HaLoop: Efficient Iterative Data Processing On Large Scale Clusters

Yingyi Bu, UC Irvine
Bill Howe, UW
Magda Balazinska, UW
Michael Ernst, UW

Award IIS 0844572
Cluster Exploratory (CluE)

http://clue.cs.washington.edu/
http://escience.washington.edu/

VLDB 2010, Singapore
Observation: MapReduce has proven successful as a common runtime for non-recursive declarative languages
- HIVE (SQL)
- Pig (RA with nested types)

Observation: Many people roll their own loops
- Graphs, clustering, mining, recursive queries
- Iteration managed by external script

Thesis: With minimal extensions, we can provide an efficient common runtime for recursive languages
- Map, Reduce, Fixpoint
Related Work: Twister [Ekanayake HPDC 2010]

- Redesigned evaluation engine using pub/sub
- Termination condition evaluated by main()

13. while(!complete){
14. monitor = driver.runMapReduceBCast(cData);
15. monitor.monitorTillCompletion();

16. DoubleVectorData newCData = (KMeansCombiner) driver
 .getCurrentCombiner().getResults();
17. totalError = getError(cData, newCData);
18. cData = newCData;
19. if (totalError < THRESHOLD) {
20. complete = true;
21. break;
22. } }
In Detail: PageRank (Twister)

```java
while (!complete) {
    // start the pagerank map reduce process
    monitor = driver.runMapReduceBCast(new BytesValue(tmpCompressedDvd.getBytes()));
    monitor.monitorTillCompletion();
    // get the result of process
    newCompressedDvd = ((PageRankCombiner) driver.getCurrentCombiner()).getResults();
    // decompress the compressed pagerank values
    newDvd = decompress(newCompressedDvd);
    tmpDvd = decompress(tmpCompressedDvd);
    totalError = getError(tmpDvd, newDvd);
    // get the difference between new and old pagerank values
    if (totalError < tolerance) {
        complete = true;
    }
    tmpCompressedDvd = newCompressedDvd;
}
```

O(N) in the size of the graph
Related Work: Spark [Zaharia HotCloud 2010]

- Reduction output collected at driver program
 - “…does not currently support a grouped reduce operation as in MapReduce”

```scala
val spark = new SparkContext(<Mesos master>)
var count = spark.accumulator(0)
for (i <- spark.parallelize(1 to 10000, 10)) {
  val x = Math.random * 2 - 1
  val y = Math.random * 2 - 1
  if (x*x + y*y < 1) count += 1
}
println("Pi is roughly "+ 4 * count.value / 10000.0)  
```

all output sent to driver.
Related Work: Pregel [Malewicz PODC 2009]

- Graphs only
 - clustering: k-means, canopy, DBScan
- Assumes each vertex has access to outgoing edges
- So an edge representation …

 \[\text{Edge(from, to)} \]

- …requires offline preprocessing
 - perhaps using MapReduce
Related Work: Piccolo [Power OSDI 2010]

- Partitioned table data model, with user-defined partitioning

- Programming model:
 - message-passing with global synchronization barriers

- User can give locality hints

 - `GroupTables(curr, next, graph)`

- Worth exploring a direct comparison
Related Work: BOOM [c.f. Alvaro EuroSys 10]

- Distributed computing based on Overlog (Datalog + temporal logic + more)
- Recursion supported naturally
 - app: API-compliant implementation of MR
- Worth exploring a direct comparison
Details

- Architecture
- Programming Model
- Caching (and Indexing)
- Scheduling
Example 1: PageRank

Rank Table R_0

<table>
<thead>
<tr>
<th>url</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.a.com</td>
<td>1.0</td>
</tr>
<tr>
<td>www.b.com</td>
<td>1.0</td>
</tr>
<tr>
<td>www.c.com</td>
<td>1.0</td>
</tr>
<tr>
<td>www.d.com</td>
<td>1.0</td>
</tr>
<tr>
<td>www.e.com</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Linkage Table L

<table>
<thead>
<tr>
<th>url_src</th>
<th>url_dest</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.a.com</td>
<td>www.b.com</td>
</tr>
<tr>
<td>www.a.com</td>
<td>www.c.com</td>
</tr>
<tr>
<td>www.c.com</td>
<td>www.a.com</td>
</tr>
<tr>
<td>www.e.com</td>
<td>www.c.com</td>
</tr>
<tr>
<td>www.d.com</td>
<td>www.b.com</td>
</tr>
<tr>
<td>www.c.com</td>
<td>www.e.com</td>
</tr>
<tr>
<td>www.e.com</td>
<td>www.c.com</td>
</tr>
</tbody>
</table>

