lists all the binary n-tuples
(“codewords”) so that consecutive n-tuples differ in one bit. In a cyclic code,
the first and last n-tuples also differ in one bit. Gray codes can be viewed as
Hamiltonian paths on the hypercube graph; cyclic codes correspond to Hamiltonian
cycles. Two Gray codes are isomorphic when one is carried to the other by a
hypercube isomorphism.

The transition sequence τ(B) = (τ1, τ2, . . . , τN−1) of an n-bit Gray code B lists
the bit positions τi ∈ [n] = {1, 2, . . . , n} where bi and bi+1 differ. When B is cyclic,
its closing transition τN is the position where bN and b1 differ. We say τ gener-
ates B when τ = τ(B). As transition sequences can be characterized simply and
determine codes up to isomorphism, we treat codes and sequences interchangeably.

Proposition 1.1 (Gilbert [3]). Let τ = (τ1, τ2, . . . , τN−1), where N = 2n.
(1) τ generates an n-bit Gray code if and only if every contiguous subsequence

τk, τk+1, . . . , τk+l contains some element of [n] an odd number of times.
(2) τ generates a cyclic Gray code if and only if τ generates a Gray code and

exactly one element of [n] appears an odd number of times in τ ; that element
is the closing transition.

The graph GB induced by the Gray code B has vertex set [n] and edge set
{{τi, τi+1} : i ∈ [N − 1]}, where τ(B) = (τ1, τ2, . . . , τN−1). The vertices of GB cor-
respond to bit positions; vertices i and j are adjacent when bit positions i and
j flip consecutively during the code B. Clearly, τ(B) determines GB. When B
is cyclic with closing transition τN , its cyclic graph GB is GB together with the
edges {τN−1, τN} and {τN , τ1} (which may or may not already appear in GB).
Proposition 1.1 ensures that τ(B) determines GB whenever B is cyclic.

Given a graph G with vertex set [n], we call an n-bit Gray code B G-compatible
when GB is a spanning subgraph of G— that is, when τ(B) is a walk on the edges

1

GRAPHS INDUCED BY GRAY CODES 2

P4 =

0
1
0
0 ,

0
1
1
0 ,

1
1
1
0 ,

1
0
1
0 ,

0
0
1
0 ,

0
0
0
0 ,

1
0
0
0 ,

1
1
0
0 ,

1
1
0
1 ,

1
0
0
1 ,

0
0
0
1 ,

0
0
1
1 ,

1
0
1
1 ,

1
1
1
1 ,

0
1
1
1 ,

0
1
0
1

t
t
t
t

1

3 4

2
GP4 : t

t
t
t

1

3 4

2
GP4 :

Figure 1. The Gray code P4 has τ(P4) = (3, 1, 2, 1, 3, 1, 2, 4,
2, 1, 3, 1, 2, 1, 3) and closing transition 4.

of G that visits every vertex. When B is a cyclic n-bit Gray code (as are most
codes we consider), we distinguish another level of compatibility. A cyclic code
B is strongly G-compatible when GB is a spanning subgraph of G— that is, when
τ1, τ2, . . . , τN−1, τN , τ1 is a closed walk on G visiting every vertex.

Example. We write Pn for the n-path, Cn for the n-cycle, and Kn for the n-vertex
complete graph. Figure 1 shows P4, a cyclic 4-bit code, together with GP4 = P4 and
GP4 = C4. While the code P4 is P4-compatible, it is not strongly P4-compatible.
The code P4 is, however, strongly C4-compatible and strongly K4-compatible.

Remark. Because every bit must flip during a Gray code, every G-compatible code
induces a connected spanning subgraph of G. When T is a tree, every T -compatible
code induces T and every strongly T -compatible code has cyclic graph T .

Slater [7, 8] was the first to ask: for which graphs G do G-compatible Gray
codes exist — or, even better, strongly G-compatible cyclic codes? Bultena and
Ruskey [1] independently arrived at this question, motivated in part by the search
for Hamiltonian cycles on the cube-connected-cycle graph allowing simple traversal
of the processors of certain parallel computers. Many types of restricted Gray codes,
often motivated by applications, have been studied — see [2, 4, 6] for surveys.

The current work makes progress in both positive (constructing Gray codes that
induce new graphs) and negative (finding graphs G such that no G-compatible code
exists) directions. Section 2 introduces supercomposite Gray codes. Bultena and
Ruskey [1] conjecture that all trees induced by cyclic Gray codes have diameter
2 or 4; we disprove their conjecture by finding supercomposite codes whose cyclic
graphs are trees of arbitrarily large diameter. We also find supercomposite Gray
codes strongly compatible with non-degenerate grid graphs and show that many
trees are not induced by supercomposite Gray codes. In Section 3, on digraphs of
Gray codes, we construct a family of cyclic Gray codes whose cyclic digraphs contain
no bidirectional edges. The concluding Section 4 surveys current understanding of
which graphs are induced by Gray codes. We give the first infinite family of trees
that can be proved to not be induced by codes, determine all 7-vertex graphs G for
which G-compatible codes exist, and pose some new questions.

