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Abstract
Dynamic detection of likely invariants is a program analysis that
generalizes over observed values to hypothesize program proper-
ties. The reported program properties are a set of likely invariants
over the program, also known as an operational abstraction. Opera-
tional abstractions are useful in testing, verification, bug detection,
refactoring, comparing behavior, and many other tasks.

Previous techniques for dynamic invariant detection scale poorly
or report too few properties. Incremental algorithms are attractive
because they process each observed value only once and thus scale
well with data sizes. Previous incremental algorithms only checked
and reported a small number of properties. This paper takes steps
toward correcting this problem. The paper presents two new in-
cremental algorithms for invariant detection and compares them
analytically and experimentally to two existing algorithms. Fur-
thermore, the paper presents four optimizations and shows how to
implement them in the context of incremental algorithms. The re-
sult is more scalable invariant detection that does not sacrifice func-
tionality.

Categories and Subject Descriptors:F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Invariants

General Terms: Algorithms, Performance
Keywords: dynamic invariant detection, incremental algorithm,

batch algorithm, reversing optimizations

1. Introduction
This paper presents and evaluates algorithms and optimizations

for obtaining an operational abstraction — a formal description of
properties that held on a series of program runs and can be expected
to hold on future runs. The task of generating an operational ab-
straction is also known as dynamic detection of likely invariants, or
dynamic invariant detection.

Dynamic invariant detection is an important and practical prob-
lem. Operational abstractions have been used in verifying safety
properties [35, 30, 31], automating theorem-proving [27, 28], iden-
tifying refactoring opportunities [19], predicate abstraction [8, 9],
generating test cases [38, 39, 13, 14], selecting and prioritizing test
cases [16], explaining test failures [12], predicting incompatibilities
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in component upgrades [24, 25], error detection [34, 15, 33, 23,
4], error isolation [37, 21], and choosing modalities [22], among
other tasks. Dynamic invariant detection has been independently
implemented by several research groups, and related tools that also
produce formal descriptions of run-time behavior have seen wide
use (see Section 10).

While dynamic invariant detection is valuable, implementing it
efficiently is challenging. A naive implementation is straightfor-
ward but fails to scale to problems of substantial size. The key pa-
rameters that control runtime are the runtime of the subject program
(a longer-running program produces more data to be analyzed),
number of variables and fields examined, size of each variable (ar-
rays are more expensive to test than integers or booleans), number
of program points at which invariant detection is performed (for in-
stance, after every instruction versus only at entry and exit points
of one component), and the grammar of invariants checked (check-
ing all invariants that relate any three variables is more expensive
than only considering those that relate two variables). The size of
the program isnot relevant, except insofar as it might affect the
measures above.

Previous invariant detection algorithms have controlled runtime
and space by limiting one or more of the above factors (see Sec-
tion 10). As a result, the results have been limited in their ex-
pressiveness, or they have been applicable to fewer programs than
would be desired, or both. Our goal is to remove some of these
limitations, enabling invariant detection to be applied to more pro-
grams and to produce more detailed results.

We address this goal by providing two new algorithms for invari-
ant detection (thetop-down incrementalalgorithm and thebottom-
up incrementalalgorithm) and by analytically and experimentally
comparing these algorithms to one another and to two previously
known algorithms (thesimple incrementalalgorithm and themulti-
pass batchalgorithm). We describe three optimizations (equiva-
lence sets, constants, and suppressions) previously implemented
only in the multi-pass batch algorithm and show how to extend
them to the incremental algorithms, and we present a new opti-
mization (hierarchy). All of these optimizations take advantage
of the fact that when certain properties hold, other properties are
guaranteed to hold and need not be checked. We experimentally
evaluate the four optimizations and discuss the complications aris-
ing from integrating the optimizations with the algorithms and with
each other.

This paper is organized as follows. Section 2 provides back-
ground about dynamic invariant detection and explains the factors
that affect its runtime. Section 3 gives a simple incremental algo-
rithm for invariant detection, and Section 4 notes four types of re-
dundancy in its output. The following sections give algorithms that
exploit those redundancies in different ways: in a multi-pass algo-
rithm (Section 5), a bottom-up incremental algorithm (Section 6),
and a top-down incremental algorithm (Section 7), along with op-
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timizations for the incremental algorithms (Section 8). Section 9
gives results of our experiments with the various algorithms and
optimizations. Section 10 discusses related work, and Section 11
concludes.

2. Background: dynamic invariant detection
Dynamic detection of likely invariants [10] discovers likely in-

variants from program executions by instrumenting the target pro-
gram (in source or binary form) to trace the variables of interest,
running the instrumented program over a set of test cases, and
postulating and checking invariants over values that the program
computes. The essential idea is to use a generate-and-check algo-
rithm to test a set of possible invariants against the observed val-
ues of the instrumented variables. (Each set of observed values at
a program point is called a “sample”.) The invariant detector re-
ports those properties that are tested to a sufficient degree without
falsification. The output includes properties such as “at entry to
procedurefoo , myList is sorted”, “at exit from procedurebar ,
return ≥ myVar ” (wherereturn stands for the return value), and
“for all Link objects,this.next.prev = this”. As with other
dynamic approaches such as profiling, the accuracy of the results
depends in part on the quality and completeness of the test cases.
Even modest test suites produce good results in practice [31, 30],
and techniques exist for creating good test suites for invariant de-
tection [16, 14, 39]. In the remainder of this paper, for brevity we
use “invariant” to mean “likely invariant”, unless otherwise noted.