Rank Table R_3

<table>
<thead>
<tr>
<th>url</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.a.com</td>
<td>2.13</td>
</tr>
<tr>
<td>www.b.com</td>
<td>3.89</td>
</tr>
<tr>
<td>www.c.com</td>
<td>2.60</td>
</tr>
<tr>
<td>www.d.com</td>
<td>2.60</td>
</tr>
<tr>
<td>www.e.com</td>
<td>2.13</td>
</tr>
</tbody>
</table>

R_i's url = L.url_src

R_i.rank = R_i.rank/γ_{url_dest}COUNT(url_dest)

π(url_dest, γ_{url_dest}SUM(rank))

R_{i+1}
A MapReduce Implementation

Join & compute rank

Aggregate

fixpoint evaluation

Converged?

Client

done

R_i

L-split0

L-split1

i=i+1
What’s the problem?

L is loop invariant, but
1. L is loaded on each iteration
2. L is shuffled on each iteration
 plus
3. Fixpoint evaluated as a separate MapReduce job per iteration
Example 2: Transitive Closure

Find all transitive friends of Eric

\[R_0 \{ \text{Eric, Eric} \} \]

\[R_1 \{ \text{Eric, Elisa} \} \]

\[R_2 \{ \text{Eric, Tom, Eric, Harry} \} \]

\[R_3 \{ \} \]

(semi-naïve evaluation)
Example 2 in MapReduce

(compute next generation of friends)

Join

S_i

Friend0

Friend1

M

r

M

M

r

r

Anything new?

$i = i + 1$

Client

done

(removes the ones we’ve already seen)
What’s the problem?

Friend is loop invariant, but
1. Friend is loaded on each iteration
2. Friend is shuffled on each iteration
Example 3: k-means

k_i = k centroids at iteration i

$k_i \rightarrow M \rightarrow r \rightarrow k_{i+1}$

$k_i - k_{i+1} < \text{threshold}$?

$i = i + 1$

Client

done
What’s the problem?

P is loop invariant, but

1. P is loaded on each iteration
Approach: Inter-iteration caching

Loop body

Mapper input cache (MI)

Mapper output cache (MO)

Reducer input cache (RI)

Reducer output cache (RO)

Loop body
RI: Reducer Input Cache

- **Provides:**
 - Access to loop invariant data without map/shuffle

- **Used By:**
 - Reducer function

- **Assumes:**
 1. Mapper output for a given table constant across iterations
 2. Static partitioning (implies: no new nodes)

- **PageRank**
 - Avoid shuffling the network at every step

- **Transitive Closure**
 - Avoid shuffling the graph at every step

- **K-means**
 - No help
Reducer Input Cache Benefit

Transitive Closure

Billion Triples Dataset (120GB)

90 small instances on EC2

Overall run time
Reducer Input Cache Benefit

Transitive Closure
Billion Triples Dataset (120GB)
90 small instances on EC2

Join step only
Reducer Input Cache Benefit

Transitive Closure
Billion Triples Dataset (120GB)
90 small instances on EC2

Reduce and Shuffle of Join Step

Livejournal, 12GB
Join & compute rank

\[R_i \]

L-split0

L-split1

Aggregate

fixpoint evaluation

Total Running Time (s)

Running Time (s)
RO: Reducer Output Cache

- Provides:
 - Distributed access to output of previous iterations

- Used By:
 - Fixpoint evaluation

- Assumes:
 1. Partitioning constant across iterations
 2. Reducer output key functionally determines Reducer input key

- PageRank
 - Allows distributed fixpoint evaluation
 - Obviates extra MapReduce job

- Transitive Closure
 - No help

- K-means
 - No help
Reducer Output Cache Benefit

- Fixpoint evaluation (s)
- Iteration #

Livejournal dataset
- 50 EC2 small instances

Freebase dataset
- 90 EC2 small instances

10/14/2013 Bill Howe, UW
MI: Mapper Input Cache

- **Provides:**
 - Access to non-local mapper input on later iterations

- **Used:**
 - During scheduling of map tasks

- **Assumes:**
 1. Mapper input does not change

- **PageRank**
 - Subsumed by use of Reducer Input Cache

- **Transitive Closure**
 - Subsumed by use of Reducer Input Cache

- **K-means**
 - Avoids non-local data reads on iterations > 0
Mapper Input Cache Benefit

5% non-local data reads;
~5% improvement
Conclusions (last slide)