2. Supercomposite Gray Codes

2.1. Definitions. Supercomposite Gray codes are all those that can be built by two
simple operations: shifting and reflecting. The term “supercomposite” is inspired
by Gilbert [3], who gave a similar definition of “ultracomposite” Gray codes.

GRAPHS INDUCED BY GRAY CODES 3

Breaking a cyclic Gray code between any two consecutive codewords yields an-
other Gray code. Define the k-th shift of a cyclic code B to be

Sk(B) = (bk+1,bk+2, . . . ,bN ,b1,b2, . . . ,bk).

(Shift parameters should be taken mod N . For example, S0(B) = B.) When B
has transition sequence (τ1, . . . , τN−1) and closing transition τN , Sk(B) has closing
transition τk and transition sequence

(τk+1, τk+2, . . . , τN−1, τN , τ1, τ2, . . . , τk−1).

Although G(Sk(B)) = G(B) for any k, shifts can add or subtract edges in the (or-
dinary) induced graph of a code. Define a cyclic Gray code B to be sufficient when
its graph is constant under shifts; that is, GSk(B) = GB for every k. A cyclic code
B with transition sequence (τ1, . . . , τN−1) is sufficient if and only if every edge in
GB has two non-consecutive appearances in the closed walk τ1, τ2, . . . , τN−1, τN , τ1;
thus, B sufficient implies GB = GB.

The reflection of an n-bit Gray code B = (b1,b2, . . . ,bN) is the n+ 1-bit code

Rf(B) =
(

b1

0 ,
b2

0 , . . . ,
bN
0 ,

bN
1 , . . . ,

b2

1 ,
b1

1

)
.

This code is cyclic with closing transition n+ 1. When τ(B) = (τ1, τ2, . . . , τN−1),

τ(Rf(B)) = (τ1, τ2, . . . , τN−1, n+ 1, τN−1, . . . , τ2, τ1).

Reflecting a code simply adds a leaf to its graph. Shifting before reflection
changes where the leaf is added; shifting after reflection can add a second edge.
Proposition 2.1 anatomizes these effects.

Proposition 2.1. Let τ = (τ1, τ2, . . . , τN−1) generate a cyclic n-bit Gray code with
closing transition τN and let j and k be integers. Then:

(1) GRf(Sj(τ)) is GSj(τ) plus the new leaf n + 1 attached to τj−1. In GRf(Sj(τ)),
n+ 1 is adjacent to both τj−1 and τj+1.

(2) GSk(Rf(Sj(τ))) is GSj(τ) plus the new vertex n+1 attached to: τj−1 when k ≡ 0
(mod 2N), τj+1 when k ≡ N (mod 2N), and both τj−1 and τj+1 otherwise.

(3) Rf(Sj(τ)) is sufficient if and only if τj+1 = τj−1.

Proof. (1) Because n + 1 appears once in Rf(Sj(τ)), between two occurrences of
τj−1, n + 1 is adjacent only to τj−1 in GRf(Sj(τ)). As closing transition, n + 1 is
flanked on both sides by τj+1. Thus n+ 1 is also adjacent to τj+1 in GRf(Sj(τ)).

(2) Every edge of GRf(Sj(τ)) not incident to n + 1 appears on both sides of the
reflection and thus is in GSk(Rf(Sj(τ))) for every k. The edge {n + 1, τj+1} does
not appear in GS0(Rf(Sj(τ))) = GRf(Sj(τ)) unless τj+1 = τj−1; similarly, the edge
{n+ 1, τj−1} does not appear in GSN (Rf(Sj(τ))) unless τj+1 = τj−1.

(3) This follows immediately from (2).

Example. Reflecting (0, 1) n − 1 times yields the standard reflected Gray code Rn

(as featured in F. Gray’s patent [5]). Repeatedly applying Proposition 2.1 gives
GRn

= GRn
= K1,n−1 (a star graph with one central vertex connected to n − 1

leaves), as noted in [1, 9]. These codes are sufficient.

Remark. Whenever τ is sufficient, τj−1 6= τj+1, and k 6≡ 0, N (mod 2N), the graph
induced by Sk(Rf(Sj(τ))) contains a 4-cycle with vertices τj−1, τj , τj+1, n+ 1.

GRAPHS INDUCED BY GRAY CODES 4

u u u u u5 3 1 2 4

u u
u u
�
�

u
4 2

5

3 1 u u
u u
�
�

u
4 2

5

3 1
�
�
��

Figure 2. The graphs induced by P5 = Rf(P4), Rf(S2(P4)),
and S4(Rf(S2(P4))).

Example. The insufficient code P4 = Rf(S3(R3)) shown in Figure 1 has transition
sequence starting and ending with 3. The code P5 = Rf(P4) is thus sufficient; it,
and all of its shifts, induce P5. The code Rf(S2(P4)) is insufficient, with transition
sequence (2, 1, 3, 1, 2, 4, 2, 1, 3, 1, 2, 1, 3, 4, 3, 5, 3, 4, 3, 1, 2, 1, 3, 1, 2, 4, 2, 1, 3, 1, 2) and
closing transition 5. See Figure 2.

