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Abstract

Explicitly stated program invariants can help programmers
by characterizing aspects of program execution and identify-
ing program properties that must be preserved when modi-
fying code; invariants can also be of assistance to automated
tools. Unfortunately, these invariants are usually absent from
code. Previous work showed how to dynamically detect in-
variants by looking for patterns in and relationships among
variable values captured in program traces. A prototype im-
plementation, Daikon, recovered invariants from formally-
specified programs, and the invariants it detected assisted
programmers in a software evolution task. However, it was
limited to finding invariants over scalars and arrays. This
paper presents two techniques that enable discovery of in-
variants over richer data structures, in particular collections
of data represented by recursive data structures, by indirect
links through tables, etc. The first technique is to traverse
these collections and record them as arrays in the program
traces; then the basic Daikon invariant detector can infer in-
variants over these new trace elements. The second tech-
nique enables discovery of conditional invariants, which are
necessary for reporting invariants over recursive data struc-
tures and are also useful in their own right. These techniques
permit detection of invariants such as “p.value > limit or
p.left ∈ mytree”, The techniques are validated by success-
ful application to two sets of programs: simple textbook data
structures and student solutions to a weighted digraph prob-
lem.

1 Introduction

Previous research demonstrated the feasibility of dynami-
cally detecting likely program invariants by analyzing traces
of variable values [ECGN], and showed how to improve the
speed of invariant detection and the usefulness of its out-
put [ECGN00]. A prototype implementation, Daikon, was
both accurate — it reported explicitly stated invariants in for-
mally specified textbook programs— and useful — it discov-
ered, in an undocumented C program, invariants that pro-
grammers found helpful in modifying the program. Daikon

discovered invariants over scalars and arrays, but could not
infer invariants involving richer collections of data. This pa-
per extends the previous techniques to discover such invari-
ants. For example, Daikon can now discover properties over
collections represented using linked lists.

Our approach discovers invariants from program execu-
tions by instrumenting the source program to trace the vari-
ables of interest, running the instrumented program over a
test suite, and checking properties over both the instrumented
variables and derived variables not manifest in the program.
This paper describes two specific extensions that allow the
inference of invariants over collections:

• The instrumenter explicitly records in the trace file col-
lections that are implicit (e.g., pointer-based). It does so
by traversing the collection and writing out the visited
objects as an array. We call this processlinearization.
Representing the fields of collections as arrays permits
inference of collection-wide properties (such as mem-
bership tests or summing a field over the data structure)
without further modifying Daikon.

• Daikon computesconditional invariants(invariants that
are not universally true) by splitting data traces into
parts based on predicates it chooses, then detecting in-
variants on each part. Conditional invariants are essen-
tial for recursive data structures, which behave differ-
ently in their base and recursive cases. (Conditional
invariants are also useful beyond recursive data struc-
tures.) We discuss several policies for splitting data
traces and experimentally evaluate a simple one that ex-
tracts boolean conditions from the program source; in
practice, it works well.

We have implemented these techniques and applied them
to two sets of programs: the first is taken from a data
structures textbook, and the second is student solutions to
a weighted digraph problem. Daikon finds most of the rele-
vant invariants and misses few of the relevant invariants. In
addition, the invariants have helped us identify several over-
sights in the design and implementation of some of the data
abstractions. See Section 5 for details.

As a motivating example, consider (part of) Daikon’s out-
put for a program that uses a linked list as a priority queue:
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Figure 1: An overview of dynamic invariant inference as imple-
mented by the Daikon tool.

PriorityQueue:::CLASS
prio.closure(next).rank sorted by <=

void PriorityQueue.insert():::EXIT
size(prio.closure(next)) =

size(orig(prio.closure(next))) + 1
Object PriorityQueue.remove():::EXIT

return = orig(prio.next.element)
prio.next = orig(prio.next.next)

This output states that all elements reachable vianext point-
ers from the rootprio are sorted by theirrank fields, that
insertions increase the size of the priority queue, and that re-
movals always occur at the beginning of the queue.

Section 2 provides background on dynamic invariant de-
tection. Section 3 discusses linearization for manipulating
pointer-accessed collections. Section 4 describes how to cre-
ate and test conditional invariants, and evaluates one such
strategy. Section 5 experimentally assesses the effective-
ness of these techniques. Section 6 presents ongoing work
in performing inference online, in conjunction with the in-
strumented program. Section 7 discusses related work, and
Section 8 concludes.

2 Background

Dynamic invariant detection [ECGN] discovers likely invari-
ants from program executions by instrumenting the target
program to trace the variables of interest, running the in-
strumented program over a test suite, and inferring invariants
over the instrumented values (Figure 1). The inference step
tests a set of possible invariants against the values captured
from the instrumented variables; those invariants that are
tested to a sufficient degree without falsification are reported
to the programmer. As with other dynamic approaches such
as profiling, the accuracy of the inferred invariants depends
in part on the quality and completeness of the test cases. The
Daikon inference engine is language independent, currently
supporting instrumenters for C, Java, and Lisp.

Daikon detects invariants at specific program points such
as loop heads and procedure entries and exits; each program
point is treated independently. The invariant detector is pro-
vided with a variable trace that contains, for each execution
of a program point, the values of all variables in scope at that
point. Each of a set of possible invariants is tested against
various combinations of traced variables. The following lists
some classes of invariants Daikon computes, wherex, y, and
z are variables, anda, b, andc are computed constants:

• invariants over any variable, such as being con-
stant (x = a), taking its values from a small set
(x ∈ {a, b, c}), etc.

