
Immutability
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Abstract. One of the main reasons aliasing has to be controlled, as highlighted
in another chapter [1] of this book [2], is the possibility that a variable can unex-
pectedly change its value without the referrer’s knowledge. This book will not
be complete without a discussion of the impact of immutability on reference-
abundant imperative object-oriented languages. In this chapter we briefly survey
possible definitions of immutability and present recent work by the authors on
adding immutability to object-oriented languages and how it impacts aliasing.

1 Introduction

Traditional imperative object-oriented (OO) programs consist of objects that have state
and behaviour1. The behaviour is modelled by the methods. The state is represented
by the values of an object’s fields — which can either be primitives or references to
other objects. Immutable objects are those whose state does not change after they are
initialised [3–12].

Immutability information is useful in many software engineering tasks, including
modeling [13], verification [14], compile- and run-time optimizations [15, 5, 16], pro-
gram transformations such as refactoring [17], test input generation [18], regression or-
acle creation [19, 20], invariant detection [21], specification mining [22], and program
comprehension [23]. The importance of immutability is highlighted by the documenta-
tion of the Map interface in Java that states: “Great care must be exercised if mutable
objects are used as map keys. The behavior of a map is not specified if the value of an
object is changed in a manner that affects equals comparisons while the object is a key
in the map.”

The notion of immutability is not as straightforward as it might seem, and many
different definitions of immutability exist. Immutability may be deep (transitive) or
shallow. In deep immutability, every object referred to by an immutable object must
itself be immutable; in shallow immutability, the object’s fields cannot be reassigned,
but their referents may be mutated. Immutability guarantees may hold for every field
of an object, or may exclude certain fields such as those used for caching. Immutability
may be abstract or concrete. Concrete immutability forbids any change to an object’s
in-memory representation; abstract immutability permits benevolent side effects that do

1 For example: http://docs.oracle.com/javase/tutorial/java/concepts/object.
html.
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not affect the abstraction, such as caching values, rebalancing trees, etc. Immutability
guarantees may hold immediately or may be delayed. An immediate guarantee holds as
soon as the constructor completes; a delayed guarantee permits initialization of a data
structure to continue, effectively modifying an immutable object, which is necessary to
allow circular initialisation for immutable data structures. Immutability guarantees can
be about objects or references. A read-only reference cannot be used for mutation, but
the underlying object can be mutated by an aliasing reference; an immutable object is
never changed by any reference to it. This paper discusses these and other issues, and
presents language designs that address them.

Outline. Section 2 introduces the rich concept of immutability and its variations. Sec-
tion 3 outlines the current state of immutability support in object-oriented program-
ming languages. Section 4 provides a number of motivations and describes advantages
of proposed ways to support immutability mostly on top of a Java-like language. Sec-
tion 5 quickly tours through the major recent proposals for adding immutability while
extracting common themes and highlighting the differences. Section 6 discusses the
immutability concept in more general setting, and Section 7 concludes.

2 What Is Immutability?

An immutable program component remains the same over time. Equivalently, changes
to an immutable program component are forbidden.

An immutable object (Section 2.1) never changes. By contrast, a read-only reference
(Section 2.2) cannot be used for mutation, but the referred-to object might change via
other references. Assignment of fields/variables (Section 2.3) is not a mutation of the
referred-to object but is sometimes confused with it.

Currently, there is no support in Java (or any mainstream OO language) to express
and check object immutability or read-only references. Rather, programmers must use
external tools that add these capabilities, or else resort to manual inspection.

2.1 Immutable Objects

An immutable object [11, 12] cannot be modified.
When every object of a given class is immutable, then we say the class is immutable.

Examples of immutable classes in Java [24] include String and most subclasses of
Number2 such as Integer and BigDecimal. An immutable class contains no mutating
methods that update/modify the receiver; rather, if a different value is required, a client
calls a constructor or producer method that returns a new object. In addition to not
providing mutating methods, all fields must be hidden from clients (e.g. made private).

Even if a class is not immutable, specific objects of that class may be immutable [11,
12]. For example, some instances of List in a given program may be immutable, whereas
others can be modified. Here is example Immutability Generic Java (IGJ) [10] code that
instantiates the same class LinkedList as both mutable and immutable object:

2 java.util.concurrent.AtomicInteger is mutable, though.
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LinkedList<Mutable> lm = new LinkedList<Mutable>();
LinkedList<Immutable> li = new LinkedList<Immutable>();

Object lm can be changed or mutated, for example by adding or removing elements. By
contrast, li cannot be changed or mutated, even though it is implemented by the same
LinkedList code.

2.2 Read-Only References

A read-only reference3 [3–9] cannot be used to modify its referent. However, there
may exist mutable aliases to the object elsewhere in the system. In other words, normal
references carry the privilege to mutate the referent, and read-only references do not.

Usually a read-only reference’s type is a supertype of a mutable reference’s type, so
a mutable reference can be used in any context in which a read-only one is legal. For
example, continuing the previous list example, this is legal:

LinkedList<ReadOnly> lro = lm;

Note that lm is a mutable alias that can be used to mutate the list.
Since read-only references do not preclude the existence of mutable aliases, read-

only references do not guarantee object immutability, unless read-only references are
combined with an alias/escape analysis to guarantee that no mutable aliases to an object
exist [25, 3].

A const pointer in C++ is a shallow read-only reference.

Read-Only Method Parameters. If a method does not mutate one of its formal param-
eters, then that formal parameter can be annotated as read-only. Then, it is legal to call
the method using a mutable, immutable, or read-only reference as the actual argument.
If a method does mutate a formal parameter, then the method can only be called by
passing in a mutable object as an argument. The receiver is treated the same as the other
formal parameters.

Pure Methods. A pure method [26–29] has no externally-visible side effects. In other
words, calling a pure method is guaranteed to leave every existing object in an un-
changed state.4 This is a stronger guarantee than asserting that every method parameter
is (deeply) read-only, since it applies to static variables as well. For example:

1 @Pure
2 boolean has(String x) {
3 for (String i : items) {

3 “Reference immutability” is another standard term, but we use “read-only reference” to avoid
potential confusion if a reader mis-interprets “reference immutability” as stating that the refer-
ence itself is immutable. Also see Section 2.3.

4 Just as there are multiple varieties of immutability, there are multiple varieties of purity. Dif-
ferent definitions forbid all mutations, or permit only mutations of object allocated after the
method is entered, or permit benevolent side effects on previously-existing objects.
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4 if (x == i) { return true; }
5 }
6 return false;
7 }

2.3 Non-assignability

Assignment is a property of a variable: it indicates whether the variable is permitted to
be reassigned. Assignment of a variable is unrelated to mutation. In particular, no object
is mutated in this code:

1 Date myVar = ...; // local variable
2 ...
3 myVar = anotherDate;

Assignment of a field is a mutation of the object that contains the field, but is not a
mutation of either the object that was previously in the field or of the object that is
subsequently in the field. For example, in

myClass.itsDate = anotherDate;

no Date object has been mutated.
The final keyword in Java [24] prohibits assignment but not mutation. In the follow-

ing example, the variable v is declared final and thus it cannot be reassigned after the
declaration, though its value can be mutated:

1 final Foo v = new Foo(); // local variable
2 ...
3 v = new Foo(); // compile−time error: assignment is forbidden
4 v.mutate(); // OK: mutation is permitted

2.4 Deep vs. Shallow Immutability; Abstract vs. Concrete Immutability

When specifying an immutability property, it is necessary to state whether the property
is deep or shallow, and which fields of the object’s representation are relevant.

Immutability and read-only references may be deep or shallow, depending on whether
transitively-referred to objects are also required to be immutable. In deep immutability,
it is forbidden not only to re-assign an object’s fields, but also to mutate them. In shal-
low immutability, it is forbidden to re-assign an object’s fields, but permitted to mutate
them. Consider the following example:

1 class C {
2 D f;
3 }
4 class D {
5 int x;
6 }
7
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8 C<Immutable> myC = ...;
9 ...

10 myC.f = otherD; // illegal under both deep and shallow immutability
11 myC.f.x++; // legal under shallow immutability, illegal under deep

Most often, a client desires a deep rather than a shallow immutability guarantee. An
OO program’s representation of some object or concept in the real world often spans
multiple objects in the program. As a simple example, a list may be represented by
many Link objects connected in a linked list. A client does not know or care about the
specific data representation, but wants a guarantee of immutability of the abstract value
that the concrete data represents.

An orthogonal axis of immutability is which fields should be considered as protected
by the immutability guarantee. A benevolent side effect is one that changes an object’s
representation, but does not change the object’s abstract value. A common example is
filling in a field that caches a value. Another example is the move-to-front optimization
that speeds up looking up elements in a set that is represented as a list. Thus, it is pos-
sible that a change to an object’s representation is not a change to the object’s abstract
value.

Similarly, just like with ownership-like schemes [30], it might make sense to make
only part of an object deeply immutable (e.g. the fields specific to its representation)
while keeping the other fields mutable. For example, an immutable list might contain
mutable elements.

Most often, a client is concerned with the abstract value rather than details of the
object’s representation such as cached values or the order of objects in a set. However,
reasoning about low-level properties such as interactions with the memory system may
require a guarantee of representation immutability rather than abstract immutability.

3 Immutability in the Mainstream Programming Languages

In non-functional object-oriented languages immutability support is extremely limited.
The only clear examples are the use of const in C++ and the use of the final keyword
in Java, which we shall see are not enough to guarantee immutability of objects. We
discuss existing support in popular languages and in the following Section we look into
how recent proposals improve the state of affairs.

3.1 C++ const

C [31] and C++ [32] provide a const keyword for specifying immutability. C++’s
const keyword is more commonly used as an aid when declaring interfaces, rather
than as a way of declaring symbolic constants [32]. Furthermore, there are a number of
pitfalls that led Java’s designers to omit const.

Because of numerous loopholes, the const notation in C++ does not provide a
guarantee of immutability even for accesses through the const reference. First, an
unchecked cast can remove const from a variable. Second, C++’s const cast may
also be applied arbitrarily and is not dynamically checked. The const cast operator
was added to C++ to discourage, but not prohibit, use of C-style casts, accidental use
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of which may convert a read-only pointer or reference to a mutable one. Third, be-
cause C++ is not a type safe language, one can (mis)use type system weaknesses such
as unions and varargs (unchecked variable-length procedure arguments) to bypass the
restrictions on mutability prescribed by const.

