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Abstract
This research proposes and evaluates techniques for selecting
predicates for conditional program properties— that is, im-
plications such as p ⇒ q whose consequent is true only when
the predicate is true. Conditional properties are prevalent in
recursive data structures, which behave differently in their
base and recursive cases, and in many other situations. The
experimental context of the research is dynamic detection
of likely program invariants, but the ideas should also be
applicable to other domains.

It is computationally infeasible to try every possible pred-
icate for conditional properties, so we compare procedure re-
turn analysis, static analysis, clustering, random selection,
and context-sensitive analysis for selecting predicates.

Even a simple static analysis is fairly effective, presumably
because many of the important properties of a program are
tested or expressed by programmers. However, important
properties are implicit in the program’s code or execution.
We give examples of important properties discovered by each
of the other analyses. We experimentally evaluate the tech-
niques on two tasks: statically proving the absence of run-
time errors with a theorem-prover, and detecting errors by
separating erroneous from correct executions. We show that
the techniques improve performance on both tasks, and we
evaluate their costs.

1. Introduction
The goal of program analysis is to determine facts about a

program. The facts are not collected for their own sake, but
are presented to a user, depended on by a transformation, or
used to aid another analysis. The properties typically take
the form of predicates that are true at a particular program
point or points. Such predicates are called invariants, and a
program specification is a collection of invariants.

The usefulness of a program analysis depends on what
properties it can report. There is a tradeoff between expres-
siveness and efficiency: increasing the grammar of a program
analysis’s output tends to make the results more useful but
the analysis more costly. The cost arises from checking more
potential properties or from new mechanisms required in or-
der to detect new classes of properties. A major challenge
is increasing the grammar of a program analysis without
making the analysis unreasonably more expensive and with-
out degrading the quality of the output, when measured by
(human or machine) users of the output.

This paper investigates techniques for expanding the out-
put grammar of a specific dynamic program analysis that,

given program executions, produces likely specifications —
sets of invariants—as output. (Section 2.1 describes the
technique.) The base analysis reports properties such as
preconditions, postconditions, and representation invariants
that are unconditionally true over a test suite. This research
adds implications of the form a ⇒ b. Disjunctions such as
a ∨ b are a special case of implications, since (a ⇒ b) ≡
(¬a ∨ b).

A conditional invariant is an invariant whose consequent
is true only when the predicate is true. For instance, the
local invariant over the node n of a heap, (n.left.value ≤
n.value) && (n.right.value ≤ n.value), is true only if n,
n.left and n.right are non-null. Conditional invariants are
particularly important in recursive data structures, where
different properties typically hold in the base case and the
recursive case.

Extending a dynamic analysis to check implications is
trivial, but it is infeasible to check a ⇒ b for all invari-
ants a and b that the base analysis can produce. One reason
is runtime cost: the analysis checks each invariant over en-
tire program executions, and the proposed change squares
the number of potential invariants that must be checked. A
more serious objection concerns output accuracy. Checking
(say) 100 times as many properties is likely to increase the
number of false positives— properties that are reported but
are not true or are not useful for the user’s current task— by
a factor of 100. This is acceptable only if if the number of
true positives is also increased by a factor of 100, which is
unlikely.

Since it is infeasible to check a ⇒ b for every a and b,
the dynamic analysis must restrict the implications that it
checks. We propose to do so by restricting what properties
are used for the predicate a, while permitting b to range over
all properties reportable by the analysis.

This paper considers five techniques (detailed in Section 3)
for selecting predicates for implications: procedure return
analysis; static analysis; clustering; random selection; and
context-sensitive analysis. All but the second are dynamic
analyses that examine program executions rather than pro-
gram text. This enables them to produce information (pred-
icates) about program behavior that is not apparent from
the program text. It also enables them to work on programs
for which source code is not available, such as libraries or
other system components not under the direct control of the
software engineer running the tool.

We evaluated the five techniques in three different ways.
First, we compared the accuracy of the produced invariants,
where accuracy is measured by a program verification task

1



Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect
invariants

Splitting
conditions

Figure 1: Architecture of the Daikon tool for dynamic in-
variant detection. The “splitting conditions” input is op-
tional and enables detection of implications of the form
“a ⇒ b”. The focus of this paper is the selection of the
splitting conditions.

(Section 4.1). Second, we determined how well each of the
techniques may lead programmers to the errors underlying
faulty behavior (Section 4.2). Third, we performed ad-hoc
evaluation by reading the results to see what program prop-
erties they revealed that were unexpected and valuable even
to a programmer familiar with the code (Section 4.3).

Before discussing the techniques and their evaluation, the
paper provides background on the dynamic technique for
detecting program invariants (Section 2.1) and details the
mechanism for detecting implications (Section 2.2). The rest
of the paper then focuses on policy decisions about which
implications will be detected. Section 3 describes the five
policies in detail, and Section 4 evaluates them. Finally,
Section 5 discusses related work, and Section 6 concludes.

2. Background

2.1 Dynamic invariant detection
This section briefly describes dynamic detection of pro-

gram invariants and the Daikon implementation. Full de-
tails appear elsewhere [Ern00, ECGN01].

Dynamic invariant detection discovers likely invariants from
program executions by instrumenting the target program
to trace the variables of interest, running the instrumented
program over a test suite, and inferring invariants over the
instrumented values (Figure 1). The inference step tests a
set of possible invariants against the values captured from
the instrumented variables; those invariants that are tested
to a sufficient degree without falsification are reported to
the programmer. As with other dynamic approaches such
as testing and profiling, the accuracy of the inferred invari-
ants depends in part on the quality and completeness of the
test cases. The Daikon invariant detector is language inde-
pendent, and currently includes instrumenters for C, Java,
and IOA [GLV97].