Which invariants are reported depends on which properties are
checked — more specifically, the grammar of properties that are
expressible by the invariant detector, the variables over which the
properties are checked, and the program points at which the proper-
ties are checked. We discuss each of these factors. Section 10 dis-
cusses the choices that various implementations make for these fac-
tors. The reported properties also depend on filtering performed af-
ter checking, such as statistical tests (to reduce false positives) [10]
and elimination of redundant properties [11].

Program points.Invariants can be checked at arbitrary loca-
tions in a program. Two examples are procedure entries and exits,
resulting in invariants that correspond to preconditions and post-
conditions. It can be useful to compute invariants at each procedure
exit (i.e.,return statement) and also to compute anaggregateexit
point (as viewed by a client) by generalizing over the individual exit
points. Object or class invariants are also computed at an aggregate
program point (object point), by generalizing over all objects that
are observed at entry to and exit from public methods of a class,
that are passed into or returned from methods of other classes, or
that are stored in object fields.

Grammar of properties.An invariant detector may check just
a few types of properties (such as equalities and inequalities among
variables), or it may check a larger variety. Letx,y,z be variables,
and leta,b,c be constants. Properties that might be checked in-
clude being constant (x = a), non-zero (x 6= 0), being in a range
(a ≤ x ≤ b), linear relationships (y = ax + b), ordering (x ≤ y),
functions from a library (x = fn(y)), containment (x ∈ y), sorted-
ness (x is sorted), and many others.

An invariant detector may permit users to add domain-specific
properties to be checked. An invariant detector may also report
conditional properties or implications, such asleft 6= null ⇒
left .value ≤ this.value. Checking a larger number of properties
makes it more likely that the output will contain the facts that are
needed by a human or a tool; however, it also increases the runtime

of the invariant detector and the likelihood of false positives.

Grammar of variables.The properties that an invariant de-
tector can express must be instantiated over particular variables or
other values; for example,x ∈ y is instantiated over two variables,
of which the second must be a collection. In addition to a proce-
dure’s parameters and return value, it is useful to detect invariants
over additional variables (for instance, global variables or pre-state
values), and also over values (called “derived variables”) that are
not manifest in the program. For example, if arraya and integer
lasti are in scope, then properties overa[lasti] may be of in-
terest, even though it is not a variable and may not even appear in
the program. At a procedure exit, including the original values of
variables permits reporting side effects and input-output relation-
ships. Given an objecta, its fields (such asa.f ) and their fields
(such asa.f.g ) provide useful additional information. The results
of calls to side-effect-free methods can also be used as derived vari-
ables.

Examining structure elements results inmissingvariable values.
For example, if variablea is null, thena.f is nonsensical. A subtler
example results when fields are dereferenced to depth (say) 1, and
class A contains fieldx of type integer and fieldy of type B, which
contains fieldz of type integer. At uses ofb of type B, bothb
itself (typically represented as an address or hash code) and field
b.z are available. However, at uses ofa of type A, only a and
its fieldsa.x anda.y are available; the fielda.y.z is beyond the
field dereference depth and so is not available even ifa.y is non-
null. It requires special care to report correct results when one or
more variables of an invariant may be missing; the invariant is not
falsified but cannot be relied on in certain other situations.

Experimental Evaluation.This paper’s experimental evalu-
ation uses the Daikon implementation, which is publicly available
from http://pag.csail.mit.edu/daikon . Daikon implements
all the features listed in this section, including ternary derived vari-
ables and invariants, field dereferencing to a user-specified depth,
user-specified invariants, conditional invariants, and statistical tests.
A full list of its 31 derived variables (12 of which are enabled by de-
fault) and 161 invariants (152 enabled) appears in the Daikon user
manual, available from its website. Daikon operates on C, Java,
and Perl code, and on various other data formats.

3. Simple incremental algorithm
This section gives anincremental, or single-pass, invariant de-

tection algorithm: it discards each sample after processing it, so
the storage space requirements do not grow with the number of
samples. An incremental algorithm can also run online (that is,
simultaneously with the target program), eliminating the need to
store trace files to disk.

The algorithm is as follows.

1. Initially, assume all properties in the grammar to be true. In-
stantiate a candidate invariant for each property and combi-
nation of variables. For example, if the grammar of prop-
erties is “odd” and “=”, and the variables arex, y, andz,
then instantiateodd(x), odd(y), odd(z), x = y, x = z, and
y = z.

2. For each sample, check each candidate invariant associated
with the same program point as the sample and discard any
that are contradicted by the sample. For example, the sample
〈3, 4, 3〉 eliminates the invariantsodd(y), x = y, andy = z
from the above list.

3. Report the invariants that remain after processing all sam-
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VP number of variables/values in scope at a program point
VD(v) number of derived variables obtained fromv original variables
V total variables at a program point= VP + VD(VP )

L execution length: number of samples for a program point
I number of possible invariants at a program point= G(V )

RI number of reported invariants at a program point
P program size: number of program points
G(v) grammar: number of invariant templates, givenv variables

Figure 1: Variables used in the running time and space analyses.

ples, and after applying post-processing filtering.