• invariants over a single numeric variable, such as
being in a range (a ≤ x ≤ b), non-zero, modulus
(x ≡ a (mod b)), etc.

• invariants over two numeric variables, such as a lin-
ear relationship (y = ax + b), an ordering relationship
(x ≤ y), functions (x = fn(y)) for built-in unary func-
tions, combinations of invariants over a single numeric
variable (x + y ≡ a (mod b)), etc.

• invariants over three numeric variables, such as a linear
relationship (z = ax + by + c), functions, etc.

• invariants over a single sequence variable, such as min-
imum and maximum sequence values, lexicographical
ordering, element ordering, invariants holding for all el-
ements in the sequence, etc.

• invariants over two sequence variables, such as an el-
ementwise linear relationship, lexicographic compari-
son, subsequence relationship, etc.

• invariants over a sequence and a numeric variable, in
particular membership (x ∈ y).

For each variable or tuple of variables, each potential in-
variant is tested. Each potential unary invariant is checked
for all variables, each potential binary invariant is checked
over all pairs of variables, and so forth. A potential invariant
is checked by examining each sample (i.e., tuple of values
for the variables being tested) in turn. As soon as a sam-
ple not satisfying the invariant is encountered, that invariant
is known not to hold and is not checked for any subsequent
samples. Because false invariants tend to be falsified quickly,
the cost of computing invariants tends to be proportional to
the number of invariants discovered. All the invariants are
inexpensive to test and do not require full-fledged theorem-
proving.

To enable reporting of invariants regarding components or
properties of aggregates, Daikon represents such entities as
additional derived variables available for inference. For in-
stance, if arraya and integerlasti are both in scope, then
properties overa[lasti] may be of interest, even though
it is not a variable and may not even appear in the program
text. Derived variables are treated just like other variables
by the invariant detector, permitting the engine to infer in-
variants that are not hardcoded into its list. For instance, if
size(A) is derived from sequenceA, then the system can re-
port the invarianti < size(A) without hardcoding a less-than
comparison check for the case of a scalar and the length of
a sequence. For performance reasons, derived variables are
introduced only when known to be sensible. For instance, for
sequenceA, the derived variablesize(A) is introduced and
invariants are computed over it beforeA[i] is introduced, to
ensure thati is in the range ofA.

An invariant is reported only if there is adequate evidence
of its plausibility. In particular, if there are an inadequate
number of samples of a particular variable, patterns observed
over it may be mere coincidence. Consequently, for each
detected invariant, Daikon computes the probability that such
a property would appear by chance in a random input. The
property is reported only if its probability is smaller than a
user-defined confidence parameter.
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3 Invariants over collections

The Daikon invariant detector computes invariants only over
scalars and arrays. For programs that use richer data struc-
tures, reporting such invariants is useful but limiting. This
section extends the previous techniques to allow Daikon to
discover invariants over collections of data represented using
structures other than arrays. Our approach is to extend the
instrumenter to find collections that are implicit in the pro-
gram, linearize them, and record them explicitly in the trace
file as arrays.

This approach requires no change to Daikon’s inference
engine. This design decision stabilized the most complex
aspect of Daikon, the invariant detector; in turn, this has in-
creased the robustness of and our confidence in Daikon’s im-
plementation. Furthermore, as we show in Section 5, this
approach works quite well for the programs we have tried
to date. (Linearizing collections adds many variables to the
data trace; Section 6 discusses strategies to reduce this cost.)

To linearize an arbitrary-sized collection as an array re-
quires selecting a root, determining a method for traversing
the collection, and selecting the field or fields in the collec-
tion’s objects to be written into the trace file. Roots are se-
lected from variables that are explicit in the program. The
linearization process is driven by the objects found when a
root is explored. If a field is found that leads from an object
to another object of the same type (e.g.,element.next ), the
instrumenter outputs the two objects as successive elements
in the same array. If there are multiple fields with this prop-
erty (e.g., aprev field in addition to thenext field), then
one linearization is done for each field and multiple arrays
are written into the trace file.

When an element is written to the data trace file, its fields
with non-recursive types are also written out. This process
continues to a user-specified depth. The resulting new vari-
ables are named according to the expressions that produce
them at runtime, such asperson.birthdate .

The linearized arrays written to the trace file are given
new names. Ifheader contains a recursivenext field,
thenheader.closure(next) names the collection of all
elements reachable by followingnext fields — that is, the
linked list rooted atheader .

Traversal to the next object in a collection can be handled
similarly for other representations. As one example, a pro-
gram may create a pool of objects using an array, using the
indices of the array as links within the pool (as is frequently
done in Fortran). Following the indices through the array
identifies the elements to be written to the trace file. Similar
structures can be defined using hash tables.

As it is linearizing collections, the instrumenter writes
to the trace file additional information about the structures,
such as whether they are cyclic, a dag, or a tree, which is
computed during the data structure traversal but is not evi-
dent from the linearized form. This information is written as
scalars that can be handled directly by the Daikon invariant
detection engine.