- Relatively simple changes to MapReduce/Hadoop can support arbitrary recursive programs
 - TaskTracker (Cache management)
 - Scheduler (Cache awareness)
 - Programming model (multi-step loop bodies, cache control)

- Optimizations
 - Caching loop invariant data realizes largest gain
 - Good to eliminate extra MapReduce step for termination checks
 - Mapper input cache benefit inconclusive; need a busier cluster

- Future Work
 - Analyze expressiveness of Map Reduce Fixpoint
 - Consider a model of Map (Reduce*) Fixpoint
Data-Intensive Scalable Science

http://escience.washington.edu

Award IIS 0844572
Cluster Exploratory (CluE)

http://clue.cs.washington.edu
Motivation in One Slide

- MapReduce can’t express recursion/iteration
- Lots of interesting programs need loops
 - graph algorithms
 - clustering
 - machine learning
 - recursive queries (CTEs, datalog, WITH clause)
- Dominant solution: Use a driver program outside of mapreduce
- Hypothesis: making MapReduce loop-aware affords optimization
 - ...and lays a foundation for scalable implementations of recursive languages
Experiments

- Amazon EC2
 - 20, 50, 90 default small instances

- Datasets
 - Billions of Triples (120GB) [1.5B nodes 1.6B edges]
 - Freebase (12GB) [7M ndoes 154M edges]
 - Livejournal social network (18GB) [4.8M nodes, 67M edges]

- Queries
 - Transitive Closure
 - PageRank
 - k-means
Scheduling Algorithm

Input: Node node
Global variable: HashMap<Node, List<Parition>> last, HashMap<Node, List<Parition>> current

1: if (iteration == 0) {
2: Partition part = StandardMapReduceSchedule(node);
3: current.add(node, part);
4: } else {
5: if (node.hasFullLoad()) {
6: Node substitution = findNearbyNode(node);
7: last.get(substitution).addAll(last.remove(node));
8: return;
9: }
10: if (last.get(node).size() > 0) {
11: Partition part = last.get(node).get(0);
12: schedule(part, node);
13: current.get(node).add(part);
14: list.remove(part);
15: }
16: }

The same as MapReduce
Find a substitution
Iteration-local Schedule
Programming Interface

```
Job job = new Job();

job.AddMap(Map Rank, 1);
job.AddReduce(Reduce Rank, 1);
job.AddMap(Map Aggregate, 2);
job.AddReduce(Reduce Aggregate, 2);

job.AddInvariantTable(#1);
job.SetInput(IterationInput);
job.SetFixedPointThreshold(0.1);
job.SetDistanceMeasure(ResultDistance);
job.SetMaxNumOfIterations(10);
job.SetReducerInputCache(true);
job.SetReducerOutputCache(true);
job.Submit();
```
Cache Infrastructure Details

- Programmer control
- Architecture for cache management
- Scheduling for *inter-iteration locality*
- Indexing the values in the cache
Other Extensions and Experiments

- Distributed databases and Pig/Hadoop for Astronomy [IASDS 09]
- Efficient “Friends of Friends” in Dryad [SSDBM 2010]
- SkewReduce: Automated skew handling [SOCC 2010]
- Image Stacking and Mosaicing with Hadoop [Hadoop Summit 2010]
- HaLoop: Efficient iterative processing with Hadoop [VLDB2010]
MapReduce Broadly Applicable

- Biology
 - [Schatz 08, 09]

- Astronomy
 - [IASDS 09, SSDBM 10, SOCC 10, PASP 10]

- Oceanography
 - [UltraVis 09]

- Visualization
 - [UltraVis 09, EuroVis 10]
Key idea

- When the loop output is large…
 - transitive closure
 - connected components
 - PageRank (with a convergence test as the termination condition)
- …need a distributed fixpoint operator
 - typically implemented as yet another MapReduce job -- on every iteration
Background

Why is MapReduce popular?
- Because it’s fast?
- Because it scales to 1000s of commodity nodes?
- Because it’s fault tolerant?

Witness
- MapReduce on GPUs
- MapReduce on MPI
- MapReduce in main memory
- MapReduce on <10 nodes
So why is MapReduce popular?

- The programming model
 - Two serial functions, parallelism for free
 - Easy and expressive

- Compare this with MPI
 - 70+ operations

- But it can’t express recursion
 - graph algorithms
 - clustering
 - machine learning
 - recursive queries (CTEs, datalog, WITH clause)
Fixpoint

- A fixpoint of a function f is a value x such that $f(x) = x$
- The fixpoint queries FIX can be expressed with the relational algebra plus a fixpoint operator
- Map - Reduce - Fixpoint
 - hypothesis: sufficient model for all recursive queries