Each program point is processed independently.
The algorithm uses space only to store candidate invariants. The

initial and maximum space usage isS = O(P ·I) = O(P ·G(V )).
See Figure 1 for definitions of the variables. Suppose there are 12
types of derived variable that can involve up to 3 other variables (for
example, the subarraya[i..j] ), there are 152 types of invariant
that can involve up to 3 variables (for example,ax+ by + cz = d),
100 program points are instrumented, and there are 300 reachable
variables and fields in scope at each program point. ThenP · I ≈
1029, which is prohibitive. A static analysis can determine that not
all variables can sensibly be compared to all others [32, 11], but the
number of invariants is still a high-order polynomial in the number
of variables (here,I = O(v9)). On the other hand, if the grammar
of invariants is very small, then the simple incremental algorithm’s
space usage is reasonable.

The worst-case runtime requires checking all invariants for each
sample:T = O(P · I · L) . In practice, most invariants are false,
and most false invariants are falsified quickly (afterO(1) samples),
so the common-case runtime isT = O(P ·I+P ·RI ·L), where the
first summand is for falsified properties and the second summand
is for never-falsified invariants, which are checked for all samples.

The simple incremental algorithm has been implemented by a
number of research groups, and every invariant detector of which
we are aware (except Daikon) is based on it.

4. Optimization opportunities: redundant
properties

The simple incremental algorithm of Section 3 checks and re-
ports more invariants than necessary. This section gives four ex-
amples of redundancy in the output. Optimizations based on three
of these (equal variables, constants, and suppression) yielded sig-
nificant performance enhancements in the multi-pass batch algo-
rithm [11].

4.1 Equal variables
If two or more variables are always equal, then any invariant that

is true for one of the variables is true for each of the variables. For
example, ifx = y then for any invariantf , f(x) impliesf(y).

In this context, thex = y condition requires that whenever one
variable is missing, so is the other. In the above example, ifx was
missing wheny was not, thenf(x) does not necessarily implyf(y)
since the value fory whenx was missing may have invalidated the
invariant.

4.2 Dynamically constant variables
A dynamically constant variable is one that has the same value at

each observed sample. The invariantx = a (for constanta) makes
any other invariant over (only)x redundant. For example,x = 5
impliesodd(x) andx ≥ 5. Likewise for combinations of variables:

x = 5 andy = 6 implies bothx < y andx = y − 1.
Missing values affect what can be concluded from a group of

constants: there must exist at least one sample in which no constant
in the group is missing.

4.3 Variable hierarchy
Some variable values contribute to invariants at multiple program

points. For example, values observed at (public) method exits affect
not only method postconditions but also object invariants. For two
program pointsA andB, if all samples forB also appear atA, then
any invariant true atA is necessarily true atB and is redundant
at B. We have formalized this relationship as a partial ordervD

in which lesser elements receive a subset of the samples received
by a higher element, and higher elements contain a subset of the
invariants that are true at a lower element [29, 26].

Because different variables can appear at different program points,
the partial order is better understood as being over variables (which
are organized into program points) rather than over program points.

Figure 2 illustrates the variable hierarchy for two simple Java
classes. Three of the ways that the partial order relates variables
are:

Enter – Exit: At an exit point, we use the notationx for the final
value of variablex, andorig(x) for the initial value ofx (on
entry to the procedure). Variables at procedure entry points
arewD the corresponding original variables at the procedure
exit point.

Object – Method: Variables on object points arewD the corre-
sponding variables at each method entry and exit point.

Object – Client: Variables on object points arewD the corre-
sponding variables at each client of the class.

All of the relations are automatically determined from the pro-
gram source.

4.4 Suppression of weaker invariants
An invariant issuppressedif it is logically implied by some set

of other invariants. (The previous three examples of redundancy
are special cases of this one that give rise to specific optimization
opportunities.) For example,x > y impliesx ≥ y, and0 < x < y
andz = 0 imply x div y = z.

As with equal variables and dynamic constants, missing values
affect what can be suppressed. In the second example above, there
must be at least one sample wherex, y, andz are all present in
order forx div y = z to be true.

5. Multi-pass batch algorithm
The opportunities identified in Section 4 give powerful ways

to identify logically redundant properties. Whenever certain an-
tecedent properties hold, other properties are redundant and need
not be created, checked, or reported. However, the simple incre-
mental algorithm cannot take advantage of the redundancy. The
antecedent properties cannot be relied upon until invariant detec-
tion is complete, because properties may be falsified at any time.

The multi-pass algorithm [11] addresses this issue by perform-
ing invariant detection in multiple passes. Early passes check sim-
ple invariants, and later passes check more complex invariants (and
create derived variables) only if necessary.

Our implementation uses 5 passes. This number represents a
compromise between exposing optimization opportunities and re-
ducing the number of passes.

1. Unary constant. This pass determines whether each variable
is constant and whether it can be missing. Subsequent passes
ignore constant variables.
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orig(arg) orig(arg.x) orig(this) this.barg this this.b.xorig(this.b.x) arg.x A.put:exitorig(this.b)

this this.b.xthis.b A:object

this this.x

this this.x B:objectpublic class A {
  public B b;
  public void put(B arg);
}

public class B {
  public int x;
  public int get();
}

Object     Method
Object     Client
Enter     Exit

Type of variable relation

B.get:enter

this.barg this this.b.xarg.x A.put:enter

orig(this) return this.xorig(this.x) B.get:exitthis

Figure 2: Variable hierarchy for two simple Java classes. Shaded areas name the program point, while unshaded boxes represent variables at
that program point. Lines show the partial orderingvD described in Section 4.3. Lesser elements appear lower in the figure; for instance,
orig(arg) vD arg in the lower left corner. Note that thethis variable is not connected to any variable by an object–client relation. A
variable such asarg (a parameter to methodput ) can be null, butthis can never be null.