Invariants over collections can be classified as either local
invariants or global invariants. Local invariants relate a small

number of objects, as inemp.dept = emp.manager.dept.
By contrast, global invariants involve an arbitrary-size part
of the collection, as inx ∈ mytree. Examples of global
invariants includenum used < size(mylist) and mytree is
sorted. Local invariants do not always imply global
ones; for instance, knowinga[i− 1].rank < a[i].rank (for
unconstrainedi ) implies that arraya is sorted, but know-
ing p.left.rank < p.rank < p.right.rank (for all p, when the
specified elements exist) does not imply that the tree contain-
ing p is sorted.

Therefore, global invariants must be checked explicitly.
This is simple, however, given the explicit linearized collec-
tions in the trace file. (Previously described techniques could
already detect local invariants.)

4 Conditional invariants

Many important program properties are not universally true.
For instance, the local invariant over a sorted binary tree,
p.left.value < p.right.value, is true only if p, p.left , and
p.right are non-null. Other examples include a dele-
tion routine with the postconditionif x ∈ orig(list) then
size(list) = size(orig(list))− 1, whereorig(list) is the
value oflist on entry to the routine, and an absolute value
routine with postconditionif arg < 0 then result = −arg
else result = arg. Conditional invariants are particularly
important for programs that manipulate recursive data struc-
tures, because different properties typically hold in the base
case and in the recursive case.

The mechanism for detecting conditional invariants is to
split data traces into parts based on some predicate, per-
form invariant inference on each part, and report those sub-
invariants, contingent on the splitting predicate. An example
is if p 6= null then p.value > MINVAL.

The splitting policy determines the predicate used for
splitting the data traces into parts. It is infeasible to try
all possible splitting predicates or to automatically predict
which splits are best for the user. We considered the fol-
lowing splitting policies, which could be used singly or in
combination:

• A static analysispolicy selects splitting conditions
based on analysis of the program’s source code.

• A special valuespolicy compares a variable to prese-
lected values chosen statically (such as null, zero, or
literals in the source code) or dynamically (such as
commonly-occurring values, minima, or maxima).

• A policy based onexceptions to detected invariants
tracks variable values that violate potential invariants,
rather than immediately discarding the falsified invari-
ant. If the number of falsifying samples is moderate,
those samples can be separately processed, resulting in
a nearly-true invariant and an invariant over the excep-
tions.

• A randompolicy could perform exhaustive or stochastic
splitting over a sample of the data, then re-use the most
useful splits on the whole data.
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• A programmer-drivenpolicy allows a user to select
splitting conditionsa priori.

We implemented the static analysis policy of using
boolean expressions in a method and side-effect-free zero-
argument boolean member functions; the splitting conditions
are automatically generated and applied. The results in Sec-
tion 5 demonstrate that not only is this policy easy to imple-
ment, it also works well for the programs we considered.

One reason for the success of static splitting may be that
the methods in the programs we tested (see Section 5) are
relatively simple. For example, theLinkedList program
has only a single conditional in its body and using this as a
splitting condition led to the discovery of useful conditional
predicates. If and when we find practical limitations of the
static splitting policy, we will pursue the more complicated
ones.

5 Assessment

To assess our techniques for inferring invariants over pro-
grams that use pointer-based collections, we analyzed the the
quality of Daikon’s output for two sets of programs. The
first set consists of programs from a data structures text-
book [Wei99]. Because these programs are small, described
in the textbook, and implement well-understood data struc-
tures, we were able to determine a “gold standard” of invari-
ants that should be reported by an ideal invariant detector.
The second set of programs were written (to a single specifi-
cation) by students in a software engineering course at MIT.
These programs are larger (1500–5000 lines) and more real-
istic, and the students wrote down representation invariants;
however, we found that frequently those specifications were
incomplete or not satisfied by the code.

Our measure of quality for an invariant isrele-
vance[ECGN00]. An invariant is relevant if it assists a pro-
grammer in a programming activity. Relevance is inherently
contingent on the particular task, as well as the programmer’s
capabilities, working style, and knowledge of the code base.
Because no automatic system can know this context, Daikon
necessarily reports some invariants that the user does not find
helpful and omits other invariants that the user might find
helpful.

We manually classified reported invariants as potentially
relevant or not relevant based on our own judgment, in-
formed by careful examination of the program and the test
cases. We judged an invariant to be potentially relevant if it
expressed a property that was necessarily true of the program
or expressed a salient property of its input, and if we believed
that knowledge of that property would help a programmer to
understand the code or perform a task. We made every effort
to be fair, consistent, and objective in our assessments.

This section reports what percentage of the reported in-
variants are relevant (like precision in information retrieval)
and what percentage of desired invariants are reported (like
recall in information retrieval). We do not report the latter
measurement for the student programs because of the spotty
quantity and quality of their formal specifications, and be-

class relevant implied irrelevant % relevant
LinkedList 317 11 1 96
OrderedList 201 5 5 95
StackLi 184 8 1 95
StackAr 159 0 0 100
QueueAr 500 0 0 100
ListNode 46 1 1 95
LinkedListItr 185 8 0 95

Figure 2: Invariants computed over data structures [Wei99].
ListNode andLinkedListItr are used internally by the first
three data structures. The “relevant” column lists the number of re-
ported invariants that were relevant. The “implied” column counts
the number of invariants that were implied by other invariants (a
simple test could eliminate these [ECGN00]). The “irrelevant” col-
umn counts the number of reported invariants that were irrelevant.
The “% relevant” column is the ratio of the relevant invariants to the
total number of reported invariants. These numbers do not include
class invariants that were repeated at method entries and exits and
tautological invariants that are necessarily true based on the sub-
parts of variables being compared, all of which were removed by
an automated postprocessing step.

cause it would be less compelling for us to report detecting
precisely the invariants that we had ourselves come up with.
The section also illustrates some of the facts discovered by
Daikon, as space permits.