Daikon detects invariants at specific program points such
as procedure entries and exits; each program point is treated
independently. The invariant detector is provided with a
variable trace that contains, for each execution of a pro-
gram point, the values of all variables in scope at that point.
Each of a set of possible invariants is tested against various
combinations of one, two, or three traced variables.

For scalar variables x, y, and z, and computed constants
a, b, and c, some examples of checked invariants are: equality
with a constant (x = a) or a small set of constants (x ∈ {a, b, c}),
lying in a range (a ≤ x ≤ b), non-zero, modulus (x ≡ a (mod b)),
linear relationships (z = ax + by + c), ordering (x ≤ y), and
functions (y = fn(x)). Invariants involving a sequence vari-
able (such as an array or linked list) include minimum and
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Figure 2: Mechanism for dynamic detection of implications.

maximum sequence values, lexicographical ordering, element
ordering, invariants holding for all elements in the sequence,
or membership (x ∈ y). Given two sequences, some exam-
ple checked invariants are elementwise linear relationship,
lexicographic comparison, and subsequence relationship.

For each variable or tuple of variables in scope at a given
program point, each potential invariant is tested. Each po-
tential unary invariant is checked for all variables, each po-
tential binary invariant is checked over all pairs of variables,
and so forth. A potential invariant is checked by examin-
ing each sample (i.e., tuple of values for the variables being
tested) in turn. As soon as a sample not satisfying the in-
variant is encountered, that invariant is known not to hold
and is not checked for any subsequent samples. Because
false invariants tend to be falsified quickly, the cost of de-
tecting invariants tends to be proportional to the number of
invariants discovered. All the invariants are inexpensive to
test and do not require full-fledged theorem-proving.

An invariant is reported only if there is adequate statisti-
cal evidence for it. In particular, if there are an inadequate
number of observations, observed patterns may be mere co-
incidence. Consequently, for each detected invariant, Daikon
computes the probability that such a property would appear
by chance in a random set of samples. The property is re-
ported only if its probability is smaller than a user-defined
confidence parameter [ECGN00].

The Daikon invariant detector is available from http://

pag.lcs.mit.edu/daikon/.

2.2 Detecting implications
Figure 2 shows the mechanism for dynamic detection of

implications [EGKN99, Ern00]. Rather than directly test-
ing specific a ⇒ b invariants, the invariant detector is pro-
vided with splitting conditions and then generates implica-
tions that may or may not reference the splitting conditions

The invariant detector first splits the input data (variable
values) into parts based on a splitting condition; selection
of the splitting condition is the main problem in detection
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{Create implications from elements of S1 to elements of
S2. S1 and S2 are sets of invariants.}
Create-Implications(S1, S2)
for all s1 ∈ S1 do

if ∃s2 ∈ S2 such that s1 ⇒ ¬s2 and s2 ⇒ ¬s1 then
{s1 and s2 are mutually exclusive}
for all s′ ∈ (S1 − S2) do

output “s1 ⇒ s′”
end for

end if
end for

Figure 3: Pseudocode for creation of implications from in-
variants over mutually exclusive subsets of the data.

Invariants Implications Simplified

T1

a
b
c
d
e

T2

¬a
¬b
c
f

a ⇒ b
a ⇒ d
a ⇒ e
b ⇒ a
b ⇒ d
b ⇒ e

¬a ⇒ ¬b
¬a ⇒ f
¬b ⇒ ¬a
¬b ⇒ f

a ⇔ b
a ⇒ d
a ⇒ e
¬a ⇒ f

Figure 4: Creation of implications from invariants over sub-
sets of the data. The left portion of the figure shows in-
variants over two subsets T1 and T2. The middle portion
shows all implications that are output by two calls to the
Create-Implications routine of Figure 3 ; c appears un-
conditionally, so does not appear in any implication. The
right portion shows the implications after logical simplifica-
tion.

of implications, and is the focus of this paper. After the
data is split into parts, ordinary invariant detection is per-
formed to detect (non-implication) invariants in each subset
of the data. Finally, the separately-detected invariants are
combined into implications, if possible. If the splitting con-
dition is poorly chosen, or if no implications hold over the
data, then the same invariants are detected over each subset
of the data, and no implications can be reported.

Figure 3 gives pseudocode for the third step of Figure 2,
creation of implications from invariants over subsets of the
data. The Create-Implications routine is run twice, swap-
ping the arguments, and then the results are simplified ac-
cording to the standard rules of Boolean logic. Figure 4
gives a concrete example of the algorithm’s behavior.

Each mutually exclusive invariant implies everything else
true for its own subset of the data. (This is true only
if the subsets are mutually exhaustive; for instance, given
three data subsets that induce invariant sets {a, b}, {¬a,¬b},
{a,¬b}, it is not valid to examine only the first two subsets
of the data and to conclude that a ⇒ b.) It is not necessary
to use any universally true property as the consequent of an
implication, since the universal property appears uncondi-
tionally. In other words, if c is universally true, there is no
sense outputting “a ⇒ c”.

The implication predicates need not be splitting condi-
tions, but can be any invariants detected in the subsets of
the data. Many of the resulting implications would not be
created if predicates were limited to pre-specified splitting
conditions; for example, x ≥ 0 ⇒ y = 2x in Figure 2. Daikon

is also able to refine splitting conditions to simpler or more
exact predicates (see Figure 6). In practice, the splitting
condition does appear over one subset of the data, and its
negation appears over the other subset. However, there are
three reasons that the splitting condition (or its negation)
might not be detected in a subset of the data.

The first reason is that the splitting condition is inexpress-
ible in Daikon’s grammar. It would be easy to extend the
algorithm so that it uses the splitting condition as an impli-
cation predicate in such cases. However, those inexpressible
invariants are likely to be beyond the capabilities of some
other tools such as static checkers (see Section 4.1).