2. Binary equality. This pass checks equality for each pair
of non-constant variables. For each set of equal variables,
a leadervariable is (arbitrarily) chosen to represent the set.
Subsequent passes process only the leaders.

3. All other unary.
4. All other binary.
5. Ternary.

The suppression of weaker invariants optimization is built into
the passes. Before creating any invariant, invariant-specific code
checks whether the invariant is implied by any existing invariants.
As just one example, if pass 4 discovered thaty = x andx ≥ z,
then pass 5 need not check the ternary invarianty = max(x, z).

Note that per pass 1, invariants are not checked between con-
stants and variables. This is a powerful optimization, but it has
undesirable side effects: some interesting invariants may be omit-
ted as a result. Previous experiments demonstrated that this was
necessary to achieve acceptable performance [10]. The version of
the constant variables optimization for the incremental algorithms
(Section 8.2) does not have this flaw.

Our implementation of the multi-pass algorithm does not cur-
rently implement hierarchy-based optimizations. Doing so is pos-
sible, but would make the algorithm more complicated and would
require either postprocessing or increasing the number of passes
by at least an additive factor of the depth of the hierarchy. Sec-
tions 6 and 7 describe the hierarchy optimization in incremental
algorithms.

The multi-pass algorithm processes program points one by one,
performing 5 passes over the trace data for each program point. As
program points are processed, the samples associated with those
program points can be discarded. With this optimization, the multi-
pass algorithm’s worst-case space cost isS = O(P ·max(V L, RI).
The first argument is for storing the traces and represents the to-
tal space usage at the start of the algorithm, and the second is for
storing the invariants and represents space usage at the end of the
algorithm. In practice, the first argument dominates. Interning the
trace data can reduce its storage costs.

The worst-case runtime isT = O(P · I · L · |passes|), but
many invariants are quickly falsified, and even more are never even
checked, leading to common-case runtime ofT = O(P · I + P ·
RI · L · |passes|).

A downside of the multi-pass approach is the need to store the
trace data so it can be processed multiple times. Even modest traces
can occupy gigabytes of disk space and memory, limiting the abil-
ity of this algorithm to work with non-trivial programs and making
it inappropriate for online use. Reading files multiple times is an-
other possibility, however, file I/O is a substantial cost in our imple-
mentation, so it stores the traces in memory, performing run-length
encoding and interning identical samples to save space.

As an alternative to storing the trace data, one could run the tar-
get program multiple times, once for each pass of the multi-pass
algorithm. This is not acceptable (or is prohibitively difficult) if the
program performs side effects, depends on aspects of its environ-
ment that may change (including random number generators, mem-
ory addresses, hash codes, or thread scheduling), or uses expensive
resources, including human attention. Many programs, such as op-
erating systems and web servers, never terminate. A user may also
wish to switch from gathering invariants to checking invariants on
the fly [15].

6. Bottom-up incremental algorithm
An incremental algorithm can handle arbitrarily long executions

of the target program, because it processes each sample exactly
once, then discards it. However, the optimizations become both
more complicated and more costly: the invariant detector must
undo an optimization if the antecedents it depends on are ever fal-
sified.

This section presents our new bottom-up incremental algorithm;
Section 7 then proposes a top-down incremental algorithm. The
two algorithms differ primarily in how they address the variable
hierarchy optimization; the other optimizations are similar for the
two incremental algorithms and are given in Section 8.

Any invariant that is true at a higher level in the variable hierar-
chy is also true at all lower levels. (For instance, every object in-
variant is a precondition and postcondition of every public method.)
The key idea of the hierarchy optimizations is that when a particular
property is true at multiple program points, the invariant should be
checked at only one level of the hierarchy. In the bottom-up imple-
mentation, invariants are checked at the lowest possible level, and
in the top-down implementation, they are checked at the highest
possible level.

The bottom-up algorithm processes samples only at the leaves
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of the variable hierarchy; all aggregate program points are handled
by a postpass. After all of the samples have been processed, the
invariants at each non-leaf are built by merging the invariants at its
children. An invariant is created at the parent iff an invariant of
the same type, over the same variables, exists at each child. If the
invariant does not exist at some child, it must have been falsified at
that child and should thus be falsified at the parent.

Each invariant has its own merging routine that operates in a
manner similar to its run-time processing. This is straightforward
for stateless, or sample-independent, invariants that express only
one fact about their variables and whose internal state does not
change as a result of processing a sample. For example, greater-
than (x > y) and product (x = y · z) are stateless invariants.

Sample-dependentinvariants are those whose equation includes
a constant, such asx ≥ 42 andy = 2x + 1. It is not reasonable
to instantiate and check every possiblex ≥ c or y = ax + b in-
variant; instead, one object stands for all such invariants over given
variables, and the constants are computed to fit the observed sam-
ples. At run time, processing a sample may change the meaning of
the invariant — for instance, by adding a linearly independent point
that permits the constants to be computed or by weakening the in-
variant, such as by changingx ≥ 42 to x ≥ 10 when a sample with
value 10 is observed.

Merging sample-dependent invariants requires invariant-specific
processing. For example, if one child contains the invariantx ≤
15 and the other child contains the invariantx ≤ 22, the merged
invariant at the parent isx ≤ 22.