5.1 Textbook data structures

We ran Daikon over the first five data structures in a data
structures textbook [Wei99]: linked lists, ordered lists, stacks
represented by lists, stacks represented by arrays, and queues
represented by arrays. Before examining the reported invari-
ants, we determined the desired output by reading the book
and the programs.

The textbook’s implementation comprises seven classes,
ranging in size from a dozen to 65 lines of non-blank,
non-comment code. (For comparison, the Sun JDK 1.2.2
java.util.LinkedList class is implemented in 673
lines, of which 255 are non-comment and non-blank. Its in-
terface is richer but its functionality is essentially the same
as the textbook’sLinkedList class.) Because the provided
test suites are minimal, we augmented them with additional
test cases. Previous work describes how we detect and take
advantage of polymorphic variables that have specific run-
time types [ECGN00], so for simplicity we assume here that
the polymorphic data structures are rewritten to contain Inte-
ger objects.

Figure 2 indicates the effectiveness of Daikon as applied
to the five textbook data structures. For each of the classes
in these programs for the selected test suite, Daikon re-
ported at least 95% of the relevant invariants. For example,
LinkedList reported 1 irrelevant invariant and 11 invari-
ants that were implied by other reported invariants, meaning
that 96% of the reported invariants were relevant. Daikon
also never reported fewer than 98% of the expected invari-
ants. ForLinkedList , 3 manually identified relevant invari-
ants were missed and 317 were reported, meaning that 99%
of the manually identified invariants were found by Daikon.

Figure 3 shows the data from this process. The small
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class relevant missing % reported
LinkedList 317 3 99
OrderedList 201 5 98
StackLi 184 0 100
StackAr 159 0 100
QueueAr 500 10 98
ListNode 46 0 100
LinkedListItr 185 2 99

Figure 3: Missing invariants over data structures [Wei99]. The
“relevant” column is repeated from Figure 2. The “missing” col-
umn counts desired invariants that Daikon failed to report. The “%
reported” column is the ratio of relevant to the sum of relevant and
missing.

numbers in the “relevant missing” column and the relatively
larger numbers in the “relevant reported” column indicate
that Daikon reports most relevant invariants and omits few
relevant invariants. The qualitative analysis below will pro-
vide additional examples and details.

5.1.1 Qualitative analysis

The following subsections qualitatively assess the invariants
detected on these five data structures, providing examples of
the output of the system on the various test cases. For brevity,
we discuss each invariant only once, even if it was detected
at multiple program points.

We can classify each relevant detected invariant as a func-
tional invariant or a usage property. Functional invariants
depend only on the structure of the code; they are univer-
sally true of the data structure under test. Examples are tra-
ditional object or class invariants, or function preconditions,
postconditions, or loop invariants. Usage properties result
from a program’s specific use of a data structure. Although
these invariants do not provide information about the class
per se, they can ease understanding of complex abstractions
that are used in simpler ways or can demonstrate the ade-
quacy or inadequacy of test suites, and we have seen con-
crete examples where they have helped programmers for just
these reasons [ECGN].

Linked lists. Figure 4 illustrates some of the invariants de-
tected over linked lists. Linked lists are implemented with a
header node that is not part of the list proper; the class in-
variants indicate that there is always at least oneListNode
reachable fromheader , which is another way of asserting
thatheader is not null. Additionally,header.element is
always set to 0. The reason is that there were only 32 differ-
ent linked lists created by the tests, and so only 32 different
values forheader ; that is not enough samples to justify the
inequality. When we reran the experiment with a larger test
suite, the invariant was reported.

Most of the findPrevious entry invariants are usage
properties dependent on the particular program and test suite:
elements are random integers between 0 and 31, and the
maximum list size is 15. The first equality indicates that
this program always inserts at the beginning of the list. The
routine’s exit invariants indicate that it does not changex ,
header , or objects accessible fromheader or their fields. In

LinkedList:::CLASS
header != null
size(header.closure(next)) >= 1
header.element = 0

LinkedListItr
LinkedList.findPrevious(Object x):::ENTER

p.current = header
x <= 31
x >= 0
size(header.next.closure(next)) <= 15

LinkedListItr
LinkedList.findPrevious(Object x):::EXIT

x = orig(x)
header = orig(header)
header.closure(next) =

orig(header.closure(next))
header.closure(next).element =

orig(header.closure(next).element)
return != null
return.current != null
x != return.current.element
return.current.closure(next)

is a subsequence of header.closure(next)
MISSING: return.current.next.element = x

void LinkedList.insert(Object x,
LinkedListItr p):::EXIT

x = header.next.element
if (p != null && p.current != null)

then size(orig(header.next.closure(next))) =
size(header.next.closure(next)) - 1

else header.closure(next) =
orig(header.closure(next))

boolean LinkedList.isEmpty():::EXIT
if (header.next == null)

then return = true
else return = false

void LinkedList.remove(Object x):::EXIT
size(header.next.closure(next)) <=

size(orig(header.next.closure(next)))
MISSING: if (findPrevious(s) != null)

then size(header.next.closure(next)) =
size(orig(header.next.closure(next))) - 1

else size(header.next.closure(next)) =
size(orig(header.next.closure(next)))