The second reason that the splitting condition might not
be detected in a subset of the data is that a stronger condi-
tion is detected by Daikon. This is not a concern, because
the weaker condition is also detected and used for creation of
implications. When Daikon performs output, it suppresses
implied invariants, which do not add any new information
but only clutter the output. Thus, if s is stronger than w
(that is, s implies w), then Daikon will check both s and
w but, if both are true, will only report s; similarly, it will
check both s ⇒ a and w ⇒ a but, if both are true, will only
report w ⇒ a.

The third reason is that the splitting condition is express-
ible and true, but is not statistically justified and so is sup-
pressed from Daikon’s output. This can occur, for example,
if one of the subsets is very small; however, such suppression
is infrequent and is usually advantageous. Eliminating sta-
tistically unjustified invariants tends to greatly reduce the
size of Daikon’s output and typically does not reduce the
usefulness of the result.

3. Techniques for selecting predicates
We have reduced the problem of detecting predicates to

that of selecting splitting conditions. This section outlines
the techniques for detecting splitting conditions that we ex-
perimentally evaluated: procedure return analysis, simple
static analysis, clustering, random selection, and context-
sensitive analysis. Section 3.6 proposes additional techniques.

3.1 Procedure return analysis
Two simple splitting conditions based on dynamic checks

of procedure returns are built into Daikon. (We disabled
them in some of our experiments, in order to assess their
efficacy.)

The first splits data based on the return site. If a proce-
dure has multiple return statements, then it is likely that
they evidence different behaviors: one may be a normal case
and the other may be an exceptional case, a fast-path com-
putation, a base case, or different in some other manner.
Splitting based on the return site captures such differences.

The second splits based on boolean return values, sepa-
rating cases for which a procedure returns true from those
for which it returns false.

3.2 Static analysis
Daikon uses a simple static analysis for selecting splitting

conditions. Each boolean condition used in the program
(for instance, as the test of a if, while, or for statement)
is used as a splitting condition. Additionally, the body of
each pure boolean member function (of the same class as
the one being analyzed) is used. (The functions must be
side-effect-free and non-exception-throwing; allocations are
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permitted so long as the new objects do not escape.) A
more sophisticated static analysis (say, a dataflow analysis
or abstract interpretation) is clearly possible, but we have
not yet felt the need for one.

The rationale for this approach is that if the programmer
considered a condition worth testing, then it is likely to be
relevant to the problem. Furthermore, if a test can affect
the implementation, then that condition may also affect the
specification or externally visible behavior. That is not al-
ways the case; for instance, for loops conditions may be
over local variables that cannot be sensibly used as splitting
conditions at the specification level.

This is an opportune time to note that Daikon permits
splitting conditions to be associated with a single program
point (such as a procedure entry or exit) or to be used in-
discriminately, at every possible program point. In our ex-
periments, we use the latter option. When splitting condi-
tions concern global variables, this permits a splitting con-
dition produced for one program point to be used through-
out. When splitting conditions concern procedure parame-
ters, they typically are not valid at other program points,
because there are no variables with the given names at the
other program point. However, occasionally programmers
consistently use specific parameter names for specific pur-
poses, and we have seen quite a few cases in which a splitting
condition produced for a specific program point was very
advantageously used elsewhere. For instance, a condition
might always be relevant to the program’s state, but might
only be statically checked in the one routine that checks it
explicitly. Similar situations arise when a splitting condi-
tion is produced only at certain places by the other splitting
strategies.

3.3 Clustering
Cluster analysis, or clustering, is a multivariate analysis

technique that creates groups, or clusters, of self-similar dat-
apoints. Clustering aims to partition datapoints into clus-
ters that are internally homogeneous (members of the same
group are similar to one another) and externally heteroge-
neous (members of different groups are different from one
another). Clustering is a widely used technique in artificial
intelligence, data mining, and information retrieval, and has
been applied to problems in many other domains (see Sec-
tion 5).

Splitting conditions are intended to split data traces into
parts that contain similar conditions (the consequents of the
implications) and that are different from other parts (the
predicates of the implications). Clustering has exactly the
same goals, so we reasoned that clustering might be effec-
tive for detecting splitting conditions. Furthermore, because
clustering is a purely dynamic technique— it examines the
run-time variable values and separates them into groups— it
may discover distinctions in the data that would be difficult
or impossible to detect via more traditional means.

Figure 5 demonstrates the three steps for producing split-
ting conditions via cluster analysis. First, clustering is per-
formed on the data trace file. Each program point is clus-
tered individually. Each datapoint is a tuple of variable
values, one value for each variable in scope at the program
point. Once each tuple of variable values has been assigned a
cluster (numbered from 1 to k), the data trace file is rewrit-
ten to add a new variable, cluster, to each sample. Sec-
tion 3.3.2 describes the clustering algorithm in greater de-
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conditions
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Figure 5: Producing splitting conditions via cluster analysis.
The augmented data traces contain a new variable, cluster,
at each program point, and the intermediate splitting condi-
tions test that variable. The final step removes all mention
of the cluster variables, resulting in splitting conditions for
the original data trace file.

tail.
The second step is to run Daikon over the augmented data

trace file. This recursive invocation of Daikon itself relies on
detection of conditional invariants. The splitting conditions
supplied to the recursive Daikon invocation are of the form
“cluster = c”, for each possible value c, 1 ≤ c ≤ k, for
the cluster variable. Daikon produces all the output it
ordinarily would have, plus additional implications arising
from the splitting conditions.