We define Sn, the collection of supercomposite n-bit Gray codes, inductively. The
members of S1 are the 1-bit Gray codes (0, 1) and (1, 0). For n > 1,

Sn = {Sk(Rf(B)) |B ∈ Sn−1, k ∈ Z}.

That is, Sn contains all cyclic shifts of reflections of codes in Sn−1. In fact, Sn
contains all n-bit codes constructible from (0, 1) by shifts and reflections.

Proposition 2.1 has many consequences for the structure of graphs induced by
supercomposite codes. All supercomposite Gray codes are cyclic. When B ∈ Sn,
n has degree at most 2 in GB. All codes in S3 induce 2 edges; induction on the
number of vertices shows that codes in Sn, n ≥ 3, induce at most 2n − 4 edges.
Furthermore, whenever n has degree 2 in a graph induced by a code in Sn, its
two neighbors have another common neighbor. Thus every graph induced by a
supercomposite Gray code is two-colorable — just color each vertex as it is added.

2.2. Trees induced by supercomposite Gray codes. Let Tn = {τ ∈ Sn :
Gτ is a tree}. That is, Tn contains all supercomposite codes inducing trees. Which
trees are actually induced by codes in Tn? Shifting a cyclic code can enable the
next vertex to be attached to any vertex of the current graph. However, among the
supercomposites, only sufficient codes can be shifted arbitrarily without introducing
cycles. Furthermore, as detailed in Proposition 2.2, attaching a new leaf to a leaf
requires that the construction process include an insufficient code (the insufficiency
can either precede or follow attaching the leaf to a leaf). These restrictions prevent
many trees — most interestingly, paths with more than 6 vertices — from being
induced by supercomposite codes.

Proposition 2.2. Let σ ∈ Tn+1, n ≥ 3, such that the neighbor in Gσ of n+ 1 is a
vertex u with only one other neighbor, v. Then one of the following must occur:

1. σ = Rf(τ) or σ = SN (Rf(τ)), where τ ∈ Tn is sufficient; then σ is not
sufficient, and σ1 = σ2N−1 = w, where w is a neighbor of v.

2. σ = Sl(Rf(Rf(ρ))) or σ = Sl(Rf(SN/2(Rf(ρ)))), where ρ ∈ Tn−1 is sufficient
and l is an integer. Then σ is sufficient and, in Gσ, n is a leaf adjacent to a
neighbor w of v.

Proof. By the definition of Tn+1, σ = Sl(Rf(τ)) for some l and some τ ∈ Tn (Gτ
cannot contain cycles). By Proposition 2.1, the only neighbor of u in Gτ is v.

GRAPHS INDUCED BY GRAY CODES 5

t t t t t d
t

PP
PP

PPi
7

642135

(a)

t t t t t d d d d d d
t t t t t tq q q

PP
PP

PPi

PP
PP

PPi
PP

PPPi PPPi

PP
PP

PPi

PP
PPP
PPP

(b) 7

8642135

2d−3

. . . 2d−6 2d−4

1513119

Figure 3. (a) Failing to find supercomposite Gray codes induc-
ing long paths. (b) The graph induced by Ld. White vertices
determine the next vertex added, as indicated by the arrows.

First, we assume τ is sufficient and consider the possible values of l. When
l = 0, i.e. σ = Rf(τ), we must have τN−1 = u and τN−2 = τ0 = v. If σ were
sufficient, Proposition 2.1(3) would imply τ1 = u. But then τ2 = τ0 = τN−2 = v,
contradicting Proposition 1.1 (as long as τ is a code on more than 2 bits). Thus, σ
is not sufficient and σ1 = σ2N−1 = τ1 = w, the other neighbor of v, as claimed.

When σ = SN (Rf(τ)) with τ sufficient, applying the same argument, with τ1
and τN−1 switched, yields the same conclusions.

If it were the case that σ = Sl(Rf(τ)) with τ sufficient and l 6≡ 0, N (mod 2N),
Proposition 2.1(2) would imply that n + 1 is adjacent to both τ1 and τN−1 in
Gσ. But then τ1 = τN−1 = u, so τN−2 = τ0 = τ2 = v, and we obtain the same
contradiction as before. Thus, whenever τ is sufficient, the code falls into case (1).

What happens when σ = Sl(Rf(τ)), but τ is not sufficient? By Proposition 2.1(2),
τ ∈ Tn and insufficient implies that τ = Rf(ρ) or τ = SN/2(Rf(ρ)) for some code
ρ ∈ Tn−1 satisfying ρ1 6= ρN/2−1. By Proposition 2.1, the only way that we can
have ρ1 6= ρN/2−1 and ρ inducing a tree is if ρ is a non-trivial shift of a sufficient
code (indeed, one on at least 3 bits). But then ρN/2−1, ρ0, ρ1 is a walk in Gρ, and
Gρ is a subgraph of Gσ. In the case that τ = Rf(ρ), we have ρ1 = τ1 = τN−1 = u.
By Proposition 2.1(3), Rf(τ) is sufficient, so σ = Sl(Rf(τ)) is sufficient. Because
ρ0 = v, ρN/2−1 must be a neighbor w of v, and n is attached to w in Gτ . Simi-
larly, when τ = SN/2(Rf(ρ)), ρN/2−1 = τ1 = τN−1 = u; again, σ is sufficient and
ρ0 = v, so ρ1 = w, and n is attached to w in Gτ . We have confirmed all claims in
case (2).