Figure 4: Linked list invariants. Invariants annotated by
:::CLASS are valid at the entry and exit of every public method;
they roughly correspond to class invariants or object invariants for
the given class. The notationclosure( fieldname) stands for
the collection of objects reachable by followingfieldnamepoint-
ers;orig( val) stands for the value ofval at entry to a procedure;
andsize( val) stands for the size of array or collectionval.

other words, the routine is side-effect-free. Additionally, the
routine always succeeds for this test suite: the return value is
never null. The antepenultimate exit invariant indicates that
the argument and the return value reference different values.
The penultimate one indicates that the return value points
into the original list, and the final (missing) invariant is the
basic contract of the procedure. Daikon can find that invari-
ant; see the discussion of ordered lists for details.

The firstinsert invariant indicates that, for this program,
insertion always occurs at the beginning of the list. The sec-
ond one shows the conditions forp under which insertion
is successful. No size invariant is reported for the case of
unsuccessful insertion because the equality of the two col-
lections implies that they have the same size; that redundant
invariant is automatically suppressed.

The remove invariant is an inequality over sizes because
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OrderedList:::CLASS
header.closure(next).element sorted by <=
MISSING: header.next.closure(next).element

sorted by <
void OrderedList.insert(Integer x):::EXIT

size(header.next.closure(next)) >=
size(orig(header.next.closure(next)))

Figure 5:Ordered list invariants.

void StackLi.push(Object x):::EXIT
x = topOfStack.element
topOfStack.next = orig(topOfStack)
topOfStack.next.closure(next) =

orig(topOfStack.closure(next))
size(topOfStack.closure(next)) =

size(orig(topOfStack.closure(next))) + 1
Object StackLi.topAndPop():::EXIT

return = orig(topOfStack.element)
topOfStack = orig(topOfStack.next)
topOfStack.closure(next) =

orig(topOfStack.next.closure(next))
size(topOfStack.closure(next)) =

size(orig(topOfStack.closure(next))) - 1

Figure 6:Stack invariants for list representation.

deletion is not always successful; additionally, it is not found
to always occur at the beginning of the list, as was the case
for insertion. We do not, however, detect the exact pred-
icate for determining when deletion was successful. The
reason is that we currently split only on conditions in the
program (however, the current prototype does examine lo-
cal variables, which often appear in conditionals) and zero-
argument boolean member functions. If we also used unary
boolean member functions, we could get the desired condi-
tion. (It would be more perspicuous if there were anis-
Member function, but the class lacks that.) Splitting on local
variables would also solve the problem.

Ordered lists. Most invariants over ordered lists are identi-
cal to those for arbitrary linked lists; some differences appear
in Figure 5. The one additional class invariant is the expected
one, indicating that the linked list pointed to by the header is
always sorted in terms ofelement values. The≤ relation-
ship results from the header element’s value of 0, for the first
element may also be 0. The strict ordering relation over the
list proper is missed only because the default depth for out-
putting data structures does not derive the needed variable.
When we increased the depth (a command-line argument to
the instrumenter) by 1, the desired invariant is produced, and
likewise forLinkedList.findPrevious .

Insertion does not always occur becauseOrderedList
permits no duplicate values, and insertion does not always
occur at the list head; this eliminates some invariants that ap-
peared inLinkedList . We fail to find the condition pred-
icate over the size ofinsert ’s result for the same reasons
we missed the similar predicate forLinkedList.remove
above.

Stacks: list representation. The three invariants for stack
push completely capture the operation’s semantics (see Fig-
ure 6), and thepop invariants are symmetric. The fourth in-
variant forpush , indicating that the stack grows by one after

StackAr():::EXIT
theArray = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
topOfStack = -1

boolean StackAr.isEmpty():::EXIT
topOfStack >= 0
return = false

void StackAr.push(Object x):::EXIT
x = theArray[topOfStack]
topOfStack >= 0
orig(topOfStack) = topOfStack - 1

Figure 7:Stack invariants for array representation.

an insertion, does not explicitly appear in the output. Instead,
the output includes the invariants

size(topOfStack.next.closure(next)) =
size(topOfStack.closure(next)) - 1

topOfStack.next.closure(next) =
orig(topOfStack.closure(next))

and these trivially imply the fourth invariant. This is an arti-
fact of how we choose a canonical variable among equal vari-
ables; the symmetric invariant reported forpush was found
explicitly. (It may be hard to find a desired invariant in the
current prototype’s output; we have developed a simple tool
that lists all the invariants involving a specified set of vari-
ables.)

The first invariant at the exit of thetopAndPop method
captures the return of the top stack element. The second and
third capture the notion of popping the stack. And the final
invariant indicates that the method decreases the size of the
linked list by one.

