
Collaborative verification of information flow for a high-assurance app store
Michael D. Ernst, René Just, Suzanne Millstein, Werner M. Dietl,

Stuart Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros,
Ravi Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu

UW Computer Science & Engineering
sparta@cs.washington.edu

Abstract
Current app stores distribute some malware to unsuspect-
ing users, even though the app approval process may be
costly and time-consuming. We propose the creation of
high-integrity app stores that provide certain guarantees
to their customers. Our approach has four key features.
(1) Our analysis is based upon a flow-sensitive, context-
sensitive information-flow type system. (2) We use finer-
grained behavioral specifications of information flow than
current app stores, along with automated analysis to prove
correctness with respect to the specification. (3) Our ap-
proach works on source code rather than binaries and is
based on formal verification rather than on bug-finding.
(4) We use a collaborative verification methodology in
which the software vendor and the app store auditor each
do tasks that are easy for them, reducing overall cost.

We have implemented our system for Android apps
written in Java. In an adversarial Red Team evaluation,
we were given 72 apps (576,000 LOC) to analyze for
malware. The 57 Trojans among these had been written
specifically to defeat a malware analysis such as ours,
and the Red Teams had access to our source code and
documentation. Nonetheless, our information-flow type
system was effective: it detected 96% of malware whose
malicious behavior was related to information flow and
82% of all malware. In practice our toolset would be
combined with other analyses to reduce the chance of
approving a Trojan. The programmer annotation burden
is low: one annotation per 16 lines of code. Every sound
analysis requires a human to review potential false alarms,
and in our experiments, this took 30 minutes per KLOC
for an auditor unfamiliar with the app.

1 Introduction
App stores make it easy for users to download and run
applications on their personal devices. App stores also
provide a tempting vector for an attacker. An attacker can
take advantage of bugdoors (software defects that permit
undesired functionality) or can insert malicious Trojan
behavior into an application and upload the application to
the app store.

For current app stores, the software vendor typically up-
loads a compiled binary application. The app store then
analyzes the binary to detect Trojan behavior or other

violations of the app store’s terms of service. Finally,
the app store approves and publishes the app. Unfortu-
nately, the process offers few guarantees, as evidenced by
the Trojans that have been approved by every major app
store [3, 15, 38, 40, 47].

We are exploring the practicality of a high-assurance
app store that gives greater understanding of, and con-
fidence in, its apps’ behavior. Such a store would have
different approval requirements to reduce the likelihood
that a Trojan is approved and distributed to unsuspecting
users. Corporations already provide lists of apps approved
for use by employees (often vetted by ad hoc processes).
The U.S. Department of Defense is also actively pursuing
the creation of high-assurance app stores.

Four contributing factors in the approval of Trojans by
existing app stores are: (1) Existing analysis tools are
poorly automated and hard to use: much manual, error-
prone human effort is required. (2) The vendor provides
only a very coarse description of application behavior in
the form of permissions it will access: system resources
such as the camera, microphone, network, and address
book. These properties provide few guarantees about the
application’s behavior. (3) The binary executable lacks
much semantic information that is available in the source
code but has been lost or obfuscated by the process of
compilation. (4) The vendor has little incentive to make
the application easy for the app store to analyze.

We have developed a new approach to verifying apps
that addresses each of these factors. (1) We have created
powerful, flow-sensitive, context-sensitive type system
that verifies information flows. The system is easy to
use and works with with Java and Android. (2) Our ap-
proach provides finer-grained specifications than current
app stores, indicating not just which resources may be
accessed but which information flows are legal — how
the resources may be used by the program. Our initial
analysis focuses on confidentiality and integrity security
policies that can be expressed in terms of information
flow. Our tools connect information flow security policies
to lightweight specifications and connect specifications
to code. (3) Our approach works on source code rather
than binaries, and it aims to prove that an app satisfies
information flow properties, rather than to detect some
bugs/malware. An analyst approves or rejects the proper-
ties. Availability of source code fundamentally changes
the verification process: it provides more information, en-

1



!""#$

%&%'())

.java 

*+#,)

-#+./0)

!--)

1%#2')

-#+./.'1)

3'"(#2)

-2#4.('1)

!--)

1%#2')

-2#4.('1)

50-'$/6'/7'2)&8%#9&:/&++0)4'2.;'1<)

•! !""#%&:#"1)&2')/#9-&:=+'),.%6)>#,)-#+./0)

•! !""#%&:#"1)('1/2.=')/#(')='6&4.#2)

?9#(8+#)%281%'()&1189-:#"1@)

!--)1%#2')'9-+#0'')9&"8&++0)4'2.;'1<)

•! !//'-%&=+')='6&4.#2)

•! !1189-:#"1)&2')4&+.()

Figure 1: The collaborative verification model. The flow policy
is a high-level specification that expresses application behavior
in terms of user-visible information flows.

ables more accurate and powerful analyses, and enables
an auditor to evaluate warnings. (4) We propose a col-
laborative verification methodology in which the vendor
participates in and contributes to the verification process,
rather than casting the vendor and the app store in an
antagonistic relationship. Each party provides informa-
tion that is easy for them to provide, thus reducing the
overall cost of verification. The developer is not trusted:
all information provided by the developer is verified.

We report on initial experience with this system, includ-
ing an adversarial Red Team exercise in which 5 corporate
teams (funded externally, not by us) were given insider
access to our source code and design documents then
tasked with creating Trojans that would be difficult to
detect. Our type system detected 82% of the Trojans, and
96% of the Trojans whose malicious behavior was related
to information flow. (We have identified an enhancement
to our system that would increase that number to 100%.)
It is necessary for a human to investigate tool warnings to
determine whether they are false positives. On average, it
took an auditor unfamiliar with the programs 30 minutes
per KLOC to analyze the information flow policy and the
tool warnings. The annotation burden for programmers is
also low.

Overall, our goal is to make it difficult to write Trojans
and easy to determine when code is not a Trojan. Our
tools cannot catch all malware, but they raise the bar for
malware authors and thus improve security.

1.1 Verification of source code
An app store can be made more secure by requiring ven-
dors to provide their applications in source code, and
then performing strong verification on that source code.
The app store would analyze the source code, compile
it, and distribute it as a binary (signed by the app store’s
private key) to protect the vendor’s intellectual property.
Availability of source code fundamentally changes the ap-
proval process in favor of verification by providing more

information to both the analysis and the analyst.
Source code verification is relevant for other domains

than high-integrity application stores. One public exam-
ple of inserting malicious behavior into an open source
program is an attempt to insert a backdoor in the Linux
kernel [24]. As another example, Liu et al. developed
proof-of-concept malware as Chrome extensions [26],
which are essentially distributed as source code. We be-
lieve that source code analysis for security will become
increasingly important, so it is worthy of attention from
security researchers.

1.2 Collaborative verification model
The app store’s goal is twofold: to prevent approving
malicious applications, and to approve non-malware with
a minimum of cost and delay.

Most app store approval policies assume an adversarial,
or at least non-cooperative, relationship between the de-
veloper and the app store. The developer delivers an app
in binary form, and the app store uses an opaque process
to make a decision about whether to offer the app on the
app store.

We propose a collaborative model (Fig. 1) in which
the application vendor provides more information to the
auditor (an app store employee). This information is
easy for the application vendor to provide, but it would
be difficult for the auditor to infer. The auditor is able to
make a decision more quickly and with greater confidence,
which is advantageous to both parties.

As shown in Fig. 1, the auditor receives two artifacts
from the vendor. The first vendor-provided artifact is
the flow policy, a high-level specification of the intended
information flows in the program from the user point
of view. In our experiments, this averaged 6 lines long.
For example, it might state that location information is
permitted to flow to the network and that camera images
may be written to the local disk. Any information flow
not stated in the flow policy file is implicitly forbidden.
The second vendor-provided artifact is the source code,
annotated to show which parts of the program implement
or participate in the information flows. The annotation
burden is low: on average one annotation per 16 lines of
code.

The annotations are untrusted. Our information-flow
type-checker, Information Flow Checker (IFC), automati-
cally ensures that the annotations are both permitted by
the flow policy file and are an accurate description of the
source code’s behavior (modulo the trusted assumptions).
If not, the app is rejected. Thus, the application vendor
must provide accurate annotations and flow policy.

The auditor has two tasks, corresponding to the two
vendor-provided artifacts. The first task is to evaluate the
app’s flow policy. This is a manual step, in which the

2



auditor compares the flow policy file to the app’s docu-
mentation and to any app store or enterprise policies. The
app store analyst must approve that the requested flows are
reasonable given the app’s purpose; apps with unreason-
able flow policies are rejected as potential Trojans. The
second task is to verify each trusted assumption, using
the verification methodology of his/her choice (e.g., [2]).
Sect. 3.11 further describes the auditing process.

Not every app store will desire to differentiate itself
through increased security, and not every vendor will
desire to participate in high-assurance app stores. But
market forces will enable such stores to exist where there
are appropriate economic incentives — that is, whenever
some organizations or individuals are willing to pay more
for increased security. Large organizations already require
their vendors to provide and/or escrow source code.

It makes economic sense for the vendor to annotate
their code and possibly to be paid a premium: based on
our experience, the effort is much less for the author of
the code than for an auditor who would have to reverse-
engineer the code before writing down the information
about the information flows. The effort is small compared
to overall development time and is comparable to writing
types in a Java program. If the annotations are written
as the code is first developed, they may even save time
by preventing errors or directing the author to a better
design.