Remark. Proposition 2.2 says that when constructing supercomposite codes induc-
ing trees, a leaf can only be attached to the leaf u if another “buddy” leaf is attached
two vertices away (to a neighbor w of v). In case (1), σ is insufficient. To proceed
to a larger tree, we are forced either to reflect or to half-shift, then reflect. Either
way, we get leaves adjacent to both u (as desired) and w (the forced “buddy”). In
case (2), we have already added the “buddy” leaf to a neighbor w of v; we then
attach n+ 1 to u, and σ is sufficient — but its predecessor τ was not.

Example. Can we build supercomposite Gray codes inducing paths? Because every
subtree of a path is a path, all codes in the construction of such a code must also
induce paths. Up to isomorphism, R2, R3, P4 and P5 are the only supercompos-
ite Gray codes inducing P2, P3, P4, and P5, respectively. The only k for which

GRAPHS INDUCED BY GRAY CODES 6

Rf(Sk(P5)) adds leaves to the ends of GP5 are 1 or 17 (6 attached to 5) or 9 or 25
(6 attached to 4). See Figure 3(a). Because P5 is sufficient, shifting and reflecting
to add a 6 to either 4 or 5 will put us into case (1) of Proposition 2.2. The next
leaf must be attached to the center 1 of P5. Thus no supercomposite Gray code
induces P7 or any longer path.

We can continue the above example, repeatedly shifting and reflecting to add
a leaf at the end of the longest path, then accepting the reflection forced by case
(1) of Proposition 2.2, to produce cyclic Gray codes inducing trees of increasing
diameter. More specifically, let L4 = P5, L5 = Rf(Rf(S9(L4))), and

Ld = Rf(Rf(S22d−7+1(Ld−1)))

for d > 5. Then Ld is a sufficient supercomposite code whose cyclic graph is a tree
of diameter d. At each stage, the shift and the first reflection attach 2d− 4 to the
leaf 2d− 6; the second reflection adds the “buddy” leaf 2d− 3 three steps back in
the path and yields a sufficient code, allowing us to shift without introducing cycles
at the next stage. See Figure 3(b). This construction disproves the conjecture of
Bultena and Ruskey [1] that all trees that are cyclic graphs of cyclic codes have
diameter 2 or 4. We have shown:

Theorem 2.3. There exist trees of arbitrarily large diameter induced by sufficient
supercomposite Gray codes.

Bultena and Ruskey [1] also ask whether strongly Pn × Pn-compatible codes
exist. Paths don’t seem to have enough edges to allow Gray codes using only those
edges; do square grids have enough edges? Yes. In fact, we can use the Ld’s to
build strongly grid-compatible codes. First we must show that given an interior
vertex v of a graph induced by a sufficient code in Tn, it’s always possible to shift
and reflect so that a new leaf is attached to v, while sufficiency is maintained. Thus
we will be able to add as many leaves as we like to arbitrary interior vertices.

Proposition 2.4. Let τ ∈ Tn, n ≥ 3, be sufficient. For any interior vertex v of
Gτ , there exists a k such that Rf(Sk(τ)) is a sufficient code with Gτ , plus a new
leaf adjacent to v, as its cyclic graph.

Proof. By Proposition 2.1, it will suffice to find a k such that τk−1 = τk+1 = v. In
fact, we prove the broader claim that for any τ ∈ Tn (sufficient or not) and any
interior vertex v of Gτ , there exists a k, 1 < k < N −1, such that τk−1 = τk+1 = v.
We use induction on n. As base case, note that every element of S3 is isomorphic
to a shift of the sufficient code R3 = (1, 2, 1, 3, 1, 2, 1), for which our claim clearly
holds. Now, fix n ≥ 3 and assume that for any τ ∈ Tn and any vertex v of degree
at least 2 in Gτ , there exists a k, 1 < k < N , such that τk−1 = τk+1 = v. Let
σ = (σ1, . . . , σ2N−1) ∈ Tn+1. Then σ = Sj(Rf(τ)) for some τ ∈ Sn and some j.