Another criticism of C++’s const is that C++ does not permit parameterization of
code based on the immutability of a variable. Use of const may lead to code dupli-
cation, where several versions of a function are needed depending on const-ness. An
example is the two versions of strchr in the C++ standard library.

Finally, declaring a method as const (or read-only) only stops it from modifying
the receiver and does not prevent it from modifying any other objects. Thus, a const
(read-only) method in C++ is not a pure method.

C++’s const is shallow with respect to pointers but deep with respect to fields. C++
permits the contents of a read-only pointer to be modified, and read-only methods pro-
tect only the local state of the enclosing object. To guarantee transitive non-mutability,
an object’s state must be (transitively) held directly in variables/fields rather than ac-
cessed by a pointer. However, this precludes sharing, which is a serious disadvantage.
Additionally, whereas C++ permits specification of const at each level of pointer deref-
erence, it does not permit doing so at each level of a multi-dimensional array.

Most C++ experts advocate the use of const (for example, Meyers advises using
const wherever possible [33]). However, as with many other type systems (including
those of C++ and Java), some programmers feel that the need to specify types outweighs
the benefits of type checking. At least three studies have found that static type checking
reduces development time or errors [34–36]. We are not aware of any empirical (or
other) evaluations regarding the costs and benefits of immutability annotations.

A common criticism of const is that transforming a large existing codebase to
achieve const correctness is difficult, because const pervades the code: typically, all
(or none) of a codebase must be annotated. This propagation effect is unavoidable when
types or externally visible representations are changed. Inference of const annotations
(such as that implemented by Foster et al. [37]) eliminates such manual effort. Even
without a type inference, some [6] found the work of annotation to be greatly eased by
fully annotating each part of the code in turn while thinking about its contract or specifi-
cation, rather than inserting partial annotations and attempting to address type checker
errors one at a time. The proper solution, of course, is to write const annotations in
the code from the beginning, which takes little or no extra work, as the designer should
have already made decisions about mutability.

3.2 Java final

Java [24] does not support const. Instead a final keyword was introduced. Java does
not have a concept of “const references”, and so there is no support for final methods,
in the sense that only such methods would be invokable on final receivers. (In Java,
final applied to a method means something entirely different: the method cannot be
overridden in a subclass.) Similar to C++, marking a member as final only protects the
variable, not the object the variable refers to, from being mutated. Thus, immutability
in C++ and Java is not transitive.
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3.3 Immutability in Non-Object-Oriented Languages

Functional languages, such as ML [38], default all variables to being immutable.
OCaml [39] combines object-orientation with a mutable annotation on fields (for ex-
ample, references are implemented as a one-compartment mutable record). However,
there is little support from type systems to distinguish mutable operations from read-
only operations.

4 How Can We Improve on the State of the Art?

The two major improvements achieved by the immutability proposals of the last decade
are: (1) support for transitive read-only by supporting the enforcement of not just the
reference to an object but also any further references from such object being read-only
and (2) support for object immutability rather than just read-only references thus guar-
anteeing that no unexpected alias to an immutable object can change its state. Javari [6]
supports the former, while Joe3 [12] and OIGJ [11] support both.

To achieve read-only references, Javari utilizes additional annotations on any vari-
able declaration in Java (e.g. readonly) that is then checked by the type system to
guarantee that no read-only reference is assigned to or modified. Javari’s implementa-
tion in Java is available for download5.

Joe3 utilizes an ownership-based type system and a very simple effect system which
keeps track of which object is modified and prevents any modifications to objects which
are immutable or read-only. A Polyglot-based6 prototype implementation is available.

OIGJ makes use of Java’s generic types to allow the types to state whether the object
is mutable or immutable when creating the object. OIGJ also supports read-only types.
A Checker-Framework-based7 prototype implementation is available.

This section presents examples taken from three recent immutability proposals by the
authors. Subsection 4.1 presents enforcement of contracts and read-only access to inter-
nal data in the Javari system [6] which supports read-only references. Subsection 4.2
presents a larger example similar to LinkedList from the Java collections written in the
OIGJ [11] system supporting both read-only references and object immutability, among
other features. Subsection 4.3 shows how to support flexible lists and context-based
read-only in Joe3 [12], a system supporting object immutability and more. Both OIGJ
and Joe3 make use of ownership [40] to be able to properly support deep immutability
as discussed later in this chapter. Please refer to Figure 7 for a summary of supported
features in the abovementioned systems and several others.

4.1 Cases from Javari

This subsection shows examples of read-only as found in the Javari system.

5 http://types.cs.washington.edu/javari/
6 http://www.cs.cornell.edu/projects/polyglot/
7 http://types.cs.washington.edu/checker-framework/

http://types.cs.washington.edu/javari/
http://www.cs.cornell.edu/projects/polyglot/
http://types.cs.washington.edu/checker-framework/
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Enforcement of contracts. Consider a voting system containing the following routine:

1 ElectionResults tabulate(Ballots votes) { ... }

In order to permit verification (e.g. double checking) of the results, it is necessary to
safeguard the integrity of the ballots. This requires a machine-checked guarantee that
the routine does not modify its input votes. Using Javari, the specification of tabulate
could declare that votes is read-only:

1 ElectionResults tabulate(readonly Ballots votes) {
2 · · · // cannot tamper with the votes
3 }

and the compiler ensures that implementers of tabulate do not violate the contract.

Read-only access to internal data. Accessor methods often return data that already
exists as part of the representation of the module.

For example, consider the Class.getSigners method, which returns the entities
that have digitally signed a particular implementation. In JDK 1.1.1, its implementation
is simple and efficient:

1 class Class {
2 private Object[] signers;
3 Object[] getSigners() {
4 return signers;
5 }
6 }

This is a security hole, because a malicious client can call getSigners and then add
elements to the signers array.

Javari permits the following solution:

1 class Class {
2 private Object[] signers;
3 readonly Object[] getSigners() {
4 return signers;
5 }
6 }

The readonly keyword ensures that the caller of Class.getSigners cannot mod-
ify the returned array, thus permitting the simple and efficient implementation of the
method to remain in place without exposing the representation to undesired changes.8

An alternate solution to the getSigners problem, which was actually implemented
in later versions of the JDK, is to return a copy of the array signers [41]. This works,

8 The returned array is aliased by the signers field, so Class code can still change it even if
external code cannot. The specification of getSigners does not state the desired semantics
in this case, so this is an acceptable implementation. If a different semantics were desired, the
method specification could note that the returned reference reflects changes to the signers of
the Class; alternately, the method specification, or an external analysis, might require that the
result is used before the next modification of signers.
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but is expensive. For example, a file system may allow a client read-only access to its
contents:

1 class FileSystem {
2 private List<Inode> inodes;
3 List<Inode> getInodes() {
4 · · · // Unrealistic to copy
5 }
6 }

Javari allows the programmer to avoid the high cost of copying inodes by writing the
return type of the method as:

readonly List<readonly Inode> getInodes()

This return type prevents the List or any of its contents from being modified by the
client. As with all parameterized classes, the client specifies the type argument, includ-
ing whether it is read-only or not, independently of the parameterized typed.

In this case, the list returned is declared to be read-only and contain read-only ele-
ments, and, thus, a client of getInodes is unable to modify the list or its elements.

4.2 Cases from OIGJ

Figure 1 shows an implementation of LinkedList in OIGJ that follows closely the Sun’s
implementation but does not contain any additional bounds checking and supporting
code that would prevent it from fitting on one page. We explain this example in three
stages: (i) we first explain the data-structure, i.e., the fields of a list and its entries
(lines 1–6), (ii) then we discuss the raw constructors that enable the creation of im-
mutable lists (lines 7–21), and (iii) finally we dive into the complexities of inner classes
and iterators (lines 23–47). Note that method guards [42] state that the method is only
applicable if the type variable matches the bound stated by the guard (e.g. method next

inside the ListItr can only be called if ItrI is a subtype of Mutable).

LinkedList data-structure. A linked list has a header field (line 6) pointing to the first
entry. Each entry has an element and pointers to the next and prev entries (line 3). We
explain first the immutability and then the ownership of each field.

Note that we assume that O refers to the current class instance owner and I or ItrI
refer to the appropriate current immutability that is either class instance or method call
specific.

An (im)mutable list contains (im)mutable entries, i.e., the entire data-structure is
either mutable or immutable as a whole. Hence, all the fields have the same immutability
I. The underlying generic type system propagates the immutability information without
the need for special typing rules.

Next consider the ownership of the fields of LinkedList and Entry. This on line 6
expresses that the reference header points to an Entry owned by this, i.e., the entry
is encapsulated and cannot be aliased outside of this. O on line 3 expresses that the
owner of next is the same as the owner of the entry, i.e., a linked-list owns all its entries.
Note how the generics mechanism propagates the owner parameter, e.g., the type of
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1 class Entry<O,I,E> {
2 E element;
3 Entry<O,I,E> next, prev;
4 }
5 class LinkedList<O,I,E> {
6 Entry<This,I,E> header;
7 <I extends Raw>? LinkedList() {
8 this.header = new Entry<This,I,E>();
9 header.next = header.prev = header;

10 }
11 <I extends Raw>? LinkedList(Collection<?,ReadOnly,E> c) {
12 this(); this.addAll(c);
13 }
14 <I extends Raw>? void addAll(Collection<?,ReadOnly,E> c) {
15 Entry<This,I,E> succ = this.header, pred = succ.prev;
16 for (E e : c) {
17 Entry<This,I,E> en=new Entry<This,I,E>();
18 en.element=e; en.next=succ; en.prev=pred;
19 pred.next = en; pred = en; }
20 succ.prev = pred;
21 }
22 int size() {· · ·}
23 <ItrI extends ReadOnly> Iterator<O,ItrI,I,E> iterator() {
24 return this.new ListItr<ItrI>();
25 }
26 void remove(Entry<This,Mutable,E> e) {
27 e.prev.next = e.next;
28 e.next.prev = e.prev;
29 }
30 class ListItr<ItrI> implements Iterator<O,ItrI,I,E> {
31 Entry<This,I,E> current;
32 <ItrI extends Raw>? ListItr() {
33 this.current = LinkedList.this.header;
34 }
35 <ItrI extends Mutable>? E next() {
36 this.current = this.current.next;
37 return this.current.element;
38 }
39 <I extends Mutable>? void remove() {
40 LinkedList.this.remove(this.current);
41 }
42 } }
43 interface Iterator<O,ItrI,CollectionI,E> {
44 boolean hasNext();
45 <ItrI extends Mutable>? E next();
46 <CollectionI extends Mutable>? void remove();
47 }

Fig. 1. LinkedList<O,I,E> in OIGJ
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this.header.next.next is Entry<This,I,E>. Thus, the owner of all entries is the this

object, i.e., the list. OIGJ provides deep ownership or owners-as-dominators guarantees
as discussed in another chapter [43].