One complication when populating parent program points is the
need to properly relate variables at multiple program points, as il-
lustrated in Figure 2. Variables of the same name need not cor-
respond, and the correspondence can cross class boundaries. The
optimizations of Section 8 further complicate this correspondence.
When merging, the parent’s set of equivalence sets of variables
(Section 8.1) is the intersection of the sets of equivalence sets at
each child. Two variables are equal at the parent iff they are equal
at each child. Invariant merging must also merge the information
used by the statistical tests mentioned in Section 2, so that the statis-
tics can be computed as if the parent program point had processed
the samples itself.

In the bottom up approach, each sample is processed exactly
once (at its leaf). Non-leaf program points are only considered af-
ter all processing is complete. The processing time for parents is
dependent on the (small) number of invariants found at the children
and not the (large) number of samples.

7. Top-down incremental algorithm
The bottom-up algorithm instantiates a given invariant — say,

x < y — at every leaf program point that contains bothx andy.
By contrast, the top-down algorithm aims to save more space, at
the cost of additional runtime, by instantiating each invariant only
at the highest point(s) in the hierarchy at which it is true. All in-
variants are initially created at the top of the partial order. When a
sample is read from a trace, it is processed at every program point
from the top of the partial order down to the leaf program point to
which the sample belongs. If an invariant is falsified at a program
point, then the invariant is immediately removed from that program
point and is added to all its children, before the sample is processed
at the child.1 As a result, each invariant appears at most once on
any path starting at the top of the hierarchy. The set of invariants
for a program point consists of all invariants that appear at it or at a

1Our implementation accounts for the fact that the partial order
forms a dag, not a tree.

C2

B2 B3

A1

C2

A1

C3

B2

C4 C5

B3

C6C1

B1

C4 C5 C6

B1

C1 C3 C2

B2 B3

A1

C4 C5 C6

B1

C1 C3
Invariant at A1 holds at
each program point

After falsifying
sample at C1

After falsifying
sample at C2

Figure 3: Example of top-down hierarchy optimization. The left
diagram shows an invariant (point A1, marked with the gray back-
ground) at the top of the hierarchy: it holds at every program point.
The center diagram shows the hierarchy after a falsifying sample is
received at point C1 (and processed in order at A1, B1, and C1).
The right diagram shows the hierarchy after a falsifying sample is
received at point C2.

higher program point. For an example, see Figure 3.
In order to be applied at multiple program points, the sample

must be transformed to include the correct values in the correct
order. This is required because different variables appear at differ-
ent program points and a non-leaf program point may see samples
originating at multiple leaves. (The bottom-up algorithm does this
transformation only once, during postprocessing. It also only trans-
forms invariants and not samples.)

The top-down algorithm also makes the incremental optimiza-
tions (Section 8) more complex. The invariants that hold at a pro-
gram point can be physically located at that program point or at any
higher location(s) in the partial order. In order to search for an in-
variant the optimizations traverse the hierarchy, and when copying
an invariant to a (possibly different) program point they place each
copy at the target program point only if it does not appear anywhere
higher than the target.

Unfortunately, sample-dependent invariants (which tend to be
the most numerous in practice) must be exempted from the top-
down hierarchy optimization and instantiated everywhere in the
partial order. Processing of a sample-dependent invariant must ob-
serve every sample for a program point, without omitting any. For
example, suppose that in Figure 3 the invariant wasx = c (that is,
x is equal to some constantc), and the order of samples was:

Prog.
point value
C1 5
C2 5
C1 4

The first sample would set the equation asx = 5. The third sam-
ple would falsify the invariant. Following the algorithm outlined
above, thex = 5 invariant would be copied down to each of its
children as shown in the center diagram of Figure 3. This, however,
would be incorrect since program points B2 and B3 have received
no samples and should instead indicate thatc is not yet bound in
x = c.

These and other problems with achieving correctness led us to
modify our implementation of the top-down algorithm. Rather than
instantiating invariants only at the highest point in the hierarchy,
they are instantiated at each level in the tree. Those that are lower
in the tree are suppressed (see Section 8.3) by those higher in the
tree. This gains the time advantages made possible by utilizing the
variable hierarchy (each invariant is only checked at one level of the
hierarchy), but not the space advantages (invariants are duplicated).
In other words, although the top-down algorithm is intuitively ap-
pealing and promises space savings by instantiating invariants at
fewer locations in the hierarchy, it did not achieve its goals.
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Figure 4: Copying of invariants due to splitting of equality sets.
Equality sets and invariants are shown before and after processing
a sample in whichv = w, x = y, y 6= z.

8. Optimizations for incremental algorithms
In the multi-pass algorithm, later passes can rely on properties

that are known to be true across all samples. In contrast, prop-
erties that enable optimizations in the incremental algorithms are
always subject to change. The algorithm must be able to undo any
optimization. This may require creating previously suppressed in-
variants and putting them in the same state they would have been
in, had they processed all the samples that have been seen so far.

8.1 Equal variables
The incremental algorithms can use equivalence sets of variables

just as the batch algorithm does, but they must dynamically update
the equivalence sets. Initially all variables are placed in a single
equivalence set (modulo comparability, as noted in Section 3). In-
variants are instantiated only over the leaders of sets.

During processing, if any elements of the equivalence set differ
(in their value or in whether they are missing), the equivalence set
is broken into multiple parts, and invariants over the original leader
are copied to all the new leaders.