If σ = S0(Rf(τ)) = Rf(τ), then Proposition 2.1 implies that Gσ is Gτ plus the
leaf n+ 1 attached to τN−1. Hence Gτ is also a tree; that is, τ ∈ Tn. Every vertex
of degree at least 2 in Gτ must also be of degree at least 2 in Gσ. Because σj = τj
for 1 ≤ j ≤ N − 1, applying the inductive hypothesis to τ yields the desired value
of k. The only interior vertex of Gσ which might be a leaf in Gτ , and thus not
covered by the inductive hypothesis, is τN−1. As the sequence τN−1, n + 1, τN−1

appears in the center of σ = Rf(τ), we take k = N .
The argument is nearly identical when σ = SN (Rf(τ)); replace τN−1 by τ1 and

note that σN+j = τj for 1 ≤ j ≤ N − 1.

GRAPHS INDUCED BY GRAY CODES 7

(a) s s s s s s c ss s s s s s s s
(b) s s s s s s s sc c c c c c c cs s s s s s s s

(c)

ss
cs
sc
cs
s

ss
cs
sc
cs
s

ss
cs
sc
cs
s

ss
cs
sc
cs
s

ss
cs
sc
cs
s

ss
cs
sc
cs
s

ss
cs
sc
cs
s

ss
cs
sc
cs
s

ss
cs
sc
cs
s

ss
cs
sc
cs
s

s ss s
s ss s
s ss s
s ss sc c

ss
ss
ss

ss
ss
ss

ss
c
ss
c

optional row

optional row

optional columns -�

Figure 4. Cyclically Gray-codable spanning trees of grids.
White leaves are added to interior vertices during construction.

Now consider σ = Sj(Rf(τ)) for some j 6≡ 0, N (mod 2N). By Proposition 2.1(2),
Gσ is Gτ plus a new vertex n+1 adjacent to both τ1 and τN−1. The connectedness
of Gτ and σ ∈ Tn+1 imply τ ∈ Tn, n + 1 is a leaf in Gσ, and τ1 = τN−1. By
Proposition 2.1(3), ρ = Rf(τ) ∈ Tn+1 is sufficient, so Gσ = Gρ. By our work in
the j = 0 case above applied to ρ, there must be an l, 1 < l < 2N , such that
ρl−1 = ρl+1 = v. Thus σl−1−j = σl+1−j = v: whenever l − j is not −1, 0, or 1
(mod 2N), we can take k = l − j (mod 2N). For l − j congruent to one of −1, 0,
or 1 (mod 2N), we consider several cases.
• When 1 < l < N − 1 or N + 1 < l < 2N − 1, ρ = Rf(τ) ensures that we

have a disjoint v, u, v sequence in the other half of ρ. Specifically, ρ2N−l−1 =
ρ2N−l+1 = v, so we take k = 2N − l − j (mod 2N).
• Because ρN = ρ0 = n + 1 is a leaf in Gρ = Gσ, while v is an interior vertex,

it is impossible that l = N − 1 or l = N + 1.
• The only remaining case is l = N while j is one of N − 1, N , or N + 1. Then
v = τN−1. We already know that τ1 = τN−1. Thus, ρ2N−1 = ρ1 = v, and we
can take k = N + 1, N , or N − 1, respectively.

Theorem 2.5. For n,m > 1, there exists a supercomposite strongly Pn × Pm-
compatible code.

Proof. We may assume that m ≥ n. In each case, Proposition 2.4 ensures that the
tree constructed is induced by a sufficient supercomposite Gray code.

When n = 2, P4 (which is a strongly C4-compatible code) covers m = 2. When
m ≥ 3, adding a single leaf to an interior vertex of the graph of Lm+1 yields a
comb, which spans P2×Pm. See Figure 4(a). When n = 3 and m ≥ 3, we construct
a spanning tree of P3 × Pm by attaching m leaves to interior vertices of a comb.
See Figure 4(b). When n,m ≥ 4, we use a comb as the foundation of a spanning
tree. See Figure 4(c). First, zig-zag a comb through the grid. If n ≡ 2 (mod 3),
omit one optional row; if n ≡ 1 (mod 3), omit both. Finally, add leaves to interior
vertices to fill out the grid.

2.3. Trees not induced by supercomposite Gray codes. Extending the rea-
soning of our failed effort to find supercomposite Gray codes inducing long paths
yields a class of trees that are not induced by any supercomposite Gray code.

GRAPHS INDUCED BY GRAY CODES 8

t dtttppp
t
tppp tt dt tt d�

�
a′

bav

�
�

�
�

e

dcv

b′

a′

bav

(a) (b) (c)

PP
PPPiA

A
AK

Figure 5. Stages in the proof of Theorem 2.6. After white
vertices are added, the code is insufficient.

Theorem 2.6. When a tree T contains an interior vertex all of whose neighbors
have degree exactly 2 and which is distance at least 3 from all leaves, T is not
induced by a supercomposite Gray code.

Proof. Assume there exists a supercomposite Gray code inducing a tree T with
such a vertex v. Then v has degree at least 2. At most one neighbor of v— and
thus at most one branch off v— precedes v in the construction. Let b be the first
vertex at distance 2 from v appearing after v and let a be the common neighbor of
b and v.