Stacks: array representation. Figure 7 shows invariants
for a stack implemented by an array. The invariants for the
exit point of the constructorStackAr show the initialization
of the stack: all elements are zeroed and the top index takes
an initial value. TheisEmpty invariants reflect a shortcom-
ing of the test suite: no tests were done when the stack was
empty. (Similarly, the stack never filled, which would re-
sult in more disjunctive invariants.) That the data structure
is a stack is captured in the invariants onpush (pop is very
similar): the element is inserted at the top of the stack, the
top index is incremented, and the stack is non-empty after a
push.

Queues. Invariants inferred over queues implemented with
an array representation appear in Figure 8. The construc-
tor postconditions capture the initializations of the internal
representation of the queue. The invariantcurrentSize =
front is accurate but coincidental, since in principle the ini-
tial length is always zero but another index could have been
used to represent the front of the queue.

Collectively, the invariants at the exit ofQueueAr say that
the proper element is returned, the back index changes, and
the front index remains unchanged. The invariant over the
back index is accurate but too weak: we would prefer to find
the missing modulus invariant. Adding differences and sums
of variables as derived variables would cause this invariant
to be detected (in a slightly different form). Our original
prototype did so, but at the time of these experiments we had
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QueueAr():::EXIT
currentSize = 0
currentSize = front
back = 15
theArray = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Object QueueAr.dequeue():::EXIT
return = theArray[front-1] =

theArray[orig(front)]
front = orig(front) + 1
back = orig(back)

void QueueAr.enqueue(Object x):::EXIT
x = theArray[currentSize-1] = theArray[back]
back != orig(back)
front = orig(front)
currentSize = orig(currentSize) + 1
MISSING: back = ((orig(back) + 1) mod

DEFAULTCAPACITY)

Figure 8:Queue invariants.

not yet added that to the current version, as we were unsure
of its general applicability.

5.2 City map student programs

To further verify our techniques and implementation, we ran
Daikon on programs written by students in a software en-
gineering course at MIT. The students were assigned to
write code, formal specifications, and test cases for a city
map implemented in terms of a weighted digraph. Although
a weighted digraph is inherently recursive, no student im-
plemented it via a recursive data structure. The implemen-
tations tended to use tables indexed by graph nodes; these
were sometimes nested and sometimes not, and the indexed
data varied as well. This general approach to representing
collections is not surprising given the availability of a library
of efficiently implemented abstractions. More explicit repre-
sentations of collections (for instance, as resizeable arrays)
lessen the pressure for Daikon to handle recursively-defined
collections; however, other properties (such as connected-
ness in the resulting graph) may become more difficult to
infer.

The students were directed to achieve branch coverage
with their test suites; most of them stopped immediately
upon achieving that goal, so many methods were executed
just a few times by their tests. Thus, at many program
points, no invariants were statistically justified. To report
results consistent across the programs, we report object in-
variants for three classes (Table , WtDigraph , and Dis-
tanceChart ) that appear in all the student programs. (An
object invariant holds at entry to and exit from all of the
class’s public methods.)

Assessing the Daikon output for these programs is far
more difficult than for the data structures considered above.
The primary reason is that it would be extremely time-
consuming to enumerate the true set of relevant invariants
for each program. One reason for the high cost is that the
programs range from 1500–5000 lines of code; another rea-
son is that each program would require custom analysis to
determine the true set of invariants. In any case, we could
not do these analyses impartially, since we examined the
Daikon output without having done such an analysis before-

Student relevant implied irrelevant missing added

1 15 37 72 4 0
2 13 24 27 10 1
3 19 25 64 5 3
4 13 30 48 10 7

Figure 9: Object invariants detected for 3 key classes in student
programs. The “relevant” column is the number of relevant invari-
ants reported that also appear in the students’ formal specifications.
The “implied” column is the number of redundantly reported invari-
ants that are implied by other (relevant) ones. The “irrelevant” col-
umn is the number of reported invariants that are not relevant. The
“missing” column is invariants in the students’ formal specifications
that did not appear in Daikon’s output. The “added” column is rel-
evant invariants detected by Daikon that the students erroneously
omitted from their formal specifications.

hand. The students provided formal specifications, but we
found that they were often inadequate, failing to note impor-
tant properties of the code.

Nonetheless, the estimates and the related qualitative anal-
ysis are valuable as part of our assessment. One reason is
that they provide added insight in and of themselves. Ad-
ditionally, serendipitously findingsomeproperties about a
program may be more important than finding them all, es-
pecially if the reported properties might have been over-
looked by the programmer otherwise. (An early simple use
of Daikon showed the value of providing programmers with
unexpected, albeit incomplete, information [ECGN].)

Figure 9 quantifies Daikon’s output for the four student
programs we assessed in detail. Because of the absence of a
true set of invariants against which to compare Daikon’s out-
put, the data we report in this figure differs somewhat from
that of Figures 2 and 3. For example, the “missing” numbers
compare against student formal specifications and so are un-
derestimates of the number of true invariants missed, because
in most cases the students’ formal specifications were incom-
plete, omitting important properties that were maintained by
their code. (In at least one case, a comment also indicated
that a representation invariant held at a point in the construc-
tor where it had not yet been established.)

We now discuss the columns of the table in turn; we ex-
plicitly address the apparently large number of “irrelevant”
invariants, especially as compared to the data structure pro-
grams analyzed above.