The U.S. Department of Defense is also interested in
high-assurance app stores, for example through DARPA’s
“Transformative Apps” and “Automated Program Analysis
for Cybersecurity”, along with related software verifica-
tion programs such as “High-Assurance Cyber Military
Systems” and “Crowd-Sourced Formal Verification” Our
collaborative verification model is novel and differs from
DARPA’s existing programs.

1.3 Threat model
While there are many different types of malicious ac-
tivities, we focus on Trojans whose undesired behavior
involves information flow from sensitive sources to sensi-
tive sinks. This approach is surprisingly general: we have
found that our approach can be adapted to other threats,
such as detecting when data is not properly encrypted, by
treating encryption as another type of resource or permis-
sion.

More specifically, IFC uses the flow policy as a spec-
ification or formal model of behavior. If IFC issues no
warnings, then the app does not permit information flows
beyond those in the flow policy — that is, each output
value is affected only by inputs specified in the flow policy.
Manual checking is required for any trusted assumptions
or IFC warnings. IFC does not perform labor-intensive
full functional verification, only information-flow verifi-

cation, which we show can be done at low cost.
Our threat model includes the exfiltration of personal

or sensitive information and contacting premium services.
However, it does not cover phishing, denial of service, or
side channels such as battery drain or timing. It does not
address arbitrary malware (such as Slammer, Code Red,
etc.). We treat the operating system, our type checker, and
annotations on unverified libraries as trusted components
— that is, if they have vulnerabilities or errors, then an app
could be compromised even if it passes our type system.
App developers are not trusted.

Our approach is intended to be augmented by comple-
mentary research that focuses on other threats: it raises
the bar for attackers rather than providing a silver bullet.
Sect. 2.10 discusses limitations of our system in greater
detail.

There have been previous studies of the kinds of mal-
ware present in the wild [13, 52]. Felt et al. [13] classify
malware into 7 distinct categories based on behavior. Our
system can catch malware from the 4 most prevalent and
important ones: stealing user information (60%), pre-
mium calls or SMSs (53%), sending SMS advertising
spam (18%), and exfiltrating user credentials (9%). The
other 3 categories are: novelty and amusement (13%),
search engine optimization (2%), ransom (2%).

1.4 Contributions
The idea of verifying information flow is not new, nor is
using a type system. Rather, our contributions are a new
design that makes this approach practical for the first time,
and realistic experiments that show its effectiveness. In
particular, the contributions are:

We have proposed a collaborative verification model
that reduces cost and uncertainty, and increases security,
when approving apps for inclusion in an app store. Our
work explores a promising point in the tradeoff between
human and machine effort.

We have extended information-flow verification to a
real, unmodified language (Java) and platform (Android).
Our design supports polymorphism, reflection, intents,
defaulting, library annotations, and other mechanisms
that increase expressiveness and reduce human effort.

We have designed a mechanism for expressing infor-
mation flow policies, and we have refined the existing
Android permission system to make it less porous.

We have implemented our design in a publicly-
available system, and we have experimentally evaluated
our work. Our system effectively detected realistic mal-
ware targeted against it, built by skilled Red Teams with
insider knowledge of our system. The effort to use our
system was low for both programmers and auditors: it
is powerful, yet it requires less annotation overhead than
previous systems and is simpler to use and understand.

3



2 Information Flow Checker
This section describes our system Information Flow
Checker, IFC. IFC gives a guarantee that there are no in-
formation flows in a program beyond those expressed in a
high-level specification called a flow policy. IFC is sound
and conservative: if IFC approves a program, then the
program has no undesired information flows, but if IFC
issues a warning, then the program might or might not
actually misbehave at run time. The guarantee is modulo
human examination of a small number of trusted assump-
tions to suppress false positive warnings, including ones
about indirect flow through conditionals.

As shown in Fig. 1, a programmer using IFC provides
two kinds of information about the information flows in
the program. First, the programmer provides a flow policy
file, which describes the types of information flows that
are permitted in the program (see Sect. 2.3). For example,
a simple app for recording audio to the file system would
have a flow policy containing only RECORD_AUDIO→
FILESYSTEM. It would be suspicious if this app’s flow pol-
icy contained RECORD_AUDIO→INTERNET, because that
flow allows audio to be leaked to an attacker’s server.

Second, the programmer writes Java annotations to ex-
press the information flow properties of method signatures
and fields. Each annotated type includes a set of sensitive
sources from which the data may have originated and a
set of sinks to which the data may be sent. For exam-
ple, the programmer of the audio recording app would
annotate the recorded data with @Source(RECORD_AUDIO)

@Sink(FILESYSTEM). IFC uses type-checking over an infor-
mation flow type system to verify that the annotated code
is consistent with the flow policy file.

2.1 Types: flow sources and sinks
The type qualifier @Source on a variable’s type indicates
what sensitive sources might affect the variable’s value.
The type qualifier @Sink indicates where (information com-
puted from) the value might be output. These qualifiers
can be used on any occurrence of a type, including in type
parameters, object instantiation, and cast types.

As an example, consider the declaration
@Source(LOCATION) @Sink(INTERNET) double loc;

The type of variable loc is @Source(LOCATION) @Sink(INTER-

NET) double. The type qualifier @Source(LOCATION) indi-
cates that the value of loc might have been derived
from location information. Similarly, the type qualifier
@Sink(INTERNET) indicates that loc might be output to the
network. A programmer typically writes either @Source or
@Sink, but not both; see Sect. 2.6.

The arguments to @Source and @Sink are permissions
drawn from our enriched permission system (Sect. 2.2).
The argument may also be a set of permissions to indicate

that a value might combine information from multiple
sources or flow to multiple locations.

2.2 Comparison to Android permissions
IFC’s permissions are finer-grained than standard Android
manifest permissions in two ways. First, Android permits
any flow between any pair of permissions in the manifest
— that is, an Android program may use any resource men-
tioned in the manifest in an arbitrary way. Second, IFC
refines Android’s permission, as we now discuss.

IFC’s permissions are not enforced at run time as An-
droid permissions are (potentially resulting in an excep-
tion during execution). Rather, they are statically guaran-
teed at compile time. Even if an app inherited a permis-
sion from another app with the same sharedUserId, IFC
will require that permission be listed in the flow policy.

2.2.1 Restricting existing permissions

Android’s INTERNET permission represents all reachable
hosts on the Internet, which is too coarse-grained to ex-
press the developer’s intention. IFC allows this permis-
sion to be parameterized with a domain name, as in IN-
TERNET(“*.google.com”). Other permissions can be param-
eterized in a similar style in which the meaning of the
optional parameter varies based on the permission it qual-
ifies. For example, a parameter to FILESYSTEM represents
a file or directory name or wildcard, whereas the parame-
ter to SEND_SMS represents the number that receives the
SMS. Other permissions that need to be parameterized
include CONTACTS, *_EXTERNAL_FILESYSTEM, NFC, *_SMS,
and USE_SIP, plus several of those described in Sect. 2.2.2,
such as USER_INPUT to distinguish sensitive from non-
sensitive user input.

2.2.2 Sinks and sources for additional resources

IFC adds additional sources and sinks to the Android
permissions. For example, IFC requires a permission to
retrieve data from the accelerometer, which can indicate
the user’s physical activity, and to write to the logs, which
a colluding app could potentially read. Table 1 lists the ad-
ditional sources and sinks. We selected and refined these
by examining the Android API and Android programs,
and it is easy to add additional ones. Our system does
not add much complexity: it only adds 26 permissions to
Android’s standard 145, or 18% more permissions.

Some researchers feel that the Android permission
model is already too complicated for users to under-
stand [12]. But our perspective is that of a full-time audi-
tor who is trained to analyze applications. The flow policy
is examined once per application by that skilled engineer,
not on every download by a user, so the total human bur-
den is less. (See Sect. 3.11 for empirical measurements.)

4



Table 1: Additional sources and sinks used by IFC, beyond the
built-in 145 Android permissions.
Sources Sinks Both source and sink
ACCELEROMETER CONDITIONAL CAMERA_SETTINGS
BUNDLE DISPLAY CONTENT_PROVIDER
LITERAL SPEAKER DATABASE
MEDIA WRITE_CLIPBOARD FILESYSTEM
PHONE_NUMBER WRITE_EMAIL PARCEL
RANDOM WRITE_LOGS PROCESS_BUILDER
READ_CLIPBOARD SECURE_HASH
READ_EMAIL SHARED_PREFERENCES
READ_TIME SQLITE_DATABASE
USER_INPUT SYSTEM_PROPERTIES

The more detailed flow policy file yields more insight
than simple Android permissions, because the flow policy
(Sect. 2.3) makes clear how each resource is used, not just
that it is used.

We now discuss two permissions, LITERAL and CONDI-
TIONAL, whose meaning may not be obvious.

Literals The LITERAL source is used for programmer-
written manifest constants, such as "Hello world!". This
enables IFC to distinguish information derived from the
program source code from other inputs. Manifest literals
are used benignly for many purposes, such as configuring
default settings. The flow policy shows how they are used
in the program, and they can be examined by the analyst.