The copying proceeds as follows. For each invariant that men-
tions the leader of the old equivalence set, duplicate the invariant
as many times as there are new equivalence sets. In each dupli-
cate, replace the first instance of the old leader by a different one of
the new leaders. If the original invariant mentioned the old leader
more than once, then the duplicates still mention the old leader at
least once and must be recursively processed. Each original in-
variant mentioning the old leadern times turns into|newsets|n
duplicates. For an example, see Figure 4. This algorithm extends
in a straightforward manner to multiple equivalence sets breaking
up simultaneously.

Reflexiveinvariants that use a single variable more than once,
such asx ≤ x, are uninteresting and should never be reported;
however, the equal variables optimization requires their existence
during processing. Under the equal variables optimization, an in-
variant over a leader variable stands for multiple invariants over
members of the equivalence set. On the left side of Figure 4,f(v)
stands for bothf(v) andf(w), andg(v, x) stands for six invariants.
Reflexive invariants are required because an equivalence set might
later break up. For example,g(x, x) stands forg(x, y), g(x, z),
and 7 other invariants. Withoutg(x, x), the invariantsg(x, z) and
g(z, x) on the right side of the figure would not have been cre-
ated by the duplication step. As a further optimization, reflexive
invariants need not be created when there are fewer members of the
equality set than variables in the invariant. Thus, in the example, it
is not necessary to createg(z, z).

8.2 Constant variables
The incremental algorithms dynamically maintain a set of con-

stant variables. It is not necessary to instantiate an invariant if each
of its variables is a constant. However, if any of an invariant’s vari-
ables is non-constant (not a member of the constant set), the invari-
ant is instantiated.

As each sample is processed, the new value for each constant
variable is examined. If the new value is different or is missing, the
variable is removed from the constant set, and invariants relating its
values to the remaining constants are created.

A variable that is ever missing is not considered constant. If a
variable is sometimes missing, it is not known what combinations
of that variable with other variables have ever existed.

The incremental algorithms instantiate invariants between con-
stants and non-constants for two reasons. First, they are interesting
in their own right. Second, they are necessary if a constant later be-
comes a non-constant. When the last variable of a set becomes non-
constant, it is too late to create an invariant over the set, because the
previous values of the other variables have been lost. Instantiating
and checking invariants over every set of variables containing at
least one non-constant solves this problem.

8.3 Suppression of weaker invariants
Each type of invariant can specify a set of possiblesuppressions.

Each suppression is a set of antecedent invariants that together im-
ply the invariant. For example,{{x=y, z=1}, {x=z, y=1}} is a
possible set of suppressions for the “product” invariantx = y · z.
An invariant is suppressed if all of the antecedents in any suppres-
sion hold.

We discuss two implementations of the suppression mechanism.
The first one instantiates every invariant as usual and then checks,
for each invariant that might be suppressed, whether all of the an-
tecedents exist for any suppression. If so, a data structure records
that fact, and the suppressee invariant need not be checked at each
sample. If any antecedent is falsified, then the suppressee becomes
unsuppressed, unless some other suppression holds. Eliminating
checking at each sample saves runtime, but the data structures that
track the suppressions increase memory usage.

The second implementation avoids instantiating suppressed in-
variants. It maintains no state whatsoever to indicate whether a
non-existent invariant has been removed because it was falsified, or
was never instantiated because it is suppressed. This saves space,
but at the cost of more complicated processing.

Rather than linking each instantiated invariant that acts as an
antecedent to information indicating what instantiated invariants it
helps to suppress, each invariant type has a list of the suppression
types for which it may be an antecedent.

Whenever an invariant that might be an antecedent is falsified,
every non-instantiated invariant that it might be suppressing is
checked. If any suppression for the invariant holds before falsifica-
tion of the antecedent, but no suppression holds after falsification
of the antecedent, then the invariant must be instantiated. In other
words, the invariant is un-suppressed (instantiated) as soon as the
last suppression no longer holds.

For example, if potential antecedentw = 1 is falsified, the
“product” invariant (x = y · z) must be considered over every set
of 3 variables that includesw, and every suppression of each such
invariant must be checked. This is expensive, but it achieves the
goal of requiring no storage for each suppressed invariant.

In our implementation, the top-down algorithm uses the solution
that instantiates suppressed invariants and the bottom-up algorithm
uses the solution that does not. It is more complex and expensive
to search for antecedents in top-down (Section 7). The combina-
tion of this expense with the extra searches required in the non-
instantiating solution is prohibitive.
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Figure 5: The number of candidate invariants as samples are pro-
cessed, with and without optimizations by the bottom-up algorithm.
The data is from a single program point in the flex lexical analyzer.

8.4 Discussion
The optimizations to the incremental algorithms are most effec-

tive while processing initial samples of a trace. Initially, all in-
variants are true; but most are redundant, and all variables are in
the same equality set. The in-memory representation is relatively
small. As samples are processed, antecedent properties are falsi-
fied (and equality sets break up) and the number of instantiated in-
variants grows. By contrast, without the optimizations, the simple
incremental algorithm initially creates all invariants, but the num-
ber only decreases thereafter. Figure 5 shows how the number of
invariants grows without and with optimizations. The figure also
highlights the effectiveness of the optimizations. The maximum
number of invariants with optimizations is 100 times less than the
minimum number of invariants without the optimizations.

9. Experiments
In order to evaluate the algorithms and optimizations described

in this paper, we ran experiments to measure, in terms of time and
space, the effects of algorithm, optimizations, program size, and
trace size. This paper presents experiments over two rather differ-
ent target programs: the flex lexical analyzer (a C program that is
part of the standard Linux distribution) and the utility libraries of
Daikon itself (written in Java).