Finally, note that the field element has no immutability nor owner parameters, be-
cause they will be specified by the client that instantiates the list type, e.g.,
LinkedList<This,Mutable,Date<World,ReadOnly>>

Immutable object creation. A constructor that is making an immutable object must be
able to set the fields of the object. It is not acceptable to mark such constructors as
Mutable, which would permit arbitrary side effects, possibly including making mutable
aliases to this. OIGJ uses a fourth kind of immutability, raw, to permit constructors
to perform limited side effects without permitting modification of immutable objects.
Phrased differently, Raw represents a partially-initialized raw object that can still be ar-
bitrarily mutated, but after it is cooked (fully initialized), then the object might become
immutable. The constructors on lines 7 and 11 are guarded with Raw, and therefore can
create both mutable and immutable lists.

Objects must not be captured in their raw state to prevent further mutation after the
object is cooked. If a programmer could declare a field, such as Date<O,Raw>, then a
raw date could be stored there, and later it could be used to mutate a cooked immutable
date. Therefore, a programmer can write the Raw type only after the extends keyword,
but not in any other way. As a consequence, in a Raw constructor, this can only escape
as ReadOnly.

An object becomes cooked either when its new expression (construction) finishes ex-
ecuting or when its owner is cooked. The entries of the list (line 6) are this-owned. In-
deed, the entries are mutated after their constructor has finished, but before their owner
(list) is cooked, on lines 9, 19, and 20. This shows the power of combining immutability
and ownership: we are able to create immutable lists only by using the fact that the list
owns its entries. If those entries were not owned by the list, then this mutation of entries
might be visible to the outside world, thus breaking the guarantee that an immutable ob-
ject never changes. By enforcing ownership, OIGJ ensures that such illegal mutations
cannot occur.

OIGJ requires that all access and assignment to a this-owned field must be done
via this. For example, see header, on lines 8, 9, 15, and 33. In contrast, fields next

and prev (which are not this-owned) do not have such a restriction, as can be seen on
lines 27–28. Note that inner classes are treated differently, and are allowed to access the
outer object’s this-owned fields. This arguably gives a more flexible system, which for
instance allows the iterator class in the example, but at the cost of less clear containment
properties.

Iterator implementation and inner classes. An iterator has an underlying collection,
and the immutability of these two objects might be different. For example, you can
have

– a mutable iterator over a mutable collection (the iterator supports both remove() and
next()),

– a mutable iterator over a readonly/immutable collection (the iterator supports next()
but not remove()), or
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– a readonly iterator over a mutable collection (the iterator supports remove() but not
next(), which can be useful if you want to pass an iterator to a method that may not
advance the iterator but may remove the current element).

Consider the Iterator<O,ItrI,CollectionI,E> interface defined on lines 43–47, and
used on lines 23 and 30. ItrI is the iterator’s immutability, whereas CollectionI is
intended to be the underlying collection’s immutability (see on line 30 how the collec-
tion’s immutability I is used in the place of CollectionI). Line 45 requires a mutable
ItrI to call next(), and line 46 requires a mutable CollectionI to call remove().

Inner class ListItr (lines 30–42) is the implementation of Iterator for list.
Its full name is LinkedList<O,I,E>.ListItr<ItrI>, and on line 30 it extends
Iterator<O,ItrI,I,E>. It reuses the owner parameter O from LinkedList, but declares a
new immutability parameter ItrI. An inner class, such as ListItr<ItrI>, only declares
an immutability parameter because it inherits the owner parameter from its outer class.
ListItr and LinkedList have the same owner O, but different immutability parameters
(ItrI for ListItr, and I for LinkedList). ListItr must inherit LinkedList’s owner
because it directly accesses the (this-owned) representation of LinkedList (line 33),
which would be illegal if their owner was different. For example, consider the types of
this and LinkedList.this on line 33:

Iterator<O,ItrI,· · ·> thisIterator = this;
LinkedList<O,I,· · ·> thisList = LinkedList.this;

Because line 32 sets the bound of ItrI to be Raw, this can be mutated. By contrast, the
bound of I is ReadOnly, so LinkedList.this cannot.

Finally, consider the creation of a new inner object on line 24 using this.new

ListItr<ItrI>(). This expression is type-checked both as a method call (whose re-
ceiver is this) and as a constructor call. Observe that the bound of ItrI is ReadOnly

(line 23) and the guard on the constructor is Raw (line 32), which is legal because a Raw

constructor can create both mutable and immutable objects.

4.3 Cases from Joe3

This subsection presents a different take on how to specify read-only and immutability,
in which the context where an object is used determines its mutability properties.

A short note on effects. Joe3 employs a very simple effects system to specify what a
class or method will mutate. The effects are specified in terms of contexts (or owners)
inspired by Joe1 [44]. In Joe3 context parameters are decorated with modes which
govern how objects belonging to a particular context may be treated.

Separating Mutability of List and its Contents. Figure 2 shows part of an implementa-
tion of a list class. The class is parameterized over permissions (data in this case) which
specify that the list has privilege to reference objects in that context. The parameter data
is decorated with the mode read-only (denoted ‘-’), indicating that the list will never
cause write effects to objects owned by data. The owner of the list is called owner and
is implicitly declared. The method getFirst() is annotated with revoke owner, which
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1 class Link<data- strictlyoutside owner> {
2 data:Object obj = null;
3 owner:Link<data> next = null;
4 }
5
6 class List<data- strictlyoutside owner> {
7 this:Link<data> first = null;
8 void addFirst(data:Object obj) {
9 this:Link<data> tmp = new this:Link<data>();

10 tmp.obj = obj;
11 tmp.next = this.first;
12 this.first = tmp;
13 }
14 void filter(data:Object obj) {
15 this:Link<data> tmp = this.first;
16 if (tmp == null) return;
17 while (tmp.next != null)
18 if (tmp.next.obj == obj)
19 tmp.next = tmp.next.next;
20 else
21 tmp = tmp.next;
22 if (this.first != null && this.first.obj == obj)
23 this.first = this.first.next;
24 }
25 data:Object getFirst() revoke owner { return this.first.obj; }
26 }

Fig. 2. Fragment of a list class. As the data owner parameter is declared read-only (via ‘-’) in the
class header, no method in List may modify an object owned by data. Observe that the syntactic
overhead is minimal for an ownership types system.

means that the method will not modify the list or its transitive state. This means the same
as if owner- and this- would have appeared in the class header. This allows the method
to be called from objects where the list owner is read-only. Finally, strictlyoutside
means that the data context must not be the same context as the owner of the list.

This list class can be instantiated in four different ways, depending on the access
rights to the owners in the type held by the current context:

– both the list and its data objects are immutable, which only allows getFirst() to be
invoked, and its resulting object is immutable;

– both are mutable, which imposes no restrictions;
– the list is mutable but the data objects are not, which imposes no additional restric-

tions, getFirst() returns a read-only reference; and
– the data objects are mutable, but the list not, which only allows getFirst() to be

invoked, and the resulting object is mutable.

The last form is interesting and relies on the fact that it is known, courtesy of ownership
types, that the data objects are not part of the representation of the list. Without this
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distinction one could easily create an example where a mutable alias can be returned
from a read-only object.

4.4 Complementing Immutability

In this subsection we explain why blindly adding immutability support to any OO lan-
guage with aliasing might not be such a good idea and how it can be addressed by
careful application of various ownership techniques discussed in the rest of this book.

Boyland [45] criticizes existing proposals for handling read-only references on the
following points:

1. Read-only references can be aliased, for example by capturing a method argument;
2. A read-only annotation does not express whether

(a) the referenced object is immutable, so the referent is known to never change;
(b) a read-only reference is unique and thus effectively immutable;
(c) mutable aliases of a read-only reference can exist, which makes possible obser-

vational exposure, which occurs when changes to state are observed through a
read-only reference.

Essentially, Boyland is criticizing reference immutability for not being object immutabil-
ity. In some contexts, object immutability is more useful, and in other contexts, refer-
ence immutability is more useful. Furthermore, as we noted earlier, different contexts
require other differences (such as representation immutability for reasoning about the
memory system, and abstract immutability for reasoning about client code semantics).
Boyland’s criticisms can be addressed, for those contexts where object immutability is
desired, by augmenting reference immutability with object immutability.

For example, Joe3 addresses all of these problems. First, Joe3 supports owner-
polymorphic methods, which can express that a method does not capture one or more
of its arguments. Second, owners are decorated with modes that govern how the objects
owned by that owner will be treated in a particular context. Together with auxiliary
constructs inherited from Joline [46], the modes can express immutability both in terms
of 2.a) and 2.b), and read-only which permits the existence of mutable aliases (2.c).
Moreover, Joe3 supports fractional permissions [47] — converting a mutable unique
reference into several immutable references for a certain context. This allows safe rep-
resentation exposure without the risk for observational exposure.

OIGJ and Joe3 allow both read-only references and immutable objects in the same
language. This provides the safety desired by Boyland’s second point, but also allows
coding patterns which do rely on observing changes in an object. In order to support
such flexibility it appears necessary to employ some kind of alias control mechanism,
which in the cases of OIGJ and Joe3 is ownership.

Ownership and Immutability. Ownership types [40, 48] impose a structure on the
references between objects in the program heap. Languages with ownership, such as
for instance Joline [46] and OGJ [49], prevent aliasing to the internal state of an object.
While preventing exposure of owned objects, ownership does not address exposing im-
mutable parts of an object which cannot break encapsulation, even though the idea was
originally sprung out of a proposal supporting that [30].



Immutability 247

One possible application of ownership types is the ability to reason about read and
write effects [50] which has complimentary goals to object immutability. Universes [9]
is a Java language extension combining ownership and read-only references. Most own-
ership systems enforce that all reference chains to an owned object pass through the
owner. Universes relaxes this requirement by enforcing this rule only for mutable refer-
ences, i.e., read-only references may be shared without restriction.