Conditionals Indirect information flow through condi-
tionals can leak private information. For example, con-
sider the following code and a flow policy containing
LITERAL→INTERNET and USER_INPUT→FILESYSTEM:

@Source(USER_INPUT) @Sink(FILESYSTEM)
long creditCard = getCCNumber();
final long MAX_CC_NUM = 9999999999999999;
for (long i = 0 ; i < MAX_CC_NUM ; i++) {

if (i == creditCard)
sendToInternet(i);

}

We investigated two mechanisms for bringing indirect
flows to the attention of an auditor who can determine
whether they are malicious. (As noted earlier, IFC’s guar-
antees are modulo human examination of places its type
system is conservative.) The first mechanism is the classic
approach of Volpano [46]: taint all computations in the
dynamic scope of a conditional with all the sources/sinks
from the conditional’s predicate. This includes all state-
ments in the body of the conditional and all statements in
any method called by the conditional. One downside of
this mechanism is over-tainting of computations within
the scope of conditionals, which leads to false positive
alarms and extra effort by auditors to review them. The
need to analyze (and possibly over-taint) all methods
called within conditionals is also a disadvantage.

The second mechanism is to introduce a new CONDI-
TIONAL sink. The type of a conditional expression must
include the sink CONDITIONAL. The type-checker permits
only uses of sensitive sinks that are permitted by the flow
policy file. A disadvantage is that every one of those uses
must be treated as a warning that is a possible false alarm
and must be reviewed by the auditor. In our experiments
(Sect. 3.11), 27% of conditionals used sensitive sources,
or fewer than 23 per KLOC; the others used only LITERAL.

In each case, similar auditor effort is required: warn-
ings lead the auditor to examine the same conditional
expressions and bodies to ensure that no sensitive infor-
mation leaks indirectly. The first approach focuses auditor
effort on the statements in the conditional body (or in bod-
ies of methods transitively called by the conditional body)
where over-tainting leads to false positive type-checker
warnings, but the auditor must also consider the condi-
tional expression. The second approach focuses auditor
effort on the conditional expression, but the auditor must
also consider all effects of the conditional body.

The auditors in our experiments (Sect. 3.11) felt that the
second approach, with the new CONDITIONAL sink, was
easier for them. They preferred to think about an entire
conditional expression at once rather than statement-by-
statement. Over-tainting within method bodies could be
difficult to trace back to specific, seemingly-unrelated,
conditional expressions. Oftentimes, examining a con-
ditional expression enabled the auditors to rule out bad
behavior without needing to examine all the assignments
in its dynamic scope; this was particularly true for simple
conditionals such as tests against null.

As future work, we plan to improve each approach, and
combine them, to further reduce auditor effort.

2.3 Flow policy
A flow policy is a list of all the information flows that are
permitted to occur in an application. A flow policy file
expresses a flow policy, as a list of flowsource→ flowsink
pairs. Just as the Android manifest lists all the permissions
that an app uses, the flow policy file lists the flows among
permissions and other sensitive locations. The flow policy
file is best written by the original application vendor, just
as the Android manifest is.

Consider the “Block SMS” application of Table 5,
which blocks SMS messages from a blacklist of blocked
numbers and saves them to a file for the user to review
later. Its policy file must contain READ_SMS→FILESYSTEM
to indicate that information obtained using the READ_SMS
permission is permitted to flow to the file system.

The flow policy restricts what types are legal Every
flow in a program is explicit in the types of the pro-
gram’s expressions. For example, if there is no expres-

5



sion whose type has the type qualifiers @Source(CAMERA)

@Sink(INTERNET), then the program never sends data from
the camera to the network (modulo conditionals and tran-
sitive flows, which are discussed elsewhere). The expres-
sion’s type might be written by a programmer or might
be automatically inferred by IFC.

IFC guarantees that there is no information flow except
what is explicitly permitted by the policy file. If the type
of a variable or expression indicates a flow that is not
permitted by the policy file, then IFC issues a warning
even if the program otherwise would type-check. For
example, the following declaration type-checks, but IFC
would still produce an error unless the policy file permits
the CAMERA→INTERNET flow:
@Source(CAMERA) @Sink(INTERNET) Video video = getVideo();

Transitive flows IFC forbids implied transitive flows.
If a flow policy permits CAMERA→FILESYSTEM and
FILESYSTEM→INTERNET, then it must also include the
transitive flow CAMERA→INTERNET, because the applica-
tion may record from the camera into a file and then send
the contents of the file over the network. The developer
must justify the purpose of each flow or convince the app
store that the flow is not used. Parameterized permissions
(Sect. 2.2.1) reduce the number of transitive flows; for
example, the FILESYSTEM permissions in our example
would probably refer to different files, so no transitive
flow would be possible nor required in the flow policy file.

2.4 Subtyping
A type qualifier hierarchy indicates which assignments,
method calls, and overridings are legal, according to stan-
dard object-oriented typing rules.

@Source(B) is a subtype of @Source(A) iff B is a subset
of A [7]. For example, @Source(INTERNET) is a subtype of
@Source({INTERNET, LOCATION}). This rule reflects the fact
that the @Source annotation places an upper bound on the
set of sensitive sources that were actually used to compute
the value. If the type of x contains @Source({INTERNET, LO-

CATION}), then the value in x might have been derived from
both INTERNET and LOCATION data, or only from INTERNET, or
only from LOCATION, or from no sensitive source at all.

The opposite rule applies for sinks: @Sink(B) is a sub-
type of @Sink(A) iff A is a subset of B. The type @Sink(

{INTERNET, LOCATION}) indicates that the value is permitted
to flow to both INTERNET and FILESYSTEM. This is a subtype
of @Sink(INTERNET), as the latter type provides fewer routes
through which the information may be leaked.

2.5 Polymorphism
Information flow type qualifiers interact seamlessly with
parametric polymorphism (Java generics). For example,

a programmer can declare

List<@Source(CONTACTS) @Sink(SMS) String> myList;

Here, the elements of myList are strings that are obtained
from CONTACTS and that may flow to SMS.

IFC also supports qualifier polymorphism, in which
the type qualifiers can change independently of the un-
derlying type. For example, this allows a programmer to
write a generic method that can operate on values of any
information flow type and return a result of a different
Java type with the same sources/sinks as the input.

Parametric polymorphism, qualifier polymorphism,
and regular Java types can be used together. The type
system combines the qualifier variables and the Java types
into a complete qualified type. Although extensions to
the type system are always possible, we have found our
system effective in practice thus far.

2.6 Inference and defaults

A complete type consists of a @Source qualifier, a @Sink

qualifier, and a Java type. To reduce programmer effort
and code clutter, most of the qualifiers are inferred or
defaulted. A programmer need not write qualifiers within
method bodies, because such types are inferred by IFC.
Even for method signatures and fields, a programmer gen-
erally writes either @Source or @Sink, but not both. We now
explain these features. For experimental measurements,
see Sect. 3.10.

2.6.1 Type inference and flow-sensitivity

A programmer does not write information flow types
within method bodies. Rather, local variable types are
inferred.

IFC implements this inference via flow-sensitive type
refinement. Each local variable declaration (also casts,
instanceof, and resource variables) defaults to the top type,
@Source(ANY) @Sink({}). At every properly-typed assign-
ment statement, the type of the left-hand side expression
is flow-sensitively refined to that of the right-hand side,
which must be a subtype of the left-hand side’s declared
type. The refined type applies until the next side effect
that might invalidate it.

IFC limits type inference to method bodies to ensure
that each method can be type-checked in isolation, with
a guarantee that the entire program is type-safe if each
method has been type-checked. It would be possible to
perform a whole-program type inference, but such an
approach would be heavier-weight, would need to be
cognizant of cooperating or communicating applications,
and would provide fewer documentation benefits.

6



2.6.2 Determining sources from sinks and vice versa

If a type contains only a flow source or only a flow sink,
the other qualifier is filled in with the most general value
that is consistent with the policy file. If the programmer
writes @Source(α), IFC defaults this to @Source(α) @Sink(ω)

where ω is the set of flow sinks that all sources in α can
flow to. Similarly, @Sink(ω) is defaulted to @Source(α)

@Sink(ω) where α is the set of flow sources allowed to
flow to all sinks in ω. Defaults are not applied if the
programmer writes both a source and a sink qualifier.

Suppose the flow policy contains the following:
A -> X,Y
B -> Y
C -> Y

Then these pairs are equivalent:
@Source(B,C) = @Source(B,C) @Sink(Y)

@Sink(Y) = @Source(A,B,C) @Sink(Y)

This mechanism is useful because oftentimes a pro-
grammer thinks about a computation in terms of only its
sources or only its sinks. The programmer should not
have to consider the rest of the program that provides
context indicating the other end of the flow.

This defaulting mechanism is essential for annotating
libraries. IFC ships with manual annotations for 10,470
methods of the Android standard library. Only .0007%
of methods use both a @Source and a @Sink annotation.
An example of a method that uses only a @Source annota-
tion is the File constructor: a newly-created readable file
should be annotated with @Source(FILESYSTEM), but there
is no possible @Sink annotation that would be correct for
all programs. Instead, the @Sink annotation is omitted,
and our defaulting mechanism provides the correct value
based on the application’s flow policy.

This mechanism can be viewed as another application
of type polymorphism.

2.6.3 Defaults for unannotated types

Table 2 shows the default qualifiers for completely unan-
notated types. When the default is only a source or only a
sink, the other qualifier is inferred from the policy file as
explained in Sect. 2.6.2.

Most unannotated types (including field types, return
types, generic type arguments, and non-null literals) are
given the qualifier @Source(LITERAL). This is so that simple
computation involving manifest literals, but not depend-
ing on Android permissions, does not require annotations.