The third step extracts the consequent from each implica-
tion whose predicate mentions the cluster variable. These
consequents, which mention variables from the original data
trace file, are properties that were true in one (but not all)
of the clusters. They are output as splitting conditions for
the original, unmodified data trace file.

3.3.1 Refining splitting conditions
The procedure above employs invariant detection to pro-

duce a set of splitting conditions that can then be employed
in a final invocation of invariant detection. An alternative
one-pass technique might add the cluster variable to a trace
file, perform invariant detection over that trace file, and fil-
ter references to the cluster variable out of the resulting
invariants. The two-pass process that performs invariant
detection twice is preferable to the one-pass technique for
two reasons.

First, the two-pass procedure produces a set of splitting
conditions that can be used on the original data traces. They
are human-readable, easing inspection and editing, and they
can be reused during other invariant detection steps.

Second, performing invariant detection helps to refine the
cluster information. Clustering is inherently statistical and
inexact; it may not partition the data exactly as desired.
However, so long as at least one cluster induces one of the
desired properties, the extra invariant detection step can
leverage this into the desired splitting condition. If the orig-
inal clustering produces the desired grouping, then the ad-
ditional step does no harm.

As an example, consider Figure 6. The clusters nearly,
but not exactly, match the true separation between behav-
iors, so no non-cluster-related implications can be reported.
However, the implication cluster = 1 ⇒ x < 0 is produced,
and using x < 0 as a splitting condition produces the desired
properties “x < 0 ⇔4” and “x > 0 ⇔ 2”.

The random selection technique (Section 3.4) relies on
similar refinement of an imperfect initial data subsetting.

3.3.2 Clustering details
Two common clustering techniques are k-means and hier-

archical. We use the k-means technique, which starts with
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Figure 6: Refinement of cluster information via an extra
step of invariant detection. The groups created by clustering
approximate, but do not exactly match, the natural division
in the data (between triangles and squares, at x = 0). An
extra invariant detection step produces the desired property
as a splitting condition.

k random clusters and then repeatedly assigns points to the
nearest cluster and recomputes the cluster centroids, until
the clusters and centroids stop changing. We also experi-
mented with hierarchical clustering, which starts with one
point per cluster, then repeatedly merges the two closest
clusters into a single cluster. Hierarchical clustering is more
computationally expensive and gave identical results in our
experiments.

For each input, we ran k-means clustering 10 times and
chose the best result, which has the minimum sum of dis-
tances from points to their cluster centroids. The repeated
trials avoid returning a poor local minimum. We chose k = 4
because it gave good results in preliminary experiments;
thus, the result contained four clusters. In our experiments,
k = 4 tended to produce results like that of k = 3, except
that one of the three clusters was split into two; likewise for
k = 2. Therefore, there would have been little advantage to
running the algorithm for k = 2 and k = 3 as well as for
k = 4.

Clustering operates on points in an n-dimensional space.
Each point is a single program point execution (such as a
procedure entry) and the dimensions are values for scalar
variables in scope at that program point. Before performing
clustering, we normalized the data so that each dimension
has a mean of 0 and a standard deviation of 1. This ensures
that large differences in some attributes (such as hashcodes
or floating-point values) do not swamp smaller differences in
other attributes (such as booleans).

3.4 Random selection
Randomized algorithms [MR97] have seen fruitful applica-

tion to many problem domains; they can be just as effective
in finding splitting conditions to enable production of im-
plications. Figure 7 how to select splitting conditions via
randomized analysis. First, select r different subsets of the
data, each of size s, and perform invariant detection over
each subset. Then, use any invariant detected in one of the
subsets, but not detected in the full data, as a splitting con-
dition.

As with the clustering technique, the randomly-selected
subsets of the data need not be perfect. Suppose that some
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Figure 8: Likelihood of finding an arbitrary split via random
selection. s is the size of each randomly-chosen subset, and
r is the number of such subsets.
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Figure 9: Likelihood of finding an arbitrary split via random
selection, without comparison against invariants over the full
data. s is the size of each randomly-chosen subset, and r is
the number of such subsets.

property holds in a fraction f < 1 of the data. It will
never be detected by ordinary (unconditional) invariant de-
tection. However, if one of the randomly-selected subsets
of the data happens to contain only datapoints where the
property holds, then the condition will be detected (and re-
detected when the splitting conditions are used in invariant
detection).

Figure 8 shows how likely a property is to be detected
by this technique, for for several values of s and r. The
property holds in all s elements of some subset with with
probability p = fs. Thus, the property is detected with
probability p on each trial. The property holds on at least
one of the subsets with probability 1− (1− p)r, and this is
the quantity graphed in Figure 8.

An alternate technique would compare invariants detected
over the subsets with one another rather than with invari-
ants detected over the full data. This avoids the need for a
potentially costly full run of Daikon. The analysis changes
as follows. The property holds in either all or none of the
s elements with probability p = fs + (1 − f)s. The prop-
erty (or its negation) holds on at least one of the subsets
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Figure 7: The randomized algorithm for choosing splitting conditions. The technique outputs each invariant that is detected
over a randomly-chosen subset of the data, but is not detected over the whole data.

with probability 1 − (1 − p)r. However, if it holds on all
subsets, it is still not detected, so we adjust the value down,
to (1− (1− p)r)(1− frs − (1− f)rs). Figure 9 graphs this
quantity against f , for several values of s and r.

Figure 9 indicates that the alternative approach is supe-
rior for relatively uncommon properties (.02 < f < .4) but
worse for rarely violated properties (f > .98). If both the
property and its negation are expressible in Daikon’s gram-
mar, as is usually the case, then the original approach always
dominates.

The likelihood of detecting a property can be improved by
reducing s or by increasing r. The danger of reducing s is
that the smaller the subset, the more likely that invariants
are not statistically justified and the more likely that any
resulting invariants overfit the small sample. The danger of
increasing r is that work linearly increases with r. We chose
s = 10 and r = 20 for our experiments.