Universes, OIGJ, and Joe3 provide what we call context-based immutability. Here
it is possible to create a writable list with writable elements and pass it to some other
context where the elements are read-only. This other context may add elements to the
list (or reorder them) but not mutate the elements, while the original creator of the list
does not lose the right to mutate the elements.

A read-only reference to an object does not preclude the existence of mutable ref-
erences to the same object elsewhere in the system. This allows observational expo-
sure [45] — for good and evil. Object immutability imposes all restrictions of a read-
only reference, but also guarantees that no aliases with write permission exist in the
system. One simple way of creating an immutable object is to move a unique reference
into a variable with immutable type [51, 12].

5 A Selection of Recent Immutability Proposals

We will now present in more detail the major proposals improving on the status quo
in modern popular OO languages, i.e., final in Java and const in C++. Javari [6]
was presented in 2004, adding read-only references. In 2007 Immutability Generic
Java (IGJ) [10] was proposed, adding immutability and immutability parameterization.
Joe3 [12], proposed in 2008, uses ownership, external uniqueness — to support transi-
tion from mutable to immutable — and a trivial effects system to support immutability
and context-based immutability. OIGJ [11], published in 2010, again employs owner-
ship to achieve immutability, albeit a less strict variant of ownership allowing for more
flexibility. OIGJ uses the existing Java generics machinery to encode ownership, which
removes the need for an extra parameter clause on classes and methods. While we de-
scribe the proposals by the authors of this chapter in great detail, we also provide an
overview of the other complementary proposals in the Section 5.5.

5.1 Javari

The Javari [6] programming language extends Java to allow programmers to specify
and enforce reference immutability constraints. A read-only reference cannot be used
to modify the object, including its transitive state, to which it refers.

Javari’s type system differs from previous proposals (for Java, C++, and other lan-
guages) in a number of ways. First, it offers reference, not object, immutability.
Second, Javari offers guarantees for the entire transitively reachable state of an object
— the state of the object and all state reachable by following references through its (non-
static) fields. A programmer may use the type system to support reasoning about either
the representation state of an object or its abstract state; to support the latter, parts of a
class can be marked as not part of its abstract state.
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Third, Javari combines static and dynamic checking in a safe and expressive way.
Dynamic checking is necessary only for programs that use immutability downcasts, but
such downcasts can be convenient for interoperation with legacy code or to express
facts that cannot be proved by the type system. Javari also offers parameterization over
immutability.

Experience with over 160,000 lines of Javari code, including the Javari compiler
itself, indicates that Javari is effective in practice in helping programmers to document
their code, reason about it, and prevent and eliminate errors.

The language design issues include the following:

– Should Javari use new keywords (and possibly other syntax) to indicate reference
immutability, or should it use Java’s annotation mechanism9? (Or, should a pro-
totype implementation use annotations, even if Javari itself should eventually use
keywords?)

– The immutability downcast adds expressiveness to the Javari language, but it also
adds implementation complexity and (potentially pervasive) run-time overhead. Is a
language that lacks immutability downcasts practical?

– How can uses of reflection, serialization, and other Java constructs that are outside
the scope of the Java type system be handled, particularly without adding run-time
overhead?

– The existing Javari template mechanism is unsatisfactory. It is orthogonal to Java
generics (even in places where it seems that generics should be a satisfactory
solution).

Javari has presented a type system that is capable of expression, compile-time veri-
fication, and run-time checking of reference immutability constraints. Read-only ref-
erences guarantee that the reference cannot be used to perform any modification of
a (transitively) referred-to object. The type system should be generally applicable to
object-oriented languages, but for concreteness we have presented it in the context of
Javari, an extension to the full Java 5 language, including generic types, arrays, re-
flection, serialization, inner classes, exceptions, and other idiosyncrasies. Immutability
polymorphism (templates) for methods are smoothly integrated into the language, re-
ducing code duplication. Tschantz et al. [6] provided a set of formal type rules for a
core calculus that models the Javari language and used it to prove type soundness for
the Javari type system.

Javari provides a practical and effective combination of language features. For in-
stance, we describe a type system for reference rather than object immutability. Ref-
erence immutability is useful in more circumstances, such as specifying interfaces, or
objects that are only sometimes immutable. Furthermore, type-based analyses can run
after type checking in order to make stronger guarantees (such as object immutability)
or to enable verification or transformation. The system is statically type-safe, but op-
tionally permits downcasts that transform compile-time checks into run-time checks for
specific references, in the event that a programmer finds the type system too constrain-
ing. The language is backward compatible with Java and the Java Virtual Machine, and
is interoperable with Java. Together with substantial experience with a prototype for

9 http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
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a closely related dialect [3], these design features provide evidence that the language
design is effective and useful.

The Javari language presented is an evolutionary improvement of an earlier dialect [3],
which we call “Javari2004”. In what follows we highlight the main features of the Javari
language and justify them in the context of a large user study done using the previous
version of the language.

Distinguishing Assignability from Mutability. Javari2004’s mutablekeyword declares
that a field is both assignable and mutable: there is no way to declare that a field is only
assignable or only mutable. Javari’s assignable and mutable keywords highlight the
orthogonality of assignability and mutability, and increase the expressiveness of the lan-
guage. See appendix of Javari paper for examples of the use of assignable and mutable.

Generic Types. Javari provides a detailed treatment of generic classes that smoothly
integrates read-only references with them. Javari2004 does not supports generic classes,
though the OOPSLA 2004 paper speculates about a macro expansion mechanism that is
syntactically, but not semantically, similar to the way that Java 5 treats type parameters.
Java 5 compiles type parameters via type erasure, but Javari2004 treated the mutability
parameters (which appeared in the same list as the type parameters) via code duplica-
tion; this distinction complicates implementation, understanding, and use.

Arrays. As with generic classes, Javari permits programmers to independently specify
the mutability of each level of an array. By contrast, Javari2004’s specification states:
“readonly int[][] and readonly (readonly int[])[] are equivalent,” forbidding
creation of a read-only array of mutable items.

Within current Javari one may make such as declaration as follows: readonly
Object[]. One could also declare a mutable array of read-only objects: /*mutable*/
(readonly Object)[].

Method Templates. Javari2004 integrated the syntax for templating a method over
mutability with the syntax for Java 5’s generic types.

For example, the following method signature is a templated method.

public <RO> RO List<RO Invariant> get(RO PptTopLevel ppt) RO;

The <RO> at the beginning of the signature specifies that RO is a type parameter.
Whether a parameter is intended to be a normal type parameter or a mutability type

parameter must be inferred from its usage, greatly complicating a compiler (and the
prototype Javari2004 implementation required distinct syntax to ease the compiler’s
task [52, 3]).

Furthermore, Javari2004 allows declaring an arbitrary number of mutability type pa-
rameters. Only a single mutability type parameter was deemed sufficient by the Javari
designers, so Javari uses a much simpler mechanism (romaybe) for indicating a variable
mutability. This new approach highlights the orthogonality of the Java 5’s generic types
and Javari’s mutability polymorphism for methods. Furthermore, it does not require any
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run-time representation of the polymorphism. IGJ [10] and OIGJ [11] have both demon-
strated that building on generic types provides a much nicer treatment for immutability
parameterization completely removing the need for romaybe.

5.2 IGJ

Immutability Generic Java. (IGJ) is a language that supports class and object immutabil-
ity and read-only references. Each object is either mutable or immutable, and each refer-
ence is Immutable, Mutable, or ReadOnly. Inspired by work that combines ownership and
generics [49], the distinctions are expressed without changing Java’s syntax by adding
one new type parameter (at the beginning of the list of type parameters):

1 // An immutable reference to an immutable date; mutating the
2 // referent is prohibited, via this or any other reference.
3 Date<Immutable> immutD = new Date<Immutable>();
4 // A mutable reference to a mutable date; mutating the referent
5 // is permitted, via this or any other mutable reference.
6 Date<Mutable> mutD = new Date<Mutable>();
7 // A read-only reference to any date; mutating the referent is
8 // prohibited via this reference, but the referent may be changed
9 // via an aliasing mutable reference.

10 Date<ReadOnly> roD = · · · ? immutD : mutD;

Line 3 shows object immutability in IGJ, and Line 10 shows read-only references.
Java prohibits changes to type arguments, such as in Line 10, to avoid a type loop-

hole. More detailed discussion of the Java language and type system is given by Bracha
et al. [53] and Igarashi et al. [54]. Line 10 is legal in IGJ, because IGJ allows covari-
ant changes in the immutability parameter. IGJ even allows covariant changes in other
type parameters if mutation is disallowed, e.g., List<ReadOnly,Integer> is a subtype
of List<ReadOnly,Number>.

IGJ satisfies the following design principles:

Transitivity. More accurately, IGJ does not require transitivity. Rather, it provides a
mechanism by which programmers can specify exactly where transitivity should be
applied — and then that transitivity is enforced by the type system.
IGJ provides transitive (deep) immutability that protects the entire abstract state of
an object. For example, an immutable graph contains an immutable set of immutable
edges.
C++ does not support such transitivity because its const-guarantee does not traverse
pointers, i.e., a pointer in a const object can mutate its referent.
IGJ also permits excluding a field from the abstract state. For example, fields used
for caching can be mutated even in an immutable object.

Static. IGJ has no runtime representation for immutability, such as an “immutabil-
ity bit” that is checked before assignments or method calls. IGJ designers believe
that testing at runtime whether an object is immutable [4] hampers program under-
standing.
The IGJ compiler works by type-erasure, without any run-time representation of
reference or object immutability, which enables executing the resulting code on
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any JVM without runtime penalty. A similar approach was taken by Generic Java
(GJ) [53] that extended Java 1.4. As with GJ, libraries must either be retrofitted with
IGJ types, or fully converted to IGJ, before clients can be compiled. IGJ is backward
compatible: every legal Java program is a legal IGJ program.

Polymorphism. IGJ abstracts over immutability without code duplication by using
generics and a flexible subtype relation. For instance, all the collection classes in
C++’s STL have two overloaded versions of iterator, operator[], etc. The underly-
ing problem is the inability to return a reference whose immutability depends on the
immutability of this:

const Foo& getFieldFoo() const;
Foo& getFieldFoo();

Simplicity. IGJ does not change Java’s syntax. A small number of additional typing
rules make IGJ more restrictive than Java. On the other hand, IGJ’s subtyping rules
are more relaxed, allowing covariant changes in a type-safe manner.
Phrased differently, IGJ uses rules which fit naturally into Java’s design.