As is standard, the null literal is given the bottom
type qualifier, which allows it to be assigned to any vari-
able. For IFC, the bottom type qualifier is @Source({})

@Sink(ANY).
The bytecode indicates whether a library method was

given no @Source annotation and no @Sink annotation (in

Table 2: Default flow qualifiers for unannotated types.

Location Default flow qualifier

Method parameters @Sink(CONDITIONAL)

Method receivers @Sink(CONDITIONAL)

Return types @Source(LITERAL)

Fields @Source(LITERAL)

null @Source({}) @Sink(ANY)

Other literals @Source(LITERAL)

Type arguments @Source(LITERAL)

Local variables @Source(ANY) @Sink({})

Upper bounds @Source(ANY) @Sink({})

Resource variables @Source(ANY) @Sink({})

which case it is defaulted exactly as above) or has not yet
been examined by a human to write a summary. Unex-
amined methods are conservatively given a special type
that guarantees a type-checking error, thus signaling to
the developer the need to annotate that library method.

IFC allows a developer to choose different default qual-
ifiers for a particular method, class, or package, and for
specific locations as in Table 2.

2.7 Trusted assumptions to suppress false
positive warnings

Every sound static analysis is conservative: that is, there
exists source code that never misbehaves at run time, but
the static analysis cannot prove that fact and issues a
warning about possible misbehavior. Every cast in a Java
program is an example of such conservatism in the Java
type system. For example, application invariants might
guarantee a specific property about some datum that is
stored in a heterogeneous container. IFC, being conserva-
tive, assumes that information is implicitly leaked in this
case and issues a warning, which might be a false positive.
In 11 Android apps (9437 LOC), IFC suffered 26 false
positives, or fewer than 3 per KLOC (see Sect. 3.10).

A programmer who determines that one of IFC’s
warnings is a false positive can disable the warning
by writing a trusted assumption using Java’s standard
@SuppressWarnings mechanism. The vendor is expected to
write a justification for each trusted assumption.

The app store auditor manually uses other (non-IFC)
techniques to verify each trusted assumption. The auditor
validates the vendor’s claim that the code is well-behaved
for some reason that is beyond the precision of the type
checker. Such a step is required for any static analysis,
not just IFC.

7



2.8 Indirect control flow: reflection, intents

Indirect control flow, for example in reflection and intents,
is challenging for a static analysis. IFC soundly handles
these constructs.

2.8.1 Reflection

IFC analyses Java reflection to determine the target
method of a reflective call. This enables a downstream
analysis, such as IFC’s information-flow type-checking,
to treat the reflective code as a direct method call, which
has a much more precise annotated signature than does
Method.invoke. The library’s conservative annotations en-
sure that any unresolved reflective call is treated soundly.

The reflection analysis first performs constant folding
and propagation for string, integer, and array types, and
also for classes such as Class and Method. The constant
folding handles not only basic computations like addition
and string concatenation, but also method calls, even into
program code, whose results depend only on constant
arguments.

The analysis resolves the reflective call to a single con-
crete method in 96% of cases in our experiments, includ-
ing malicious examples where reflection is used inten-
tionally as a form of code obfuscation. Additionally, the
constant analysis automatically determined the value of
an obfuscated phone number in an app that used Base64
encoding to hide the value from other forms of static
analysis.

In our experiments, 17 out of 72 apps accessed a sensi-
tive API using reflection.

2.8.2 Intents

Intents are an Android mechanism for interprocess com-
munication, and they can also create processes (Android
activities). An intent carries a payload of data to some
other process. An activity can register to receive arbitrary
intents.

To handle intents, we extended IFC with map types
(similar to record types) that represent the mappings of
data in an intent payload. Type inference makes annota-
tions unnecessary at most intent-sending operations.

In order to type-check communication, an interface
specification is necessary. The overriding implementation
of intent-receiving methods acts as this interface and per-
mits modular checking. Even if new apps are added to the
app store later, previous apps need not be re-checked. We
leverage previous work to determine the possible targets
for an intent-sending method [34].

In our experiments, 3 apps exploited the ACTION_VIEW

intent to access a URL without the INTERNET permission.

2.9 Implementation
IFC is implemented as a pluggable type system built on
top of the Checker Framework [8]. The implementation
of IFC consists of 3731 lines of Java, plus annotations
for 10,470 library methods. IFC’s source code is avail-
able at http://types.cs.washington.edu/sparta/
release/.

2.10 Limitations
IFC is focused on Trojans that cause an undesired infor-
mation flow, as indicated by the threat model of Sect. 1.3.
This section discusses further limitations. IFC should be
used in conjunction with complementary techniques that
address other security properties.

As with any static analysis, IFC’s soundness guarantee
only extends to code that is analyzed at compile time. Use
of native code and un-analyzed Android activities requires
a different analysis or trusted annotations that describe
the information flows enabled by those components. IFC
forbids dynamic code loading.

Our cooperative verification model means that the ven-
dor knows one of the techniques that the app store will
use to verify an app. This knowledge might permit a ma-
licious developer to design Trojans that are beyond the
capabilities of IFC or that exploit IFC’s limitations.

As with many security mechanisms, human judgment
can be a weak link. A malicious developer could write
a misleading explanation for an information flow in the
flow policy or for a trusted assumption in the code, in an
effort to convince the auditor to approve malware. Our
work also does not address how to decide upon an app
store’s policies (Fig. 1) nor whether an app is worthy of
inclusion in the app store.

Despite these limitations, use of IFC increases the dif-
ficulty of hiding Trojans in source code, and the require-
ment that code be accepted by IFC may also make the
Trojan more likely to be detected using other tools or
manual verification.

3 Empirical study

3.1 Methodology
The sponsor of our research wished to evaluate our tools
and approach. To this end, they hired five development
companies (in the following referred to as Red Teams) to
create Android applications with and without Trojans. We
had neither control over the Red Teams nor any knowl-
edge of the malware they were creating. While they were
creating the malware, the Red Teams had access to a
current version of IFC, including source code, documen-
tation, and our own analysis of IFC’s vulnerabilities. A

8

http://types.cs.washington.edu/sparta/release/
http://types.cs.washington.edu/sparta/release/


total of 20 people worked on the Red Teams. On average
they had more than 2 years of Android experience. Other
than two interns, they hold BS or MS degrees and work
full-time as computer security analysts. Most have been
exposed to information flow theory, with the maximum
experience being 6 years working with information flow.

The Red Teams created both malware and non-malware
apps. The malware had to be written in Java. The Red
Teams started out by surveying real-world mobile mal-
ware. They tried to produce diverse malware, including
malware that is representative of that found in the wild,
novel malware that they devised, and malware specifically
targeting the limitations of IFC. They had two goals: to
evaluate how well IFC might work in practice, and to see
how IFC could be defeated.

Overall, the Red Teams created 72 Java applications.
Our sponsor provided us with the apps in five batches over
an eight-month period from December 2012 to July 2013.
For each batch, we were given a limited amount of time to
analyze the applications with our tools. We wrote a report
stating whether each application was malware or not, and
describing the malware (including its trigger and effect)
or justifying our conclusion that there was no malware.
The Red Teams were given our results for the first three
batches, and they used this information to create malware
that was harder for our tools to find.

We received the applications in source code form. IFC
does not run the applications. The applications were
not obfuscated, but they were also not well-documented,
and the Red Teams had no motivation to make them un-
derstandable. The user documentation was only a few
sentences stating the general purpose of the app, but usu-
ally omitting significant details about the functionality —
considerably less than a typical app has in an app store.
The code documentation was just as bad: the source code
often used poor style; code comments and design docu-
mentation were absent; and the apps contained neither
flow policies nor the information flow annotations used
by our tools (Sect. 2). Thus, we spent most of our time
reverse-engineering the apps to understand their purpose,
operation, and implementation, and relatively less time
searching for malware.

3.2 Summary of results
IFC detected 96% of the 47 apps that contain malicious
information flow. The 72 total apps produced by the Red
Teams were as follows.

• 15 are non-malicious.
• 18 use a source or sink that is at odds with the appli-

cation’s description; see Sect. 3.3.
• 11 use an information flow between Android permis-

sions that is at odds with the application’s descrip-
tion; see Sect. 3.4.

• 8 use an information flow involving our new sources
or sinks (Sect. 2.2.2) that is at odds with the applica-
tion’s description; see Sect. 3.5.
• 10 use an information flow involving parameterized

sources or sinks (Sect. 2.2.1) that is at odds with the
application’s description; see Sect. 3.6.
• 10 are not detected by IFC because the malware is

not related to information flow; see Sect. 3.7.

Table 5 describes the 57 apps that contain malware.

3.3 Unjustified permissions
Of the 57 malicious applications, 18 applications use
a permission that cannot be justified for the applica-
tion, based on its description. These unjustified permis-
sions are grounds for rejection from a high-assurance
app store. For example, the SMS Backup app lists
READ_BROWSER_HISTORY in the Android manifest file,
but the description of the app does not explain why.

Not all of this malware is apparent from the Android
manifest. For example, the SMS Notification app’s un-
justified permission is WRITE_LOGS, one of the new sinks
that IFC adds.

3.4 Unjustified information flows
For 11 apps, all the Android permissions requested are
justified based on the description of the app. Malicious in-
formation flow becomes apparent only after a flow policy
is written and verified using IFC.