Figures 8 and 9 indicate that the random selection tech-
nique is most effective for unbalanced data; when when f is
near .5, it is likely that both an example and a counterex-
ample appears in each subset of size s.

We believe that many interesting properties of data are
at least moderately unbalanced. For example, the base case
appears infrequently for data structures such as linked lists;
unusual conditions or special-case code paths tend to be exe-
cuted only occasionally; and the bugs that are most difficult
to identify, reproduce, and track down manifest themselves
only rarely.

An example illustrates the efficacy of this technique. Our
first experiment with random splitting applied it to the wa-
ter jug problem popularized by the film Die Hard: With
a Vengeance. Given two water jugs, one holding (say) ex-
actly 3 gallons and the other holding (say) exactly 5 gallons,
and neither of which has any calibrations, how can one fill,
empty, and pour water from one jug to the other in order
to leave exactly 4 gallons in one of the jugs? We expected
to obtain properties about the insolubility of the problem
when the two jugs have sizes that are not relatively prime.
In addition, we learned that minimal-length solutions have
either one step (the goal size is the size of one of the jugs) or
an even number of steps (odd-numbered steps fill or empty a
jug, and even-numbered steps pour as much of a jug as pos-
sible into the other jug). We were not aware of this property
before using random splitting.

3.5 Context-sensitive dynamic analysis
By default, invariant detection is context-insensitive: its

output properties hold over all executions of a program point.
However, many procedures are used in different ways by
different clients. A context-sensitive analysis distinguishes

among different paths to a program point.
As one example, the addElement method of a a polymor-

phic container class such as java.util.Vector might be
called with a String argument from one call-site and an
Integer argument from another. Ordinary invariant detec-
tion would report obj.type ∈ {String, Integer}. However, it
would be preferable to instead note that Vector is always
used as a homogeneous container.

It is also common to pass fixed values at a given call-
site, especially with functions of many arguments. Often,
the fixed values (whether statically constant, or dynamically
unchanging) passed to a function determine its behavior.
For example, the Unix lseek system call’s whence parameter
determines the arithmetic applied to the offset parameter.
Splitting by caller enables detection of invariants over the
offset calculation, such as:

whence = SEEK SET ⇒ position = offset
whence = SEEK CUR ⇒ position = orig(position) + offset
whence = SEEK END ⇒ position = length− offset

As another example, in the Berkeley-sockets accept pro-
cedure, parameters addr and addrlen are either both NULL
or both non-NULL. If both types of call are made, no invari-
ant will be detected, but splitting by caller enables detection
of addr = NULL ⇔ addrlen = NULL.

We extended invariant detection to perform splitting based
on calling context by adding, to the data traces for proce-
dure entries and exits, variables that indicate the call-site.
The instrumenter of Figure 1 transforms programs to add an
additional parameter to all procedures, to assign a unique
identifier to each call-site, and to pass that identifier in the
call. The invariant detector is supplied with splitting con-
ditions over the new call-site parameters, similarly to those
used by the clustering technique (Figure 5). The splitting
conditions can specify calls from a single call-site, all calls
from a single procedure, or all calls from a single class; the
latter two are achieved by making splitting conditions that
are disjunctions of those for single call-sites. Finally, a post-
processing step after invariant detection converts predicates
over the call-site ids into statements about context, such as
changing “caller = 3152145” into “called from method M”.

3.6 Other policies
Many other techniques could be used to divide the data

into parts likely to exhibit different behaviors; we plan to
investigate additional ones in the future. Two of the candi-
dates are the following.

A special values policy compares a variable to preselected
values chosen statically (such as null, zero, or literals in the
source code) or dynamically (such as commonly-occurring
values, minima, or maxima).
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A policy based on exceptions to detected invariants tracks
variable values that violate potential invariants, rather than
immediately discarding the falsified invariant. If the number
of falsifying samples is moderate, those samples can be sep-
arately processed, resulting in a nearly-true invariant plus
an invariant over the exceptions.

Additionally, programmers can select splitting conditions
by hand or according to any other strategy. (The Daikon
manual specifies a file format for splitting conditions, and
that format was used in all of our experiments.) Program-
mers usually have intuitions about what properties are most
important, are most likely to be of interest, or are most rel-
evant to their particular task. Additionally, programmers
can supply extra information, such as which test case group
a particular run came from, in order to compare such char-
acteristics.

4. Evaluation
We evaluated Section 3’s five policies for selecting split-

ting conditions —and thus, for dynamic detection of impli-
cations— in three different ways. The first experimental
evaluation measured the accuracy of the invariants in a pro-
gram verification task (Section 4.1). The second experimen-
tal evaluation measured how well the implications indicated
and explained faulty behavior (Section 4.2). The third eval-
uation was qualitative and assessed the likely usefulness of
the resulting implications (Section 4.3).

We report results for the two experiments in terms of pre-
cision and recall, standard measures from information re-
trieval. Suppose that we have a goal set of answers and a
reported set of answers produced by some technique; the
correct set is the intersection of the goal and reported sets.
Precision, a measure of correctness, is defined as correct

reported
.

Recall, a measure of completeness, is defined as correct
goal

. Both
measures are always between 0 and 1.

4.1 Static checking
Our experiment with static checking used the ESC/Java

static checker [Det96, DLNS98, LN98] to verify invariants
detected by the Daikon invariant detector. ESC/Java stat-
ically detects null dereference errors, array bounds errors,
and type cast errors. Programmers must write program an-
notations, many of which are similar in flavor to assert

statements. (Daikon can automatically insert its output into
programs in the form of ESC/Java annotations.) ESC/Java
issues warnings about annotations that cannot be verified
and about potential run-time errors.