Most of the IGJ terminology was borrowed from Javari [6] such as assignable, read-
only, mutable, and this-mutable. In Javari, this-mutable fields are mutable as lvalue
and readonly as rvalue. Javari does not support object immutability, and its read-only
references are more limited than that of IGJ because Javari has no this-mutable param-
eters, return types, or local variables. Javari’s keyword romaybe is in essence a template
over immutability. IGJ uses generics directly to achieve the same goal.

Javari also supports this-assignable fields, which pass the assignability (final or
assignable) of this to a field.

Finally, Javari uses ? readonly which is similar to Java’s wildcards. Consider, for
instance, the class Foo written in Javari’s syntax:

class Foo { mutable List<Object> list; }

Then in a readonly Foo the type of list is

mutable List<? readonly> Object

which is syntactic sugar for

mutable List<? extends readonly Object
super mutable Object>

Thus, it is possible to insert only mutable elements to list, and retrieve only read-only
elements. Such complexities, in IGJ designers point of view, make IGJ easier to use
than Javari.

5.3 Joe3

This section will present Joe3 in a bit more detail. Joe3 is a Java-like language with deep
ownership, owner-polymorphic methods, external uniqueness, an effects (revocation)
system and a simple mode system which decorates owners with permissions to indicate
how references with the annotated owners may be used. The annotation of owners with
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modes is the main novelty in Joe3. The modes indicate that a reference may be read or
written (+), only read (-), or that the reference is immutable (*). Read and immutable
annotations on an owner in the class header represent a promise that the code in the
class body will not change objects owned by that owner. The key to preserving and
respecting immutability and read-only in Joe3 is a simple effects system, rooted in
ownership types, and inspired by Clarke and Drossopoulou’s Joe1 [44]. Classes, and
hence objects, have rights to read or modify objects belonging to certain owners; only a
minor extension to the type system of Clarke and Wrigstad’s Joline [55, 56] is required
to ensure that these rights are not violated.

Classes are parameterized with owners related to each other by an inside/outside
nesting relation. An owner is a permission to reference the representation of another
object. Class headers have this form:

class List<data- outside owner> { · · · }

Each class has at least two owner parameters, this and owner, which represent the
representation of the current object and the representation of the owner of the current
object, respectively. In the example above, the List class has an additional permission
to reference objects owned by data, which is nested outside owner. Types are formed
by instantiating the owner parameters, this:List<owner>. An object with this type be-
longs to the representation of the current object and has the right to reference objects
owned by owner. There are two nesting relations between owners, inside and outside.
They exist in two forms each, one reflexive (inside/outside) and one non-reflexive
(strictly-inside/strictly-outside). Thus, going back to our list example, a type
this:List<this> denotes a list object belonging to the current representation, holding
objects in the current representation.

Apart from ownership types, the key ingredients in Joe3 are the following:

– (externally) unique types (written unique[p]:Object), a special borrowing construct
for temporarily treating a unique type non-uniquely, and owner casts for converting
unique references permanently into normal references.

– modes on owners — mutable ‘+’, read-only ‘-’, and immutable ‘*’. These appear
on every owner parameter of a class and owner polymorphic methods, though not
on types.

– an effects revocation clause on methods which states which owners will not be mod-
ified in a method. An object’s default set of rights is derived from the modes on the
owner parameters in the class declaration.

Annotating owners at the level of classes (that is, for all instances) rather than types
(for each reference) is a trade-off. Rather than permitting distinctions to be made using
modes on a per reference basis, Joe3 admits only per class granularity. Some potential
expressiveness is lost, though the syntax of types does not need to be extended. Nonethe-
less, the effects revocation clauses regain some expressiveness that per reference modes
would give. Another virtue of using per class rather than per reference modes is that
some covariance problems found in other proposals are avoided, as what you can do
with a reference depends on the context and is not a property of the reference. The co-
variance problem, similar to Java generics, is essentially that immutability variance in
the element parameter of a list makes it possible to mutate read-only elements.
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1 class ListWriter<o+ outside owner, data- strictlyoutside o> {
2 void mutateList(o:List<data> list) {
3 list.addFirst(new data:Object());
4 }
5 }
6 class ListReader<o- outside owner, data+ strictlyoutside o> {
7 void mutateElements(o:List<data> list) {
8 list.elementAt(0).mutate();
9 }

10 }
11 class Example {
12 void example() {
13 this:List<world> list = new this:List<world>();
14 this:ListWriter<this, world> w = new this:Writer<this, world>();
15 this:ListReader<this, world> r = new this:Reader<this, world>();
16 w.mutateList(list);
17 r.mutateElements(list);
18 }
19 }

Fig. 3. Different views of the same list can exist at the same time. r can modify the elements
of list but not the list itself, w can modify the list object, but not the list’s contents, and
instances of Example can modify both the list and its contents.

Context-Based Read-Only. As shown in Figure 3, different clients of the list can have
different views of the same list at the same time. The class ListReader does not have
permission to mutate the list, but has no restrictions on mutating the list elements. Du-
ally, the ListWriter class can mutate the list but not its elements.

As owner modes only reflect what a class is allowed to do to objects with a certain
owner, ListWriter can add data objects to the list that are read-only to itself and the
list, but writable by Example and ListReader. This is a powerful and flexible idea. For
example, Example can pass the list to ListWriter to filter out certain objects in the list.
ListWriter can then consume or change the list, or copy its contents to another list,
but not modify them. ListWriter can then return the list to Example, without Example
losing its right to modify the objects obtained from the returned list. This is similar to
the context-based read-only in Universes-based systems [57, 58]. In contrast, however,
Joe3 does not allow representation exposure via read-only references.

Immutable Object Initialization. Immutable objects need to be mutated in their con-
struction phase. Unless caution is taken the constructor might leak a reference to this (by
passing this to a method) or mutate other immutable objects of the same class. The stan-
dard solution to this problem in related proposals is to limit the construction phase to
the constructor [10, 11, 59]. Continuing initialization by calling auxiliary methods after
the constructor returns is simply not possible. Joe3, on the other hand, permits staged
construction, as demonstrated in Figure 4. In this example a client uses a factory to cre-
ate an immutable list. The factory creates a unique list and populates it. The list is then
destructively read and returned to the caller as an immutable. Interestingly enough, if
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1 class Client<p* outside owner, data+ strictlyoutside p> {
2 void method() {
3 this:Factory<p, data> f = new this:Factory<p, data>();
4 p:List<data> immutable = f.createList();
5 }
6 }
7 class Factory<p* inside world, data+ strictlyoutside p> {
8 p:List<data> createList() {
9 unique[p]:List<data> list = new p:List<data>();

10 borrow list as temp+ l in { // 2nd stage of construct.
11 l.add(new data:Object());
12 }
13 return list--; // unique reference returned
14 }
15 }

Fig. 4. Staged construction of an immutable list

an inference mechanism were employed to remove trivial uses of borrowing, such as
the one in the figure, then this example could be done without the extra baggage.

Fractional Permissions. Using uniqueness and Joline’s borrowing statement, Joe3 can
encode a variant of Boyland’s Fractional Permissions [47], where a mutable reference is
turned into an immutable reference for a limited time, after which it can be reestablished
as a mutable reference with no residual aliasing. This is described in more detail with
an example in Section 6.3.

5.4 OIGJ

This section presents the OIGJ language extension that expresses both ownership and
immutability information.

OIGJ introduces two new type parameters to each type, called the owner parame-
ter and the immutability parameter. For simplicity of presentation, we assume that the
special type parameters are at the beginning of the list of type parameters. We stress
that generics in Java are erased during compilation to bytecode and do not exist at run
time, therefore OIGJ does not incur any run-time overhead (nor does it support run-time
casts).

In OIGJ, all classes are subtypes of the parameterized root type Object<O,I> that
declares an owner and an immutability parameter. In OIGJ, the first parameter is the
owner (O), and the second is the immutability (I). All subclasses must invariantly pre-
serve their owner and immutability parameter. The owner and immutability parameters
form two separate hierarchies, which are shown in Figure 5. These parameters cannot
be extended, and they have no subtype relation with any other types. The subtyping
relation is denoted by �, e.g., Mutable� ReadOnly. Subtyping is invariant in the owner
parameter and covariant in the immutability parameter.
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ReadOnly

Raw Immut

Mutable

World

This

(a) (b)

Fig. 5. The type hierarchy of (a) ownership and (b) immutability parameters. World means the
entire world can access the object, whereas This means that this owns the object and no
one else can access it. A Immut/Mutable reference points to an immutable/mutable object. A
ReadOnly reference points to a mutable or immutable object, and therefore cannot be used to
mutate the object. Raw represents an object under construction whose fields can be assigned.

Note that the owner parameter O is a type, whereas the owner of an object is an object.
For example, if the owner parameter is This, then the owner is the object this. There-
fore, the owner parameter (which is a type) at compile time corresponds to an owner
(which is an object) at run time. (See also paragraph Owner vs. Owner-parameter be-
low.)

OIGJ syntax borrows from conditional Java (cJ) [42], where a programmer can write
method guards. A guard of the form <X extends Y>? METHOD DECLARATION has a dual
meaning: (i) the method is applicable only if the type argument that substitutes X ex-
tends Y, and (ii) the bound of X inside METHOD DECLARATION changes to Y. The guards are
used to express the immutability of this: a method receiver or a constructor result. For
example, a method guarded with <I extends Mutable>? means that (i) the method is
applicable only if the receiver is mutable and therefore (ii) this can be mutated inside
the method.

Class definition example. Figure 6 shows an example of OIGJ syntax. A class definition
declares the owner and immutability parameters (line 1); by convention we always de-
note them by O and I and they always extend World and ReadOnly. If the extends clause
is missing from a class declaration, then we assume it extends Object<O,I>.

Immutability example. Lines 3–10 show different kinds of immutability in OIGJ: im-
mutable, mutable, and readonly. A read-only and an immutable reference may seem
similar because neither can be used to mutate the referent. However, line 10 shows
the difference between the two: a read-only reference may point to a mutable object.
Phrased differently, a read-only reference may not mutate its referent, though the refer-
ent may be changed via an aliasing mutable reference.