For example, 2D Game has a malicious flow, READ_EX-
TERNAL_STORAGE→INTERNET. The app is allowed to ac-
cess the external storage to load photos in the game, so
READ_EXTERNAL_STORAGE is justified. The app descrip-
tion states that the app sends high scores to a leaderboard
on a server, so INTERNET is justified. The description
says nothing about uploading the photos directly to the
server, nor would user expect a simple game to do so.
Therefore, READ_EXTERNAL_STORAGE→INTERNET is a
malicious flow.

The writer of Calculator 1 tried to hide use of the INTER-
NET by stating that the application automatically checks
for updates. IFC still caught the malware due to an unjus-
tified information flow USER_INPUT→FILESYSTEM.

3.5 Information flows using new sources/sinks
For 8 apps, the malicious information flow is apparent
only via use of the additional permissions listed in Ta-
ble 1. For example, RSS Reader has a malicious flow of
RANDOM→VIBRATE. The description of the app gives no
valid reason to use a random number, but because RAN-
DOM is not an Android permission, the manifest file does
not list it. The app is supposed to vibrate the phone when

9



one of the user’s feeds is updated, so VIBRATE is listed
in the manifest file as expected. However, the app’s user
would not expect the app to cause random vibrations, so
RANDOM→VIBRATE is malicious.

3.6 Flows using parameterized permissions
For 10 apps, the malicious information flow is apparent
only via use of parameterized permissions (Sect. 2.2.1).
For example, in GPS 3, the location data should
only flow to maps.google.com, but it also flows to
maps.google-cc.com. To express this, the flow policy lists
LOCATION→INTERNET(“maps.google.com”) but not LOCATION
→INTERNET(“maps.google-cc.com”). Another app, Geo-
caching, should only send data from specific geocaching
NFC tags to the server, but it collects all NFC tags in
range and sends them to the server, NFC(“*”)→INTERNET.

For two of these apps, PGP Encryption 2 and Password
Saver, the leaked information is allowed to flow to the
sensitive sink, but only if it is encrypted first. IFC cannot
yet express this property, but Sect. 3.15 describes how to
extend it to catch this sort of vulnerability.

3.7 Malware not related to information flow
The malware in 10 out of the 57 malicious applications is
not related to information flow. These applications neither
exhibit unjustified permissions nor reveal an unjustified
or exploited information flow. These apps implement
types of attacks that are out of the scope of IFC. For
example, Backup transposes digits in a phone number
during backup. This is a functional correctness error,
which IFC does not address. In a high-assurance app store,
IFC would be used with complementary tools designed
to find malware besides exploited information flow.

3.8 Bugdoors
In 8 apps, our tools found a bugdoor (undesired, ex-
ploitable functionality) that the Red Team was unaware of.
Even though the Red Team had written and/or modified
the app before presenting it to us for analysis, they had
not noticed these.

GPS 1 passes the device ID as a waypoint to the remote
server. This allows the remote server to correlate location
to specific devices and to other information collected
using the device ID.

Password Saver saves unencrypted passwords in shared
preferences, where they are accessible to other applica-
tions on the device.

Furthermore, 6 apps exfiltrated sensitive data to the log,
which Android does not require a permission to write. It
does, however, require a permission in our finer-grained
permission system (see Sect. 2.2). Consequently, IFC
reported an information flow violation.

Table 3: Results from the annotation burden experiment.

Time Ass- Annotations
App LOC (min.) ump. src.+sink=total ratio

CameraTest 92 20 .22 1 6 + 5 = 11 .12 6%
Shares Pictures† 141 10 .07 0 12 + 0 = 12 .09 4%
BusinessCard 183 10 .05 1 9 + 0 = 9 .05 3%
Calculator 3 520 40 .08 0 7 + 0 = 7 .01 1%
Dynalogin 625 300 .48 0 66 + 0 = 66 .11 6%
TeaTimer 1098 295 .27 7 51 + 3 = 54 .05 3%
FourTrack 1108 120 .11 0 27 + 18 = 45 .04 3%
RingyDingy 1322 180 .14 2 41 + 26 = 67 .05 4%
VoiceNotify 1360 185 .14 11 68 + 44 =112 .08 4%
Sky 1441 240 .17 5 33 + 35 = 68 .05 3%
Pedometer 1547 165 .11 0 71 + 58 =129 .08 5%

Total 9437 1565 .17 26 391+189=580 .06 4%

Boldfaced numbers (time, annotations) are per line of code.
“Assump.” is trusted assumptions. Annotation ratio compares
the number of annotations written to how many could have been
written — the number of uses of types in the app’s source code.
Throughout, lines of code (generated using David A. Wheeler’s
“SLOCCount”) omit whitespace and comment lines.
†Malicious applications

3.9 Control team results
For the third and fifth batches of applications, our spon-
sor hired a control team to evaluate the applications and
search for malware. The control team consisted of 4 PhD
students with, on average, 11 years of Java experience and
.5 years of Android experience — very similar to our team.
The control team used both static and dynamic analysis
tools, including Androguard, Eclipse, and emulators.

For the third batch of apps, the control team took an av-
erage of 9.5 hours per application to declare it malicious
or benign, and their answer was right 60% of the time.
Our team, using IFC plus simple tools that search for sus-
picious code, spent 42 minutes on average per application
and correctly classified 80% of the applications.

For the fifth batch of apps, the control team took an av-
erage of 2.3 hours per application and correctly classified
63% of the apps. Our team spent 1.25 hours per app on
average and correctly classified 75% of the apps.

3.10 Annotation burden
The IFC verification methodology and toolset provide
guarantees, but at a cost: the developer must write source
code annotations that express the relevant information
flows.

In order to estimate this cost, five of the authors of this
paper annotated 11 applications. 1 app was a malicious
app written by the Red Teams and 10 apps were benign

10



apps written by third-party developers or the Red Teams.
Each person was given an unannotated application and a
flow policy. The person fully annotated the application
even if they found malware, in which case they suppressed
a warning and continued the task. The annotator had
never seen the application before, so the vast majority of
their time was spent reverse-engineering the application
— work that would not be necessary for the application
vendor.

Table 3 shows the results. On average, the annotators
annotated 6 lines of code per minute, which was primarily
the effort to understand the code. This compares favor-
ably with industry-standard averages of about 20 lines of
delivered code per day [4, 29, 42, 22].

The annotated code contained on average one annota-
tion per 16 lines of code. This compares favorably with
the annotation burden for Jif, another information-flow
system for Java. In three studies over a 6-year period,
Jif required one annotation per 4–9 lines of code [50],
one annotation per 3 lines [51], and one annotation per 4
lines [6]. In our case studies, the annotator wrote an anno-
tation in 4% of the places an annotation could have been
written; the other locations were defaulted or inferred.

The number of annotations per application is not corre-
lated with the number of lines of code nor the number of
possible annotations. Rather, the number of annotations
is dependent on how, and how much, information flows
through the code. When information flow is contained
within procedures, type inference reduces the number of
annotations required (Sect. 2.6.1).

3.11 Auditing burden
Another cost in the use of a static tool is the need to exam-
ine warnings to determine which ones are false positives.
This cost falls on the developer, then again on the audi-
tor. We wished to determine the cost to the app store of
approving an app, which requires auditing the flow policy
and each trusted assumption.

Two of the authors of this paper acted as app store
auditors. They reviewed the applications developed in the
Annotation Burden experiment from the previous section.
The auditors had never before seen the applications that
they reviewed, and they did not know whether they were
malware. The review was split into two phases: a review
of the app description and policy, then a review of the
trusted assumptions and conditionals in the source code.
This is exactly the same workflow as an app store auditor.
Table 4 summarizes the results.

The first part of the review ensures that the description
of the app matches the flow policy. An auditor begins by
reading the app description and writing a flow policy; then
the auditor compares that to the submitted flow policy. If
there is any difference, the developer must modify the

Table 4: Results from the collaborative app store experiment.

App Name Review Reviewed Accepted
time (min.) Assump. Cond.

CameraTest 26 .28 1 0 0% Accept
Shares Pictures† 5 .04 0 0 0% Reject
BusinessCard 11 .06 1 1 14% Accept
Calculator 3 11 .02 0 3 5% Accept
Dynalogin 10 .02 0 10 37% Accept
TeaTimer 50 .05 7 20 22% Accept
FourTrack 61 .06 0 11 14% Accept
RingyDingy 20 .02 2 11 9% Accept
VoiceNotify 35 .03 11 73 47% Accept
Sky 25 .02 5 19 15% Accept
Pedometer 15 .01 0 65 57% Accept

Total 269 .03 27 213 27%

Boldfaced times are per line of code. All trusted assumptions
were reviewed. The Reviewed Conditions column gives the num-
ber of reviewed conditions and the percentage of all conditional
sinks that needed to be reviewed. †Malicious applications

description or flow policy. The policy review took 35%
of total auditing time.

The second part of the review ensures that all trusted
assumptions and indirect information flows are valid.
The auditor first reviewed each suppressed warning its
developer-written justification. Only CameraTest had one
rejected justification, which the developer rectified in a re-
submission. The other justifications were accepted by the
auditors. Then, the auditors investigated the information
flow into conditional sinks, ensuring that any dependency
is benevolent.

After the experiment, auditors mentioned that there
were many unexpected flows, which ended up being nec-
essary. Also, they wanted clear guidelines to accept or
reject flow policies. We believe that both concerns will be
resolved as auditors and app stores get more experience;
this was their first time to audit apps.