Flex contains 391 program points averaging 275 variables each,
and the trace we used is 9.2 gigabytes with 232,000 samples. The
trace was created by running flex over a number of sample scan-
ners. The Daikon utilities contain 1,593 program points averaging
60 variables (with a maximum of 3672 variables), and the trace
file is 11.5 gigabytes with 26 million samples. The trace file was
created by running Daikon over a small example program. The
simple incremental algorithm creates over 750 million candidate
invariants for flex, and over 460 million for Daikon (ignoring all
program points with more than 1500 variables, because we could
not even instantiate them in 1.4 gigabytes of memory).

We ran two sets of experiments. The first evaluates the differ-
ent algorithms against one another, with all optimizations enabled.
The second evaluates the optimizations by comparing the effects of
each optimization in isolation. For each run of the invariant detec-
tor, we measured run time (wall clock time) and maximum memory
size. We used five identical 2.2 GHz Pentium 4 PCs with 1 Gbyte of
memory, limiting the maximum Java heap to 750 Mbytes to elim-
inate thrashing. If results are not shown for some or all sizes on a
graph, the experiment ran out of memory before completion.

For each set of experiments, we simulated programs of various
sizes by considering fewer or more program points. (The file I/O
operations read the entire file, but the invariant detector did not

process samples at the ignored program points.) Using part of a
single program rather than many distinct programs of different sizes
avoids conflating program size with number or type of variables,
patterns of data, or other factors. This permits direct comparison
of results and also indicates performance when a user instruments
part of a large program, which is a realistic scenario. We simulated
shorter runs of the target program by reading only a fraction of the
trace file, while processing all program points.

The invariants created by each algorithm, both with and without
optimizations, are identical except for some relatively minor differ-
ences noted in the discussion of their implementation. Comparing
outputs has increased our confidence in the implementations.

9.1 Algorithm Comparison
Figure 6 shows the time and space usage of the multi-pass, bottom-

up, and top-down algorithms, graphed against target program run
time (trace size). Figure 7 graphs time and space against target
program size (number of program points). The simple incremental
algorithm does not complete even at the minimum program size or
minimum data trace file size.

The top-down algorithm runs out of memory when processing
the full flex trace. The top-down algorithm requires more memory
than the bottom-up one for two reasons. First, for correctness, it
must instantiate invariants at every level in the variable hierarchy.
Second, its data structures are significantly larger because it needs
to relate the variables in the hierarchy as it is processing samples.
The bottom up algorithm uses the hierarchy only when merging
invariants. In the Daikon utilities, memory usage is similar, but the
bottom up algorithm runs about twice as fast, more so with large
program sizes and trace sizes. This is due to the greater overhead
required for top-down processing.

Memory usage for bottom-up is independent of trace size and
linearly related to program size (since each program point is pro-
cessed independently). The multi-pass algorithm is similar in speed
to the bottom-up algorithm, but multi-pass cannot process the full
trace for flex or the Daikon utilities. Maximum memory use for
multi-pass grew less quickly than we expected, probably because of
the effectiveness of the interning optimization and the fact that the
Java memory system works harder to save memory (for instance,
garbage-collecting more frequently) as the limit is approached. This
explains why some of the memory graphs, which measure maxi-
mum memory usage, are flat near the memory limit.

9.2 Optimization Comparison
When comparing the optimizations we used the bottom-up algo-

rithm, which dominates the others and is able to process the full
traces, because we wished to use a single, good baseline. Further-
more, the optimizations are an integral part of the multi-pass ap-
proach and are difficult to turn on and off. The results are shown in
Figure 8.

The equality optimization is by far the most powerful. It is cru-
cial because so many variables are equal to one another. For ex-
ample, for a side-effect-free procedure, the post-state value of each
parameter and global variable is equal to its pre-state value. Elim-
inating any one optimization causes Daikon to run out of memory
on the flex example, so none of them is extraneous.

The optimization benefits for the Daikon utility libraries are less
than those for flex. The utilities have far fewer variables per pro-
gram point — a library has little state — and the most heavily exer-
cised library procedures were very simple —assert represented
almost 20% of all calls into the library. Thus, much of the pro-
cessing time for the utilities was expended where the optimizations
afforded little benefit.
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Figure 6: Comparison of algorithms over Flex and the Daikon utilities with respect to trace length. The multi-pass and top-down algorithms
run out of memory before processing the full Flex trace. Multi-pass also runs out of memory before processing the full Daikon utilities trace.
The simple incremental algorithm never completes even at the minimum trace length of 20,000 samples.
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10. Related work
Numerous researchers have adopted and adapted the ideas of

dynamic detection of likely invariants. Section 2 discussed rel-
evant features of the Daikon implementation. We now describe
other implementations, based on published information (no imple-
mentations other than Daikon are publicly available). While the
other implementations use the simple incremental algorithm, some
of them run faster than Daikon, primarily because Daikon checks
many more invariants (millions of times more, on the flex example).

However, the incremental algorithms and optimizations should be
applicable to other implementations.