Daikon’s output may not be completely verifiable by ESC/
Java. Verification may require removal of certain annota-
tions that are not verifiable, either because they are not
universally true or because they are beyond the checker’s ca-
pabilities. Verification may also require addition of missing
annotations, when those missing annotations are necessary
for the correctness proof or for verification of other necessary
annotations. We performed the removals and additions by
hand in order to find the verifiable set of annotations that
was closest to Daikon’s output. (This task is far beyond the
state of the art in program verification. Every other process-
ing step performed for this research was automatic, with
no human intervention required.) The number of changes
to Daikon’s output is a measure of its accuracy— in other
words, how much work a human would have to perform in
order to verify the lack of run-time errors in the code. When

measuring precision and recall, the verifiable set is the goal
set.

Use of splitting conditions adds implications to Daikon’s
output. Adding such invariants may increase recall by in-
cluding a condition necessary for verification, but new invari-
ants may also decrease precision by including invariants that
are not true or are not verifiable. Both anecdotal evidence
and controlled user experiments [NE02] have demonstrated
that recall is more important than precision for users. Users
can easily skip over or delete undesirable invariants but
have more trouble producing annotations from scratch—
particularly implications, which tend to be the most difficult
invariants for users to write. Therefore, adding invariants
may be worthwhile even if precision decreases.

We analyzed the programs listed in Figure 10. DisjSets,
StackAr, and QueueAr come from a data structures text-
book [Wei99]; Vector is part of the Java standard library;
and the remaining programs are solutions to assignments in
a programming course at MIT.

Figure 10 gives the experimental results. Over all the
programs, the return value analysis produced the smallest
number of implications, followed by static analysis, cluster-
ing, and random splitting respectively.

Previous user studies [NE02] had determined that the ob-
ject invariants over QueueAr were particularly troublesome
for users to state; furthermore, users were little troubled
by imprecision (extraneous properties in Daikon’s output).
Clustering analysis was able to recover three of these twelve
invariants, which more than counterbalanced its drop in pre-
cision. Random selection produced two, and static analy-
sis produced one, of the twelve troublesome invariants that
were missing from the output of the return value analysis.
These invariants involved comparisons over variables that
were never used together in the program text, and so were
difficult for people or static analyses to directly relate. The
dynamic techniques, which ignore program structure, were
not hindered by the structure of the program text.

Despite these successes for the dynamic techniques, their
overall recall was no better than that of the simple static
analysis. However, their false positives (irrelevant splitting
conditions or coincidental detected invariants) reduced their
relative precision. This indicates that techniques to throttle
their output may be necessary.

Static analysis produced relatively few valid splitting con-
ditions, mostly because many of the conditions in the pro-
gram called functions, used local variables, or otherwise were
not valid predicates at procedure entries and exits.

One potential explanation of our results is that the total
number of missing properties was relatively low even in the
base case. That is, the return value analysis produced nearly
all the invariants that ESC/Java required for verification.
Therefore, there was little room for the other techniques to
improve recall.

4.2 Error detection
Our experiment with error detection uses a novel method-

ology for helping to locate the semantic error that may un-
derly program faults. The insight motivating the technique
is that bugs induce different program behaviors; that is, a
program behaves differently on erroneous runs than on cor-
rect runs. One such difference is that the erroneous run may
exhibit a fault. Even if it does not, however, the program’s
data structures or control flow are affected by the error. Our
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Program size None Return Static Cluster Random
Program LOC NCNB Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall
FixedSizeSet 76 28 1.00 0.86 1.00 0.86 1.00 0.86 1.00 0.86 1.00 0.86
DisjSets 75 29 0.82 1.00 1.00 0.97 1.00 1.00 1.00 0.94 0.80 0.98
StackAr 114 50 1.00 0.90 1.00 1.00 0.95 1.00 0.78 1.00 0.95 1.00
QueueAr 116 56 0.92 0.71 0.98 0.78 0.89 0.84 0.62 0.89 0.77 0.91
Graph 180 99 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00
GeoSegment 269 116 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 – –
RatNum 276 139 0.93 1.00 0.91 1.00 1.00 1.00 0.72 1.00 0.50 1.00
StreetNumberSet 303 201 0.82 0.95 0.77 0.95 0.77 0.96 0.77 0.96 – –
Vector 536 202 0.96 0.95 0.99 0.95 0.76 0.98 0.71 0.97 0.81 0.97
RatPoly 853 498 0.81 0.97 0.67 0.95 0.71 0.96 0.68 0.96 – –
Total 4886 2451 0.91 0.93 0.91 0.94 0.89 0.96 0.80 0.96 0.80 0.96

Figure 10: Invariants detected by Daikon and verified by ESC/Java. “LOC” is the total lines of code. “NCNB” is the non-comment,

non-blank lines of code. “Prec” is the precision of the reported invariants, the ratio of verifiable to verifiable plus unverifiable invariants.

“Recall” is the recall of the reported invariants, the ratio of verifiable to verifiable plus missing.

goal is to capture those differences and present them to a
user. The differences may lead programmers to the underly-
ing errors, perhaps without even needing to understand the
faults as deeply as would otherwise be required.

The methodology requires user cooperation. The user is
presented with a set of automatically-generated implications
that result from differing behaviors in the target program.
We speculate that, if there are errors in the program, then
some of the dynamically detected implications will reveal
the errors. We have not yet experimentally verified this
speculation. However, anecdotal results we observed while
performing this study strongly support the supposition. In
many cases, after examining the invariants but before look-
ing at the code, we were able to correctly guess exactly what
errors existed in the target program. If other programmers
can be equally effective at interpreting the results, then they
can benefit from this error localization technology.