We have not evaluated the effort of analyzing an up-
date to an existing app, but this should also be low. An
update can re-use the explicit flow policy specification,
annotations, and justifications for trusted assumptions) of
previous versions.

3.12 Learnability
IFC integrates smoothly with Java and re-uses type system
concepts familiar to programmers. Nonetheless, learning
about information flow, or learning our toolset, may prove
a barrier to some programmers. The programmers in the
study of Sect. 3.10 were already familiar with Android

11



and IFC. We wished to determine how difficult it is to
come up to speed on IFC.

We conducted a study involving 32 third-year under-
graduate students enrolled in an introductory compilers
class. Most of the students had no previous experience
with Android. They received a two-hour presentation,
then worked in pairs to annotate an app of 1000–1500
lines. The apps came from the f-droid.org catalog; we
do not have access to the source code of most apps in the
Google Play Store.

The students’ task was to learn Android, information
flow theory, and the IFC toolset, then to reverse-engineer
the app and to annotate it so that IFC issues no warnings.
On average the task required 15 hours. The students
reported that the first annotations were the most time-
consuming because they were still learning to understand
IFC; after that the task was easier.

3.13 Lessons learned
This section states a few lessons we learned during our
experiments.

Program annotations foil some of the ways to hide
malware. IFC hampers data exfiltration. Hiding data-
flow based malware in an application that is annotated
with flow sources and flow sinks turned out to be difficult
for the Red Teams, even though they had access to our
source code, documentation, and our own evaluation of
our system’s limitations.

Generality of our analysis. Our information-flow
based approach turned out to be surprisingly general. Our
toolset revealed malicious data flow of the payload as well
as the injected triggers. We found, for instance, malware
in applications that give wrong results based on a certain
time of day or a random value. Perhaps more importantly,
we were able to easily extend our system as we discovered
new properties that we wished IFC to handle — we did
so over the course of our own usage and also between
batches of malware analysis in the experiments.

3.14 Threats to validity
Our success in the experiments shows promise for our
approach. Nonetheless, we wish to highlight a few of the
most important threats to validity.

Characteristics of malware. The malware we ana-
lyzed was created by five different teams, each consisting
of multiple engineers working full-time on the task of
creating stealthy malware. The teams had previously
surveyed real malware, and they created malware repre-
sentative both of commercial malware that makes a profit
and advanced persistent threats who aim to steal informa-
tion. Nonetheless, we have no assurance that this malware
was representative of malware in the wild, either in terms

of types of malware or its quality. It is also possible that
our tools became tuned to the sort of malware created by
those five Red Teams.

Skill of the analysts. The same instrument may be
more or less effective depending on who is using it. It is
possible that our team was particularly skilled or lucky in
effectively classifying all the apps that it analyzed — or
that another team would have done a better job. An analyst
needs time to come up to speed on IFC; we have found
that a few weeks is sufficient for an undergraduate work-
ing part time, as confirmed by experiments (Sect. 3.12).
Training only needs to occur once, and our team’s
unfamiliarity with the apps was a bigger impediment.

Collaborative app verification model. Our model
assumes that application vendors are willing to anno-
tate their source code. We believe this is true for high-
assurance app stores, but our approach may not be appli-
cable to ordinary app stores.

3.15 Future work
We plan to enrich flow policies in three ways, while re-
taining the simple and high-level flavor of these specifi-
cations. (1) We will refine permissions, such as splitting
the WRITE_CONTACTS permission so that separate policies
can be specified for email addresses, phone numbers, and
notes fields. (2) The flow policy will indicate not just the
endpoints of the information flow, but an entire path. For
example, it might be valid to send personal information
to the Internet only if it has passed through an encryption
module first. (3) The flow policy will indicate conditional
information flows, such as permitting information flow
from the microphone to the network only when the user
presses the “transmit” button.

We plan to implement a variant of record types, so that
(for example) different parts of a data structure or file can
be given different information-flow types. We have al-
ready successfully implemented this for Android’s intents,
improving IFC’s analysis of inter-process communication.

4 Related work
This section discusses the research most closely related
to our approach.

4.1 Information flow
Information flow tracking has been investigated for sev-
eral languages and paradigms [14, 37, 25, 19]. These
approaches are largely complementary to our work as
they are theoretical or do not employ type systems to
achieve static guarantees of information flow properties.
Besides statically verifying properties, several approaches

12

f-droid.org


for enforcing information flow properties have been pro-
posed, such as refactoring [41], dynamic analysis [28],
or encoding as safety properties [44, 33]. Milanova and
Huang [30] recently presented a system that combines
information flow with reference immutability to improve
precision. Yet, the system has not been applied in a se-
curity context. Engelhardt et al.[11] discuss handling
intransitive information-flow policies; IFC requires mak-
ing transitive flows explicit. Sun et al. [43] discusses
modular inference for information flow; IFC provides
flow-sensitive type refinement within method bodies.

In the domain of information flow tracking for Java
programs, the closest related work is Jif (Java information
flow) [32, 31, 39]. Jif uses an incompatible extension of
the Java programming language and its own compiler to
express and check information flow properties of a pro-
gram. In contrast, IFC uses standard Java annotations and
the standard Java compiler. Furthermore, IFC achieves its
effects with a simpler, easier-to-use type system. While
Jif focuses on the expressiveness and flexibility of the type
system and trust model, IFC aims at practicality and scal-
ability to be applicable on large real-world Android appli-
cations. Jif has not been evaluated in an adversarial chal-
lenge exercise comparable to our experiments using IFC.

WebSSARI (Web application Security by Static Anal-
ysis and Runtime Inspection) [21] is another related ap-
proach but targets a different domain. WebSSARI focuses
on web applications written in PHP and aims at preventing
vulnerabilities such as Cross-Site Scripting or SQL Injec-
tion. In this context, static analysis is applied to reveal
existing weaknesses and to insert runtime checks. In con-
trast, IFC statically verifies information flow properties
for Android applications.

4.2 Android studies

Many recent research studies have focused on understand-
ing the weaknesses of the Android platform, as well as
characterizing Android malware in the wild. This section
discusses IFC in the context of those prior studies since it
also targets the Android platform.

Recent studies (e.g., [1, 12, 45]) investigated the An-
droid permission system and revealed that many Android
applications are overprivileged, meaning that they are
granted more permissions than they use. These studies
also provided a mapping of API calls to required permis-
sions. IFC utilizes those existing mappings and enhances
the Android permission system by adding finer-grained
sources and sinks for sensitive APIs.

Chin et al. [5] described a weakness caused by the
Android Intent mechanism: implicitly sent intents can
be intercepted by malicious applications. IFC analyzes
communication through intents to mitigate such attacks.

4.3 Malware detection and prevention
Ongtang et al. [35] suggest an application-centric secu-
rity model to strengthen Android’s security. The Google
Play Store runs Bouncer to detect and reject malicious
applications. Unfortunately, Bouncer can be circum-
vented [36, 23], which motivates our work.

Tools for detecting or preventing malicious behavior
on smartphones employ static analysis for detection or dy-
namic analysis for both detection and prevention. Wood-
pecker [17] uses static analysis to detect capability leaks
and ComDroid [5] to locate Intent-related vulnerabilities.
In addition, several systems have been proposed to de-
tect the leakage of personal data (e.g., [16, 27]). In this
context, PiOS [9] is a system for the detection of privacy
leaks in iOS Applications, which constructs a control
flow graph from compiled code and performs data flow
analysis. Unlike those existing approaches, IFC uses a
finer-grained model for sources and sinks, operates on
the source code, and is not limited to explicit information
flow. RiskRanker [18] and DroidRanger [53] combine
multiple analyses in an attempt to detect likely malware.

Besides the detection tools, dynamic enforcement tools
have been proposed in the literature that monitor the ex-
ecution of an application at runtime and intervene, if
necessary, to ensure safe behavior. TaintDroid [10] and
DroidScope [49] use taint-tracking to monitor the flow
of sensitive data that is sent from the phone, whereas
AppFence [20] automatically replaces the sensitive data
with innocuous data. Both of these techniques require
modification to the Android runtime framework, mak-
ing the approach non-portable. As an alternative Aura-
sium [48] uses inlined dynamic enforcement, which
rewrites the target application to embed runtime checks.
Although inlined dynamic enforcement improves porta-
bility, the performance and code size overhead may affect
its suitability for resource-constrained mobile platforms.

5 Conclusion
We have described IFC, a flow-sensitive, context-sensitive
type system that enables collaborative verification of infor-
mation flow properties in Android applications. Its design
focuses on usability and practicality, and it supports a rich
programming model.

We evaluated IFC by analyzing 72 new applications
(57 of them malicious), which were written by 5 different
corporate Red Teams who were not under our control. IFC
detected 96% of the information-flow-related malware
(we explain how to increase this number to 100%), and
82% of all malware. Other experiments show that IFC is
easy to use for both programmers and auditors.

Our system is freely available, including source code,
library API annotations, user manual, and example anno-
tated applications.

13



6 Acknowledgments
We thank Yoshi Kohno, David Wetherall, Dylan Mc-
Namee, David Naumann, John Singleton, David Brumley,
Zach Tatlock, and Marcelo d’Amorim for helpful discus-
sions.

This material is based on research sponsored by
DARPA under agreement number FA8750-12-2-0107.
The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

References
[1] AU, K. W. Y., ZHOU, Y. F., HUANG, Z., AND LIE, D. PScout:

Analyzing the Android permission specification. In CCS (Oct.
2012), pp. 217–228.