The invariants listed as “relevant” were both stated by the
students and also found by Daikon. They include uniqueness
and non-nullness of collection elements, constraints over
data structure sizes, and the like.

The “added” invariants were missing from the student
formal specifications but discovered by Daikon. As an
example, some implementations of theTable abstraction
used parallelkeys andvalues arrays; Daikon always re-
portedsize(keys) = size(values), but some formally speci-
fied representation invariants omitted that property. Simi-
larly, some but not all students explicitly noted that certain
values should be non-null, a property that was also picked up
by Daikon. (Daikon also discovered some invariants of the
test suites, such as assize(nodes) ≥ size(edges.keys), which
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indicates that there were never more edges than nodes; and
size(distanceChart.edges.keys) = 0 in addCity , which in-
dicates that the function was never called afteraddHighway
was called — that is, all cities were added before any high-
ways.)

The “implied” invariants are redundant, because given
other reported invariants, they are necessarily true. Most im-
plied invariants are suppressed from the output; that some re-
main is an easily corrected weakness of our special-purpose
logical implication checker.

The “irrelevant” invariants are nearly all comparisons be-
tween incompatible runtime types (for instance, a city is dis-
covered to be never equal to a highway). Daikon performs
these comparisons because it respects the statically declared
program types, which areObject . One of two techniques
would eliminate most or all of these irrelevant invariants: ei-
ther using a Lackwit-like static analysis to determine that
values cannot flow from one variable to the other [OJ97],
or performing two stages of invariant detection, the first of
which determines the actual runtime types [ECGN00]. So,
applying known technologies will allow us to eliminate al-
most all of the “implied” and “irrelevant” invariants, which
will make the Daikon output far cleaner.

The “missing” invariants fall into several categories. First,
invariants stating that the graph is bidirectional or contains
no self-edges require existential quantifiers or other mecha-
nisms not currently supported by Daikon. These invariants
are easy to state informally, but the programs’ self-checks
for these properties were sometimes a dozen lines long. Sec-
ond, invariants about mutability — for example, “the keys are
immutable” — would require an analysis of immutability as
well as run-time types. Third, several invariants over the run-
time types of objects were not detected due to inadequate test
suites or polymorphism. Finally, the invariant that a collec-
tion contains no duplicates can be detected by Daikon, but
in practice often was not because at runtime the specified
collections were very small (for instance, maximum outde-
gree was often two) and thus were observed too few times
for Daikon’s statistical tests to permit the invariant to be re-
ported. (In other cases, Daikon did report that collections,
such as the global collection of all nodes, contained no du-
plicates or null entries.)

Detecting the invariants for these programs was inexpen-
sive for Daikon. The trace files ranged in size from 500KB
to 15MB, depending on the test suite and program. For each
of the four programs, Daikon consumed approximately two
minutes of processing time. Daikon reported between 700
and 1900 invariants per program; the number of instrumented
program points ranged from 60 to 80.

6 Incremental processing

The approaches outlined in this paper perform adequately for
modest programs, but we do not expect them to scale with-
out change to large programs. After briefly discussing per-
formance issues, we outline our approach to using online,
incremental invariant inference to permit scaling Daikon to
larger, more realistic programs.

Instrumentation is approximately as fast as compilation.
(The Daikon Java instrumenter is a modified version of the
Jikes compiler.) Instrumentation slowdowns tend to be one
or two orders of magnitude (smaller when data structures be-
ing traversed are smaller, as instrumentation makes every op-
eration be at leastO(n) time wheren is the size of the visible
data). Daikon 2 (the current version) is written in Java, and
processing 1000 samples for a program point with 20 vari-
ables in scope takes less than a minute on a 143MHz Sun
Ultra 1 Model 140 running SunOS 5.5.1, with no JIT com-
piler and all debugging assertions enabled. (These numbers
are typical, although they are much larger in a few cases.)
We have not carefully measured time and space performance
because the system is still under development and we have
not seriously attempted to optimize its performance. Despite
this, we have found relevant invariants in pointer-based pro-
grams, demonstrating a proof of concept.

The major hurdle to making invariant detection scale is the
large number of possibly sizable variables presented by the
front end to the back end. Invariant detection per se has a
modest cost: its time grows with the number of invariants re-
ported, not with the number of invariants checked [ECGN].
The former number tends to be relatively small, whereas the
latter is cubic in the number of variables in scope at a pro-
gram point. The reason for this good performance is that
the overwhelming majority of invariants are false, and false
invariants tend to be falsified very quickly [ECGN]. Only
true invariants need be checked for every sample of variable
values.

Large data structures are costly for the front end to traverse
and output, and costly for the back end to input and examine
for invariants. Additionally, wide data structures result in a
large number of fields being output to the data trace.

A straightforward approach to scaling is to give program-
mers control over instrumentation. Daikon permits instru-
mentation to be suppressed for classes and functions speci-
fied via a command-line argument; likewise, users can spec-
ify detection of only class invariants, only procedure precon-
ditions and postconditions, or both.