There are two different scenarios in which a software en-
gineer might use our tool to locate an error.

1. The user knows errors are present, has a test suite,
and knows which test cases are fault-revealing. Daikon can
produce invariants using, as a splitting condition, whether a
test case is fault-revealing. The resulting conditional invari-
ants capture the differences between faulty and non-faulty
runs and explicate what data structures or variable values
underly the faulty behavior. Daikon’s generalization over
multiple faulty runs spares the user from being distracted
by specifics of any one test case and from personally exam-
ining many test cases.

2. The user knows errors exist but does not know which
test cases expose them; or, the user does not know whether
errors exist but wishes to be appraised of evidence of poten-
tial errors. In this situation, the user can still be presented
with a list of implications in the hopes that some of them are
the same as would have been detected in the first scenario
and so will lead the user to the error. Anecdotal evidence
indicates the technique is effective in both scenarios.

Our evaluation focuses on scenario 2 because it is more
challenging and interesting and because existing solutions
for it are less satisfactory than those for scenario 1. Our ap-
proach is to detect conditional invariants and present them
to the user. The user examines the conditional invariants,
some of which may be irrelevant to any errors and some of
which may indicate the underlying causes of faults. We al-
ready know that imprecision tends to be little hindrance, so
long as desirable results are present and are not completely
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Figure 11: Error detection.

swamped by irrelevant output.
We evaluated our technique not via a user study, but ana-

lytically. Figure 11 diagrams our evaluation technique. The
goal set of invariants is the ones that would have been cre-
ated in the first scenario above, in which a user can split
based on whether a test case is fault-revealing. We simulate
this by running Daikon individually on the fault-revealing
and non-fault-revealing tests. The goal is all invariants de-
tected on one of those inputs but not on the other. The
reported invariants are those resulting from running Dai-
kon, augmented by a set of splitting conditions produced
by one of the techniques of Section 3. Given the goal and
reported sets, we compute precision and recall, as described
at the beginning of Section 4.

We evaluated our technique over four different set of pro-
grams. Each set of programs was written to the same spec-
ification. Three of the sets came from the TopCoder pro-
gramming competition website. These programs were sub-
mitted by contestants; the website publishes actual submis-
sions and test cases after the match is complete. The three
contests determined how football scores could be achieved,
how elements could be distributed into bins, and how lines
could be drawn to pass through certain points. We selected
a total of 26 submissions which contained real errors made
by contestants. The last set of programs were written by
students in an undergraduate class at MIT (6.170 Labora-
tory in Software Engineering). We selected 20 assignments
that implemented a datatype for polynomials with rational
coefficients. These programs, too, contained real, naturally
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Program size Return Static Cluster Random
Program Ver. LOC NCNB Prec. Recall Prec. Recall Prec. Recall Prec. Recall
NFL 10 ?? ?? – 0.00 0.13 0.05 0.29 0.80 0.21 0.65
Contest 10 ?? ?? – 0.00 0.21 0.50 0.17 0.34 0.19 0.82
Azot 6 ??? ?? – 0.00 – 0.00 0.03 0.22 0.03 0.66
RatPoly 20 ??? ?? 1.00 0.05 0.57 0.07 0.77 0.06 0.12 0.73
Total 1.00 0.01 0.30 0.15 0.32 0.36 0.14 0.72

Figure 12: Detection of invariants induced by program errors. “Ver” is the number of versions of the program. “LOC” is the average

total lines of code in each version. “NCNB” is the average non-comment, non-blank lines of code. “Prec” is the precision of the reported

invariants, the ratio of correct to reported. “Recall” is the recall of the reported invariants, the ratio of correct to goal.

occurring errors. The students had a week to complete their
assignment, unlike the TopCoder competitors who were un-
der time pressure. The TopCoder test suites tended to be
more exhaustive and to better exercise boundary cases, be-
cause the contestants augmented them in an effort to dis-
qualify their rivals.

[Note to the referees: the final version of this paper will
also evaluate the popular Siemens programs, which contain
manually seeded faults, and the space program, which con-
tains real faults.]

Figure 12 summarizes the experimental results. The
return value analysis rarely proposed any splitting condi-

tions, so the “reported invariants” set was empty for all the
contest problems. For the rational polynomial example, the
return value analysis returned on average six fault-revealing
invariants.

The static analysis strategy also reported relatively few
invariants, compared to the other strategies.

Cluster analysis performed extraordinarily well on the NFL
programs, but less well on the other programs. (For the
RatPoly programs, clustering produced few additional in-
variants beyond the return value analysis.) This suggests
that when the data can be naturally partitioned, clustering
is very effective, but that it does less well when the data do
not fall into easily separable groups. Clustering is likely to
be a good complement to other techniques, though in some
cases it produces no more than the return value analysis.

The random technique produced by far the largest set
of splitting conditions and also the largest set of reported
invariants—an order of magnitude more than the other ap-
proaches. For RatPoly, this translated to about two invari-
ants per line of code, which is a large, but not unmanageable,
number. Even though very many invariants were reported,
about as many were fault-revealing as for the more parsi-
monious methods, so its precision remained acceptable. In
other words, hundreds or thousands of invariants were re-
ported, but so many of those were fault-revealing that a user
need not examine many before being led to the cause of the
error. In other words, the large amount of output should not
be a hindrance. Furthermore, the many reported invariants
permitted the random method to reveal more of the dif-
ferences in behavior between erroneous and non-erroneous
runs: in other words, more potential bugs were indicated by
the output.

A frequent source of incorrect reported invariants was mi-
nor differences in results; for instance, the goal might state
return ≥ 0 whereas one of the randomly selected subsets of
the data induced return > 0, due to fewer samples.