When b is added, a is a leaf. We cannot be done when b is added; there would
be a branch off v of length only 2.
• If b, v, and a are the only vertices present, v is still a leaf, so some neighbor
a′ must be attached to v as a leaf later in the construction. See Figure 5(a).
• Otherwise at least 3 vertices precede b in the construction. Because b is the

first vertex attached to a neighbor of v, case (1) of Proposition 2.2 applies.
The code is insufficient after b is added; by Proposition 2.1(2), we must either
reflect, or half-shift, then reflect, to avoid forming a 4-cycle. In either case,
the next vertex added, b′, is a leaf off of a neighbor a′ of v. See Figure 5(b).

For v to be distance at least 3 from all leaves in T , we must add leaves to both b
and b′. We conclude that at least 2 vertices at distance 3 from v appear after v.

Let d be the first vertex at distance 3 from v appearing after v and let c be its
neighbor. At least one more vertex at distance 3 from v must be added. Since
c and v’s common neighbor has degree 2, v is the only vertex at distance 2 from
c. By Proposition 2.2, we must precede or follow d by adding a leaf e to v. See
Figure 5(c).

In fact, every time we add an initial leaf to a vertex at distance 2 from v, the
assumption that all neighbors of v have degree 2 forces us to start a new branch
off of v at the preceding, or following, step. We can never catch up and complete
all the branches, so no supercomposite T -compatible code can exist.

Corollary 2.7. When a tree on n vertices has (n+ 13)/10 or fewer leaves, it is
induced by no supercomposite Gray code.

Proof. First, we argue that a tree with k leaves is topologically equivalent to a tree on
at most 2k− 2 vertices. Paths are topologically equivalent to 2-vertex trees. When
k > 2, let a be the average degree of the vertices of degree at least 3 and let m be
the size of a minimal topologically equivalent tree. Then 2(m− 1) = k+ a(m− k),
and m is maximized when a ≥ 3 is minimized. Thus m ≤ 2k − 2.

Given an n-vertex tree T with k ≤ (n+ 13)/10 leaves, let T ′ be a topologically
equivalent tree with at most (n+ 3)/5 vertices. In constructing T from T ′, at least

GRAPHS INDUCED BY GRAY CODES 9

r
3
r
5

r1 r6
r4 r2

-

�

A
AAU

�
���

�
���

A
AAK
Q
Q
QQs

Q
Q
QQs

�
�

��+
�
�

��+

Transition sequence:
(1,2,3,4,5,3,4,1,2,3,4,1,6,4,1,2,
3,4,1,2,5,3,4,1,2,3,4,1,6,2,3,4,
1,2,3,4,5,3,4,1,2,3,4,1,6,4,1,2,
3,4,1,2,5,3,4,1,2,3,4,1,6,2,3)

Figure 6. A cyclic code whose graph lacks bidirectional edges.

(4n − 3)/5 vertices of degree 2 must be inserted into the at most (n− 2)/5 edges
of T ′; thus, at least 5 vertices of degree 2 must be inserted into some edge of T ′,
and the condition of our initial claim is satisfied.

3. Digraphs

The digraph DB induced by an n-bit Gray code B has vertex set [n]; its edges are
the ordered pairs (τi, τi+1), where τ(B) = (τ1, τ2, . . . , τN−1). When B is cyclic with
closing transition τN , DB also contains the directed edges (τN−1, τN) and (τN , τ1).
Bultena and Ruskey [1] introduce digraphs of Gray codes, note that cyclic digraphs
of cyclic codes must be strongly connected, and ask whether it is possible for a
cyclic code to induce a digraph containing no bidirectional edges.

Theorem 3.1. For every n ≥ 6, there exists a cyclic n-bit Gray code whose cyclic
graph contains no bidirectional edges.

Proof. We use induction on the number of vertices. Figure 6 shows a suitable code
on 6 bits (there are 338 such codes; this is the unique edge-minimal one). Let
τ = (τ1, τ2, . . . , τN−1) be the transition sequence of a cyclic n-bit Gray code whose
cyclic graph contains no bidirectional edges. Consider the transition sequence

σ = (τ1, τ2, . . . , τN−1, n+ 1, τ1, τ2, . . . , τN−1).

Proposition 1.1 ensures that σ generates a cyclic code with closing transition n+ 1.
The only edges of Gσ not in Gτ are (τN−1, n + 1) and (n + 1, τ1). Because Gτ
includes the edges (τN−1, τN) and (τN , τ1), τ1 6= τN−1; therefore, Gσ also contains
no bidirectional edges.

Remark. Gilbert [3] observed that the concatenation of the transition sequences
of any two n-bit Gray codes, separated by n + 1, generates an (n + 1)-bit code.
Reflection and the construction in the last proof are both special cases.

4. Discussion and open questions

It is a wide open question to characterize the set of graphs G for which G-
compatible codes, or strongly G-compatible cyclic codes, exist. Little is known,
and exhaustive searches are prohibitively long for graphs on as few as 8 vertices.
Because codes induce connected graphs, trees, as edge-minimal connected graphs,
are of particular interest. The standard reflected n-bit Gray code induces the star
K1,n−1 [1, 8]. While Pn-compatible codes exist for n ≤ 6, computation has verified
that no P7-compatible code exists, and it is conjectured that no Pn-compatible code
exists for any larger value of n [1, 8].