Java’s type arguments are invariant (neither covariant nor contravariant), to avoid
a type loophole [54], so line 10 is illegal in Java. Line 10 is legal in OIGJ, because
OIGJ safely allows covariant changes in the immutability parameter (but not in the
owner parameter). OIGJ restricts Java by having additional typing rules, while at the
same time OIGJ also relaxes Java’s subtyping relation. Therefore, neither OIGJ nor Java
subsumes the other, i.e., a legal OIGJ program may be illegal in Java (and vice versa).
However, because generics are erased during compilation, the resulting bytecode can
be executed on any JVM.
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1 class Foo<O extends World,I extends ReadOnly> {
2 // An immutable reference to an immutable date.
3 Date<O,Immut> imD = new Date<O,Immut>();
4 // A mutable reference to a mutable date.
5 Date<O,Mutable> mutD = new Date<O,Mutable>();
6 // A read−only reference to any date.
7 // Both roD and imD cannot mutate their referent,
8 // however the referent of roD might be mutated by an alias,
9 // whereas the referent of imD is immutable.

10 Date<O,ReadOnly> roD = · · · ? imD : mutD;
11 // A date with the same owner and immutability as this.
12 Date<O,I> sameD;
13 // A date owned by this; it cannot leak.
14 Date<This,I> ownedD;
15 // Anyone can access this date.
16 Date<World,I> publicD;
17 // Can be called on any receiver; cannot mutate this.
18 // The method guard ‘‘<· · ·>?’’ is part of cJ’s syntax˜[42].
19 <I extends ReadOnly>? int readonlyMethod() {· · ·}
20 // Can be called only on mutable receivers; can mutate this.
21 <I extends Mutable>? void mutatingMethod() {· · ·}
22 // Constructor that can create (im)mutable objects.
23 <I extends Raw>? Foo(Date<O,I> d) {
24 this.sameD = d;
25 this.ownedD = new Date<This,I>();
26 // Illegal, because sameD came from the outside.
27 // this.sameD.setTime(· · ·);
28 // OK, because Raw is transitive for owned fields.
29 this.ownedD.setTime(· · ·);
30 } }

Fig. 6. An example of OIGJ syntax

The immutability of sameD (line 12) depends on the immutability of this, i.e., sameD
is (im)mutable in an (im)mutable Foo object. Similarly, the owner of sameD is the same
as the owner of this.

Ownership example. Lines 12–16 show three different owner parameters: O, This, and
World. The owner parameter is invariant, i.e., the subtype relation preserves the owner
parameter. For instance, the types on lines 12–16 have no subtype relation with each
other because they have different owner parameters.

Reference ownedD cannot leak outside of this, whereas references sameD and publicD

can potentially be accessed by anyone with access to this. Although sameD and publicD

can be accessed by the same objects, they cannot be stored in the same places: publicD
can be stored anywhere on the heap (even in a static public variable) whereas sameD can
only be stored inside its owner.
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We use O(. . .) to denote the function that takes a type or a reference, and returns
its owner parameter; e.g., O(ownedD) = This. Similarly, function I(. . .) returns the im-
mutability parameter; e.g., I(ownedD) = I. We say that an object o is this-owned (i.e.,
owned by this) if O(o) = This; e.g., ownedD is this-owned, but sameD is not. OIGJ
prevents leaking this-owned objects by requiring that this-owned fields (and methods
with this-owned arguments or return-type) can only be used via this. For example,
this.ownedD is legal, but foo.ownedD is illegal.

Owner vs. owner-parameter. Now we explain the connection between the owner pa-
rameter O(o), which is a generic type parameter at compile time, and the owner θ(o),
which is an object at run time. This is an owner parameter that represents an owner
that is the current this object, and World represents the root of the ownership tree (we
treat World both as a type parameter and as an object that is the root of the ownership
tree). Formally, if O(o) = This then θ(o) = this, if O(o) = O then θ(o) = θ(this), and
if O(o) = World then θ(o) = World. Two references (in the same class) with the same
owner parameter (at compile time) will point to objects with the same owner (at run
time), i.e., O(o1) = O(o2) implies θ(o1) = θ(o2).

Finally, OIGJ provides the following ownership guarantee: o′ can point to o iff o′ �θ
θ(o). By definition of �θ, we have that for all o: (i) o �θ o, (ii) o �θ θ(o), and (iii) o �θ
World. By part (iii), if θ(o) = World then anyone can point to o. On lines 12–16, we
see that this can point to ownedD, sameD, publicD, whose owner parameters are This, O,
World, and whose owners are this, θ(this), World. This conforms with the ownership
guarantee according to parts (i), (ii), and (iii), respectively. More complicated pointing
patterns can occur by using multiple owner parameters, e.g., an entry in a list can point
to an element owned by the list’s owner, such as in List<This,I,Date<O,I>>.

There is a similar connection between the immutability type parameter (at compile
time) and the object’s immutability (at run time). Immutability parameter Mutable or
Immut implies the object is mutable or immutable (respectively), ReadOnly implies the
referenced object may be either mutable or immutable and thus the object cannot be
mutated through the read-only reference. Raw implies the object is still raw and thus can
still be mutated, but it might become immutable after it is cooked.

Method guard example. Lines 19 and 21 of Figure 6 show a read-only and a mutating
method. These methods are guarded with <...>?. Conditional Java (cJ) [42] extends
Java with such guards (a.k.a. conditional type expressions). Note that cJ changed Java’s
syntax by using the question mark in the guard <...>?. OIGJ paper uses cJ for conve-
nience. However, the OIGJ implementation uses type annotations [60] without changing
Java’s syntax, for conciseness and compatibility with existing tools and code bases.

A guard such as <T extends U>? METHOD DECLARATION has a dual purpose: (i) the
method is included only if T extends U, and (ii) the bound of T is U inside the method.
In our example, the guard on line 21 means that (i) this method can only be called
on a Mutable receiver, and (ii) inside the method the bound of I changes to Mutable.
For instance, (i) only a mutable Foo object can be a receiver of mutatingMethod, and
(ii) field sameD is mutable in mutatingMethod. cJ also ensures that the condition of an
overriding method is equivalent or weaker than the condition of the overridden method.
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IGJ used declaration annotations to denote the immutability of this. In this chap-
ter, OIGJ uses cJ to reduce the number of typing rules and handle inner classes more
flexibly.10 OIGJ does not use the full power of cJ: it only uses guards with immutability
parameters. Moreover, we modified cJ to treat guards over constructors in a special way.

To summarize, on lines 19–23 we see three guards that change the bound of I to
ReadOnly, Mutable, and Raw, respectively. Because the bound of I is already declared on
line 1 as ReadOnly, the guard on line 19 can be removed.

Constructor example. The constructor on line 23 is guarded with Raw, and therefore
can create both mutable and immutable objects, because all objects start their life cycle
as raw. This constructor illustrates the interplay between ownership and immutability,
which makes OIGJ more expressive than previous work on immutability. OIGJ uses
ownership information to prolong the cooking phase for owned objects: the cooking
phase of this-owned fields (ownedD) is longer than that of non-owned fields (sameD).
This property is critical to type-check the collection classes.

Consider the following code:

1 class Bar<O extends World,I extends ReadOnly> {
2 Date<O,Immut> d = new Date<O,Immut>();
3 Foo<O,Immut> foo = new Foo<O,Immut>(d);
4 }

OIGJ provides the following immutability guarantee: an immutable object cannot be
changed after it is cooked. A This-owned object is cooked when its owner is cooked
(e.g., foo.ownedD). Any other object is cooked when its constructor finishes (e.g., d and
foo). The intuition is that ownedD cannot leak and so the outside world cannot observe
this longer cooking phase, whereas d is visible to the world after its constructor finishes
and must not be mutated further. The constructor on lines 23–30 shows this difference
between the assignments to sameD (line 24) and to ownedD (line 25): sameD can come
from the outside world, whereas ownedD must be created inside this. Thus, sameD cannot
be further mutated (line 27) whereas ownedD can be mutated (line 29) until its owner is
cooked.

An object in a raw method, whose immutability parameter is I, is still considered raw
(thus the modified body can still assign to its fields or call other raw methods) iff the
object is thisor this-owned. Informally, we say that Raw is transitive only for thisor
this-owned objects. For example, the receiver of the method call sameD.setTime(...)
is not thisnor this-owned, and therefore the call on line 27 is illegal; however, the
receiver of ownedD.setTime(...) is this-owned, and therefore the call on line 29 is
legal.

5.5 Other Immutability Proposals

JAC Similarly to the proposals in this chapter, JAC [7] has a readonly keyword
indicating transitive immutability, an implicit type readonly T for every class and

10 The OIGJ implementation uses type annotations to denote immutability of this. A type an-
notation @Mutable on the receiver is similar to a cJ <I extends Mutable>? construct, but it
separates the distinct roles of the receiver and the result in inner class constructors.



Immutability 259

interface T defined in the program, and a mutable keyword. However, the other as-
pects of the two languages’ syntax and semantics are quite different. For example,
JAC provides a number of additional features, such as a larger access right hierarchy
(readnothing < readimmutable < readonly < writeable) and additional key-
words (such as nontransferrable) that address other concerns than immutability.
The JAC authors propose implementing JAC by source rewriting, creating a new type
readonly T that has as methods all methods of T that are declared with the keyword
readonly following the parameter list (and then compiling the result with an ordinary
Java compiler). However, the return type of any such method is readonly. For exam-
ple, if class Person has a method public Address getAddress() readonly, then
readonly Person has method public readonly Address getAddress() readonly.
In other words, the return type of a method call depends on the type of the receiver ex-
pression and may be a supertype of the declared type, which violates Java’s typing
rules. Additionally, JAC is either unsound for, or does not address, arrays of readonly
objects, casts, exceptions, inner classes, and subtyping. JAC readonly methods may
not change any static field of any class. The JAC paper suggests that readonly types
can be supplied as type variables for generic classes without change to the GJ proposal,
but provides no details. By contrast to JAC, in Javari the return type of a method does
not depend on whether it is called through a read-only reference or a non-read-only one.
Both IGJ and OIGJ provide a thorough treatment of the generic types and immutability
bringing the JAC generics proposal to its logical conclusion.