4.3 Context-sensitive analysis
In contrast to the other techniques, which can report in-

teresting properties even over small programs, the context-
sensitive analysis of Section 3.5 requires a larger scope. For
any benefit from this analysis, a method must have at least
two callers, yet smaller test programs have typically fewer
calls per method and less variation.

Therefore, we evaluated the context-sensitive analysis qual-
itatively rather than quantitatively, using Rational as a test
case.
Rational is a library abstracting polynomials over the ra-

tional numbers. It consists of 2258 lines of code (977 lines of
non-comment non-blank code) and defines classes: RatNum,
rational numbers; RatPoly, polynomials; RatTerm, a coeffi-
cient and exponent; and RatTermVec, a vector of terms.

The invariants detected using context-sensitive analysis,
and expressed here in OCL precondition/postcondition syn-
tax, demonstrate defiances in the test suite and reveal prop-
erties of the implementation.

RatNum.approx()

pre: caller = RatPoly.eval ⇒ this.denom = 1

During evaluation of a polynomial, the result is approx-
imated by a floating-point value; however, RatPoly.eval

only called RatNum.approx with integers, indicating that
only fractionless polynomials were encountered while test-
ing eval — an important omission from the test suite for
such a procedure. This invariant did not show up earlier
because a RatNum unit-test suite did exercise approx with a
wide range of values.

RatNum.div(RatNum arg)

pre: caller = RatPoly.divAndRem ⇒ arg.denom = 1
pre: caller = RatPoly.divAndRem ⇒ arg.numer 6= 0

RatNum.mul(RatNum arg)

pre: caller = RatPoly.divAndRem ⇒ arg.numer ≥ 0
pre: caller = RatPoly.divAndRem ⇒ this.denom ≥ 1

post: caller = RatPoly.divAndRem ⇒ return.denom ≥ 1

These five invariants indicate further deficiencies in the
test suite. Invariant #2 shows that zero-valued coefficients
are never used by div, while invariants #4 and #5 show that
NaN values, which are represented by a zero denominator, are
never manipulated by mul.

Similarly, invariant #1 indicates that div is not called
with rational-coefficient polynomials, and invariant #3 shows
that div is never exercised with negative coefficients.

RatNum.sub(RatNum arg)

pre: caller = RatNum.compareTo ⇒ arg.denom ≥ 1
pre: caller = RatNum.compareTo ⇒ this.denom ≥ 1

This pair of invariants reveals that compareTo short-circuits
(does not call sub) if its argument is NaN. .

RatPoly.parse(String polyStr)

pre: caller = RatPoly.div ⇒ polyStr = “NaN”
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This invariant indicates that div is implemented ineffi-
ciently, since it repeatedly calls the the pure (and relatively
expensive) function parse in order to generate NaN-valued
polynomials, instead of using a reference to a constant or
caching the result.

RatPoly.scaleCoeff(RatTermVec t, RatNum scalar)

pre: caller = RatPoly.negate ⇒ scalar.denom = 1
pre: caller = RatPoly.negate ⇒ scalar.numer = −1

Finally, this pair of invariants reveal that negate, by in-
voking the general-purpose scaleCoeff with a value of −1,
is being needlessly inefficient. This example is a candidate
for partial specialization.

5. Related work
Clustering [JMF99] aims to partition data so as to reflect

distinctions present in the underlying data. It is now widely
used in software engineering as well as in other fields. As just
one example of a related use, Podgurski et al [PMM+99] use
clustering on execution profiles (similar to our data traces)
to differentiate among operational executions. This can re-
duce the cost of testing. In related work, Dickinson et
al [DLP01] use clustering to identify outliers; sampling those
outlier region is effective at detecting failures.

The techniques for dynamic detection of implications and
for error detection presented in this paper were previously
proposed in a technical report and dissertation [EGKN99,
Ern00]. Raz et al [RKS02] used the Daikon implementation
(albeit without most of the implication techniques discussed
in this paper) to detect anomalies in online data sources.
Hangal and Lam [HL02] re-implemented the dynamic in-
variant detector (including improvements such as running
online, but including some other restrictions in an engineer-
ing tradeoff) and showed that the techniques are effective at
bug detection. The ideas were also implemented and eval-
uated by Engler et al [ECH+01], who detected numerous
bugs in operating system code by exploiting the same un-
derlying idea: that when behavior is inconsistent, then a
bug is present, because one of the behaviors must be in-
correct. An automated system can flag such inconsistencies
even in the absence of a specification or other information
that would indicate which of the behaviors is erroneous. Of
course, none of the cited works can claim credit for the idea
of comparing behavior to look for differences, which has long
been applied by working programmers and others; but they
have found effective ways to apply those ideas to the domain
of error detection.

6. Conclusion
This paper suggests five methods for improving the qual-

ity of specifications that can be generated by automatic in-
variant detection.

Our experimental data confirm the value of these meth-
ods: all improve the recall of the reported invariants by
several percent, with minimal loss in precision.

The data suggests that each technique represents a trade-
off between better recall (fewer missing invariants for a ver-
ifiable specification) and better precision (broadly speaking,
lower “noise”).

The static analysis and return methods give increased re-
call with little or no loss in precision, but, if recall is the
dominant factor in user-acceptability, as we believe it is,

then the use of the random and cluster methods are still of
value despite their decreased precision.

The improved average recall, from around 93%–96%, rep-
resents approximately one third fewer missing invariants re-
quired to complete the specification by hand.

This paper also contributes an approach to error identifi-
cation, even in the absence of test data evidencing the fault
or even knowledge of the existence of the error.

In the future, we wish to further exploit invariants pro-
duced by context-sensitive splitting conditions, both to aid
understanding of complex programs, and to improve the
quality of generated specifications.
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