GRAPHS INDUCED BY GRAY CODES 10

t t t
3 2 1 t
tt�

�

@
@
`̀̀�� t t

2 1t t
ttt �

�

@
@
`̀̀ `̀̀��QQ
��

Figure 7. Trees of diameter 3 with and without a degree 2 vertex.

Some results are known for graphs outside these simple families. Bultena and
Ruskey [1] show that every diameter 4 tree is the cyclic graph of some cyclic Gray
code and catalogue the existence or non-existence of G-compatible codes for all
graphs G on 6 or fewer vertices. Bultena and Ruskey also show that when T is a
diameter 3 tree, no strongly T -compatible cyclic code exists. Theorem 4.1, although
developed independently [11], refines Bultena and Ruskey’s result to obtain the first
infinite family of connected graphs known not to be induced by Gray codes.

Theorem 4.1. Let T be a tree of diameter 3. When T has a degree 2 vertex, there
are no strongly T -compatible cyclic codes. When T has no degree 2 vertex, there
are no T -compatible codes.

Proof. Because T has diameter 3, n = |V (T)| ≥ 4. When n = 4, T is P4 and
has two degree 2 vertices. As can be verified computationally (or by checking
Gilbert’s [3] list of isomorphism types of 4-bit Gray codes), all P4-compatible codes
are isomorphic to P4, which is not strongly P4-compatible. Thus, for the rest
of the proof, we assume n ≥ 5. Let B be a T -compatible code with τ(B) =
(τ1, τ2, . . . , τN−1). Label the centers of T 1 and 2. See Figure 7.

Given a codeword b = b1b2 . . . bn, let l(b) = b3b4 . . . bn be the leaf setting of b;
l(b) includes bits in positions corresponding to leaves.
• When τj is 1 or 2, and τj−1 and τj+1 are both leaves, then l(bj) = l(bj+1),

but l(bj−1) and l(bj+2) are both different from l(bj). That is, exactly two
consecutive codewords have the same leaf setting.
• When 1, 2 or 2, 1 is preceded and followed by leaves, exactly three consecutive

codewords have the same leaf setting. Call these subsequences crossings.
• When 1, 2, 1 or 2, 1, 2 is preceded and followed by leaves, exactly four consec-

utive codewords have the same leaf setting.
• By Proposition 1.1, there cannot be four or more consecutive transitions at

the centers.
• When a leaf starts (respectively, ends) the transition sequence, the code starts

(respectively, ends) with a single codeword whose leaf setting differs from that
of its successor (respectively, predecessor).

Whenever τj is a leaf and 2 ≤ j ≤ N − 2, both τj−1 and τj+1 are the center which
is τj ’s neighbor. Although l(bj) 6= l(bj+1), we have l(bj) = l(bj−1) and l(bj+1) =
l(bj+2). The only way a codeword can fail to have a neighboring codeword of the
same leaf setting is when a leaf begins or ends the transition sequence.

There are exactly four codewords in B with each leaf setting. Whenever τ(B)
contains a crossing, a set of three codewords with the same leaf setting must be
completed by a single codeword with that setting. Because isolated codewords occur
only at the ends of the code, there are at most two crossings. Furthermore, when
there are two crossings, the transition sequence must start and end with leaves.

Assume first that center 2 has degree 2 and is adjacent to leaf 3 (see Figure 7).
The leaf 3 must appear at least once in τ .

GRAPHS INDUCED BY GRAY CODES 11

(a)

sss
s s
s s
@@��

AA��

sssssss
(b) ss
sss ss@@�� ss ss
s s
@@��

�� AA

s ss
ss
ssAA s�� sAA s��
ss
ss
s

(c) s s
s s
s ss s
AA

AA

��

��

ss
ss
s s

s s

AA

AA

��

��

Figure 8. (a) 7-vertex trees induced by no Gray code.
(b) 7-vertex graphs which are not cyclic graphs of cyclic codes.
(c) Maximal 8-vertex graphs not known to be induced by codes.

• If 3 appears only once, the N/2 codewords of each parity in position 3 ensure
that τN/2 = 3. Because every codeword is used, each leaf adjacent to 1 must
be visited both before and after 3. Thus, there must be at least two crossings,
and the code must start and end at leaves — necessarily adjacent to 1, as
3 does not appear again. If τ is cyclic, Proposition 1.1 implies its closing
transition is 3. But then Gτ contains an edge joining 3 to a leaf adjacent to 1,
so τ is not strongly T -compatible.
• Now assume 3 appears at least twice in τ and some leaf l adjacent to 1