[2] BANERJEE, A., NAUMANN, D. A., AND ROSENBERG, S. Ex-
pressive declassification policies and modular static enforcement.
In IEEE Symposium on Security and Privacy (2008), pp. 339–353.

[3] BONNINGTON, C. First instance of iOS app store malware de-
tected, removed, 2012. http://www.wired.com/gadgetlab/
2012/07/first-ios-malware-found/.

[4] BROOKS, JR., F. P. The Mythical Man-Month: Essays on Soft-
ware Engineering. Addison-Wesley, Boston, MA, USA, 1975.

[5] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D. An-
alyzing inter-application communication in Android. In MobiSys
(June 2011), pp. 239–252.

[6] CHONG, S., VIKRAM, K., AND MYERS, A. C. SIF: Enforcing
confidentiality and integrity in web applications. In USENIX
Security (Aug. 2007).

[7] DENNING, D. E. A lattice model of secure information flow.
CACM 19, 5 (May 1976), 236–243.

[8] DIETL, W., DIETZEL, S., ERNST, M. D., MUŞLU, K., AND
SCHILLER, T. Building and using pluggable type-checkers. In
ICSE (May 2011), pp. 681–690.

[9] EGELE, M., KRUEGEL, C., KIRDAZ, E., AND VIGNA, G. PiOS:
Detecting privacy leaks in iOS applications. In NDSS (Feb. 2011).

[10] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. TaintDroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. In OSDI (Oct. 2010).

[11] ENGELHARDT, K., VAN DER MEYDEN, R., AND ZHANG, C.
Intransitive noninterference in nondeterministic systems. In ACM
Conference on Computer and Communications Security (2012),
pp. 869–880.

[12] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAGNER,
D. Android permissions demystified. In CCS (Oct. 2011), pp. 627–
638.

[13] FELT, A. P., FINIFTER, M., CHIN, E., HANNA, S., AND WAG-
NER, D. A survey of mobile malware in the wild. In SPSM (Oct.
2011), pp. 3–14.

[14] FERRARI, E., SAMARATI, P., BERTINO, E., AND JAJODIA, S.
Providing flexibility in information flow control for object-oriented
systems. In IEEE Security and Privacy (May 1997), pp. 130–140.

[15] FORESMAN, C. Proof-of-concept app exploiting iOS se-
curity flaw gets researcher in trouble with Apple, 2012.
http://arstechnica.com/apple/2011/11/safari-
charlie-discovers-security-flaw-in-ios-gets-
booted-from-dev-program/.

[16] GIBLER, C., CRUSSELL, J., ERICKSON, J., AND CHEN, H.
AndroidLeaks: Automatically detecting potential privacy leaks
in Android applications on a large scale. In TRUST (June 2012),
pp. 291–307.

[17] GRACE, M., ZHOU, Y., WANG, Z., AND JIANG, X. Systematic
detection of capability leaks in stock Android smartphones. In
NDSS (Feb. 2012).

[18] GRACE, M., ZHOU, Y., ZHANG, Q., ZOU, S., AND JIANG, X.
RiskRanker: Scalable and accurate zero-day Android malware
detection. In MobiSys (June 2012), pp. 281–294.

[19] HAMMER, C., KRINKE, J., AND SNELTING, G. Information flow
control for java based on path conditions in dependence graphs.
In ISSSE (Mar. 2006), pp. 87–96.

[20] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND
WETHERALL, D. These aren’t the droids you’re looking for:
Retrofitting Android to protect data from imperious applications.
In CCS (Oct. 2011), pp. 639–652.

[21] HUANG, Y.-W., YU, F., HANG, C., TSAI, C.-H., LEE, D.-T.,
AND KUO, S.-Y. Securing web application code by static analysis
and runtime protection. In WWW (May 2004), pp. 40–52.

[22] JONES, C. The Economics of Software Quality. Addison-Wesley,
2011.

[23] KASSNER, M. Google Play: Android’s Bouncer can be pwned.
http://www.techrepublic.com/blog/it-security/-
google-play-androids-bouncer-can-be-pwned/, 2012.

[24] KITCHING, C., AND MCVOY, L. BK2CVS prob-
lem. http://lkml.indiana.edu/hypermail/linux/kernel/
0311.0/0635.html, 2003.

[25] LI, P., AND ZDANCEWIC, S. Encoding information flow in
Haskell. In CSFW (July 2006), pp. 16–27.

[26] LIU, L., ZHANG, X., YAN, G., AND CHEN, S. Chrome ex-
tensions: Threat analysis and countermeasures. In NDSS (Feb.
2012).

[27] MANN, C., AND STAROSTIN, A. A framework for static detection
of privacy leaks in Android applications. In SAC (Mar. 2012),
pp. 1457–1462.

[28] MASRI, W., PODGURSKI, A., AND LEON, D. Detecting and
debugging insecure information flows. In ISSRE (Nov. 2004),
pp. 198–209.

[29] MCCONNELL, S. Software Estimation: Demystifying the Black
Art. Microsoft Press, 2006.

[30] MILANOVA, A., AND HUANG, W. Composing polymorphic
information flow systems with reference immutability. In FTfJP
(July 2013), pp. 5:1–5:7.

[31] MYERS, A. C. JFlow: Practical mostly-static information flow
control. In POPL (Jan. 1999), pp. 228–241.

[32] MYERS, A. C., ZHENG, L., ZDANCEWIC, S., CHONG, S., AND
NYSTROM, N. Jif: Java + information flow. http://www.cs.
cornell.edu/jif.

[33] NAUMANN, D. A. From coupling relations to mated invariants for
checking information flow. In European Symposium on Research
in Computer Security (ESORICS) (2006), vol. 4189 of LNCS,
pp. 279–296.

[34] OCTEAU, D., MCDANIEL, P., JHA, S., BARTEL, A., BODDEN,
E., KLEIN, J., AND LE TRAON, Y. Effective inter-component
communication mapping in Android with Epicc: An essential
step towards holistic security analysis. In USENIX Security (Aug.
2013), pp. 543–558.

[35] ONGTANG, M., MCLAUGHLIN, S., ENCK, W., AND MC-
DANIEL, P. Semantically rich application-centric security in
Android. In ACSAC (Dec., 2009), pp. 340–349.

14

http://www.wired.com/gadgetlab/2012/07/first-ios-malware-found/
http://www.wired.com/gadgetlab/2012/07/first-ios-malware-found/
http://arstechnica.com/apple/2011/11/safari-charlie-discovers-security-flaw-in-ios-gets-booted-from-dev-program/
http://arstechnica.com/apple/2011/11/safari-charlie-discovers-security-flaw-in-ios-gets-booted-from-dev-program/
http://arstechnica.com/apple/2011/11/safari-charlie-discovers-security-flaw-in-ios-gets-booted-from-dev-program/
http://www.techrepublic.com/blog/it-security/-google-play-androids-bouncer-can-be-pwned/
http://www.techrepublic.com/blog/it-security/-google-play-androids-bouncer-can-be-pwned/
http://lkml.indiana.edu/hypermail/linux/kernel/0311.0/0635.html
http://lkml.indiana.edu/hypermail/linux/kernel/0311.0/0635.html
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif


[36] PEROCO, N. J., AND SCHULTE, S. Adventures in BouncerLand.
In Black Hat USA (July 2012).

[37] POTTIER, F., AND SIMONET, V. Information flow inference for
ML. In POPL (Jan. 2002), pp. 319–330.

[38] RASHID, F. Android malware makes up this week’s dangerous
apps list. https://www.appthority.com/news/android-
malware-makes-up-this-weeks-dangerous-apps-list,
2013.

[39] SABELFELD, A., AND MYERS, A. C. Language-based
information-flow security. J. Sel. Areas in Commun. 21, 1 (Sep.
2003), 5–19.

[40] SCHOUWENBERG, R. Malware in the amazon app
store. https://www.securelist.com/en/blog/208194054/
Malware_in_the_Amazon_App_Store, 2012.

[41] SMITH, S., AND THOBER, M. Refactoring programs to secure
information flows. In PLAS (June 2006), pp. 75–84.

[42] SU, P. Broken Windows theory. http://blogs.msdn.com/b/
philipsu/archive/2006/06/14/631438.aspx, June 2006.

[43] SUN, Q., BANERJEE, A., AND NAUMANN, D. A. Modular and
constraint-based information flow inference for an object-oriented
language. In SAS (2004), pp. 84–99.

[44] TERAUCHI, T., AND AIKEN, A. Secure information flow as a
safety problem. In SAS (Sep. 2005), pp. 352–367.

[45] VIDAS, T., CHRISTIN, N., AND CRANOR, L. Curbing Android
permission creep. In W2SP (May 2011).

[46] VOLPANO, D. M., AND SMITH, G. A type-based approach to
program security. In TAPSOFT ’97 (Apr. 1997), pp. 607–621.

[47] WANG, T., LU, K., LU, L., CHUNG, S., AND LEE, W. Jekyll on
iOS: When benign apps become evil. In USENIX Security (Aug.
2013), pp. 559–572.

[48] XU, R., SAÏDI, H., AND ANDERSON, R. Aurasium: Practical
policy enforcement for Android applications. In USENIX Security
(Aug. 2012).