The above comments also explain why use of read-only interfaces in Java is not satis-
factory for enforcing read-only references. A programmer could define, for every class
C, an interface RO C that declares the read-only methods and that achieves transitivity
through changing methods that returned (say) B to return RO B. Use of RO C could then
replace uses of Javari’s readonly C. This is similar to JAC’s approach and shares simi-
lar problems. For instance, to permit casting, C would need to implement RO C, but some
method return and argument types are incompatible. Furthermore, this approach does
not allow read-only versions of arrays or even Object, since RO Object would need to
be implemented by Object. It also forces information about a class to be maintained in
two separate files, and it does not address run-time checking of potentially unsafe opera-
tions or how to handle various other Java constructs. Javari sidesteps these fundamental
problems by extending the Java type system rather than attempting to work within it.

Modes for Read-Only. Skoglund and Wrigstad [4] take a different attitude toward im-
mutability than other work: “In our point of [view], a read-only method should only
protect its enclosing object’s transitive state when invoked on a read reference but not
necessarily when invoked on a write reference.” A read (read-only) method may behave
as a write (non-read-only) method when invoked via a write reference; a caseModeOf
construct permits run-time checking of reference writeability, and arbitrary code may
appear on the two branches. This suggests that while it can be proved that read refer-
ences are never modified, it is not possible to prove whether a method may modify its
argument. In addition to read and write references, the system provides context and
any references that behave differently depending on whether a method is invoked on a
read or write context. Compared to this work and JAC, Javari’s, IGJ’s and OIGJ’s type
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parameterization gives a less ad hoc and more disciplined way to specify families of
declarations.

Immutability Specification. Pechtchanski and Sarkar [5] provide a framework for im-
mutability specification along three dimensions: lifetime, reachability, and context. The
lifetime is always the full scope of a reference, which is either the complete dynamic
lifetime of an object or, for parameter annotations, the duration of a method call. The
reachability is either shallow or deep. The context is whether immutability applies in
just one method or in all methods. The authors provide 5 instantiations of the frame-
work, and they show that immutability constraints enable optimizations that can speed
up some benchmarks by 5–10%.

Even if all methods of a class are state preserving, the resulting instances might not
be immutable, because a mutable thisobject could escape the constructor and its fields
can be mutated directly, for instance, if the constructor stores all created objects in a
static set. The proposals in this chapter permit both of the lifetimes and supplies deep
reachability, which complements the shallow reachability provided by Java’s final key-
word.

Capabilities. Capabilities for sharing [8] are intended to generalize various other pro-
posals for immutability and uniqueness. When a new object is allocated, the initial
pointer has 7 access rights: read, write, identity (permitting address comparisons), ex-
clusive read, exclusive write, exclusive identity, and ownership (giving the capability to
assert rights). Each (pointer) variable has some subset of the rights. These capabilities
give an approximation and simplification of many other annotation-based approaches.

Why not add read-only? Boyland [61] explains “Why we should not add readonly

to Java (yet)” and concludes that readonly does not address observational exposure,
i.e., modifications on one side of an abstraction boundary that are observable on the
other side. IGJ’s immutable objects address such exposure because their state cannot
change, e.g., an immutable address in a person object can be safely shared among many
person objects. Sometimes it is impossible to avoid observational exposure, e.g., when
a container changes and iterators to the inside of the container exists. Java designed
its iterator classes to be fail-fast, i.e., the iterator will fail if the collection is mutated
(which cannot happen in immutable collections).

Boyland’s second criticism was that the transitivity principle (see end of Section 3)
should be selectively applied by the designer, because, “the elements in the container
are not notionally part of the container” [61]. In Joe3, IGJ, and OIGJ, a programmer can
solve this problem by using a different immutability for the container and its elements.

Effects. Effect systems [62–64] specify what state (in terms of regions or of individual
variables) can be read and modified by a procedure; they can be viewed as labeling
(procedure) types with additional information, which the type rules then manipulate.
Type systems for immutability can be viewed as a form of effect system. The proposals
in this chapter are finer-grained than typical effect systems, operate over references
rather than values, and consider all state reachable from a reference.
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Universes. Universe Types [65] were the first ownership type system to provide sup-
port for read-only references by introducing “owners as modifiers” discipline. Here, if
an object does not have a right to access an object because of ownership restrictions, it
is still allowed a read-only reference to such object. This greatly improved the expres-
siveness of the language albeit weakened the ownership guarantees - as a result both
OIGJ and Joe3 tried to mitigate these issues by providing a more granular interaction
between immutability and ownership properties in a language. Finally, the functional
methods of Universes [65] are pure methods that are not allowed to modify anything
(as opposed to merely not being allowed to modify the receiver object).

Immutable Objects. Immutable Objects for a Java-like Language (IOJ) [66] associates
with each type its mutability and owner. In contrast to OIGJ, IOJ does not have gener-
ics, nor readonly references. Moreover, in IOJ, the constructor cannot leak a reference to
this. Haack and Poll [66] later added flexible initialization of immutable objects [59],
i.e., an immutable object may still be mutated after its constructor returns. They use
the annotations RdWr, Rd, Any, and myaccess, which corresponds to our Mutable, Immut,
ReadOnly, and I. In addition, they have an inference algorithm that automatically in-
fers the end of object initialization phases. (Their algorithm infers which variables are
Fresh(n), which resembles our Raw. However, the programmer cannot write the Fresh

annotation explicitly.)

Immutability Inference. Porat et al. [67] provide a type inference that determines (deep)
immutability of fields and classes. (Foster et al. [37] provide a type inference for C’s
(non-transitive) const.) A field is defined to be immutable if its value never changes
after initialization and the object it refers to, if any, is immutable. An object is defined to
be immutable if all of its fields are immutable. A class is immutable if all its instances
are. The analysis is context-insensitive in that if a type is mutable, then all the objects
that contain elements of that type are mutable. Libraries are neither annotated nor ana-
lyzed: every virtual method invocation (even equals) is assumed to be able to modify
any field. The paper discusses only class (static) variables, not member variables. The
technique does not apply to method parameters or local variables, and it focuses on ob-
ject rather than reference immutability, as in Javari. An experiment indicted that 60%
of static fields in the Java 2 JDK runtime library are immutable.

Constructing Immutable Objects. Non-null types [68–71] has a similar challenge that
IGJ has in constructing immutable objects: a partially-initialized object may escape its
constructor. IGJ uses @AssignsFieldsto mark a constructor of immutable objects, and a
partially initialized object can escape only as ReadOnly. Non-null types uses a Raw anno-
tation on references that might point to a partially-initialized object, and on methods to
denote that the receiver can be Raw. A non-null field of a Raw object has different lvalue
and rvalue: it is possible to assign only non-null values to such field, whereas reading
from such field may return null. Similarly to IGJ, non-null types cannot handle cyclic
data-structures, express the staged initialization paradigm in which the construction of
an object continues after its constructor finishes. OIGJ [11] however addressed most of
these IGJ shortcomings.
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Frozen Objects. Leino et al. [72] show how ownership can help support immutability
by allowing programmers to decide when the object should become immutable. This
system takes a verification approach rather than a simple type checker. Frozen Objects
show how flexible the initialization stage can potentially be in the presence of ownership
and immutability, while, for example, OIGJ shows how much flexibility can be achieved
while staying at the type checking level.

Other Proposals. Huang et al. [42] propose an extension of Java (called cJ) that allows
methods to be provided only under some static subtyping condition. For instance, a cJ
generic class, Date<I>, can define

<I extends Mutable>? void setDate(· · ·)
which will be provided only when the type provided for parameter Iis a subtype of
Mutable. Designing IGJ on top of cJ would make METHOD-INVOCATION RULEredundant,
at the cost of replacing IGJ’s method annotations with cJ’s conditional method syntax.
The rest of IGJ’s typing rules will remain the same.

Finally, IGJ uses the type system to check immutability statically. Controlling im-
mutability at runtime (for example using assertions or Eiffel-like contractual obliga-
tions) falls outside the scope of this chapter.

5.6 Summary of Immutability Work

Figure 7 summarizes several proposals and their supported features. The systems in-
cluded in the table represent the state of the art of read-only and immutable. Except
Joe3, the table includes (in order) SafeJava [51], Universes [57, 73–75], Jimuva [76],
Javari [77], IGJ [78], JAC [79], ModeJava [80] and Effective Ownership [81]. We now
discuss the different features in the table.

Joe3 and SafeJava support staged construction of immutables.
Boyland suggests that copying rights may lead to observational exposure and pro-

poses that the rights instead be split. Only the one with a complete set of rights may
modify an object. SafeJava does not support borrowing to immutables and hence can-
not model fractional permissions. It is unclear how allowing borrowing to immutables
in SafeJava would affect the system, especially in the presence of back doors that break
encapsulation.

To be able to retrieve writable objects from a read-only list, the elements in the list
cannot be part of the list’s representation. Joe3, Universes, Jimuva and SafeJava can
express this through ownership types. Only OIGJ and Joe3 systems, thanks to owner
nesting information, allow two non-sibling lists to share mutable data elements. Javari
and IGJ allow this through ad-hoc mutable fields which can circumvent read-only if an
object stores a reference to itself in a mutable field.

The alias modes proposed by Noble et al. [82]. Here we only describe how the modes
have been interpreted for the purpose of Figure 7. The rep mode denotes a reference
belonging to an object’s representation and so should not appear in its interface. A
defensive interpretation of arg is that all systems that have object or class immutability
partially support arg, but only OIGJ and Joe3 systems support parts of an object being
immutable. The free mode, interpreted as being equal to uniqueness, is supported by
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Expressiveness

Staged const. ×8√ √ × × × × × × ×
Fract. perm. × √ × × × × × × × ×
Non-rep fields

√ √ √1√1√1×2×2× × ×
Flexible Alias Protection Modes

arg
√ √ ×3× ×3×3×3×3× ×

rep
√ √ √ √ √ × × × × √

free × √ √ √ × × × × × ×
val 4 × × × × × × × × × ×
var

√ √ √ √ √ √ √ √ √ √

Immutability

Class
√ √ × × √ √ √ ×5×5×

Object
√ √ √ × √ × √ × × ×

Context-based
√ √ × √ × ×6×6×6× ×

Read-only ref.
√ √ × √ × √ √ √ √ √

Shallow Immutability
√ √ × √ × √ √ √ √ √

Deep Immutability
√ √ × × × √ √ × × ×

Abstract Value Immutability
√ √ × √ × √ √ √ √ √

Concrete Representation Immutability
√ √ × √ × × × × × ×

Confinement and Alias Control

OT
√ √ √ √ √ × × × × √

OP meths
√ √ √ √ √ × × × × ×

OAM × × × √ × × × × × √
OAD ×7√ ×7× × × × × × ×
Uniqueness × √ √ √ × × × × × ×

Fig. 7. Brief overview of related work. OT=ownership types, OP=owner polymorphic,
OAM=owner-as-modifier, OAD=owner-as-dominator, EO=Effective Ownership. 1) not as pow-
erful as there is no owner nesting; two non sibling lists cannot share mutable data elements; 2)
mutable fields can be used to store a reference to this and break read-only; 3) no modes on own-
ers, and hence no immutable parts of objects; 4) none of the systems deal with value semantics
for complex objects; 5) if all methods of a class are read-only the class is effectively immutable;
6) limited notion of contexts via this-mutability; 7) allows breaking of owners-as-dominators
with inner classes. 8) Raw constructors can construct both mutable and immutable objects, but
once the constructor returns immutability is fixed.