The DIDUCE tool [15] checks one unary invariant on Java pro-
grams; at each program point (a field or array reference, or a pro-
cedure call), that invariant is checked for three values: a variable’s
current and previous values and their difference. The invariant in-
dicates all previously seen values of every bit of the value. As an
invariant is weakened (new values are observed in a given bit), a
message is printed. A user can look for weakenings that are printed
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Program Hierarchy Equality Constants Suppression
Time Flex 2.48 17.9 1.60 1.11
Space Flex 1.86 6.70 1.81 1.68
Time Utilities 1.20 1.72 1.16 1.00
Space Utilities 1.16 1.56 1.26 1.00

Figure 8: Comparison of the optimizations, averaged over a variety
of different program sizes and trace lengths. Reported numbers are
the result without one optimization, divided by the result when all
optimizations are enabled. For example, processing flex is 17.9
times slower and uses 6.7 times more memory without the equality
optimization. For this figure, time and space spent reading the trace
file (which is common to all approaches) are not included.

on erroneous runs or just before an error occurs, to find rare corner
cases. The tool was used to help explain several known errors and
to reveal two new errors.

The Carrot tool [33] checks 2 unary and 4 binary invariants.
By re-using Daikon’s instrumentation, it can handle any of the
languages Daikon can, and can dereference fields. In an exper-
iment comparing faulty and non-faulty program runs, the results
did not indicate the problem, in contrast to other work with similar
aims [15, 12].

Remote program sampling [21] is a light-weight mechanism that
evaluates two properties (one unary and one binary, but instanti-
ated for a linear rather than quadratic number of variable pairs)
at assignments in C programs (plus the predicate at each branch),
counting the number of times that each property is satisfied. The
properties are checked probabilistically: on most executions of a
program point, property checking is skipped. Any of the other im-
plementations could be so extended, sacrificing soundness (over the
test suite) but gaining performance. The results are processed sta-
tistically to indicate which properties are best correlated with faults
and thus most likely to be indicative of faults. As with DIDUCE,
relatively dense instrumentation means early warning, if one of the
relatively simple properties indicates a bug. In an experiment, the
tool rediscovered 7 known errors and found one new one.

Arnout’s tool for extracting implicit contracts [2] aims to add
preconditions. The analysis determines what conditions give rise to
an exception being thrown, then adds the negation of that condition
as a precondition.

Henkel and Diwan [17, 18] have built a tool that discovers alge-
braic specifications, which relate the meaning of sequences of code
operations, such as “pop(push(x,stack))=stack”. The tool gener-
ates many terms (test cases) from the signature of a Java class and
proposes equations based on the results of the tests. The tool also
proposes and tests generalizations.

The SPIN model checker has been extended to check whether
two variables are related by=, <, >,≤, or≥ [35]. The output is a
graph with variables at the nodes and edges labeled by the compar-
ison relations.

Programming by demonstration and inductive logic program-
ming aim to generate a program from a sequence of examples or
other data [3, 7, 20]. The output is similar to that obtained from
dynamic invariant detection, but aims to be complete rather than
partial and so must be targeted to a smaller domain.

Several researchers have inferred, from program or system traces,
finite state automata that represent the permitted transitions [6, 5, 1,
36]. Specifications written in the form of automata are complemen-
tary to the formula-based program properties that are generated by
a dynamic invariant detector.

11. Conclusion
We have presented two new incremental invariant detection al-

gorithms and compared them to two existing algorithms (one in-
cremental and one batch). We have shown how to perform three
previously described optimizations, and one new one, in the more
challenging incremental context, which requires undoing optimiza-
tions if the antecedents they depend on become invalidated. (This
aspect of the work can be viewed as a special-purpose automatic
theorem prover optimized to efficient retraction of axioms.) We
have implemented all the algorithms and optimizations in a single
framework, permitting a direct experimental comparison.

We conclude with a discussion of the merits of the various al-
gorithms. The simple incremental algorithm is very easy to under-
stand and to implement. At least 6 implemented invariant detectors
are based on this algorithm. When the number of invariants being
checked is very small — for example, because the implementation
only considers a small number of variables or invariant types — this
is clearly the best algorithm. However, it does not scale.

The multi-pass algorithm offers a convenient framework for op-
timizations, because no work ever need be undone. This greatly
reduces both the computational complexity and the storage require-
ments of the optimizations. The storage savings are offset by the
need to store trace data for re-processing (or to re-run the target
program, which is often impractical), and one of the optimizations
eliminates some desirable invariants from the output. The multi-
pass algorithm is reasonable for moderate-sized datasets and large
numbers of invariants, which are beyond the scope of the simple in-
cremental algorithm. However, longer runs require an incremental
algorithm.

The bottom-up incremental algorithm was the best performer in
our experiments. No other algorithm was able to fully process the
datasets. The optimizations control space usage by ensuring that
only a modest number of invariants exist at any one time, even
near the beginning of the run; it is a substantial accomplishment to
be competitive with the performance of the multi-pass algorithm,
which has been tuned over years of use. The incremental nature of
the algorithm makes its runtime proportional to (and its space us-
age independent of) dataset size, and permits on-line invariant de-
tection (concurrently with the target program, without storing any
trace data). Much of the complexity of the algorithm is incurred
only in the final postprocessing step.

The top-down incremental algorithm shares many characteristics
with the bottom-up algorithm. However, the top-down algorithm is
ineffective for sample-dependent invariants, has more complicated
processing for each sample, and requires a more difficult search to
determine whether an invariant is true.

Overall, our algorithms, implementations, and experiments sug-
gest how invariant detection can simultaneously scale to both non-
trivial numbers of invariants, and programs of nontrivial size. The
incremental algorithms and optimizations are implemented in ver-
sion 3 of the Daikon invariant detector, which is available athttp:
//pag.csail.mit.edu/daikon .
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