[49] YAN, L. K., AND YIN, H. DroidScope: Seamlessly reconstruct-
ing the OS and Dalvik semantic views for dynamic Android mal-
ware analysis. In USENIX Security (Aug. 2012).

[50] ZDANCEWIC, S., ZHENG, L., NYSTROM, N., AND MYERS,
A. C. Untrusted hosts and confidentiality: Secure program parti-
tioning. In SOSP (Oct. 2001), pp. 1–14.

[51] ZHENG, L., CHONG, S., MYERS, A. C., AND ZDANCEWIC,
S. Using replication and partitioning to build secure distributed
systems. In IEEE Security and Privacy (May 2003), pp. 236–250.

[52] ZHOU, Y., AND JIANG, X. Dissecting Android malware: Char-
acterization and evolution. In IEEE Security and Privacy (May
2012), pp. 95–109.

[53] ZHOU, Y., WANG, Z., ZHOU, W., AND JIANG, X. Hey, you,
get off of my market: Detecting malicious apps in official and
alternative Android markets. In NDSS (Feb. 2012).

A Appendix
Table 5 lists the malicious applications (Trojans) that were
written by 5 independent corporate Red Teams and were
analyzed using IFC.

15

https://www.appthority.com/news/android-malware-makes-up-this-weeks-dangerous-apps-list
https://www.appthority.com/news/android-malware-makes-up-this-weeks-dangerous-apps-list
https://www.securelist.com/en/blog/208194054/Malware_in_the_Amazon_App_Store
https://www.securelist.com/en/blog/208194054/Malware_in_the_Amazon_App_Store
http://blogs.msdn.com/b/philipsu/archive/2006/06/14/631438.aspx
http://blogs.msdn.com/b/philipsu/archive/2006/06/14/631438.aspx


Table 5: Trojan applications analyzed by IFC.

Description LOC Malware Description Information Flow Violation IFC

1 Adventure Game 17,896 Overwrites all files on the SD-card and deletes all SMS READ_SMS X

2 Countdown Timer 1,065 Drops all incoming SMSes RECEIVE_SMS X

3 Note Taker 3,251 Sends audio recordings over the Internet INTERNET X

4 Screen Saver 1 147 Corrupts the local file system WRITE_EXTERNAL_STORAGE X

5 SMS Pager 1,834 Sends SMS to a remote web server INTERNET X

6 System Monitoring 3 3,334 Blocks all SMSes RECEIVE_SMS X

7 Battery Indicator 4,214 Reads and sends picture data from the external storage to a web
address

INTERNET X

8 Block SMS 2,087 Sends all SMS messages to a server by adding them to a
hardcoded URL

INTERNET X

9 Calculator 2 640 Writes calculations to a file and then sends the file to a server INTERNET X

10 SMS Backup 293 Leaks SMS messages, browser history, and file names to the
SD card log

BROWSER_HISTORY X

11 SMS Notification 9,678 Writes SMSes to the log WRITE_LOGS X

12 System Monitoring 1 9,402 Sets the global proxy to 10.1.1.1 WRITE_SETTINGS X

13 Fortune 2,998 Sends the device ID to server INTERNET X

14 WiFi Finder 852 Sends location data to server ACCESS_FINE_LOCATION X

15 Cookbook 2,542 Deletes contact list WRITE_CONTACTS X

16 Password Protects
Apps

11,743 Locks all apps with a random password MODIFY_PHONE_STATE X

17 Phone silencer 1,415 Blocks all outing and incoming calls RECEIVE_BOOT_COMPLETED X

18 Replacement
launcher

1,069 Writes SIM ID to the SDCARD WRITE_EXTERNAL_STORAGE X

19 2D Game 33,017 Sends location data from photos on the SD card to a server READ_EXTERNAL_STORAGE→
INTERNET

X

20 Displays source code 242 Sends the device id to 127.0.0.0 READ_PHONE_STATE→INTERNET X

21 System Monitoring 2 9,530 Writes GPS data to SD Card ACCESS_FINE_LOCATION→
WRITE_EXTERNAL_STORAGE

X

22 SMS Encryption 27,764 Sends all outgoing SMSes to the intended recipient and to a
number specified in a trigger SMS

READ_SMS→SEND_SMS X

23 Bible 19,775 Downloads a jar-file and executes it INTERNET→
WRITE_EXTERNAL_STORAGE

X

24 GPS 1 720 Sends device ID to attacker’s server READ_PHONE_STATE→INTERNET X

25 GPS Logger 6,907 Sends location to attacker’s server ACCESS_FINE_LOCATION→
INTERNET

X

26 Shares Pictures 135 Sends location data from photos to attackers server READ_EXTERNAL_STORAGE→
INTERNET

X

27 Cat Pictures 639 Reads location from pictures and sends it to a malicious server READ_EXTERNAL_STORAGE→
INTERNET

X

28 SMS Messenger 1,210 Sends a spoofed SMS message to a contact READ_SMS→WRITE_SMS X

29 Running Log 1,333 Writes phone number to NFC tag READ_PHONE_STATE→NFC X

XThe malicous flows or permissions in these apps were found using IFC
Continued on next page

16



Table 5: Trojan applications analyzed by IFC — continued from previous page.

Description LOC Malware Description Information Flow Violation IFC

30 Calculator 1 510 Uses a randomized value as left operand RANDOM→DISPLAY X

31 RSS Reader 3,503 Vibrates randomly RANDOM→VIBRATE X

32 Text to Morse code 263 DoS on storage system USER_INPUT→FILESYSTEM X

33 Shares Location 248 Sends user’s location to 10.0.1.8 using ProcessBuilder and ping ACCESS_FINE_LOCATION→
PROCESS_BUILDER

X

34 Calculator 4 482 Displays a random number instead of result RANDOM→DISPLAY X

35 Device Admin 1 1,474 Leaks location data to a service via an intent ACCESS_FINE_LOCATION→INTENT X

36 Device Admin 2 1,700 A file containing the user’s phone number is sent to the Internet FILESYSTEM→INTERNET X

37 DropBox Uploader 5,902 Leaks phone number via screenshot to Internet DISPLAY→INTERNET X

38 GPS 3 1,512 Location data is sent to maps.google-com.cc rather than
maps.google.com

LOCATION→INTERNET("maps.google-
cc.com")

X

39 Geocaching 27,892 Sends data from any NFC tag in range to server NFC("*")→INTERNET X

40 Instant Messenger 1,253 Sends all chats to user 0xFFFF LITERAL("0xFFFF")→INTERNET X

41 App Backup 2,010 Deletes SDCARD LITERAL→
WRITE_EXTERNAL_STORAGE("*")

X

42 Mapping 5,587 Sends location data to malicious server LOCATION→
INTERNET("mapxplore.com")

X

43 SIP VoIP Phone 1,480 Allows third party to listen to phone calls USER_INPUT→
USE_SIP("2233520413@sip2sip.info")

X

44 Word Game 1,191 Sends contact information to hardcoded phone number LITERAL
→SEND_SMS("12025551212")

X

45 PGP Encryption 1 9,904 Appends BASE64 encoded passphrase to the version string of
the message

USER_INPUT("EditText.passPhrase")→
EMAIL

X

46 PGP Encryption 2 9,945 Appends unencrypted message to the encrypted text USER_INPUT("EditText.message")→
EMAIL

X∗

47 Password Saver 508 Saves passwords in plain text in shared preferences USER_INPUT("EditText.createPassword")
→SHARED_PREFERENCES

X∗

48 Podcast Player 1,711 Battery DoS: continually plays a song that has no sound none
49 Screen Saver 2 419 Battery DoS: Disables Back and Menu Button, replaces home

launcher, and uses 100% of the CPU
none

50 To Do List 5,123 Battery DoS: High refresh rate and display brightness none
51 Sudoku 1,505 Battery DoS: Spawns a thread with an infinite loop none
52 Expense reports 2,293 Performance DoS: does not kill threads none
53 Automatic SMS

replies
33,296 Performance DoS: Infinitely sends SMSes none

54 Screen Saver 3 457 Performance DoS: throttles the loop-back interface none
55 Backup 2,554 Transposes digits in phone number backup none
56 SMS Reminders 2,917 If a SMS with the text ‘000000000’ is received, all reminders

are deleted
none

57 Game 3 1,211 Loads preferences under another screen and passes touch
events to preferences screen

none

XThe malicous flows or permissions in these apps were found using IFC
X∗These malicious flows will be caught by IFC after future work is complete. See Sect. 3.6

17


	Introduction
	Verification of source code
	Collaborative verification model
	Threat model
	Contributions

	Information Flow Checker
	Types: flow sources and sinks
	Comparison to Android permissions
	Restricting existing permissions
	Sinks and sources for additional resources

	Flow policy
	Subtyping
	Polymorphism
	Inference and defaults
	Type inference and flow-sensitivity
	Determining sources from sinks and vice versa
	Defaults for unannotated types

	Trusted assumptions to suppress false positive warnings
	Indirect control flow: reflection, intents
	Reflection
	Intents

	Implementation
	Limitations

	Empirical study
	Methodology
	Summary of results
	Unjustified permissions
	Unjustified information flows
	Information flows using new sources/sinks
	Flows using parameterized permissions
	Malware not related to information flow
	Bugdoors
	Control team results
	Annotation burden
	Auditing burden
	Learnability
	Lessons learned
	Threats to validity
	Future work

	Related work
	Information flow
	Android studies
	Malware detection and prevention

	Conclusion
	Acknowledgments
	Appendix