Joe3 and SafeJava. No system handles value semantics except for primitive types. The
var aliasing mode expresses non-rep references which may be aliased and changed
freely as long as they do not interfere with the other modes, for example, in assignments.
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6 Discussion

We have shown so far how immutability support can be extended from non-transitive
read-only references (e.g. const or final) to transitive read-only references (Javari)
and further to object immutability (OIGJ and Joe3) with ownership-like features. A
number of interesting observations deserve further discussion, including initialization of
immutable objects and covariant subtyping in the presence of immutability information
as presented below. We also discuss type states and unique references with fractional
permissions as further extensions that can complement immutability.

6.1 Covariant Subtyping

Covariant subtyping allows type arguments to covariantly change in a type-safe man-
ner. Variant parametric types [83] attach a variance annotation to a type argument, e.g.,
Vector<+Number> (for covariant typing) or Vector<-Number> (for contravariant typing).

Its subtype relation contains this chain:

Vector<Integer> � Vector<+Integer> � Vector<+Number> � Vector<+Object>

The type checker prohibits calling someMethod(X) when the receiver is of type Foo<+X>.
For instance, suppose there is a method isIn(X) in class Vector<X>. Then, it is prohib-
ited to call isIn(Number) on a reference of type Vector<+Number>.

Java’s wildcards have a similar chain in the subtype relation:

Vector<Integer> � Vector<? extends Integer>

� Vector<? extends Number> � Vector<? extends Object>

Java’s wildcards and variant parametric types are different in the legality of invoking
isIn(? extends Number) on a reference of type Vector<? extends Number>. A variant
parametric type system prohibits such an invocation. Java permits such an invocation,
but the only value of type ? extends Number is null.

IGJ also contains a similar chain:

Vector<Mutable,Integer> � Vector<ReadOnly,Integer>

� Vector<ReadOnly,Number> � Vector<ReadOnly,Object>

The restriction on method calls in IGJ is based on user-chosen semantics (whether the
method is readonly or not) rather than on method signature as in wildcards and variant
parametric types. For example, IGJ allows calling isIn(Number) on a reference of type
Vector<ReadOnly,Number> iff isIn is readonly. IGJ is still type-safe because of the fact
that isIn is readonly and the restriction on method overriding [10].

6.2 Typestates for Objects

In a typestate system, each object is in a certain state, and the set of applicable methods
depends on the current state. Verifying typestates statically is challenging due to the
existence of aliases, i.e., a state-change in a particular object must affect all its aliases.
Typestates for objects [84] describes a system called Fugue that uses linear types to
manage aliasing.

Object immutability can be partially expressed using typestates: by using two states
(mutable and immutable) and declaring that mutating methods are applicable only in
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1 class Client {
2 <p* inside world> void m1(p:Object obj) {
3 obj.mutate(); // Error
4 obj.toString(); // Ok
5 // assign to field is not possible
6 }
7 <p- inside world> void m2(p:Object obj) {
8 obj.mutate(); // Error
9 obj.toString(); // Ok

10 }
11 }
12 class Fractional<o+ outside owner> {
13 unique[this]:Object obj = new this:Object();
14 void example(o:Client c) {
15 borrow obj as p*:tmp in {
16 c.m1(tmp);
17 c.m2(tmp);
18 }
19 }
20 }

Fig. 8. Fractional permissions using borrowing and unique references

the mutable state. An additional method should mark the transition from a mutable
state to an immutable state, and it should be called after the initialization of the object
has finished. It remains to be seen if systems such as [84] can handle arbitrary aliases
that occur in real programs, e.g., this references that escape the constructor.

6.3 Fractional Permissions

The example in Figure 3 shows that a read-only reference to an object does not pre-
clude the existence of mutable references to the same object elsewhere in the system.
This allows observational exposure — for good and evil. The immutability annotation
‘*’ imposes all the restrictions a read-only type has, but it also guarantees that no aliases
with write permission exist in the system. Joe3’s simple way of creating an immutable
object is to move a unique reference into a variable with immutable type, just as in
SafeJava [51]. This allows Joe3 to encode fractional permissions using a borrowing
construct and do staged construction of immutables. The example in Figure 8 shows
an implementation of Fractional Permissions. Joline’s borrowing construct [46] is em-
ployed to temporarily move a mutable unique reference into an immutable variable
(line 15), freely alias the reference (while preserving read-only) (lines 16 and 17), and
then implicitly move the reference back into the unique variable again and make it muta-
ble. This is essentially Boyland’s Fractional Permissions [47]. Both owner-polymorphic
methods and borrowing blocks guarantee not to capture the reference. A borrowed ref-
erence can be aliased any number of times in any context to which it has been exported,
without the need to keep track of “split permissions” [47] as it is guaranteed that all per-
missions to alias the pointer are invalidated when the borrowing block exits. The price
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of this convenience is that the conversion from mutable to immutable and back again
must be done in the same place.

Interestingly, m1 and m2 are equally safe to call from example. Both methods have
revoked their right to cause write effects to objects owned by p, indicated by the * and
- annotations on p, respectively. The difference between the two methods is that the
first method knows that obj will not change under foot (making it safe to, for example,
use obj as a key in a hash table), whereas the second method cannot make such an
assumption.

7 Conclusion

In this chapter we have given a flavor of the variety of work on different kinds of im-
mutability proposed for the modern object-oriented languages where aliasing plays an
important role. We refer the reader to the respective papers for more information about
each system described in this chapter and welcome any feedback.
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43. Clarke, D., Östlund, J., Sergey, I., Wrigstad, T.: Ownership Types: A Survey. In: Clarke, D.,

Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Programming. LNCS, vol. 7850,
pp. 15–58. Springer, Heidelberg (2013)

44. Clarke, D., Drossopoulou, S.: Ownership, Encapsulation, and the Disjointness of Type and
Effect. In: OOPSLA, pp. 292–310. ACM Press, Seattle (2002)

45. Boyland, J.: Why we should not add readonly to Java (yet). Journal of Object Technology
(2006); Special issue: ECOOP 2005 Workshop FTfJP

46. Wrigstad, T.: Ownership-Based Alias Management. PhD thesis, Royal Institute of Technol-
ogy, Sweden (May 2006)

47. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R. (ed.) SAS
2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

48. Clarke, D.: Object Ownership and Containment. PhD thesis, School of Computer Science
and Engineering, University of New South Wales, Sydney, Australia (2001)

49. Potanin, A., Noble, J., Clarke, D., Biddle, R.: Generic ownership for generic Java. In: OOP-
SLA, pp. 311–324. ACM Press, New York (2006)

50. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of type and
effect. In: OOPSLA, pp. 292–310. ACM Press, New York (2002)

51. Boyapati, C.: SafeJava: A Unified Type System for Safe Programming. PhD thesis, Electrical
Engineering and Computer Science, MIT (February 2004)

52. Birka, A.: Compiler-enforced immutability for the Java language. Technical Report MIT-
LCS-TR-908, MIT Lab for Computer Science (June 2003); Revision of Master’s thesis

53. Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the future safe for the past:
Adding genericity to the Java programming language. In: OOPSLA, pp. 183–200. ACM
Press, New York (1998)

54. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus for Java
and GJ. ACM Transactions on Programming Languages and Systems (TOPLAS) 23(3), 396–
450 (2001)

55. Clarke, D., Wrigstad, T.: External Uniqueness is Unique Enough. In: Cardelli, L. (ed.)
ECOOP 2003. LNCS, vol. 2743, pp. 176–241. Springer, Heidelberg (2003)

56. Wrigstad, T.: Ownership-Based Alias Management. PhD thesis, Royal Institute of Technol-
ogy, Kista, Stockholm (May 2006)

57. Müller, P., Poetzsch-Heffter, A.: Universes: A type system for controlling representation
exposure. Technical report, Fernuniversität Hagen (1999)

58. Müller, P.: Modular Specification and Verification of Object-Oriented Programs. PhD thesis,
FernUniversität Hagen (2001)

59. Haack, C., Poll, E.: Type-Based Object Immutability with Flexible Initialization. In:
Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 520–545. Springer, Heidelberg
(2009)

60. Ernst, M.D.: Type annotations specification (jsr 308),
http://pag.csail.mit.edu/jsr308/ (September 12, 2008)

61. Boyland, J.: Why we should not add readonly to Java (yet). In: FTfJP, Glasgow, Scotland.
Springer (July 2005)

62. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: POPL, pp. 47–57 (January
1988)

63. Talpin, J.P., Jouvelot, P.: The type and effect discipline. In: LICS, pp. 162–173 (June 1992)

http://pag.csail.mit.edu/jsr308/


Immutability 269

64. Nielson, F., Riis Nielson, H.: Type and Effect Systems. In: Olderog, E.-R., Steffen, B. (eds.)
Correct System Design. LNCS, vol. 1710, pp. 114–136. Springer, Heidelberg (1999)

65. Müller, P., Poetzsch-Heffter, A.: Universes: A type system for alias and dependency control.
Technical Report 279, Fernuniversität Hagen (2001)
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76. Haack, C., Poll, E., Schäfer, J., Schubert, A.: Immutable Objects for a Java-Like Language.

In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 347–362. Springer, Heidelberg
(2007)

77. Tschantz, M.S., Ernst, M.D.: Javari: Adding reference immutability to Java. In: OOPSLA
(2005)
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