To make the remaining tracing and inference go faster, we
can eliminate I/O costs by running the invariant detector on-
line in cooperation with the program under test, directly ex-
amining its data structures. When testing invariants online,
we need not store all data values indefinitely. Values need
only be accumulated initially to permit instantiating all vi-
able invariants in a staged fashion, then discarded. Staging
permits simpler invariants to be tested first so that redundant
invariants can be suppressed before being instantiated. In
particular, for each variable we test, in order: (1) whether the
variable is a constant or can be missing from the trace, (2)
whether the variable is equal to any other variable, (3) unary
invariants, (4) binary invariants with each other variable, and
(5) ternary invariants with each pair of other variables.

At each step, invariants discovered earlier can suppress
later ones. For instance, if two variables are equal, then
one of them is marked non-canonical and not considered
any further (see Section 5 for an artifact of this decision).
Once invariant inference is complete for a set of variables,
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then derived variables are introduced (with some of them be-
ing suppressed by the presence of invariants that illustrate
they would be found equal to another variable or would be
non-sensical). Then, inference is performed over the derived
variables. This staging of derivation and inference, and the
sub-staging of inference, is not a mere performance enhance-
ment. The system simply does not run when they are omit-
ted, for it is swamped in large numbers of derived variables
and vast numbers of invariants to check; both memory use
and runtime skyrocket.

This approach requires that when an invariant is falsified,
then other invariants and variable derivations that were sup-
pressed by its presence must be reinstated.

Beyond eliminating the I/O bottleneck and reducing mem-
ory costs, incremental processing can also reduce the amount
of work performed by the instrumentation itself. When a
variable is determined to be no longer of interest, then the
instrumentation can be informed to stop recording its value,
thus reducing its overhead. Given that most invariants are
quickly falsified, we speculate that this will provide the
largest speedup.

Implementation of this design is underway. Daikon sup-
ports incremental inference, but it does not yet reinstate sup-
pressed derived variables and invariants when an invariant is
falsified, and it is not integrated with the instrumented code.

7 Related work

Dynamic inference. Dynamic analysis [Bal99] is useful
for a variety of tasks. Value profiling [CFE97, SS98, CFE]
addresses a subset of our problem: detection of constant or
near-constant variables or instruction operands. Such infor-
mation can support runtime specialization where the pro-
gram branches to a specialized version if a variable value
is as expected. Runtime disambiguation [Nic89, SHZ+94,
HSS94] has a particular focus on pointer aliasing to support
optimization; for pairs of pointers that profiling shows are
rarely aliased, runtime reductions of 16–77% have been re-
alized [Nic89].

Static inference. Most pointer analysis research addresses
determining alias or points-to relations. Such information
can be used to compute the may definitions of an assignment
in static program slicing or to verify the independence of two
pointer references to enable an optimization. Precise pointer
analysis is computationally difficult [LH88, LR92]. The
high cost of flow-sensitive approaches [Wei80, JM81, JM82,
CWZ90, HN90, LR92, HEGV93], has led to the develop-
ment of flow-insensitive techniques [Ste96, And94, SH97],
which are often nearly as precise for a fraction of the
cost [HP98].

Shape analysis is a static analysis that infers properties of
pointer structures that could be used by programmers as in-
variants. In particular, shape analysis produces a graph struc-
ture for a structure pointer reference that summarizes the
abstract memory locations that it can reach [JM81, LH88,
CWZ90, HHN92, SRW99]. ADDS, for example, uses tradi-

tional gen/kill analysis to propagate descriptions like pointer
dimensionality and reachability through a program [GH96],
permitting the determination of tree, dag, and cyclic proper-
ties. The necessity to summarize actual properties in static
approaches is akin to our choice to limit the depth to which
we derive variables. Our depth limiting is similar to the sim-
ple static approach ofk-limiting.

Checking formal specifications. Considerable re-
search has addressed statically checking formal specifi-
cations [Pfe92, DC94, NCOD97, LN98, JvH+98]. (One
idea we are pursuing is to use Daikon as a hypothesis
generator that can provide specifications that these kinds
of systems can check; this would be an ideal synergy
between static and dynamic analysis.) Recently, some real-
istic static specification checkers have been implemented.
LCLint [EGHT94, Eva96] verifies that programs respect
annotations in the Larch/C Interface Language [Tan94];
in addition to modularity properties, LCLint also checks
pointer-based properties such as definedness, nullness,
and allocation state. ESC [Det96, LN98, DLNS98], the
Extended Static Checker, permits programmers to write
type-like annotations including arithmetic relationships
and declarations about mutability; it catches array bound
errors, nil dereferences, synchronization errors, and other
programming mistakes. Neither LCLint nor ESC is com-
pletely sound, but they do provide programmers substantial
confidence in the annotations that they check.

8 Conclusion

We have extended invariant detection techniques and the
Daikon prototype to enable the discovery of invariants in-
volving collections of data. A key technique is a lineariza-
tion process that traverses an implicitly represented collec-
tion, recording that collection’s elements in an array in a
program trace. The Daikon invariant detector, which can
handle scalars and arrays, can then infer properties over the
linearized versions of the collections. Furthermore, we have
developed a technique for inferring conditional invariants by
splitting trace data based on predicates extracted from the
source text. While this paper applies conditional invariants
to recursive data structures, such invariants are more broadly
applicable as well.

Our initial experience demonstrates the feasibility and po-
tential both of dynamic inference of invariants over collec-
tions and conditionals and also of our implementation ap-
proach.

The Daikon invariant detector is available for down-
load from http://www.cs.washington.edu/homes/
mernst/daikon/ .
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