occurs between two visits to 3. Because there must be a crossing between
3 and l and another between l and 3, at most one 3 − 3 interval contains
such a leaf l. Furthermore, those two crossings imply that the code must
start and end with leaves; indeed, with 3, since there can be no additional
crossings. Proposition 1.1 restricts τ to the following forms (where 3 does not
appear in the elided segments): 3 . . . l . . . 3, 32123 . . . l . . . 3, 3 . . . l . . . 32123, or
32123 . . . l . . . 32123. Each has 8 or fewer codewords with bit 3 parity different
from that of the center section. But n ≥ 5 and 8 < 25/2, so there is no such τ .
• What if 3 occurs at least twice in τ , but no leaf adjacent to 1 appears be-

tween 3’s? By Proposition 1.1, every 3− 3 segment in τ must be 32123. The
fact that every vertex appears in τ , together with Proposition 1.1, implies
that that there must be a leaf l adjacent to 1 such that τ starts with 3212321l
or ends with l1232123 and τ contains no other 3’s. But then we have only 4
codewords of one parity in bit 3. As n ≥ 5 and 4 < 25/2, no such code exists.

When 1 and 2 both have degree at least 3, it is not possible to obtain all possible
leaf settings with only two crossings. Thus, no T -compatible codes exist.

Figures 8(a) and 8(b) extend the catalogue of Gray-compatibility begun in [1] to
7-vertex graphs. For every 7-vertex connected graph G not shown, there exists a
stronglyG-compatible cyclic code. The only 8-vertex graphsG for which it is known
that no G-compatible codes exist are those given by Theorem 4.1. Figure 8(c) shows
some maximal 8-vertex graphs G for which no G-compatible codes are known. (The
computer programs used to produce these results are available from the authors.)

Paths seem to place very stringent restrictions on Gray codes; do cycles offer
enough freedom? Bultena and Ruskey [1] ask whether a strongly Cn-compatible
cyclic code exists for any n > 5. Exhaustive search reveals that there are 54 C6-
compatible codes (up to isomorphism), none of which are strongly C6-compatible,
while there are only 30 C7-compatible codes — again, none are strongly C7-compatible.

Question. Is there an n0 such that no Cn-compatible code exists for any n > n0?

GRAPHS INDUCED BY GRAY CODES 12

Even though every tree on 7 or fewer vertices induced by a Gray code is in fact
induced by a supercomposite Gray code, the pattern seems unlikely to hold.

Question. Does there exist a tree T induced by some Gray code, but by no super-
composite Gray code?

The Gray codes with no bidirectional edges constructed in Theorem 3.1 can also
be described as inducing directed graphs of directed girth greater than 2.

Question. How large can the digirth of the digraph of a Gray code be?

Attention has so far focused on sparse graphs — the fewer edges, the more re-
strictions. Shouldn’t typical Gray codes induce many edges? The largest code we
know of which induces a complete graph is an 8-bit code appearing in [10].

Problem. Construct n-bit Gray codes which induce Kn.

Acknowledgments

In 1989 and 1990, the first author attended the University of Minnesota, Du-
luth Research Experiences for Undergraduates program, supported by the National
Science Foundation (DMS-9000742) and the National Security Agency (MDA 904-
88-H-2027). Joseph Gallian, director of the Duluth REU, suggested this problem
and provided much encouragement. The second author has been supported by an
IBM Cooperative Fellowship. We thank Lenore Cowen, David Moews, and David
Witte for their helpful comments on our manuscript. We are grateful to the anony-
mous referees whose suggestions greatly improved our proofs and presentation.

References

[1] B. Bultena and F. Ruskey, Transition restricted Gray codes, Electron. J. Combin. 3(1996)
#R11.

[2] J.H. Conway, N.J.A. Sloane, and A.R. Wilks, Gray codes for reflection groups, Graphs Com-
bin. 5(1989) 315–325.

[3] E.N. Gilbert, Gray codes and paths on the n-cube, Bell System Tech. J. 37(1958) 815–826.

[4] L. Goddyn, G.M. Lawrence, and E. Nemeth, Gray codes with optimized run lengths, Util.
Math. 34(1988) 179–192.

[5] F. Gray, Pulse code communication, U. S. Patent 2,632,058, 1958.
[6] C. Savage, A survey of combinatorial Gray codes, SIAM Rev. 39(1997) 605–629.

[7] P.J. Slater, Open problem, in: Proc. 10th Southeastern Conference on Combinatorics, Graph

Theory, and Computing, Vol. II (Utilitas Mathematica Publishing, Winnipeg, 1979) 918–919.
[8] P.J. Slater, Research Problems 109 and 110, Discrete Math. 76(1989) 293–294.

[9] P.J. Slater, personal communication, 1989.
[10] V.E. Vickers and J. Silverman, A technique for generating specialized Gray codes, IEEE

Trans. Comput. C-29(1980) 329–331.

[11] E.L. Wilmer, Gray codings of trees, Undergraduate thesis, Department of Mathematics,
Harvard University, 1991.

Department of Mathematics, Oberlin College, Oberlin, OH 44074

E-mail address: elizabeth.wilmer@oberlin.edu

MIT Lab for Computer Science, 77 Massachusetts Avenue, Cambridge, MA 02139

E-mail address: mernst@lcs.mit.edu URL: http://sdg.lcs.mit.edu/~mernst/

